Sample records for experimental decompression sickness

  1. The influence of prior exercise at anaerobic threshold on decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Gilbert, John H., III

    1992-01-01

    This study was conducted to examine the effects of exercise prior to decompression on the incidence of altitude decompression sickness (DCS). In a balanced, two-period, crossover trial, 39 healthy individuals were each exposed twice, without denitrogenation, to an altitude of 6400 m in a hypobaric chamber. Under the experimental condition, subjects exercised at their predetermined anaerobic threshold levels for 30 min each day for 3 d prior to altitude exposure; the other condition was a non-exercise control. Under both conditions, subjects performed exercise simulating space extravehicular activities at altitude for a period of 3 h, while breathing 100 percent oxygen. There were nine preferences (untied responses) for DCS, four under control and five under experimental conditions; all were Type I, pain-only bends. No carry-over effects between exposures was detected, and the test for treatment differences showed p = 0.56 for symptoms. No significant difference in DCS preferences was found after subjects exercised up to their anaerobic threshold levels during the days prior to decompression.

  2. Levodopa in Treatment of Decompression Sickness and of Air Embolism Induced Paraplegia in Rats.

    DTIC Science & Technology

    1981-08-28

    nitrosoureas (BCNU, CCNU) made additional progress in the treatment of brain tumors. A lipid soluble agent , 1,3-bis (2-Chloroethyl)-l- Nitrosourea (BCNU...mechanisms of levodopa and some other agents in the prevention and in the recovery of rats from decompression sickness. For better clarity the...brain occurring in decompression sickness. B. Decompression Sickness Studies. We have shown that gelatin, an agent that protects platelets during freezing

  3. Spinal decompression sickness: mechanical studies and a model.

    PubMed

    Hills, B A; James, P B

    1982-09-01

    Six experimental investigations of various mechanical aspects of the spinal cord are described relevant to its injury by gas deposited from solution by decompression. These show appreciable resistances to gas pockets dissipating by tracking along tissue boundaries or distending tissue, the back pressure often exceeding the probable blood perfusion pressure--particularly in the watershed zones. This leads to a simple mechanical model of spinal decompression sickness based on the vascular "waterfall" that is consistent with the pathology, the major quantitative aspects, and the symptomatology--especially the reversibility with recompression that is so difficult to explain by an embolic mechanism. The hypothesis is that autochthonous gas separating from solution in the spinal cord can reach sufficient local pressure to exceed the perfusion pressure and thus occlude blood flow.

  4. Decompression sickness in breath-hold divers: a review.

    PubMed

    Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka

    2009-12-01

    Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.

  5. Case Control Study of Type II Decompression Sickness Associated with Patent Foramen Ovale in Experimental No-Decompression Dives

    DTIC Science & Technology

    2010-05-01

    right-to-left shunt, RLS, transcranial Doppler, TCD, transthoracic echocardiography, TTE , air diving no-stop limits, Navy Experimental Diving...participation. The ultrasonographer and Principal Investigator (PI) were not blinded to either the transthoracic echocardiography ( TTE ) or...his or her ability to detect a PFO/RLS that depends upon a transiently elevated right atrial pressure. The technically easier TTE , in which the US

  6. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  7. Redistribution of Decompression Stop Time from Shallow to Deep Stops Increases Incidence of Decompression Sickness in Air Decompression Dives

    DTIC Science & Technology

    2011-07-22

    year old active duty male diver surfaced from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops...effort, and this episode responded immediately to pressure. AGE is unlikely due to the experience of the diver, the MK 20 FFM characteristics, and...from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops” experimental decompression profile

  8. Hazards of high altitude decompression sickness during falls in barometric pressure from 1 atm to a fraction thereof

    NASA Technical Reports Server (NTRS)

    Genin, A. M.

    1980-01-01

    Various tests related to studies concerning the effects of decompression sicknesses at varying pressure levels and physical activity are described. The tests indicate that there are no guarantees of freedom from decompression sicknesses when man transitions from a normally oxygenated normobaric nitrogen-oxygen atmosphere into an environment having a 0.4 atm or lower pressure and he is performing physical work.

  9. Propranolol Effects on Decompression Sickness in a Simulated DISSUB Rescue in Swine.

    PubMed

    Forbes, Angela S; Regis, David P; Hall, Aaron A; Mahon, Richard T; Cronin, William A

    2017-04-01

    Disabled submarine (DISSUB) survivors may face elevated CO2 levels and inert gas saturation, putting them at risk for CO2 toxicity and decompression sickness (DCS). Propranolol was shown to reduce CO2 production in an experimental DISSUB model in humans but its effects on DCS in a DISSUB rescue scenario are unknown. A 100% oxygen prebreathe (OPB) reduces DCS incidence and severity and is incorporated into some DISSUB rescue protocols. We used a swine model of DISSUB rescue to study the effect of propranolol on DCS incidence and mortality with and without an OPB. In Experiment 1, male Yorkshire Swine (70 kg) were pressurized to 2.8 ATA for 22 h. Propranolol 1.0 mg · kg-1 (IV) was administered at 21.25 h. At 22 h, the animal was rapidly decompressed and observed for DCS type, onset time, and mortality. Experimental animals (N = 21; 69 ± 4.1 kg), PROP1.0, were compared to PROP1.0-OPB45 (N = 8; 69 ± 2.8 kg) with the same dive profile, except for a 45 min OPB prior to decompression. In Experiment 2, the same methodology was used with the following changes: swine pressurized to 2.8 ATA for 28 h; experimental group (N = 25; 67 ± 3.3 kg), PROP0.5 bis, propranolol 0.5 mg · kg-1 bis (twice) (IV) was administered at 22 h and 26 h. Control animals (N = 25; 67 ± 3.9 kg) received normal saline. OPB reduced mortality in PROP1.0-OBP45 compared to PROP1.0 (0% vs. 71%). PROP0.5 bis had increased mortality compared to CONTROL (60-% vs. 4%). Administration of beta blockers prior to saturation decompression appears to increase DCS and worsen mortality in a swine model; however, their effects in bounce diving remain unknown.Forbes AS, Regis DP, HallAA, Mahon RT, Cronin WA. Propranolol effects on decompression sickness in a simulated DISSUB rescue in swine. Aerosp Med Hum Perform. 2017; 88(4):385-391.

  10. You’re the Flight Surgeon: Pulmonary Decompression Sickness

    DTIC Science & Technology

    2008-06-01

    follow-up of this patient Diagnosis: Decompression sickness (DeS) with pulmonary symptoms (Type Il DeS, older nomenclature). Treatment: Hyperbaric ...is quite clear thai any case of suspected decompression sickness in the USAF be discussed with the hyperbariC medicine specialists at Brooks City...physician in as respectful manner as you can that you suspect the patient’s condition is likely related to his hypobaric exposure. B. Agree with

  11. Evidence Report: Risk of Decompression Sickness (DCS)

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Norcross, Jason R.; Wessel, James H. III; Abercromby, Andrew F. J.; Klein, Jill S.; Dervay, Joseph P.; Gernhardt, Michael L.

    2013-01-01

    The Risk of Decompression Sickness (DCS) is identified by the NASA Human Research Program (HRP) as a recognized risk to human health and performance in space, as defined in the HRP Program Requirements Document (PRD). This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that tissue inert gas partial pressure is often greater than ambient pressure during phases of a mission, primarily during extravehicular activity (EVA), there is a possibility that decompression sickness may occur.

  12. Prevention of decompression sickness during extravehicular activity in space: a review.

    PubMed

    Tokumaru, O

    1997-12-01

    Extended and more frequent extravehicular activity (EVA) is planned in NASA's future space programs. The more EVAs are conducted, the higher the incidence of decompression sickness (DCS) that is anticipated. Since Japan is also promoting the Space Station Freedom project with NASA, DCS during EVA will be an inevitable complication. The author reviewed the pathophysiology of DCS and detailed four possible ways of preventing decompression sickness during EVA in space: (1) higher pressure suit technology; (2) preoxygenation/prebreathing; (3) staged decompression; and (4) habitat or vehicle pressurization. Among these measures, development of zero-prebreathe higher pressure suit technology seems most ideal, but because of economic and technical reasons and in cases of emergency, other methods must also be improved. Unsolved problems like repeated decompression or oxygen toxicity were also listed.

  13. Altitude-induced decompression sickness

    DOT National Transportation Integrated Search

    2010-01-01

    Decompression sickness (DCS) describes a condition characterized by a variety of symptoms resulting from exposure to low barometric pressures that cause inert gases (mainly nitrogen), normally dissolved in body fluids and tissues, to come out of phys...

  14. Threshold altitude resulting in decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Calkins, Dick S.

    1990-01-01

    A review of case reports, hypobaric chamber training data, and experimental evidence indicated that the threshold for incidence of altitude decompression sickness (DCS) was influenced by various factors such as prior denitrogenation, exercise or rest, and period of exposure, in addition to individual susceptibility. Fitting these data with appropriate statistical models makes it possible to examine the influence of various factors on the threshold for DCS. This approach was illustrated by logistic regression analysis on the incidence of DCS below 9144 m. Estimations using these regressions showed that, under a noprebreathe, 6-h exposure, simulated EVA profile, the threshold for symptoms occurred at approximately 3353 m; while under a noprebreathe, 2-h exposure profile with knee-bends exercise, the threshold occurred at 7925 m.

  15. Cox Proportional Hazards Models for Modeling the Time to Onset of Decompression Sickness in Hypobaric Environments

    NASA Technical Reports Server (NTRS)

    Thompson, Laura A.; Chhikara, Raj S.; Conkin, Johnny

    2003-01-01

    In this paper we fit Cox proportional hazards models to a subset of data from the Hypobaric Decompression Sickness Databank. The data bank contains records on the time to decompression sickness (DCS) and venous gas emboli (VGE) for over 130,000 person-exposures to high altitude in chamber tests. The subset we use contains 1,321 records, with 87% censoring, and has the most recent experimental tests on DCS made available from Johnson Space Center. We build on previous analyses of this data set by considering more expanded models and more detailed model assessments specific to the Cox model. Our model - which is stratified on the quartiles of the final ambient pressure at altitude - includes the final ambient pressure at altitude as a nonlinear continuous predictor, the computed tissue partial pressure of nitrogen at altitude, and whether exercise was done at altitude. We conduct various assessments of our model, many of which are recently developed in the statistical literature, and conclude where the model needs improvement. We consider the addition of frailties to the stratified Cox model, but found that no significant gain was attained above a model that does not include frailties. Finally, we validate some of the models that we fit.

  16. Effects of He-O2 Breathing during Experimental Decompression Sickness Following Air Dives

    DTIC Science & Technology

    1987-03-01

    sickness (DCS1 and venous air embolism were studied . Fifteen anestht zed dogs were mechanically ventilated and subjected to repeated air dives until...animals with He-0 2 during venous air embolism worsens pulmonary hypertension and hypoxemia (9). To test this hypothesis, we studied the effects of He...additional animals (air embolism group), gas switching was studied during venous air embolism at I ATA. These animals were anesthetized and instnmented as

  17. Using an Ultrasonic Instrument to Size Extravascular Bubbles

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Kline-Schroder, J.; Kenton, Marc A.

    2004-01-01

    In an ongoing development project, microscopic bubbles in extravascular tissue in a human body will be detected by use of an enhanced version of the apparatus described in Ultrasonic Bubble- Sizing Instrument (MSC-22980), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 62. To recapitulate: The physical basis of the instrument is the use of ultrasound to excite and measure the resonant behavior (oscillatory expansion and contraction) of bubbles. The resonant behavior is a function of the bubble diameter; the instrument exploits the diameter dependence of the resonance frequency and the general nonlinearity of the ultrasonic response of bubbles to detect bubbles and potentially measure their diameters. In the cited prior article, the application given most prominent mention was the measurement of gaseous emboli (essentially, gas bubbles in blood vessels) that cause decompression sickness and complications associated with cardiopulmonary surgery. According to the present proposal, the instrument capabilities would be extended to measure extravascular bubbles with diameters in the approximate range of 1 to 30 m. The proposed use of the instrument could contribute further to the understanding and prevention of decompression sickness: There is evidence that suggests that prebreathing oxygen greatly reduces the risk of decompression sickness by reducing the number of microscopic extravascular bubbles. By using the ultrasonic bubble-sizing instrument to detect and/or measure the sizes of such bubbles, it might be possible to predict the risk of decompression sickness. The instrument also has potential as a tool to guide the oxygen-prebreathing schedules of astronauts; high-altitude aviators; individuals who undertake high-altitude, low-opening (HALO) parachute jumps; and others at risk of decompression sickness. For example, an individual at serious risk of decompression sickness because of high concentrations of extravascular microscopic bubbles could be given a warning to continue to prebreathe oxygen until it was safe to decompress.

  18. Decompression sickness and venous gas emboli at 8.3 psia

    NASA Technical Reports Server (NTRS)

    Smead, Kenneth W.; Dixon, Gene A.; Webb, James T.; Krutz, Robert W., Jr.

    1987-01-01

    This study sought to determine the bends risk on decompression from sea level to 8.3 psia. On the basis of several prior studies by NASA and the Air Force, this differential was expected to result in a minimal (about 5 percent) incidence of mild decompression sickness, and may be the pressure of choice for the next-generation NASA extravehicular activity (EVA) pressure suit. Thirty-one volunteer subjects, performing light work characteristic of EVA, were exposed to 8.3 psia pressure altitude for six hours. Limb bends incidence was 3.2 percent, and 25.8 percent of the subjects demonstrated significant intravascular bubbling. Those who bubbled were significantly older than the bubble-free group, but differed in no other aspect. An 8.3 psia advanced pressure suit design was considered insufficient to totally preclude the risk of decompression sickness.

  19. Informatics-based medical procedure assistance during space missions.

    PubMed

    Iyengar, M S; Carruth, T N; Florez-Arango, J; Dunn, K

    2008-08-01

    Currently, paper-based and/or electronic together with telecommunications links to Earth-based physicians are used to assist astronaut crews perform diagnosis and treatment of medical conditions during space travel. However, these have limitations, especially during long duration missions in which telecommunications to earth-based physicians can be delayed. We describe an experimental technology called GuideView in which clinical guidelines are presented in a structured, interactive, multi-modal format and, in each step, clinical instructions are provided simultaneously in voice, text, pictures video or animations. An example application of the system to diagnosis and treatment of space Decompression Sickness is presented. Astronauts performing space walks from the International Space Station are at risk for decompression sickness because the atmospheric pressure of the Extra-vehicular Activity space- suit is significantly less that that of the interior of the Station.

  20. Informatics-based Medical Procedure Assistance during Space Missions

    PubMed Central

    Iyengar, M S; Carruth, T N; Florez-Arango, J; Dunn, K

    2008-01-01

    Currently, paper-based and/or electronic together with telecommunications links to Earth-based physicians are used to assist astronaut crews perform diagnosis and treatment of medical conditions during space travel. However, these have limitations, especially during long duration missions in which telecommunications to earth-based physicians can be delayed. We describe an experimental technology called GuideView in which clinical guidelines are presented in a structured, interactive, multi-modal format and, in each step, clinical instructions are provided simultaneously in voice, text, pictures video or animations. An example application of the system to diagnosis and treatment of space Decompression Sickness is presented. Astronauts performing space walks from the International Space Station are at risk for decompression sickness because the atmospheric pressure of the Extra-vehicular Activity space- suit is significantly less that that of the interior of the Station. PMID:19048089

  1. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox

    PubMed Central

    Kot, Jacek; Sicko, Zdzislaw

    2015-01-01

    Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window—also called inherent unsaturation or partial pressure vacancy—but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of decompression after saturation with nitrogen-based breathing mixtures. PMID:26111113

  2. A case of decompression sickness in a commercial pilot.

    PubMed

    Wolf, C W; Petzl, D H; Seidl, G; Burghuber, O C

    1989-10-01

    We report a case of decompression sickness (DCS) followed by pulmonary edema in a 47-year-old commercial pilot who operated a non-pressurized turboprop twin at flight level 290. He became unconscious and recovered after an emergency descent. The pilot collapsed and a pulmonary edema occurred 8 h after landing. The patient improved rapidly with fluid replacement and without hyperbaric therapy, which was not available at that time. This course of DCS is unusual because it is reported that fluid replacement without hyperbaric therapy normally cannot recover severe cases of DCS. The considerable increase in body weight of this pilot within the last 6 months may have been a predisposing factor for development of decompression sickness.

  3. Decompression sickness in simulated Apollo-Soyuz space missions

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Robertson, W. G.

    1974-01-01

    Apollo-Soyuz docking module atmospheres were evaluated for incidence of decompression sickness in men simulating passage from the Russian spacecraft atmosphere, to the U.S. spacecraft atmosphere, and then to the American space suit pressure. Following 8 hr of 'shirtsleeve' exposure to 31:69::O2:N2 gas breathing mixture, at 10 psia, subjects were 'denitrogenated' for either 30 or 60 min with 100% O2 prior to decompression directly to 3.7 psia suit equivalent while performing exercise at fixed intervals. Five of 21 subjects experienced symptoms of decompression sickness after 60 min of denitrogenation compared to 6 among 20 subjects after 30 min of denitrogenation. A condition of Grade I bends was reported after 60 min of denitrogenation, and 3 of these 5 subjects noted the disappearance of all symptoms of bends at 3.7 psia. After 30 min of denitrogenation, 2 out of 6 subjects developed Grade II bends at 3.7 psia.

  4. Health care worker decompression sickness: incidence, risk and mitigation.

    PubMed

    Clarke, Richard

    2017-01-01

    Inadvertent exposure to radiation, chemical agents and biological factors are well recognized hazards associated with the health care delivery system. Less well appreciated yet no less harmful is risk of decompression sickness in those who accompany patients as inside attendants (IAs) during provision of hyperbaric oxygen therapy. Unlike the above hazards where avoidance is practiced, IA exposure to decompression sickness risk is unavoidable. While overall incidence is low, when calculated as number of cases over number of exposures or potential for a case during any given exposure, employee cumulative risk, defined here as number of cases over number of IAs, or risk that an IA may suffer a case, is not. Commonly, this unique occupational environmental injury responds favorably to therapeutic recompression and a period of recuperation. There are, however, permanent and career-ending consequences, and at least two nurses have succumbed to their decompression insults. The intent of this paper is to heighten awareness of hyperbaric attendant decompression sickness. It will serve as a review of reported cases and reconcile incidence against largely ignored individual worker risk. Mitigation strategies are summarized and an approach to more precisely identify risk factors that might prompt development of consensus screening standards is proposed. Copyright© Undersea and Hyperbaric Medical Society.

  5. Role of Inflammatory Reponse in Experimental Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Little, T.

    1999-01-01

    Decompression to altitude can result in gas bubble formation both in tissues and in the systemic veins. The venous gas emboli (VGE) are often monitored during decompression exposures to assess risk for decompression sickness (DCS). Astronauts are at risk for DCS during extravehicular activities (EVA), where decompression occurs from the Space Shuttle or Space Station atmospheric pressure of 14.7 pounds per square inch (PSI) to that of the space suit pressure of 4.3 PSI. DCS symptoms include diffuse pain, especially around joints, inflammation and edema. Pathophysiological effects include interstitial inflammatory responses and recurring injury to the vascular endothelium. Such responses can result in vasoconstriction and associated hemodynamic changes.The granulocyte cell activation and chemotaxin release results in the formation of vasoactive and microvascular permeability altering mediators, especially from the lungs which are the principal target organ for the venous bubbles, and from activated cells (neutrophils, platelets, macrophages). Such mediators include free arachidonic acid and the byproducts of its metabolism via the cyclooxygenase and lipoxygenase pathways (see figure). The cyclooxygenase pathway results in formation of prostacyclin and other prostaglandins and thromboxanes that cause vasoconstriction, bronchoconstriction and platelet aggregation. Leukotrienes produced by the alternate pathway cause pulmonary and bronchial smooth muscle contraction and edema. Substances directly affecting vascular tone such as nitric oxide may also play a role in the respose to DCS. We are studying the role and consequent effects of the release inflammatory bioactive mediators as a result of DCS and VGE. More recent efforts are focused on identifying the effects of the body's circadian rhythm on these physiological consequences to decompression stress. al

  6. Predictive modeling of altitude decompression sickness in humans

    NASA Technical Reports Server (NTRS)

    Kenyon, D. J.; Hamilton, R. W., Jr.; Colley, I. A.; Schreiner, H. R.

    1972-01-01

    The coding of data on 2,565 individual human altitude chamber tests is reported as part of a selection procedure designed to eliminate individuals who are highly susceptible to decompression sickness, individual aircrew members were exposed to the pressure equivalent of 37,000 feet and observed for one hour. Many entries refer to subjects who have been tested two or three times. This data contains a substantial body of statistical information important to the understanding of the mechanisms of altitude decompression sickness and for the computation of improved high altitude operating procedures. Appropriate computer formats and encoding procedures were developed and all 2,565 entries have been converted to these formats and stored on magnetic tape. A gas loading file was produced.

  7. Doppler indices of gas phase formation in hypobaric environments: Time-intensity analysis

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1991-01-01

    A semi-quantitative method to analyze decompression data is described. It possesses the advantage that it allows a graded response to decompression rather than the dichotomous response generally employed. A generalized critical volume (C-V), or stoichiometric time-dependent equilibrium model is examined that relates the constant of the equation P sub i equals m P sub f plus b to variable tissue supersaturation and gas washout terms. The effects of the tissue ratio on gas phase formation indicate that a decreased ratio yields fewer individuals with Doppler detectable gas bubbles, but those individuals still present with Spencer Grade 3 or 4. This might indicate a local collapse of tissue saturation. The individuals with Grade 3 or 4 could be at risk for type 2 decompression sickness by transpulmonic arterialization. The primary regulator of the problems of decompression sickness is the reduction of local supersaturation, presumably governed by the presence and number of gas micronuclei. It is postulated that a reduction in these nuclei will favor a low incidence of decompression sickness in microgravity secondary to hypokinesia and adynamia.

  8. Spaceflight Decompression Sickness Contingency Plan

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph P.

    2007-01-01

    A viewgraph presentation on the Decompression Sickness (DCS) Contingency Plan for manned spaceflight is shown. The topics include: 1) Approach; 2) DCS Contingency Plan Overview; 3) Extravehicular Activity (EVA) Cuff Classifications; 4) On-orbit Treatment Philosophy; 5) Long Form Malfunction Procedure (MAL); 6) Medical Checklist; 7) Flight Rules; 8) Crew Training; 9) Flight Surgeon / Biomedical Engineer (BME) Training; and 10) DCS Emergency Landing Site.

  9. Scuba diving accidents.

    PubMed

    Dembert, M L

    1977-08-01

    The principal scuba diving medical problems of barotrauma, air embolism and decompression sickness have as their pathophysiologic basis the Ideal Gas Law and Boyle's Law. Hyperbaric chamber recompression therapy is the only definitive treatment of air embolism and decompression sickness. However, with a basic knowledge of diving medicine, the family physician can provide effective supportive care to the patient prior to initiation of hyperbaric therapy.

  10. A review of the influence of physical condition parameters on a typical aerospace stress effect: Decompression sickness

    NASA Technical Reports Server (NTRS)

    West, V. R.; Parker, J. F., Jr.

    1973-01-01

    The study examines data on episodes of decompression sickness, particularly from recent Navy work in which the event occurred under multiple stress conditions, to determine the extent to which decompression sickness might be predicted on the basis of personal characteristics such as age, weight, and physical condition. Such information should ultimately be useful for establishing medical selection criteria to screen individuals prior to participation inactivities involving extensive changes in ambient pressure, including those encountered in space operations. The main conclusions were as follows. There is a definite and positive relationship between increasing age and weight and the likelihood of decompression sickness. However, for predictive purposes, the relationship is low. To reduce the risk of bends, particularly for older individuals, strenuous exercise should be avoided immediately after ambient pressure changes. Temperatures should be kept at the low end of the comfort zone. For space activities, pressure changes of over 6-7 psi should be avoided. Prospective participants in future missions such as the Space Shuttle should not be excluded on the basis of age, certainly to age 60, if their general condition is reasonably good and they are not grossly obese. (Modified author abstract)

  11. Operation Everest II. Altitude Decompression Sickness during Repeated Altitude Exposure,

    DTIC Science & Technology

    1986-05-01

    Bends, Altitude, Hypobaric Chamber ILrJ " . .. . . " --" . .. " * .- . - - ’,, 3 INTRODUCTION Altitude Decompression Sickness (ADS) is a well...recognized and serious consequence of exposure to hypobaric conditions. It has been described during and after aircraft as well as hypobaric chamber flights...was noted in investigators during a recent study of chronic progressive hypoxia in a hypobaric chamber entitled Operation Everest II. The observations

  12. Space Flight Decompression Sickness Contingency Plan

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph; Gernhardt, Michael L.; Ross, Charles E.; Hamilton, Douglas; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    The purpose was to develop an enhanced plan to diagnose, treat, and manage decompression sickness (DCS) during extravehicular activity (EVA). This plan is merited by the high frequency of upcoming EVAs necessary to construct and maintain the International Space Station (ISS). The upcoming ISS era will demand a significant increase in EVA. The DCS Risk and Contingency Plan provided a new and improved approach to DCS reporting, treatment, management, and training.

  13. The physiological kinetics of nitrogen and the prevention of decompression sickness.

    PubMed

    Doolette, D J; Mitchell, S J

    2001-01-01

    Decompression sickness (DCS) is a potentially crippling disease caused by intracorporeal bubble formation during or after decompression from a compressed gas underwater dive. Bubbles most commonly evolve from dissolved inert gas accumulated during the exposure to increased ambient pressure. Most diving is performed breathing air, and the inert gas of interest is nitrogen. Divers use algorithms based on nitrogen kinetic models to plan the duration and degree of exposure to increased ambient pressure and to control their ascent rate. However, even correct execution of dives planned using such algorithms often results in bubble formation and may result in DCS. This reflects the importance of idiosyncratic host factors that are difficult to model, and deficiencies in current nitrogen kinetic models. Models describing the exchange of nitrogen between tissues and blood may be based on distributed capillary units or lumped compartments, either of which may be perfusion- or diffusion-limited. However, such simplistic models are usually poor predictors of experimental nitrogen kinetics at the organ or tissue level, probably because they fail to account for factors such as heterogeneity in both tissue composition and blood perfusion and non-capillary exchange mechanisms. The modelling of safe decompression procedures is further complicated by incomplete understanding of the processes that determine bubble formation. Moreover, any formation of bubbles during decompression alters subsequent nitrogen kinetics. Although these factors mandate complex resolutions to account for the interaction between dissolved nitrogen kinetics and bubble formation and growth, most decompression schedules are based on relatively simple perfusion-limited lumped compartment models of blood: tissue nitrogen exchange. Not surprisingly, all models inevitably require empirical adjustment based on outcomes in the field. Improvements in the predictive power of decompression calculations are being achieved using probabilistic bubble models, but divers will always be subject to the possibility of developing DCS despite adherence to prescribed limits.

  14. Prevention of decompression sickness during a simulated space docking mission

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Bollinger, R. R.; Richardson, B.

    1975-01-01

    This study has shown that repetitive exchanges between the Apollo space vehicle atmosphere of 100% oxygen at 5 psia (258 torr) and the Soyuz spacecraft atmosphere of 30% oxygen-70% nitrogen at 10 psia (533 torr), as simulated in altitude chambers, will not likely result in any form of decompression sickness. This conclusion is based upon the absence of any form of bends in seven crewmen who participated in 11 tests distributed over three 24-h periods. During each period, three transfers from the 5 to the 10 psia environments were performed by simulating passage through a docking module which served as an airlock where astronauts and cosmonauts first adapted to each other's cabin gases and pressures before transfer. Biochemical tests, subjective fatigue scores, and the complete absence of any form of pain were also indicative that decompression sickness should not be expected if this spacecraft transfer schedule is followed.

  15. Identifying the Subtle Presentation of Decompression Sickness.

    PubMed

    Alea, Kenneth

    2015-12-01

    Decompression sickness is an inherent occupational hazard that has the possibility to leave its victims with significant long-lasting effects that can potentially impact an aircrew's flight status. The relative infrequency of this hazard within the military flying community along with the potentially subtle presentation of decompression sickness (DCS) has the potential to result in delayed diagnosis and treatment, leading to residual deficits that can impact a patient's daily life or even lead to death. The patient presented in this work was diagnosed with a Type II DCS 21 h after a cabin decompression at 35,000 ft (10,668 m). The patient had been asymptomatic with a completely normal physical/neurological exam following his flight. The following day, he presented with excessive fatigue and on re-evaluation was recommended for hyperbaric therapy, during which his symptoms completely resolved. He was re-evaluated 14 d later and cleared to resume flight duties without further incident. The manifestation of this patient's decompression sickness was subtle and followed an evaluation that failed to identify any focal findings. A high index of suspicion with strict follow-up contributed to the identification of DCS in this case, resulting in definitive treatment and resolution of the patient's symptoms. Determination of the need for hyperbaric therapy following oxygen supplementation and a thorough history and physical is imperative. If the diagnosis is in question, consider preemptive hyperbaric therapy as the benefits of treatment in DCS outweigh the risks of treatment. Finally, this work introduces the future potential of neuropsychological testing for both the diagnosis of DCS as well as assessing the effectiveness of hyperbaric therapy in Type II DCS.

  16. Decompression sickness in a vegetarian diver: are vegetarian divers at risk? A case report.

    PubMed

    van Hulst, Robert A; van der Kamp, Wim

    2010-01-01

    We present a case of a diver who suffered decompression sickness (DCS), but who also was a strict vegetarian for more than 10 years. He presented with symptoms of tingling of both feet and left hand, weakness in both legs and sensory deficits for vibration and propriocepsis after two deep dives with decompression. The initial clinical features of this case were most consistent with DCS, possibly because of a vulnerable spinal cord due to cobalamin deficiency neuropathy. This case illustrates the similarities between DCS and a clinically defined vitamin B12 deficiency. The pathophysiology of vitamin B12 deficiency and common pathology and symptoms of DCS are reviewed.

  17. A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2001-01-01

    Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.

  18. An Annotated Bibliography of Hypobaric Decompression Sickness Research Conducted at the Crew Technology Division, USAF School of Aerospace Medicine, Brooks AFB, Texas from 1983 to 1988

    DTIC Science & Technology

    1990-06-01

    AN ANNOTATED BIBLIOGRAPHY OF HYPOBARIC DECOMPRESSION SICKNESS RESEARCH CONDUCTED AT THE CREW TECHNOLOGY DIVISION, USAF SCHOOL OF AEROSPACE MEDICINE...190 man-flights to four selected altitudes (30000, 27500, 25000, and 22500 ft pressure equivalent) in a hypobaric chamber. The subjects’ ages ranged...conditions and two of these developed delayed sy~rtcms. Three of these five subjects underwent hyperbaric oxygen treatment. Conclusion. Female subjects

  19. Analysis of the individual risk of altitude decompression sickness under repeated exposures

    NASA Technical Reports Server (NTRS)

    Kumar, K. Vasantha; Horrigan, David J.; Waligora, James M.; Gilbert, John H.

    1991-01-01

    In a case-control study, researchers examined the risk of decompression sickness (DCS) in individual subjects with higher number of exposures. Of the 126 subjects, 42 showed one or more episodes of DCS. Examination of the exposure-DCS relationship by odds ratio showed a linear relationship. Stratification analysis showed that sex, tissue ratio, and the presence of Doppler microbubbles were cofounders of this risk. A higher number of exposures increased the risk of DCS in this analysis.

  20. The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.

    DTIC Science & Technology

    1980-12-18

    Doppler Ultrasound and a calibrated 6 1 Venous Gas Embol i Scale. C. Electronic Counting of Doppler Bubble Signals 72 £ III. Pulmonary Embolism Studies...IA. Background 75 B. Right Ventricular Systolic Pressure following Gas 81 Embolization and Venous Gas Phase Content IC. Effects of Pulmonary Gas... Embolism on the Development 9 of Limb-Bend Decompression Sickness 1 IV. Gas Phase Formation in Highly Perfused Tissues IA. Renal 9 B. Cerebral 9 1 I I V

  1. A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness

    PubMed Central

    Stride, E.; Cheema, U.

    2017-01-01

    The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127

  2. Colonic Fermentation Promotes Decompression sickness in Rats

    PubMed Central

    de Maistre, Sébastien; Vallée, Nicolas; Gempp, Emmanuel; Lambrechts, Kate; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS). During dives with hydrogen as a diluent for oxygen, decreasing the body’s H2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. So we set out to investigate if colonic fermentation leading to endogenous hydrogen production promotes DCS in fasting rats. Four hours before an experimental dive, 93 fasting rats were force-fed, half of them with mannitol and the other half with water. Exhaled hydrogen was measured before and after force-feeding. Following the hyperbaric exposure, we looked for signs of DCS. A higher incidence of DCS was found in rats force-fed with mannitol than in those force-fed with water (80%, [95%CI 56, 94] versus 40%, [95%CI 19, 64], p < 0.01). In rats force-fed with mannitol, metronidazole pretreatment reduced the incidence of DCS (33%, [95%CI 15, 57], p = 0.005) at the same time as it inhibited colonic fermentation (14 ± 35 ppm versus 118 ± 90 ppm, p = 0.0001). Pre-diveingestion of mannitol increased the incidence of DCS in fasting rats when colonic fermentation peaked during the decompression phase. More generally, colonic fermentation in rats on a normal diet could promote DCS through endogenous hydrogen production. PMID:26853722

  3. Decompression Sickness During Simulated Low Pressure Exposure is Increased with Mild Ambulation Exercise

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.

  4. Severe capillary leak syndrome after inner ear decompression sickness in a recreational scuba diver.

    PubMed

    Gempp, Emmanuel; Lacroix, Guillaume; Cournac, Jean-Marie; Louge, Pierre

    2013-07-01

    Post-decompression shock with plasma volume deficit is a very rare event that has been observed under extreme conditions of hypobaric and hyperbaric exposure in aviators and professional divers. We report a case of severe hypovolemic shock due to extravasation of plasma in a recreational scuba diver presenting with inner ear decompression sickness. Impaired endothelial function can lead to capillary leak with hemoconcentration and hypotension in severe cases. This report suggests that decompression-induced circulating bubbles may have triggered the endothelial damage, activating the classic inflammatory pathway of increased vascular permeability. This observation highlights the need for an accurate diagnosis of this potentially life-threatening condition at the initial presentation in the Emergency Department after a diving-related injury. An elevated hematocrit in a diver should raise the suspicion for the potential development of capillary leak syndrome requiring specific treatment using albumin infusion as primary fluid replacement. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the updated Evidence Reports for The Risk of Decompression Sickness (from here on referred to as the 2014 DCS Evidence Report) and the Risk of Injury and Compromised Performance due to EVA Operations (from here on referred to as the 2014 EVA Evidence Report), as well as the Research Plans for these Risks. The SRP appreciated the time and effort that the DCS and EVA disciplines put into their review documents and presentations. The SRP felt that the 2014 DCS Evidence Report and the 2014 EVA Evidence Reports were very thorough and addressed the majority of the known DCS and EVA issues. The researchers at NASA Johnson Space Center (JSC) have the knowledge base to deal with the DCS and EVA issues. Overall, the SRP thinks the DCS and EVA research teams have compiled excellent reports which address the majority of the literature and background information.

  6. Risk of decompression sickness in the presence of circulating microbubbles

    NASA Technical Reports Server (NTRS)

    Kumar, K. Vasantha; Powell, Michael R.

    1993-01-01

    In this study, we examined the association between microbubbles formed in the circulation from a free gas phase and symptoms of altitude decompression sickness (DCS). In a subgroup of 59 males of mean (S.D) age 31.2 (5.8) years who developed microbubbles during exposure to 26.59 kPa (4.3 psi) under simulated extravehicular activities (EVA), symptoms of DCS occurred in 24 (41 percent) individuals. Spencer grade 1 microbubbles occurred in 4 (7 percent), grade 2 in 9 (15 percent), grade 3 in 15 (25 percent), and grade 4 in 31 (53 percent) of subjects. Survival analysis using Cox proportional hazards regression showed that individuals with less than grade 3 CMB showed 2.46 times (95 percent confidence interval = 1.26 to 5.34) higher risk of symptoms. This information is crucial for defining the risk of DCS for inflight Doppler monitoring under space EVA. Altitude decompression sickness (DCS) occurs when there is acute reduction in ambient pressure. The symptoms of DCS are due to the formation of a free gas phase (in the form of gas microbubbles) in tissues during decompression. Musculo-skeletal pain of bends is the commonest form of DCS in altitude exposures. In the space flight environment, there is a risk of DCS when astronauts decompress from the normobaric shuttle pressure into the hypobaric space suit pressure (currently about 29.65 kPa (4.3 psi) for extra-vehicular activities (EVA). This risk is counterbalanced by a judicious combination of prior denitrogenation and staged decompression. Studies of DCS are limited by the duration of the test at reduced pressure. Since only a proportion of subjects tested develop symptoms, the information on DCS is generally incomplete or 'censored'. Many studies employ Doppler ultrasound monitoring of the precordial area for detecting circulating microbubbles (CMB). Although the association between CMB and bends pain is not causal, CMB are frequently monitored during decompression. In this paper, we examine the association between CMB and symptoms of DCS under simulated EVA profiles.

  7. Decompression sickness after air break in prebreathe described with a survival model.

    PubMed

    Conkin, Johnny

    2011-06-01

    A perception exists in aerospace that a brief interruption in a 100% oxygen prebreathe (PB) by breathing air has a substantial decompression sickness (DCS) consequence. The consequences of an air break during PB on the subsequent hypobaric DCS outcomes were evaluated. The hypothesis was that asymmetrical and not symmetrical nitrogen (N2) kinetics was best to model the distribution of subsequent DCS survival times after PBs that included air breaks. DCS survival times from 95 controls for a 60-min PB prior to 2- or 4-h exposures to 4.37 psia (9144 m; 30,000 ft) were analyzed along with 3 experimental conditions: 10-min air break (N = 40), 20-min air break (N = 40), or 60-min air break (N = 32) 30 min into the PB followed by 30 min of PB. Ascent rate was 1524 m x min(-1) and all 207 exposures included light exercise at 4.37 psia. Various computations of decompression dose were evaluated; either the difference or ratio of P1N2 and P2, where P1N2 was computed tissue N2 pressure to account for the PB and P2 was altitude pressure. Survival times were described with an accelerated log logistic model with asymmetrical N2 kinetics defining P1N2--P2 as best decompression dose. Exponential N2 uptake during the air break was described with a 10-min half time and N2 elimination during PB with a 60-min half time. A simple conclusion about compensation for air break is not possible because the duration and location of a break in a PB is variable. The resulting survival model is used to compute additional PB time to compensate for an air break in PB within the range of tested conditions.

  8. Decompressing recompression chamber attendants during Australian submarine rescue operations.

    PubMed

    Reid, Michael P; Fock, Andrew; Doolette, David J

    2017-09-01

    Inside chamber attendants rescuing survivors from a pressurised, distressed submarine may themselves accumulate a decompression obligation which may exceed the limits of Defense and Civil Institute of Environmental Medicine tables presently used by the Royal Australian Navy. This study assessed the probability of decompression sickness (P DCS ) for medical attendants supervising survivors undergoing oxygen-accelerated saturation decompression according to the National Oceanic and Atmospheric Administration (NOAA) 17.11 table. Estimated probability of decompression sickness (P DCS ), the units pulmonary oxygen toxicity dose (UPTD) and the volume of oxygen required were calculated for attendants breathing air during the NOAA table compared with the introduction of various periods of oxygen breathing. The P DCS in medical attendants breathing air whilst supervising survivors receiving NOAA decompression is up to 4.5%. For the longest predicted profile (830 minutes at 253 kPa) oxygen breathing at 30, 60 and 90 minutes at 132 kPa partial pressure of oxygen reduced the air-breathing-associated P DCS to less than 3.1 %, 2.1% and 1.4% respectively. The probability of at least one incident of DCS among attendants, with consequent strain on resources, is high if attendants breathe air throughout their exposure. The introduction of 90 minutes of oxygen breathing greatly reduces the probability of this interruption to rescue operations.

  9. Parameter estimation of the copernicus decompression model with venous gas emboli in human divers.

    PubMed

    Gutvik, Christian R; Dunford, Richard G; Dujic, Zeljko; Brubakk, Alf O

    2010-07-01

    Decompression Sickness (DCS) may occur when divers decompress from a hyperbaric environment. To prevent this, decompression procedures are used to get safely back to the surface. The models whose procedures are calculated from, are traditionally validated using clinical symptoms as an endpoint. However, DCS is an uncommon phenomenon and the wide variation in individual response to decompression stress is poorly understood. And generally, using clinical examination alone for validation is disadvantageous from a modeling perspective. Currently, the only objective and quantitative measure of decompression stress is Venous Gas Emboli (VGE), measured by either ultrasonic imaging or Doppler. VGE has been shown to be statistically correlated with DCS, and is now widely used in science to evaluate decompression stress from a dive. Until recently no mathematical model has existed to predict VGE from a dive, which motivated the development of the Copernicus model. The present article compiles a selection experimental dives and field data containing computer recorded depth profiles associated with ultrasound measurements of VGE. It describes a parameter estimation problem to fit the model with these data. A total of 185 square bounce dives from DCIEM, Canada, 188 recreational dives with a mix of single, repetitive and multi-day exposures from DAN USA and 84 experimentally designed decompression dives from Split Croatia were used, giving a total of 457 dives. Five selected parameters in the Copernicus bubble model were assigned for estimation and a non-linear optimization problem was formalized with a weighted least square cost function. A bias factor to the DCIEM chamber dives was also included. A Quasi-Newton algorithm (BFGS) from the TOMLAB numerical package solved the problem which was proved to be convex. With the parameter set presented in this article, Copernicus can be implemented in any programming language to estimate VGE from an air dive.

  10. The effectiveness of ground level post-flight 100 percent oxygen breathing as therapy for pain-only altitude Decompression Sickness (DCS)

    NASA Technical Reports Server (NTRS)

    Demboski, John T.; Pilmanis, Andrew A.

    1994-01-01

    In both the aviation and space environments, decompression sickness (DCS) is an operational limitation. Hyperbaric recompression is the most efficacious treatment for altitude DCS. However, the inherent recompression of descent to ground level while breathing oxygen is in itself therapy for altitude DCS. If pain-only DCS occurs during a hypobaric exposure, and the symptoms resolver during descent, ground level post-flight breathing of 100% O2 for 2 hours (GLO2) is considered sufficient treatment by USAF Regulation 161-21. The effectiveness of the GLO2 treatment protocol is defined.

  11. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  12. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    PubMed

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  14. Intravenous Perfluorocarbon After Onset of Decompression Sickness Decreases Mortality in 20-kg Swine

    DTIC Science & Technology

    2010-06-01

    administration of 0.1-1.5 ml· 10 kg- • Euthasol. After confirmation of death, the heart was exposed via thoracotomy and a large-bore cannula p laced in the...from undersea diving. Neural Clin 1992; 10:1031-45. 18. Hallenbeck JM, Bove AA, Elliott DH. Mechanisms underlying spinal cord damage in decompression

  15. Towards new paradigms for the treatment of hypobaric decompression sickness.

    PubMed

    Dart, T S; Butler, W

    1998-04-01

    Altitude induced (hypobaric) decompression sickness (DCS) has long been treated with ground level oxygen and U.S. Navy Treatment Tables 5 and 6. These treatment tables originate from surface excursion diving and, when implemented, require significant resource allocation. Although they are effective treatment regimens, these tables were not developed for treating hypobaric DCS which has an etiology similar to saturation diving DCS. In this review, different treatment options for hypobaric DCS are presented. These options include more aggressive use of ground level oxygen and treatment tables using a maximum pressure of 2 atmospheres (ATA). Specific attention is given to USAF Table VIII, an experimental hypobaric DCS treatment-table, and space suit overpressurization treatment. This paradigm shift for DCS treatment is based on a projected increase in hypobaric DCS treatment from exposure to low pressure during several operational conditions: cruise flight in the next generation aircraft (e.g., F-22); high altitude, unpressurized flight by special operations forces; and the extraordinary amount of extravehicular activity (EVA) required to construct the international space station. Anticipating the need to treat DCS encountered during these and other activities, it is proposed that 2 ATA or less hyperbaric oxygen (HBO) treatment conjoined with new collapsible chamber technology can be used to address these issues in a safe and cost effective fashion.

  16. To close or not to close: contemporary indications for patent foramen ovale closure.

    PubMed

    Zier, Lucas S; Sievert, Horst; Mahadevan, Vaikom S

    2016-11-01

    Patent foramen ovale (PFO) is a common congenital cardiac abnormality and that has been associated with several disease processes including transient ischemic attacks (TIA), stroke, migraine headaches with aura, decompression sickness, platypnea-orthodeoxia syndrome, and shunt induced cyanosis. Controversy exists regarding closure of PFO as a therapeutic treatment modality for these disease processes. This review addresses the contemporary clinical indications for PFO closure. Areas covered: We conducted a comprehensive literature search of contemporary research studies focusing on randomized trials and meta-analyses comparing medical therapy and device closure of PFOs for the treatment of PFO associated clinical syndromes. We synthesized this literature into a review addressing indications for PFO closure in stroke, TIA, migraine headaches with aura, decompression sickness, platypnea-orthodeoxia syndrome, and shunt induced cyanosis. Expert commentary: Because in many PFO associated conditions it can be difficult to determine the degree to which the PFO is a causative factor in the disease process, we recommend a comprehensive diagnostic evaluation to exclude other obvious etiologies of PFO associated conditions before implicating the PFO and proceeding with closure. However in the properly selected patient population there is growing clinical experience and experimental evidence suggesting that closure of PFO is a safe and effective treatment modality.

  17. Cutis Marmorata skin decompression sickness is a manifestation of brainstem bubble embolization, not of local skin bubbles.

    PubMed

    Germonpre, Peter; Balestra, Costantino; Obeid, Georges; Caers, Dirk

    2015-12-01

    "Cutis Marmorata" skin symptoms after diving, most frequently in the form of an itching or painful cutaneous red-bluish discoloration are commonly regarded as a mild form of decompression sickness (DCS), and treated with oxygen inhalation without reverting to hyperbaric recompression treatment. It has been observed that the occurrence of Cutis Marmorata is frequently associated with the presence of a Patent Foramen Ovale (PFO) of the heart, and indeed, with a properly executed contrast echocardiographic technique, these patients have an almost 100% prevalence of PFO. Only occasionally, Cutis Marmorata is accompanied by other symptoms of DCS. These symptoms usually are in the form of visual distortions, vertigo, or mild, vague but generalized cerebral dysfunction (such as abnormal fatigue, clumsiness, concentration problems). The pathogenesis of these other manifestations is clearly emboligenic, and we hypothesize that Cutis Marmorata is also a manifestation of gas bubbles embolizing the brain stem: the site of autonomic nervous system regulation of skin blood vessel dilation and constriction. The consequences of this hypothesis are that Cutis Marmorata skin decompression sickness should no longer be considered a mild, innocuous form but rather a serious, neurological form and treated accordingly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A rat model of chronic moderate alcohol consumption and risk of decompression sickness.

    PubMed

    Buzzacott, Peter; Mazur, Aleksandra; Wang, Qiong; Lambrechts, Kate; Theron, Michael; Guerrero, François

    2015-06-01

    This study aimed to establish if chronic, moderate, pre-dive alcohol consumption had any affect upon susceptibility to decompression sickness (DCS) in rats. A treatment group of 15 rats were given water containing 12 mL ·L ⁻¹ of ethanol for four weeks. Controls (n = 15) were given water. Both groups were compressed with air to 1,000 kPa, followed by staged decompression. An additional 30 control rats from a similar previous experiment were added, raising the control-treatment ratio to 3:1. Rats in the treatment group consumed the equivalent of an 80 kg man drinking 2 L of 5 % alcohol by volume beer per day, which is three times the recommended daily limit for men. Overall, comparing the treatment group with the combined control groups neither weight (P = 0.23) nor alcohol consumption (P = 0.69) were associated with DCS. We observed that chronic, moderate alcohol consumption prior to compression was neither prophylactic nor deleterious for DCS in young, male rats.

  19. Change of occurance of type 1 and type 2 decompression sickness of divers treated at the Croatian Naval Medical Institute in the period from 1967 to 2000.

    PubMed

    Andrić, Dejan; Petri, Nadan M; Stipancević, Hrvoje; Petri, Lena Vranjković; Kovacević, Hasan

    2003-01-01

    A significant change of occurrence (p=0.0343) of type 1 and type 2 decompression sickness (DCS) of divers in Croatia was observed in the period from 1991 to 2002 (type 1: n=26, 37.68% and type 2: n=43, 62.32%) compared with the period from 1967 to 1990 (type 1: n=93, 52.84% and type 2: n=83, 47.16%). The change was attributed to the extensive usage of diving computers and artificial gas mixtures which enable extended bottom times and deeper dives, thus putting divers at an increased decompression risk. The importance of the results of this report is in the fact that permanent neurological deficit occurs only after type 2 DCS. Injured divers with permanent loss after type 2 DCS are not fit for diving and require a long term medical care, thus becoming a significant public health problem.

  20. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  1. Scuba Science.

    ERIC Educational Resources Information Center

    Glickstein, Neil

    2000-01-01

    Introduces an integrated unit on scuba science. Studies oxygen in kinetic theory, Boyle's law, Charles's law, Dalton's law, human circulatory and respiratory systems, and diving dangers such as decompression sickness. (YDS)

  2. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  3. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  4. The effect of exercise on venous gas emboli and decompression sickness in human subjects at 4.3 psia

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Waligora, James M.; Horrigan, David J., Jr.; Hadley, Arthur T., III

    1987-01-01

    The contribution of upper body exercise to altitude decompression sickness while at 4.3 psia after 3.5 or 4.0 hours of 100% oxygen prebreathing at 14.7 psia was determined by comparing the incidence and patterns of venous gas emboli (VGE), and the incidence of Type 1 decompression sickness (DCS) in 43 exercising male subjects and 9 less active male Doppler Technicians (DT's). Each subject exercised for 4 minutes at each of 3 exercise stations while at 4.3 psia. An additional 4 minutes were spent monitoring for VGE by the DT while the subject was supine on an examination cot. In the combined 3.5 and 4.0 hour oxygen prebreathe data, 13 subjects complained of Type 1 DCS compared to 9 complaints from DT's. VGE were detected in 28 subjects compared to 14 detections from DT's. A chi-square analysis of proportions showed no statistically significantly difference in the incidence of Type 1 DCS or VGE between the two groups; however, the average time to detect VGE and to report Tyep 1 DCS symptoms were statistically different. It was concluded that 4 to 6 hours of upper body exercise at metabolic rates simulating EVA metabolic rates hastens the initial detection of VGE and the time to report Type 1 DCS symptoms as compared to DT's.

  5. Description of the NASA Hypobaric Decompression Sickness Database (1982-1998)

    NASA Technical Reports Server (NTRS)

    Wessel, J. H., III; Conkin, J.

    2008-01-01

    The availability of high-speed computers, data analysis software, and internet communication are compelling reasons to describe and make available computer databases from many disciplines. Methods: Human research using hypobaric chambers to understand and then prevent decompression sickness (DCS) during space walks has been conducted at the Johnson Space Center (JSC) from 1982 to 1998. The data are archived in the NASA Hypobaric Decompression Sickness Database, within an Access 2003 Relational Database. Results: There are 548 records from 237 individuals that participated in 31 unique tests. Each record includes physical characteristics, the denitrogenation procedure that was tested, and the outcome of the test, such as the report of a DCS symptom and the intensity of venous gas emboli (VGE) detected with an ultrasound Doppler bubble detector as they travel in the venous blood along the pulmonary artery on the way to the lungs. We documented 84 cases of DCS and 226 cases where VGE were detected. The test altitudes were 10.2, 10.1, 6.5, 6.0, and 4.3 pounds per square inch absolute (psia). 346 records are from tests conducted at 4.3 psia, the operating pressure of the current U.S. space suit. 169 records evaluate the Staged 10.2 psia Decompression Protocol used by the Space Shuttle Program. The mean exposure time at altitude was 242.3 minutes (SD = 80.6), with a range from 120 to 360 minutes. Among our test subjects, 96 records of exposures are females. The mean age of all test subjects was 31.8 years (SD = 7.17), with a range from 20 to 54 years. Discussion: These data combined with other published databases and evaluated with metaanalysis techniques would extend our understanding about DCS. A better understanding about the cause and prevention of DCS would benefit astronauts, aviators, and divers.

  6. Musculoskeletal-induced Nucleation in Altitude Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. There are limited data available to evaluate cost-benefit relationships. Understanding the relationship is important to improve our understanding of the underlying mechanisms of nucleation in exercise prebreathe protocols and to quantify risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS.

  7. Was the appearance of surfactants in air breathing vertebrates ultimately the cause of decompression sickness and autoimmune disease?

    PubMed

    Arieli, Ran

    2015-01-15

    All air breathing vertebrates are endowed with pulmonary surfactants, surface-active lipoprotein complexes formed by type II alveolar cells. Surfactants are deposited in clearly defined areas on the luminal aspect of blood vessels, producing hydrophobic spots. Gas nanobubbles measuring 5-100nm form spontaneously on the smooth hydrophobic spot from dissolved gas. Bubbles nucleate and grow at these spots after decompression from high pressure. Proteins with hydrophobic regions circulating in the blood will adhere to the gas phase-plasma interface. Deformation of their secondary and tertiary configuration will present them as foreign molecules or autoantigens. Components of the intact protein which are also present in a deformed protein may be recognized as foreign too. This process is proposed as the trigger for autoimmune diseases. The presence of autoimmune disease in air breathing vertebrates, increased autoimmunity and the elevated risk of decompression sickness with age, as well as variable sensitivity to both diseases, can be matched with the appearance of surfactant spots. Eliminating these spots may provide protection against both diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Inner Ear Damage during Decompression from Deep Dives 1975-1982.

    DTIC Science & Technology

    1984-01-01

    was controlled and delivered by a computer-based system (PDP 11/04 computer; Digital Equipment Corp.). During training and testing, the animals were...decompression sickness. Initial trials with control animals had shown that the monkeys could withstand the Table 6 treatment .thout showing visible...observed shortly after the dive (Fig. 3). In this regard, the amount of exudate is similar to that observed in control animals. Moreover, bone and/or

  9. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness

    PubMed Central

    Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel

    2011-01-01

    Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg−1·day−1, n = 30), Clo (50 mg·kg−1·day−1, n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (−4,5% with Clo, −19.5% with ASA, −19,9% with Hep, and −29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin generation, have no protective effect on DCS incidence. Clo, a specific ADP-receptor antagonist, reduces post-decompression platelet consumption. These results point to the predominant involvement of the ADP release in BIPA but cannot differentiate definitively between bubble-induced vessel wall injury and bubble-blood component interactions in DCS. PMID:21212250

  10. Empirical models for use in designing decompression procedures for space operations

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Edwards, Benjamin F.; Waligora, James M.; Horrigan, David J., Jr.

    1987-01-01

    Empirical models for predicting the incidence of Type 1 altitude decompression sickness (DCS) and venous gas emboli (VGE) during space extravehicular activity (EVA), and for use in designing safe denitrogenation decompression procedures are developed. The models are parameterized using DCS and VGE incidence data from NASA and USAF manned altitude chamber decompression tests using 607 male and female subject tests. These models, and procedures for their use, consist of: (1) an exponential relaxation model and procedure for computing tissue nitrogen partial pressure resulting from a specified prebreathing and stepped decompression sequence; (2) a formula for calculating Tissue Ratio (TR), a tissue decompression stress index; (3) linear and Hill equation models for predicting the total incidence of VGE and DCS attendant with a particular TR; (4) graphs of cumulative DCS and VGE incidence (risk) versus EVA exposure time at any specified TR; and (5) two equations for calculating the average delay period for the initial detection of VGE or indication of Type 1 DCS in a group after a specific denitrogenation decompression procedure. Several examples of realistic EVA preparations are provided.

  11. Brown-Séquard syndrome: a rare manifestation of decompression sickness.

    PubMed

    Tseng, W-S; Huang, N-C; Huang, W-S; Lee, H-C

    2015-12-01

    Neurological decompression sickness (DCS) is a rare condition that commonly leads to spinal cord injury. We report the case of a 30-year-old man who developed left-sided weakness and numbness after diving to a maximum depth of 15 m with a total dive time of 205min (10 repetitive dives). To the best of our knowledge, only six cases diagnosed as Brown-Séquard syndrome caused by DCS have been reported in the literature. Divers should be aware of the risk factors of DCS before diving and clinicians should make the diagnosis of spinal cord DCS based primarily on clinical symptoms, not on magnetic resonance imaging findings. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Verification of an altitude decompression sickness prevention protocol for Shuttle operations utilizing a 10.s psi pressure stage

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Hadley, A. T., III

    1984-01-01

    Three test series involving 173-man tess were conducted to define and verify a pre-extravehicular activity (EVA) denitrogenation procedure that would provide acceptable protection against altitude decompression sickness while minimizing the required duration of oxygen (O2) prebreathe in the suit prior to EVA. The tests also addressed the safety, in terms of incidence of decompression sickness, of conducting EVA's on consecutive days rather than on alternate days. The tests were conducted in an altitude chamber, subjects were selected as representative of the astronaut population, and EVA periods were simulated by reducing the chamber pressure to suit pressure while the subjects breathed O2 with masks and worked at EVA representative work rates. A higher than anticipated incidence of both venous bubbles (55%) and symptoms (26%) was measured following all denitrogenation protocols in this test. For the most part, symptoms were very minor and stabilized, diminished, or disappeared in the six-hour tests. Instances of clear, possible, or potential systemic symptoms were encountered only after use of the unmodified 10.2 psi protocol and not after the modified 10.2 psi protocol, the 3.5-hour O2 prebreathed protocol, or the 4.0-hour O2 prebreathe protocol. The high incidence of symptoms is ascribed to the type and duration of exercise and the sensitivity of the reporting technique to minor symptoms. Repeated EVA exposures after only 17 hours did not increase symptom or bubble incidence.

  13. Gut fermentation seems to promote decompression sickness in humans.

    PubMed

    de Maistre, Sébastien; Vallee, Nicolas; Gempp, Emmanuel; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-10-01

    Massive bubble formation after diving can lead to decompression sickness (DCS) that can result in neurological disorders. In experimental dives using hydrogen as the diluent gas, decreasing the body's H 2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. In contrast, we have shown that gut bacterial fermentation in rats on a standard diet promotes DCS through endogenous hydrogen production. Therefore, we set out to test these experimental results in humans. Thirty-nine divers admitted into our hyperbaric center with neurological DCS (Affected Divers) were compared with 39 healthy divers (Unaffected Divers). Their last meal time and composition were recorded. Gut fermentation rate was estimated by measuring breath hydrogen 1-4 h after the dive. Breath hydrogen concentrations were significantly higher in Affected Divers (15 ppm [6-23] vs. 7 ppm [3-12]; P = 0.0078). With the use of a threshold value of 16.5 ppm, specificity was 87% [95% confidence interval (CI) 73-95] for association with neurological DCS onset. We observed a strong association between hydrogen values above this threshold and an accident occurrence (odds ratio = 5.3, 95% CI 1.8-15.7, P = 0.0025). However, high fermentation potential foodstuffs consumption was not different between Affected and Unaffected Divers. Gut fermentation rate at dive time seemed to be higher in Affected Divers. Hydrogen generated by fermentation diffuses throughout the body and could increase DCS risk. Prevention could be helped by excluding divers who are showing a high fermentation rate, by eliminating gas produced in gut, or even by modifying intestinal microbiota to reduce fermentation rate during a dive. Copyright © 2016 the American Physiological Society.

  14. The Possible Relationship Between Patent Foramen Ovale and Decompression Sickness:.

    DTIC Science & Technology

    1999-01-01

    a potential conduit for blood clot (resulting in a stroke), or venous gas bubbles during decompression, (resulting in type II neurologic...Despite the high prevalence of PFO in the general population, and the relatively common occurrence of venous gas bubbles in diving and altitude exposures...being present in up to a third of the population. The potential for right- to-left shunting of venous gas emboli (VGE) which are known to occur in even

  15. Failure of the straight-line DCS boundary when extrapolated to the hypobaric realm.

    PubMed

    Conkin, J; Van Liew, H D

    1992-11-01

    The lowest pressure (P2) to which a diver can ascend without developing decompression sickness (DCS) after becoming equilibrated at some higher pressure (P1) is described by a straight line with a negative y-intercept. We tested whether extrapolation of such a line also predicts safe decompression to altitude. We substituted tissue nitrogen pressure (P1N2) calculated for a compartment with a 360-min half-time for P1 values; this allows data from hypobaric exposures to be plotted on a P2 vs. P1N2 graph, even if the subject breathes oxygen before ascent. In literature sources, we found 40 reports of human exposures in hypobaric chambers that fell in the region of a P2 vs. P1N2 plot where the extrapolation from hyperbaric data predicted that the decompression should be free of DCS. Of 4,576 exposures, 785 persons suffered decompression sickness (17%), indicating that extrapolation of the diver line to altitude is not valid. Over the pressure range spanned by human hypobaric exposures and hyperbaric air exposures, the best separation between no DCS and DCS on a P2 vs. P1N2 plot seems to be a curve which approximates a straight line in the hyperbaric region but bends toward the origin in the hypobaric region.

  16. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  17. Assessment of vertical excursions and open-sea psychological performance at depths to 250 fsw.

    PubMed

    Miller, J W; Bachrach, A J; Walsh, J M

    1976-12-01

    A series of 10 two-man descending vertical excursion dives was carried out in the open sea from an ocean-floor habitat off the coast of Puerto Rico by four aquanauts saturated on a normoxic-nitrogen breathing mixture at a depth of 106 fsw. The purpose of these dives was two-fold: to validate laboratory findings with respect to decompression schedules and to determine whether such excursions would produce evidence of adaptation to nitrogen narcosis. For the latter, tests designed to measure time estimation, short-term memory, and auditory vigilance were used. The validation of experimental excursion tables was carried out without incidence of decompression sickness. Although no signs of nitrogen narcosis were noted during testing, all subjects made significantly longer time estimates in the habitat and during the excursions than on the surface. Variability and incomplete data prevented a statistical analysis of the short-term memory results, and the auditory vigilance proved unusable in the water.

  18. Statistical Challenges in Biomedical Research

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Ploutz-Snyder, Rob; Fiedler, James

    2010-01-01

    Potentially debilitating effects of spaceflight environment include: a) Bone Demineralization - Osteoporosis. b)Impaired Fracture Healing - Non-Union. c) Renal Stone Formation & Soft Tissue Calcification. d) Orthostatic Intolerance (on return to gravity). e) Cardiac Arrhythmias. f) Dehydration (on return to gravity). g) Decreased Aerobic Capacity. h) Impaired Coordination. i) Muscle Atrophy (Loss of Strength). j) Radiation Sickness. k) Increased Cancer Risk. l) Impaired Immune Function. m) Behavioral Changes & Performance Decrements n) Altitude Decompression Sickness during EVA.

  19. Mathematical Models of Diffusion-Limited Gas Bubble Evolution in Perfused Tissue

    DTIC Science & Technology

    2013-08-01

    the Generation of New Bubbles,” Undersea Biomedical Research, Vol. 18, No. 4 (1991), pp. 333-345. 10. H. D. Van Liew and M. E. Burkard, “Density of...and R. D. Vann, “Probabilistic Gas and Bubble Dynamics Models of Decompression Sickness Occurrence in Air and Nitrogen-Oxygen Diving,” Undersea and...Gas Bubbles During Decompression,” Undersea and Hyperbaric Medicine, Vol. 23, No. 3 (1996), pp. 131-140. 13. R. L. Riley and A. Cournand, “’Ideal

  20. Techniques for Diving Deeper Than 1,500 Feet,

    DTIC Science & Technology

    1980-03-01

    Necrosis. D.N. WALDER. 121 - 127 " 4.4 Decompression and Therapy at Depth. T.E. BERHAGE 128 - 136 t 4.5 Discussion. C.J. LAMBERTSEN (Leader) 137 - 142...introduced by working in the sea at great depths?; how may an adequate therapy for decompression sickness at great depths be established? These, and many...research effort in order to place our achievements in deep diving on a secure basis. During our discussions there emerged a number of general con - clusions

  1. Perfluorocarbon in Delayed Recompression with a Mixed Gender Swine Model of Decompression Sickness.

    PubMed

    Cronin, William A; Hall, Aaron A; Auker, Charles R; Mahon, Richard T

    2018-01-01

    Perfluorocarbons (PFC) are fluorinated hydrocarbons that dissolve gases to a much greater degree than plasma and hold promise in treating decompression sickness (DCS). The efficacy of PFC in a mixed gender model of DCS and safety in recompression therapy has not been previously explored. Swine (25 kg; N = 104; 51 male and 53 female) were randomized into normal saline solution (NSS) or PFC emulsion treatment groups and subjected to compression on air in a hyperbaric chamber at 200 fsw for 31 min. Then the animals were decompressed and observed for signs of DCS. Afterwards, they were treated with oxygen and either PFC (4 cc · kg-1) or NSS (4 cc · kg-1). Surviving animals were observed for 4 h, at which time they underwent recompression therapy using a standard Navy Treatment Table 6. After 24 h the animals were assessed and then euthanized. Survival rates were not significantly different between NSS (74.04%) and PFC (66.67%) treatment groups. All swine that received recompression treatment survived to the end of the study and no seizures were observed in either PFC or NSS animals. Within the saline treated swine group there were no significant differences in DCS survival between male (75.00%, N = 24) and female (73.08%, N = 26) swine. Within the PFC treated swine, survival of females (51.85%, N = 27) was significantly lower than males (81.48%, N = 27). In this large animal mixed gender efficacy study in DCS, PFC did not improve mortality or spinal cord injury, but appears safe during recompressive therapy. Gender differences in DCS treatment with PFC will need further study.Cronin WA, Hall AA, Auker CR, Mahon RT. Perfluorocarbon in delayed recompression with a mixed gender swine model of decompression sickness. Aerosp Med Hum Perform. 2018; 89(1):14-18.

  2. Optic neuropathy following an altitude exposure.

    PubMed

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case.

  3. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  4. Description of 103 Cases of Hypobaric Sickness from NASA-sponsored Research

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Klein, Jill S.; Acock, Keena E.

    2003-01-01

    One hundred and three cases of hypobaric decompression sickness (DCS) are documented, with 6 classified as Type II DCS. The presence and grade of venous gas emboli (VGE) are part of the case descriptions. Cases were diagnosed from 731 exposures in 5 different altitude chambers from 4 different laboratories between the years 1982 and 1999. Research was funded by NASA to develop operational prebreathe (PB) procedures that would permit safe extravehicular activity from the Space Shuttle and International Space Station using an extravehicular mobility unit (spacesuit) operated at 4.3 psia. Both vehicles operate at 14.7 psia with an "air" atmosphere, so a PB procedure is required to reduce nitrogen partial pressure in the tissues to an acceptable level prior to depressurization to 4.3 psia. Thirty-two additional descriptions of symptoms that were not diagnosed as DCS together with VGE information are also included. The information for each case resides in logbooks from 32 different tests. Additional information is stored in the NASA Decompression Sickness Database and the Prebreathe Reduction Protocol Database, both maintained by the Environmental Physiology Laboratory at the Johnson Space Center. Both sources were reviewed to provide the narratives that follow.

  5. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    PubMed

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble disappearance rate at sea level following a hyperbaric airdive. We found no protective effect of NO donors during DCS from diving. On the contrary, there was a tendency towards a poorer outcome when decompression was combined with NO donor administration. This observation is seemingly contradictive to recent publications and may be explained by the multifactorial effect of NO in combination with a fast decompression profile, speeding up the N2 release from tissues and thereby aggravating the DCS symptoms.

  6. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  7. Ambulation Increases Decompression Sickness in Altitude Exposure

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Pollock, N. W.; Natoli, M. J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    INTRODUCTION - Exercise accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of exercise are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psi exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity (CEVIS and ISLE). Additional work is required to investigate whether exercise normal to 1 G environments increases the risk of DCS over microgravity simulation. METHODS - The CEVIS protocol was replicated with one exception. Our subjects completed controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining non-ambulatory throughout. Decompression stress was graded with aural Doppler (Spencer 0-IV scale). Two-dimensional echocardiographic imaging was used to look for left heart gas emboli (the presence of which prompted test termination). Venous blood was collected at three points to correlate Doppler measures of decompression stress with microparticle (cell fragment) accumulation. Fisher Exact Tests compared test and control groups. Trial suspension would occur when DCS risk >15% or grade IV venous gas emboli (VGE) risk >20% (at 70% confidence). RESULTS - Eleven person-trials were completed (9 male, 2 female) when DCS prompted suspension. DCS was greater than in CEVIS trials (3/11 [27%] vs. 0/45 [0%], respectively, p=0.03). Statistical significance was not reached for peak grade IV VGE (2/11 [18%] vs. 3/45 [7%], p=0.149) or cumulative grade IV VGE observations per subject-trial (8/128 [6%] vs. 26/630 [4%], p=0.151). Microparticle data were collected for 5/11 trials (3 with DCS outcomes), with widely varying patterns that could not be resolved statistically. CONCLUSION - We did find that that ambulation increases decompression stress. Additional trials would improve the statistical power to assess differences in VGE and to evaluate the relationship between decompression stress and microparticles.

  8. The Microbubble or the Microparticle?

    EPA Science Inventory

    Decompression sickness (DCS) has long been attributed to physical forces exerted by inert gas bubbles that may form in tissues, resulting in vascular occlusion and tissue disruption. Bubble formation occurs when a decrease in ambient pressure exceeds the rate at which soluble ine...

  9. Inner Ear Decompression Sickness in the Squirrel Monkey: Observations, Interpretations, and Mechanisms.

    DTIC Science & Technology

    1983-01-01

    hearing were evident in most cases. Symptoms associated with the decompression syndrome , such as joint pain or itching of the skin, were usually...1983:10:225-240). 9 Koordn IPSom pecliaitie ofMeniere’s syndrome in deep sea divers fin Russian). Voenntioed Z. 66’t5 i 67, Pi %lV.§~or CAL %lav IF...Med Suhaquat tlpcrbar 1980;74.89-94. L14. Le Niouci C. Suc B. Asperge A. Traitemnent hyperbare des accidents de l’oreillc interne fits a Is plongee

  10. Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. P.

    Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.

  11. Headache and Decompression Sickness: Type I or Type II?

    DTIC Science & Technology

    2001-06-01

    criteria for Type I instead of Type II DCS. This includes no clear alternative diagnosis, a localized headache along the suture, and no nerologic findings...page survey. Here, demographic information, exposure data, predisposing factors, symptom onset, symptoms and signs, diagnosis, disease progression

  12. Latent Presentation of Decompression Sickness After Altitude Chamber Training in an Active Duty Flier.

    PubMed

    Gentry, James; Rango, Juan; Zhang, Jianzhong; Biedermann, Shane

    2017-04-01

    Decompression sickness (DCS) is a potential danger and risk for both divers and aircrew alike. DCS is also a potential side effect of altitude (hypobaric) chamber training as well and can present long after training occurs. Literature review shows that altitude chamber induced DCS has approximately a 0.25% incidence. A 32-yr-old, active duty military member developed symptoms of DCS 3 h after his hypobaric chamber training. Unfortunately, he did not seek treatment for DCS until 48 h after the exposure. His initial treatment included ground level oxygen therapy for 30 min at 12 L of oxygen per minute using a nonrebreathing mask. He achieved complete symptom resolution and was returned to duty. However, 12 d after his initial Flight Medicine evaluation, the patient returned complaining of a right temporal headache, multijoint pains, and fatigue. He was treated in the hyperbaric chamber and had complete resolution of symptoms. He was returned to flying status and 5 mo later denied any return of symptoms. Hypobaric chamber familiarity training is a requirement for all military aircrew personnel to allow them assess their ability to identify symptoms of hypoxia. This training method is not only costly to maintain, but it also places aircrew and chamber technicians at risk for potential long-term side effects from failed recompression treatment of DCS. We are presenting a case of recurrent DCS symptoms 12 d after initial ground level oxygen therapy.Gentry J, Rango J, Zhang J, Biedermann S. Latent presentation of decompression sickness after altitude chamber training in an active duty flier. Aerosp Med Hum Perform. 2017; 88(4):427-430.

  13. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan; Mahon, Richard; Klaus, David; Neuman, Tom; Pilmanis, Andrew; Regis, David

    2014-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the Research Plans for The Risk of Decompression Sickness and the Risk of Injury and Compromised Performance due to EVA Operations, as well as the Evidence Reports for both of these Risks. The SRP found that the NASA DCS/EVA team did an excellent job of presenting their research plans. The SRP considers it critical that NASA proceeds with the high priority tasks identified in this report (DCS1, DCS3, DCS5). The highest priority is to determine the acceptable DCS and hypoxia risk associated with the planned human exploration beyond low Earth orbit. The risk of DCS is highly dependent upon the pressure within the exploration vehicle. If slightly more hypoxia is permitted then (even with the same percentage of oxygen) the pressure within the exploration vehicle can be lowered thus further mitigating the risk of DCS. The second highest priority is to test and validate the recommended 8.2psi/34% O2 atmosphere. Development of procedures and equipment for human exploration missions are very limited until the results of this testing are completed. The SRP also suggests that DCS7 be separated into two Gaps. Gap DCS7 should deal with DCS treatment while a new Gap should be created to deal with the long-term effects of DCS. The SRP also encourages NASA to increase collaboration with other organizations and pool resources where possible. The current NASA DCS/EVA team has the extensive expertise and a wealth of knowledge in this area. The SRP suggests that increased manpower for this team would be highly productive.

  14. Decoupling of bilayer leaflets under gas supersaturation: nitrogen nanobubbles in a membrane and their implication in decompression sickness

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.

  15. Different effect of l-NAME treatment on susceptibility to decompression sickness in male and female rats.

    PubMed

    Mazur, Aleksandra; Buzzacott, Peter; Lambrechts, Kate; Wang, Qiong; Belhomme, Marc; Theron, Michael; Popov, Georgi; Distefano, Giovanni; Guerrero, Francois

    2014-11-01

    Vascular bubble formation results from supersaturation during inadequate decompression contributes to endothelial injuries, which form the basis for the development of decompression sickness (DCS). Risk factors for DCS include increased age, weight-fat mass, decreased maximal oxygen uptake, chronic diseases, dehydration, and nitric oxide (NO) bioavailability. Production of NO is often affected by diving and its expression-activity varies between the genders. Little is known about the influence of sex on the risk of DCS. To study this relationship we used an animal model of Nω-nitro-l-arginine methyl ester (l-NAME) to induce decreased NO production. Male and female rats with diverse ages and weights were divided into 2 groups: treated with l-NAME (in tap water; 0.05 mg·mL(-1) for 7 days) and a control group. To control the distribution of nitrogen among tissues, 2 different compression-decompression protocols were used. Results showed that l-NAME was significantly associated with increased DCS in female rats (p = 0.039) only. Weight was significant for both sexes (p = 0.01). The protocol with the highest estimated tissue pressures in the slower compartments was 2.6 times more likely to produce DCS than the protocol with the highest estimated tissue pressures in faster compartments. The outcome of this study had significantly different susceptibility to DCS after l-NAME treatment between the sexes, while l-NAME per se had no effect on the likelihood of DCS. The analysis also showed that for the appearance of DCS, the most significant factors were type of protocol and weight.

  16. The risk of developing decompression sickness during air travel following altitude chamber flight.

    PubMed

    Rush, W L; Wirjosemito, S A

    1990-11-01

    Approximately 35,000 students are trained annually in United States Air Force (USAF) altitude chambers. Students who depart the training site via aircraft on the same day as their altitude chamber exposure may place themselves at increased risk for decompression sickness (DCS). Air travel as a passenger in the immediate post-chamber flight period is unrestricted by current USAF regulations. A retrospective study was conducted to assess the potential risk involved in such post-chamber flight travel. During the years 1982-87, there were 292 cases of DCS involving altitude chamber students which were subsequently treated with hyperbaric oxygen therapy. Only seven cases were found wherein the student was asymptomatic prior to air travel and subsequently developed DCS. Because the percentage of students who postpone travel is unknown, a precise relative risk could not be determined. Although the number of cases where sequential chamber and aircraft hypobaric exposures has initiated DCS is small, the potential for such occurrences remains a health concern.

  17. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  18. Gas embolization of the liver in a rat model of rapid decompression.

    PubMed

    L'Abbate, Antonio; Kusmic, Claudia; Matteucci, Marco; Pelosi, Gualtiero; Navari, Alessandro; Pagliazzo, Antonino; Longobardi, Pasquale; Bedini, Remo

    2010-08-01

    Occurrence of liver gas embolism after rapid decompression was assessed in 31 female rats that were decompressed in 12 min after 42 min of compression at 7 ATA (protocol A). Sixteen rats died after decompression (group I). Of the surviving rats, seven were killed at 3 h (group II), and eight at 24 h (group III). In group I, bubbles were visible in the right heart, aortic arch, liver, and mesenteric veins and on the intestinal surface. Histology showed perilobular microcavities in sinusoids, interstitial spaces, and hepatocytes. In group II, liver gas was visible in two rats. Perilobular vacuolization and significant plasma aminotransferase increase were present. In group III, liver edema was evident at gross examination in all cases. Histology showed perilobular cell swelling, vacuolization, or hydropic degeneration. Compared with basal, enzymatic markers of liver damage increased significantly. An additional 14 rats were decompressed twice (protocol B). Overall mortality was 93%. In addition to diffuse hydropic degeneration, centrilobular necrosis was frequently observed after the second decompression. Additionally, 10 rats were exposed to three decompression sessions (protocol C) with doubled decompression time. Their mortality rate decreased to 20%, but enzymatic markers still increased in surviving rats compared with predecompression, and perilobular cell swelling and vacuolization were present in five rats. Study challenges were 1) liver is not part of the pathophysiology of decompression in the existing paradigm, and 2) although significant cellular necrosis was observed in few animals, zonal or diffuse hepatocellular damage associated with liver dysfunction was frequently demonstrated. Liver participation in human decompression sickness should be looked for and clinically evaluated.

  19. Spanish Navy Up to Date Data in DCS

    DTIC Science & Technology

    2001-06-01

    therapeutic measures. Final results are similar to another world navies diving centres Bibliography: 1.- Pujante, A.; Inoriza, J; Viqueira, A. Estudio de 121... casos de enfermedad descompresiva Medicina Clinica, vol . 94, n` 7, 1990 2.- Rivera, J.C. Decompression sickness among divers: An analysis of 935

  20. Evaluation of 9.5 PSIA as a suit pressure for prolonged extravehicular activity

    NASA Technical Reports Server (NTRS)

    Dixon, G. A.; Krutz, R.

    1986-01-01

    A study was undertaken to determine if a pressure of 9.5 psia would aid against the occurrence of decompression sickness in both males and females (without prebreathing or stage decompression requirements) during a typical simulated extravehicular activity scenario. Twenty percent of the male subjects produced grades 1 and 2 bubbles while females did not produce bubble signals at all. It is concluded that a pressure of 9.5 psia can protect the astronaut from both formation of severe bubbling and development of bends symptoms when exposed to these study conditions.

  1. Potential Fifty Percent Reduction in Saturation Diving Decompression Time Using a Combination of Intermittent Recompression and Exercise

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael I.; Abercromby, Andrew; Conklin, Johnny

    2007-01-01

    Conventional saturation decompression protocols use linear decompression rates that become progressively slower at shallower depths, consistent with free gas phase control vs. dissolved gas elimination kinetics. If decompression is limited by control of free gas phase, linear decompression is an inefficient strategy. The NASA prebreathe reduction program demonstrated that exercise during O2 prebreathe resulted in a 50% reduction (2 h vs. 4 h) in the saturation decompression time from 14.7 to 4.3 psi and a significant reduction in decompression sickness (DCS: 0 vs. 23.7%). Combining exercise with intermittent recompression, which controls gas phase growth and eliminates supersaturation before exercising, may enable more efficient saturation decompression schedules. A tissue bubble dynamics model (TBDM) was used in conjunction with a NASA exercise prebreathe model (NEPM) that relates tissue inert gas exchange rate constants to exercise (ml O2/kg-min), to develop a schedule for decompression from helium saturation at 400 fsw. The models provide significant prediction (p < 0.001) and goodness of fit with 430 cases of DCS in 6437 laboratory dives for TBDM (p = 0.77) and with 22 cases of DCS in 159 altitude exposures for NEPM (p = 0.70). The models have also been used operationally in over 25,000 dives (TBDM) and 40 spacewalks (NEPM). The standard U.S. Navy (USN) linear saturation decompression schedule from saturation at 400 fsw required 114.5 h with a maximum Bubble Growth Index (BGI(sub max)) of 17.5. Decompression using intermittent recompression combined with two 10 min exercise periods (75% VO2 (sub peak)) per day required 54.25 h (BGI(sub max): 14.7). Combined intermittent recompression and exercise resulted in a theoretical 53% (2.5 day) reduction in decompression time and theoretically lower DCS risk compared to the standard USN decompression schedule. These results warrant future decompression trials to evaluate the efficacy of this approach.

  2. Decompression Theory.

    DTIC Science & Technology

    1980-06-25

    vessel- rich group, a vessel-poor group, a fatty group, and so on ( Papper and Kitz 1963). Behnke’s original suggestion, put forth in the first...An examination of the critical released volume concept in decom- pression sickness. Proc. Roy. Soc. Lond. B. 197:299-313, 1977. Papper , E.M., and R.J

  3. Exercise with prebreathe appears to increase protection from decompression sickness: Preliminary findings

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Fischer, Michele D.; Heaps, Cristine L.; Pilmanis, Andrew A.

    1994-01-01

    Extravehicular activity (EVA) from the Space Shuttle involves one hour of prebreath with 100% oxygen, decompression of the entire Shuttle to 10.2 psia for at least 12 hours, and another prebreath for 40 minutes before decompression to the 4.3 psia suit pressure. We are investigating the use of a one-hour prebreathe with 100% oxygen beginning with a ten-minute strenuous exercise period as an alternative for the staged decompression schedule described above. The 10-minute exercise consists of dual-cycle ergometry performed at 75% of the subject's peak oxygen uptake to increase denitrogenation efficiency by increasing ventilation and perfusion. The control exposures were preceded by a one-hour prebreathe with 100% oxygen while resting in a supine position. The twenty-two male subjects were exposed to 4.3 psia for 4 hours while performing light to moderate exercise. Preliminary results from 22 of the planned 26 subjects indicate 76% DCS following supine, resting prebreathe and 38% following prebreathe with exercise. The staged decompression schedule has been shown to result in 23% DCS which is not significantly different from the exercise-enhanced prebreathe results. Prebreathe including exercise appears to be comparable to the protection afforded by the more lengthy staged decompression schedule. Completion of the study later this year will enable planned statistical analysis of the results.

  4. Gender and Decompression Sickness: A Critical Review and Analysis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The author addressed the following questions: are women at greater risk of decompression sickness and venous gas emboli at certain times in their reproductive cycle, is risk modified by the use of birth control pills (BCP), and is there a difference in overall risk between men and women under the same decompression dose? The summary considers information from the few abstracts and reports that were available. Except for the observation of more Type II DCS in women, particularly in women who fly after diving, there was no compelling evidence of a difference in DCS risk between men and women SCUBA divers. Many women that presented with DCS symptoms seemed to be in or near menses, with statistically fewer cases reported as time increased from menses. There was no compelling evidence that the use of BCP in SCUBA divers increases the risk of DCS. There were insufficient data about VGE from SCUBA diving to make any conclusion about the incidence of VGE and gender. In contrast, there were ample data about VGE from research in altitude chambers. Women produced less VGE and less Grade IV VGE compared to men under the same decompression dose, certainly when resting oxygen prebreathe (PB) was performed prior to ascent to altitude. Dual-cycle ergometry exercise during PB tends to reduce the differences in VGE between men and women. There was no compelling evidence that the risk of altitude DCS was different between men and women. However, a large number of DCS cases were associated with menses, and the use of BCP did seem to put women at a slightly greater risk than those that did not use BCP. There were substantial observations that women comprised a larger number of difficult cases that required complicated medical management.

  5. The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model.

    PubMed

    Cronin, William A; Senese, Angela L; Arnaud, Francoise G; Regis, David P; Auker, Charles R; Mahon, Richard T

    2016-09-01

    Decompression from elevated ambient pressure is associated with platelet activation and decreased platelet counts. Standard treatment for decompression sickness (DCS) is hyperbaric oxygen therapy. Intravenous perfluorocarbon (PFC) emulsion is a nonrecompressive therapy being examined that improves mortality in animal models of DCS. However, PFC emulsions are associated with a decreased platelet count. We used a swine model of DCS to study the effect of PFC therapy on platelet count, function, and hemostasis. Castrated male swine (n = 50) were fitted with a vascular port, recovered, randomized, and compressed to 180 feet of sea water (fsw) for 31 min followed by decompression at 30 fsw/min. Animals were observed for DCS, administered 100% oxygen, and treated with either emulsified PFC Oxycyte (DCS-PFC) or isotonic saline (DCS-NS). Controls underwent the same procedures, but were not compressed (Sham-PFC and Sham-NS). Measurements of platelet count, thromboelastometry, and coagulation were obtained 1 h before compression and 1, 24, 48, 96, 168 and 192 h after treatment. No significant changes in normalized platelet counts were observed. Prothrombin time was elevated in DCS-PFC from 48 to 192 h compared with DCS-NS, and from 96 to 192 h compared with Sham-PFC. Normalized activated partial thromboplastin time was also elevated in DCS-PFC from 168 to 192 h compared with Sham-PFC. No bleeding events were noted. DCS treated with PFC (Oxycyte) does not impact platelet numbers, whole blood clotting by thromboelastometry, or clinical bleeding. Late changes in prothrombin time and activated partial thromboplastin time associated with PFC use in both DCS therapy and controls warrant further investigation.

  6. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco.

    PubMed

    Spisni, Enzo; Marabotti, Claudio; De Fazio, Luigia; Valerii, Maria Chiara; Cavazza, Elena; Brambilla, Stefano; Hoxha, Klarida; L'Abbate, Antonio; Longobardi, Pasquale

    2017-03-01

    The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.

  7. Hyperintense white matter lesions in 50 high-altitude pilots with neurologic decompression sickness.

    PubMed

    McGuire, Stephen A; Sherman, Paul M; Brown, Anthony C; Robinson, Andrew Y; Tate, David F; Fox, Peter T; Kochunov, Peter V

    2012-12-01

    Neurologic decompression sickness (NDCS) can affect high-altitude pilots, causing variable central nervous system symptoms. Five recent severe episodes prompted further investigation. We report the hyperintense white matter (HWM) lesion imaging findings in 50 U-2 pilot volunteers, and compare 12 U-2 pilots who experienced clinical NDCS to 38 U-2 pilots who did not. The imaging data were collected using a 3T magnetic resonance imaging scanner and high-resolution (1-mm isotropic) three-dimensional fluid-attenuated inversion recovery sequence. Whole-brain and regional lesion volume and number were compared between groups. The NDCS group had significantly increased whole brain and insular volumes of HWM lesions. The intergroup difference in lesion numbers was not significant. A clinical episode of NDCS was associated with a significant increase in HWM lesion volume, especially in the insula. We postulate this to be due to hypobaric exposure rather than hypoxia since all pilots were maintained on 100% oxygen throughout the flight. Further studies will be necessary to better understand the pathophysiology underlying these lesions.

  8. Habitat Options to Protect Against Decompression Sickness on Mars

    NASA Astrophysics Data System (ADS)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  9. An Evidenced-Based Approach for Estimating Decompression Sickness Risk in Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Robinson, Ronald R.; Dervay, Joseph P.; Conkin, Johnny

    1999-01-01

    Estimating the risk of decompression Sickness (DCS) in aircraft operations remains a challenge, making the reduction of this risk through the development of operationally acceptable denitrogenation schedules difficult. In addition, the medical recommendations which are promulgated are often not supported by rigorous evaluation of the available data, but are instead arrived at by negotiation with the aircraft operations community, are adapted from other similar aircraft operations, or are based upon the opinion of the local medical community. We present a systematic approach for defining DCS risk in aircraft operations by analyzing the data available for a specific aircraft, flight profile, and aviator population. Once the risk of DCS in a particular aircraft operation is known, appropriate steps can be taken to reduce this risk to a level acceptable to the applicable aviation community. Using this technique will allow any aviation medical community to arrive at the best estimate of DCS risk for its specific mission and aviator population and will allow systematic reevaluation of the decisions regarding DCS risk reduction when additional data are available.

  10. Time to detection of circulating microbubbles as a risk factor for symptoms of altitude decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Calkins, Dick S.; Waligora, James M.; Gilbert, John H., III; Powell, Michael R.

    1992-01-01

    This study investigated the association between time at onset of circulating microbubbles (CMB) and symptoms of altitude decompression sickness (DCS), using Cox proportional hazard regression models. The study population consisted of 125 individuals who participated in direct ascent, simulated extravehicular activities profiles. Using individual CMB status as a time-dependent variable, we found that the hazard for symptoms increased significantly (at the end of 180 min at altitude) in the presence of CMB (Hazard Ratio = 29.59; 95 percent confidence interval (95 percent CI) = 7.66-114.27), compared to no CMB. Further examination was conducted on the subgroup of individuals who developed microbubbles during the test (n = 49), by using Cox regression. Individuals with late onset of CMB (greater than 60 min at altitude) showed a significantly reduced risk of symptoms (hazard ratio = 0.92; 95 percent CI = 0.89-0.95), compared to those with early onset (equal to or less than 60 min), while controlling for other risk factors. We conclude that time to detection of circulating microbubbles is an independent determinant of symptoms of DCS.

  11. Hyperintense White Matter Lesions in 50 High-Altitude Pilots With Neurologic Decompression Sickness

    PubMed Central

    McGuire, Stephen A.; Sherman, Paul M.; Brown, Anthony C.; Robinson, Andrew Y.; Tate, David F.; Fox, Peter T.; Kochunov, Peter V.

    2013-01-01

    Introduction Neurologic decompression sickness (NDCS) can affect high-altitude pilots, causing variable central nervous system symptoms. Five recent severe episodes prompted further investigation. Methods We report the hyperintense white matter (HWM) lesion imaging findings in 50 U-2 pilot volunteers, and compare 12 U-2 pilots who experienced clinical NDCS to 38 U-2 pilots who did not. The imaging data were collected using a 3T magnetic resonance imaging scanner and high-resolution (1-mm isotropic) three-dimensional fluid-attenuated inversion recovery sequence. Whole-brain and regional lesion volume and number were compared between groups. Results The NDCS group had significantly increased whole brain and insular volumes of HWM lesions. The intergroup difference in lesion numbers was not significant. Conclusion A clinical episode of NDCS was associated with a significant increase in HWM lesion volume, especially in the insula. We postulate this to be due to hypobaric exposure rather than hypoxia since all pilots were maintained on 100% oxygen throughout the flight. Further studies will be necessary to better understand the pathophysiology underlying these lesions. PMID:23316539

  12. A new preoxygenation procedure for extravehicular activity (EVA).

    PubMed

    Webb, J T; Pilmanis, A A

    1998-01-01

    A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.

  13. Ambulation During Periods of Supersaturation Increase Decompression Stress in Spacewalk Simulations

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS.

  14. Project ARGO: Gas phase formation in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  15. Iso-risk air no decompression limits after scoring marginal decompression sickness cases as non-events.

    PubMed

    Murphy, F Gregory; Swingler, Ashleigh J; Gerth, Wayne A; Howle, Laurens E

    2018-01-01

    Decompression sickness (DCS) in humans is associated with reductions in ambient pressure that occur during diving, aviation, or certain manned spaceflight operations. Its signs and symptoms can include, but are not limited to, joint pain, radiating abdominal pain, paresthesia, dyspnea, general malaise, cognitive dysfunction, cardiopulmonary dysfunction, and death. Probabilistic models of DCS allow the probability of DCS incidence and time of occurrence during or after a given hyperbaric or hypobaric exposure to be predicted based on how the gas contents or gas bubble volumes vary in hypothetical tissue compartments during the exposure. These models are calibrated using data containing the pressure and respired gas histories of actual exposures, some of which resulted in DCS, some of which did not, and others in which the diagnosis of DCS was not clear. The latter are referred to as marginal DCS cases. In earlier works, a marginal DCS event was typically weighted as 0.1, with a full DCS event being weighted as 1.0, and a non-event being weighted as 0.0. Recent work has shown that marginal DCS events should be weighted as 0.0 when calibrating gas content models. We confirm this indication in the present work by showing that such models have improved performance when calibrated to data with marginal DCS events coded as non-events. Further, we investigate the ramifications of derating marginal events on model-prescribed air diving no-stop limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Decompression sickness ('the bends') in sea turtles.

    PubMed

    García-Párraga, D; Crespo-Picazo, J L; de Quirós, Y Bernaldo; Cervera, V; Martí-Bonmati, L; Díaz-Delgado, J; Arbelo, M; Moore, M J; Jepson, P D; Fernández, Antonio

    2014-10-16

    Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.

  17. Gender not a factor for altitude decompression sickness risk

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Kannan, Nandini; Pilmanis, Andrew A.

    2003-01-01

    INTRODUCTION: Early, retrospective reports of the incidence of altitude decompression sickness (DCS) during altitude chamber training exposures indicated that women were more susceptible than men. We hypothesized that a controlled, prospective study would show no significant difference. METHODS: We conducted 25 altitude chamber decompression exposure profiles. A total of 291 human subjects, 197 men and 94 women, underwent 961 exposures to simulated altitude for up to 8 h, using zero to 4 h of preoxygenation. Throughout the exposures, subjects breathed 100% oxygen, rested or performed mild or strenuous exercise, and were monitored for precordial venous gas emboli (VGE) and DCS symptoms. RESULTS: No significant differences in DCS incidence were observed between men (49.5%) and women (45.3%). However, VGE occurred at significantly higher rates among men than women under the same exposure conditions, 69.3% and 55.0% respectively. Women using hormonal contraception showed significantly greater susceptibility to DCS than those not using hormonal contraception during the latter two weeks of the menstrual cycle. Significantly higher DCS incidence was observed in the heaviest men, in women with the highest body fat, and in subjects with the highest body mass indices and lowest levels of fitness. CONCLUSION: No differences in altitude DCS incidence were observed between the sexes under our test conditions, although men developed VGE more often than women. Age and height showed no significant influence on DCS incidence, but persons of either sex with higher body mass index and lower physical fitness developed DCS more frequently.

  18. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    PubMed

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  19. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  20. Hyperbaric Oxygen Therapy Registry

    ClinicalTrials.gov

    2018-04-30

    Air or Gas Embolism; Carbon Monoxide Poisoning; Clostridial Myositis and Myonecrosis (Gas Gangrene); Crush Injury, Compartment Syndrome & Other Acute Traumatic Ischemias; Decompression Sickness; Peripheral Arterial Insufficiency and Central Retinal Artery Occlusion; Severe Anemia; Intracranial Abscess; Necrotizing Soft Tissue Infections; Osteomyelitis (Refractory); Delayed Radiation Injury (Soft Tissue and Bony Necrosis); Compromised Grafts and Flaps; Acute Thermal Burn Injury; Idiopathic Sudden Sensorineural Hearing Loss

  1. Environmental Physiology at the Johnson Space Center: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2007-01-01

    This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.

  2. Development of an Operational Altitude Decompression Sickness Computer Model: Feasibility Study Results

    DTIC Science & Technology

    1995-08-01

    1955;36pp. 44. Eger El. II. A mathematical model of uptake and distribution, ch. 7, pp.72-87 In E. M. Papper and R. J. Kitz (eds.). Uptake and...Space Environ. Med. 1992;63:386. 119. Papper EM and Kitz RJ. Uptake and distribution of anesthetic agents. New York: McGraw Hill, 1963. 67 120. Per W and

  3. European Scientific Notes. Volume 34, Number 12,

    DTIC Science & Technology

    1980-12-31

    protein and prevention of decompression sickness interactions and on vertebrate neuron by drugs . electrophysiology, evoked responses, and As mentioned...discussion of posters by scheduling theoretical models for the interaction of meetings late in the afternoons following molecular oxygen and related oxygen...appear to be quite difficult, because of the variety of frictional effects and Linkbpin Institute of Technology (LiTH) inter-segmental interactions which

  4. Semiclosed-circuit atmosphere control in a portable recompression chamber

    NASA Technical Reports Server (NTRS)

    Riegel, P. S.; Caudy, D. W.

    1972-01-01

    A small portable recompression chamber is described that can be used both to treat a diver for decompression sickness or to transport him to a larger chamber complex. The device can be operated in either open circuit or semiclosed circuit atmospheres, permits two way conversation between patient and attendant, and uses an air injector for circulation of the chamber atmosphere.

  5. A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal

    2004-01-01

    Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.

  6. Type II decompression sickness in a hyperbaric inside attendant.

    PubMed

    Johnson-Arbor, Kelly

    2012-01-01

    Decompression sickness (DCS) of an inside attendant (IA) is rarely encountered in hyperbarics. This report describes an IA who developed Type II DCS after a routine hyperbaric exposure. A 50-year-old male complained of lower extremity weakness and paresthesias after serving as an IA during a hyperbaric treatment to 40 fsw (122.52 kPa). Within 10 minutes after the conclusion of the treatment, the IA experienced irritability and confusion, and was unable to walk. Physical examination revealed decreased sensation below the T7 level, and decreased strength in the lower extremities. Type II DCS was diagnosed, and the IA was recompressed to 60 fsw (183.78 kPa) on a U.S. Navy Treatment Table 6, which resulted in improvement of his symptoms. Transthoracic echocardiography with bubble study performed 16 months after the event demonstrated a large patent foramen ovale (PFO). Increased age, decreased physical fitness and the undiagnosed PFO may have predisposed this attendant to developing DCS. Although rare, DCS may occur in IAs. Routine monitoring and reporting of the long-term health of hyperbaric IAs should be considered by hyperbaric facilities and medical directors in order to further understand the characteristics of DCS and other hyperbaric-related conditions in these workers.

  7. [Analysis of decompression safety during extravehicular activity of astronauts in the light of probability theory].

    PubMed

    Nikolaev, V P; Katuntsev, V P

    1998-01-01

    Objectives of the study were comparative assessment of the risk of decompression sickness (DCS) in human subjects during shirt-sleeve simulation of extravehicular activity (EVA) following Russian and U.S. protocols, and analysis of causes of the difference between real and simulated EVA decompression safety. To this end, DCS risk during exposure to a sing-step decompression was estimated with an original method. According to the method, DCS incidence is determined by distribution of nucleation efficacy index (z) in the worst body tissues and its critical values (zm) as a function of initial nitrogen tension in these tissues and final ambient pressure post decompression. Gaussian distribution of z values was calculated basing on results of the DCS risk evaluation on the U.S. EVA protocol in an unsuited chamber test with various pre-breath procedures (Conkin et al., 1987). Half-time of nitrogen washout from the worst tissues was presumed to be 480 min. Calculated DCS risk during short-sleeve EVA simulation by the Russian and U.S. protocols with identical physical loading made up 19.2% and 23.4%, respectively. Effects of the working spacesuit pressure, spacesuit rigidity, metabolic rates during operations in EVA space suit, transcutaneous nitrogen exchange in the oxygen atmosphere of space suit, microgravity, analgesics, short compression due to spacesuit leak tests on the eye of EVA are discussed. Data of the study illustrate and advocate for high decompression safety of current Russian and U.S. EVA protocols.

  8. Incidence of DCS and oxygen toxicity in chamber attendants: a 28-year experience.

    PubMed

    Witucki, Pete; Duchnick, Jay; Neuman, Tom; Grover, Ian

    2013-01-01

    Decompression sickness (DCS) and central nervous system oxygen toxicity are inherent risks for "inside" attendants (IAs) of hyperbaric chambers. At the Hyperbaric Medicine Center at the University of California San Diego (UCSD), protocols have been developed for decompressing IAs. Protocol 1: For a total bottom time (TBT) of less than 80 minutes at 2.4 atmospheres absolute (atm abs) or shallower, the U.S. Navy (1955) no-decompression tables were utilized. Protocol 2: For a TBT between 80 and 119 minutes IAs breathed oxygen for 15 minutes prior to initiation of ascent. Protocol 3: For a TBT between 120-139 minutes IAs breathed oxygen for 30 minutes prior to ascent. These protocols have been utilized for approximately 28 years and have produced zero cases of DCS and central nervous system oxygen toxicity. These results, based upon more than 24,000 exposures, have an upper limit of risk of DCS and oxygen toxicity of 0.02806 (95% CI) using UCSD IA decompression Protocol 1, 0.00021 for Protocol 2, and 0.00549 for Protocol 3. We conclude that the utilization of this methodology may be useful at other sea-level multiplace chambers.

  9. Decompression illness secondary to occupational diving: recommended management based current legistation and practice in Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Zin, B Mohd; Sulaiman, A

    2008-06-01

    Occupational divers are exposed to hazards which contribute to the risk of developing decompression illnesses (DCI). DCI consists of Type I decompression sickness (DCS), Type II DCS and arterial gas embolism (AGE), developed from formation of bubbles in the tissues or circulation as a result of inadequate elimination of inert gas (nitrogen) after a dive. In Malaysia, DCI is one of the significant contributions to mortality and permanent residual morbidity in diving accidents. This is a case of a diver who suffered from Type II DCS with neurological complications due to an occupational diving activity. This article mentions the clinical management of the case and makes several recommendations based on current legislations and practise implemented in Malaysia in order to educate medical and health practitioners on the current management of DCI from the occupational perspective. By following these recommendations, hopefully diving accidents mainly DCI and its sequalae among occupational divers can be minimized and prevented, while divers who become injured receive the proper compensation for their disabilities.

  10. Increase of plasma renin activity in male and female rabbits subjected to dysbaric conditions

    NASA Technical Reports Server (NTRS)

    Chryssanthou, C.; Kircikoglu, H.; Strugar, J.

    1985-01-01

    The renin-angiotensin-aldosterone system may be implicated in hemodynamic alterations occurring in dysbaric disorders. This report concerns changes in plasma renin activity (PRA) induced by exposure of rabbits to a compression-decompression schedule that does not normally produce clinical manifestations of decompression sickness. The results revealed a significant increase in PRA in 19 of 23 animals following dysbaric exposure. Mean PRA rose from 1.18 ng ang I/ml hr (preexposure) to 2.40 ng ang I/ml hr (postexposure). The increase was particularly pronounced in female animals (217 percent). Asymptomatic intravascular gas bubbles (silent bubbles) were detected by gross or microscopic examination in the majority of the animals. Renin elaboration and secretion in asymptomatic dysbaric exposures may be mediated by bradykinin and/or prostaglandins released or activated in a chain reaction triggered by silent gas bubbles. This hypothesis is also applicable to increased PRA in altitude decompression. Alternatively elevation of PRA may result from decreased renal perfusion when dysbaric disorders are complicated by significant hypovolemia.

  11. Dibutyryl cAMP effects on thromboxane and leukotriene production in decompression-induced lung injury

    NASA Technical Reports Server (NTRS)

    Little, T. M.; Butler, B. D.

    1997-01-01

    Decompression-induced venous bubble formation has been linked to increased neutrophil counts, endothelial cell injury, release of vasoactive eicosanoids, and increased vascular membrane permeability. These actions may account for inflammatory responses and edema formation. Increasing the intracellular cAMP has been shown to decrease eicosanoid production and edema formation in various models of lung injury. Reduction of decompression-induced inflammatory responses was evaluated in decompressed rats pretreated with saline (controls) or dibutyryl cAMP (DBcAMP, an analog of cAMP). After pretreatment, rats were exposed to either 616 kPa for 120 min or 683 kPa for 60 min. The observed increases in extravascular lung water ratios (pulmonary edema), bronchoalveolar lavage, and pleural protein in the saline control group (683 kPa) were not evident with DBcAMP treatment. DBcAMP pretreatment effects were also seen with the white blood cell counts and the percent of neutrophils in the bronchoalveolar lavage. Urinary levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were significantly increased with the 683 kPa saline control decompression exposure. DBcAMP reduced the decompression-induced leukotriene E4 production in the urine. Plasma levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were increased with the 683-kPa exposure groups. DBcAMP treatment did not affect these changes. The 11-dehydrothromboxane B2 and leukotriene E4 levels in the bronchoalveolar lavage were increased with the 683 kPa exposure and were reduced with the DBcAMP treatment. Our results indicate that DBcAMP has the capability to reduce eicosanoid production and limit membrane permeability and subsequent edema formation in rats experiencing decompression sickness.

  12. A Start Toward Micronucleus-Based Decompression Models; Altitude Decompression

    NASA Technical Reports Server (NTRS)

    Van Liew, H. D.; Conkin, Johnny

    2007-01-01

    Do gaseous micronuclei trigger the formation of bubbles in decompression sickness (DCS)? Most previous instructions for DCS prevention have been oriented toward supersaturated gas in tissue. We are developing a mathematical model that is oriented toward the expected behavior of micronuclei. The issue is simplified in altitude decompressions because the aviator or astronaut is exposed only to decompression, whereas in diving there is a compression before the decompression. The model deals with four variables: duration of breathing of 100% oxygen before going to altitude (O2 prebreathing), altitude of the exposure, exposure duration, and rate of ascent. Assumptions: a) there is a population of micronuclei of various sizes having a range of characteristics, b) micronuclei are stable until they grow to a certain critical nucleation radius, c) it takes time for gas to diffuse in or out of micronuclei, and d) all other variables being equal, growth of micronuclei upon decompression is more rapid at high altitude because of the rarified gas in the micronuclei. To estimate parameters, we use a dataset of 4,756 men in altitude chambers exposed to various combinations of the model s variables. The model predicts occurrence of DCS symptoms quite well. It is notable that both the altitude chamber data and the model show little effect of O2 prebreathing until it lasts more than 60 minutes; this is in contrast to a conventional idea that the benefit of prebreathing is directly due to exponential washout of tissue nitrogen. The delay in response to O2 prebreathing can be interpreted as time required for outward diffusion of nitrogen; when the micronuclei become small enough, they are disabled, either by crushing or because they cannot expand to a critical nucleation size when the subject ascends to altitude.

  13. Report of Evaluation of Decompression Sickness, Beale AFB, 10-14 Aug 2009

    DTIC Science & Technology

    2009-09-01

    MICHAELSON, Col, USAF, MC, SFS Chief, Hyperbaric Medicine Branch //SIGNED// JAMES W. WEISSMANN, Col, USAF, BSC Chief, Aerospace Medicine...Robert S Michaelson (Chief of Hyperbaric Medicine at USAFSAM), Dr. Andy Pilmanis (Consultant), and Dr. Tom Morgan (711 HPW/HPS). BACKGROUND The...without consent of originator’s office. MP = Mission Pilot HBOT = Hyperbaric Oxygen Treatment CNS = Central Nervous System HA = headache BAFB = Beale

  14. Probability of Decompression Sickness in No-Stop Air Diving

    DTIC Science & Technology

    2004-12-01

    21 Figure 10. VVal-1 8 and StandAir Models .......................................... 22 Figure 11. Comparisons for...recommendations appear in heavy boxes. Information outside the heavy boxes allows comparisons between models. The recommendations are essentially arbitrary and...N2-0 2 Saturation Dives in Humans: DCS Risk and Evidence of a Threshold," Undersea Hyperbaric Medicine, In Press. 15. S. S. Survanshi, E. D. Parker, E

  15. Human Health and Performance Considerations for Exploration of Near Earth Asteroids (NEA)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Charles, John B.; Steinberg, Susan L.

    2011-01-01

    This slide presentation reviews some of the health and performance issues for an manned exploration mission to some of the Near Earth Asteroids (NEA). The issues that NASA is reviewing are: 1. Radiation exposure 2. Inadequate food and nutrition 3. Challenges to behavioral health 4. Muscle, cardiovascular, bone atrophy 5. Dust and volatiles 6. Remote medical care 7. Decompression sickness.

  16. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  17. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity.

    PubMed

    Skedina, M A; Katuntsev, V P; Buravkova, L B; Naidina, V P

    1998-01-01

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p<0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  18. Probabilistic pharmacokinetic models of decompression sickness in humans, part 1: Coupled perfusion-limited compartments.

    PubMed

    Murphy, F Gregory; Hada, Ethan A; Doolette, David J; Howle, Laurens E

    2017-07-01

    Decompression sickness (DCS) is a disease caused by gas bubbles forming in body tissues following a reduction in ambient pressure, such as occurs in scuba diving. Probabilistic models for quantifying the risk of DCS are typically composed of a collection of independent, perfusion-limited theoretical tissue compartments which describe gas content or bubble volume within these compartments. It has been previously shown that 'pharmacokinetic' gas content models, with compartments coupled in series, show promise as predictors of the incidence of DCS. The mechanism of coupling can be through perfusion or diffusion. This work examines the application of five novel pharmacokinetic structures with compartments coupled by perfusion to the prediction of the probability and time of onset of DCS in humans. We optimize these models against a training set of human dive trial data consisting of 4335 exposures with 223 DCS cases. Further, we examine the extrapolation quality of the models on an additional set of human dive trial data consisting of 3140 exposures with 147 DCS cases. We find that pharmacokinetic models describe the incidence of DCS for single air bounce dives better than a single-compartment, perfusion-limited model. We further find the U.S. Navy LEM-NMRI98 is a better predictor of DCS risk for the entire training set than any of our pharmacokinetic models. However, one of the pharmacokinetic models we consider, the CS2T3 model, is a better predictor of DCS risk for single air bounce dives and oxygen decompression dives. Additionally, we find that LEM-NMRI98 outperforms CS2T3 on the extrapolation data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Decompression sickness during simulated extravehicular activity: ambulation vs. non-ambulation.

    PubMed

    Webb, James T; Beckstrand, Devin P; Pilmanis, Andrew A; Balldin, Ulf I

    2005-08-01

    Extravehicular activity (EVA) is required from the International Space Station on a regular basis. Because of the weightless environment during EVA, physical activity is performed using mostly upper-body movements since the lower body is anchored for stability. The adynamic model (restricted lower-body activity; non-ambulation) was designed to simulate this environment during earthbound studies of decompression sickness (DCS) risk. DCS symptoms during ambulatory (walking) and non-ambulatory high altitude exposure activity were compared. The objective was to determine if symptom incidences during ambulatory and non-ambulatory exposures are comparable and provide analogous estimates of risk under otherwise identical conditions. A retrospective analysis was accomplished on DCS symptoms from 2010 ambulatory and 330 non-ambulatory exposures. There was no significant difference between the overall incidence of DCS or joint-pain DCS in the ambulatory (49% and 40%) vs. the non-ambulatory exposures (53% and 36%; p > 0.1). DCS involving joint pain only in the lower body was higher during ambulatory exposures (28%) than non-ambulatory exposures (18%; p < 0.01). Non-ambulatory exposures terminated more frequently with non-joint-pain DCS (17%) or upper-body-only joint pain (18%) as compared with ambulatory exposures, 9% and 11% (p < 0.01), respectively. These findings show that lower-body, weight-bearing activity shifts the incidence of joint-pain DCS from the upper body to the lower body without altering the total incidence of DCS or joint-pain DCS. Use of data from previous and future subject exposures involving ambulatory activity while decompressed appears to be a valid analogue of non-ambulatory activity in determining DCS risk during simulated EVA studies.

  20. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease-An Overview.

    PubMed

    Arieli, Ran

    2017-01-01

    Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed "active hydrophobic spots" (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic-a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens.

  1. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease—An Overview

    PubMed Central

    Arieli, Ran

    2017-01-01

    Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens. PMID:28861003

  2. Subatmospheric Decompression Sickness in Man,

    DTIC Science & Technology

    1969-04-01

    are described as ecchymotic or petechial but in the cases seen in the ac- tive phase, in none has the skin ever failed to blanch completely under local...are undoubtedly petechial . There has been no convincing evidence of extravasation in compressed air cases (Griffiths, personal communication) or in...recommended that exposure to altitude during the active stage of antibody production, when malaise and low grade fever are common, should be avoided

  3. Complement Proteins and Decompression Sickness Susceptibility.

    DTIC Science & Technology

    1992-07-01

    scuba diving, other hyperbaric exposures, hypobaric exposures, or flying would be permitted for one week prior to the blood draws. Table 1. Subject...subjected to a series of hyperbaric profiles that were severe enough to produce Doppler- detectable VGE. The individuals identified as more sensitive to...by Ward et al. (18,22). Greater rates tended to cause excessive foam above the sample. The diameter of the bubbles was determined by comparison with

  4. Guide to Altitude Decompression Sickness Research

    DTIC Science & Technology

    2010-05-01

    Night Vision Goggles (NVGs) and effects of hypoxia on PRK surgery recovery, F-16 APECS, F-22 Cooling Garment, U-2 Full Pressure Suit, Aircrew...1. Severity 0 No pain 1-2 Mild 3-4 Moderate 5-7 Strong 8-9 Severe 10 Strongest imaginable 2. Intermittent vs . Constant a...symptoms. 2. Intermittent vs . Constant Paresthesia a. Intermittent (Transient) is defined as lasting fewer than 60 seconds each occurrence, in a

  5. Risk of Central Nervous System Decompression Sickness in Air Diving to No-Stop Limits

    DTIC Science & Technology

    2009-01-01

    190 9 1 10 1. Weak, faint, vertigo 2. Heavy legs, abnormal gait 3. Vertigo and cardiorespiratory symptoms 4. Bilateral numbness and paresthesia ...original report," were included. 6. Pain in both feet, paresthesia 7. Hearing deficit, anisocoria, nystagmus, confusion, emotionally labile, abnormal...tandem gait 8. Scintillating scotoma, abnormal left foot dorsiflexion 9. Weakness, general left side paresthesia , numbness, abnormal gait 10. See

  6. Decompression sickness rates for chamber personnel: case series from one facility.

    PubMed

    Brandt, Megan S; Morrison, Thomas O; Butler, William P

    2009-06-01

    During 2004, a case series of decompression sickness (DCS) meeting the definition of epidemic DCS was observed in the Shaw AFB Physiological Training Program. There were 10 cases of chamber-induced altitude DCS observed. Internal and external investigations focused on time, place, person, and environment. No temporal trend was observed. Chamber, masks, regulators, crew positions, and oxygen sources revealed no defects. Among the cases, mean age was 27 yr. Peak altitude in four cases was 35,000 ft and in the other six cases was 25,000 ft. Six had joint pain, one skin symptoms, and three neurological findings. Four were treated with 100% ground-level oxygen and six with hyperbaric oxygen. Four were students and six were inside observers (IO). Four were women and six men. In the IO, where four of the six were women, no gender effect was seen. Examining the IO monthly exposure load (exposures per month) against DCS suggested a dose-response relationship. This relationship held true when 4 yr of Shaw AFB IO data was studied. Indeed, Poisson regression analysis demonstrated a statistically significant 2.1-fold rise in DCS risk with each monthly exposure. Consequently, the number of exposures per month may need to be considered when devising IO schedules.

  7. Inner ear decompression sickness in compressed-air diving.

    PubMed

    Klingmann, Christoph

    2012-01-01

    Inner ear decompression sickness (IEDCS) has become more frequently reported in recreational diving. We examined 34 divers after IEDCS and analyzed their dive profiles, pattern of symptoms, time of symptom onset and the association with a right-to left shunt (r/l shunt). Four divers used mixed gas and were excluded from the analysis. Of the remaining 30 divers, 25 presented with isolated IEDCS alone, while five divers had additional skin and neurological symptoms. All divers presented with vertigo (100%), and 12 divers reported additional hearing loss (40%). All symptoms occurred within 120 minutes (median 30 minutes) of ascent. Twenty-two of 30 divers (73.3%) showed a r/l shunt. A possible explanation for the frequent association of a r/l shunt and the dominance of vestibular rather than cochlear symptoms could be attributed to the different blood supply of the inner ear structures and the different size of the labyrinthine compartments. The cochlea has a blood supply up to four times higher than the vestibular part of the inner ear, whereas the vestibular fluid space is 30% larger. The higher prevalence of symptoms referrable to the less well-perfused vestibular organ provides further evidence that persistent local inert gas supersaturation may cause growth of incoming arterial bubbles and may therefore be an important pathophysiological factor in IEDCS.

  8. Delayed treatment of decompression sickness with short, no-air-break tables: review of 140 cases.

    PubMed

    Cianci, Paul; Slade, John B

    2006-10-01

    Most cases of decompression sickness (DCS) in the U.S. are treated with hyperbaric oxygen using U.S. Navy Treatment Tables 5 and 6, although detailed analysis shows that those tables were based on limited data. We reviewed the development of these protocols and offer an alternative treatment table more suitable for monoplace chambers that has proven effective in the treatment of DCS in patients presenting to our facility. We reviewed the outcomes for 140 cases of DCS in civilian divers treated with the shorter tables at our facility from January 1983 through December 2002. Onset of symptoms averaged 9.3 h after surfacing. At presentation, 44% of the patients demonstrated mental aberration. The average delay from onset of symptoms to treatment was 93.5 h; median delay was 48 h. Complete recovery in the total group of 140 patients was 87%. When 30 patients with low probability of DCS were excluded, the recovery rate was 98%. All patients with cerebral symptoms recovered. Patients with the highest severity scores showed a high rate of complete recovery (97.5%). Short oxygen treatment tables as originally described by Hart are effective in the treatment of DCS, even with long delays to definitive recompression that often occur among civilian divers presenting to a major Divers Alert Network referral center.

  9. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  10. Chamber personnel's use of Nitrox 50 during hyperbaric oxygen treatment: a quality study--research report.

    PubMed

    Hansen, Marco B; Jansen, Tejs; Sifakis, Michael B; Hyldegaard, Ole; Jansen, Erik C

    2013-01-01

    We aimed to evaluate the feasibility and safety of using Nitrox 50 as breathing gas during attendance in a multiplace hyperbaric chamber. Paper logs between Jan.-Dec. 2011 were reviewed to analyze nitrogen gas-loading, actual bottom time, total bottom time and surface interval time. With the use of the Norwegian Diving Tables nitrogen gas-loading was converted to Repetitive Group Letters. Symptoms of decompression sickness and health problems related to hyperbaric exposures were registered at weekly staff meetings. The chamber personnel breathed chamber air or Nitrox 50. 1,207 hyperbaric exposures were distributed to five chamber attendants and technicians, 14 doctors, and six nurses. Nitrox 50 was inhaled on 978 occasions (81.0%). Median nitrogen gas-loading after first pressurization complied with Repetitive Group Letter A (range A-E), second to C (range A-F), third to D (range A-F), fourth to E (range C-H), fifth to F (range C-H), and sixth to E (range B-G). No symptoms of decompression sickness were reported (95% CI 0.00-0.33%). Breathing Nitrox 50 during repetitive hyperbaric sessions seems to be feasible and safe while meeting high demands in number of treatment sessions and patient flow and with fewer people employed in the hyperbaric unit.

  11. A case-control study evaluating relative risk factors for decompression sickness: a research report.

    PubMed

    Suzuki, Naoko; Yagishita, Kazuyosi; Togawa, Seiichiro; Okazaki, Fumihiro; Shibayama, Masaharu; Yamamoto, Kazuo; Mano, Yoshihiro

    2014-01-01

    Factors contributing to the pathogenesis of decompression sickness (DCS) in divers have been described in many studies. However, relative importance of these factors has not been reported. In this case-control study, we compared the diving profiles of divers experiencing DCS with those of a control group. The DCS group comprised 35 recreational scuba divers who were diagnosed by physicians as having DCS. The control group consisted of 324 apparently healthy recreational divers. All divers conducted their dives from 2009 to 2011. The questionnaire consisted of 33 items about an individual's diving profile, physical condition and activities before, during and just after the dive. To simplify dive parameters, the dive site was limited to Izu Osezaki. Odds ratios and multiple logistic regression were used for the analysis. Odds ratios revealed several items as dive and health factors associated with DCS. The major items were as follows: shortness of breath after heavy exercise during the dive (OR = 12.12), dehydration (OR = 10.63), and maximum dive depth > 30 msw (OR = 7.18). Results of logistic regression were similar to those by odds ratio analysis. We assessed the relative weights of the surveyed dive and health factors associated with DCS. Because results of several factors conflict with previous studies, future studies are needed.

  12. Barophysiology and Biophysics

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1999-01-01

    Decompression is an important aspect of extravehicular activity (EVA). Errors can result in decompression sickness (DCS) if the protective measures are too liberal, while valuable on-orbit time is dissipated in prophylactic methodologies that are excessively conservative. Nucleation is an important consideration in many natural events, and its control is very important in many industrial procedures. The amount of Extravehicular Activity (EVA) that will be required during the construction of the International Space Station exceeds all of the other activity combined. The requirements in astronaut time and consumables (breathing oxygen and air) will be considerable. In an attempt to mitigate these requirements, Project ARGO was investigated in 1990 to investigate the effects of gravitational forces on the musculoskeletal system. This work has led to the present plans for the reduction of prebreathe duration. Over the past decade, research has been directed towards an understanding of the biophysical basis of the formation and growth of the decompression gas phase with the goal of improving the efficiency of the EVA process. In the past, we have direct work towards a more complete understanding of gas bubble formation and growth and exercise-enhanced washout during oxygen prebreathe.

  13. Hypobaric decompression prebreathe requirements and breathing environment

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.

    1993-01-01

    To reduce incidence of decompression sickness (DCS), prebreathing 100 percent oxygen to denitrogenate is required prior to hypobaric decompressions from a sea level pressure breathing environment to pressures lower than 350 mm Hg (20,000 ft; 6.8 psia). The tissue ratio (TR) of such exposures equals or exceeds 1.7; TR being the tissue nitrogen pressure prior to decompression divided by the total pressure after decompression (((0.781)(14.697))/6.758). Designing pressure suits capable of greater pressure differentials, lower TR's, and procedures which limit the potential for DCS occurrence would enhance operational efficiency. The current 10.2 psia stage decompression prior to extravehicular activity (EVA) from the Shuttle in the 100 percent oxygen, 4.3 psia suit, results in a TR of 1.65 and has proven to be relatively free of DCS. Our recent study of zero-prebreathe decompressions to 6.8 psia breathing 100 percent oxygen (TR = 1.66) also resulted in no DCS (N = 10). The level of severe, Spencer Grades 3 or 4, venous gas emboli (VGE) increased from 0 percent at 9.5 psia to 40 percent at 6.8 psia yielding a Probit curve of VGE risk for the 51 male subjects who participated in these recent studies. Earlier, analogous decompressions using a 50 percent oxygen, 50 percent nitrogen breathing mixture resulted in one case of DCS and significantly higher levels of severe VGE, e.g., at 7.8 psia, the mixed gas breathing environment resulted in a 56 percent incidence of severe VGE versus 10 percent with use of 100 percent oxygen. The report of this study recommended use of 100 percent oxygen during zero-prebreathe exposure to 6.8 psia if such a suit could be developed. For future, long-term missions, we suggest study of the effects of decompression over several days to a breathing environment of 150 mmHg O2 and approximately 52 mmHg He as a means of eliminating DCS and VGE hazards during subsequent excursions. Once physiologically adapted to a 4 psia vehicle, base, or space station segment, crew members could use greatly simplified EVA suits with greater mobility and no prebreathe requirement.

  14. Metabolic Cost of Experimental Exercises

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Gernhardt, Michael L.

    2009-01-01

    Although the type and duration of activity during decompression was well documented, the metabolic cost of 1665 subject-exposures with 8 activity profiles from 17 altitude decompression sickness (DCS) protocols at Brooks City-Base, TX from 1983-2005 was not determined. Female and male human volunteers (30 planned, 4 completed) performed activity profiles matching those 8 activity profiles at ground level with continuous monitoring of metabolic cost. A Cosmed K4b2 Cardio Pulmonary Exercise Testing device was used to measure oxygen uptake (VO2) during the profiles. The results show levels of metabolic cost to the females for the profiles tested varied from 4.3 to 25.5 ml/kg/min and from 3.0 to 12.0 ml/kg/min to the males. The increase in VO2 from seated rest to the most strenuous of the 8 activity profiles was 3.6-fold for the females and 2.8-fold for the males. These preliminary data on 4 subjects indicate close agreement of oxygen uptake for activity performed during many subject-exposures as published earlier. The relatively low average oxygen uptake required to perform the most strenuous activity may imply the need for adjustment of modeling efforts using metabolic cost as a risk factor. Better definition of metabolic cost during exposure to altitude, a critical factor in DCS risk, may allow refinement of DCS prediction models.

  15. Joint pain and Doppler-detectable bubbles in altitude (Hypobaric) decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1993-01-01

    The observation that altitude decompression sickness (DCS) is associated with pain in the lower extremities is not new, although it is not a consistent finding. DCS in divers is generally in the upper body, an effect often attributed to non-loading of the body while immersed. In caisson workers, DCS is reported more in the lower extremities. Surprisingly, many researchers do not mention the location of DCS joint pain, apparently considering it to be random. This is not the case for the tissue ratios encountered in studying decompression associated with simulated EVA. In NASA/JSC tests, altitude DCS generally presented first in either the ankle, knee, or hip (83 percent = 73/88). There was a definite statistical relation between the maximum Spencer precordial Doppler Grade and the incidence of DCS in the extremity, although this is not meant to imply a casual relation between circulating gas bubbles and joint pain. The risk of DCS with Grade 4 was considerably higher than that of Grades 0 to 3. The DCS risk was independent of the 'tissue ratio.' There was a predominance of lower extremity DCS even when exercise was performed with the upper body. The reason for these locations we hypothesize to be attributed to the formation of tissue gas micronuclei from kinetic and tensile forces (stress-assisted nucleation) and are the result of the individuals ambulating in a 1g environment. Additionally, since these showers of Doppler bubbles can persist for hours, it is difficult to imagine that they are emanating solely from tendons and ligaments, the supposed site of joint pain. This follows from Henry's law linking the volume of joint tissue (the solvent) and the solubility coefficient of inert gas; there is volumetrically insufficient connective tissue to produce the prolonged release of gas bubbles. If gas bubbles are spawned and released from connective tissue, their volume is increased by those from muscle tissue. Therefore, the nexus between Doppler-detectable gas bubbles and joint-pain decompression sickness is essentially a statistical, rather than a direct, one.

  16. Decompression Sickness, Extravehicular Activities, and Nitrogen Induced Osmosis: Brian Hills Revisited

    DTIC Science & Technology

    2001-06-01

    hypobares ou hyperbares ] To order the complete compilation report, use: ADA395680 The component part is provided here to allow users access to individually...report: TITLE: Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions...Hypo- and Hyperbaric Conditions ", held in Toronto, Canada, 16-19 October 2000, and published in RTO MP-062. 45-2 upon the local pressure differential

  17. Air Break During Preoxygenation and Risk of Altitude Decompression Sickness

    DTIC Science & Technology

    2010-10-01

    examination and were representative of the USAF rated aircrew popula- tion. They were not allowed to participate in scuba div- ing, hyperbaric exposures, or...subjects dur- ing the hypobaric exposures and the subjects were not questioned about how they felt during the altitude ex- posures. Each subject was...to consult with the physicians in Hyperbaric Medicine within the same building. Endpoints of the exposures were: 1) comple- tion of the scheduled

  18. Air versus He-O2 Recompression Treatment of Decompression Sickness in Guinea Pigs

    DTIC Science & Technology

    1988-01-01

    effectiveness in treatment of DCS in guinea pigs following air dives. 4 gas bubbles; diving; hyperbaric co ,.-. y inert gas ; reff " , counterdiffusion...recompression compared to when air is the recompression gas . In reporting the results from these area determinations, only areas under the breathing...difference due to treatment gas could be demonstrated with recovery increasing with recompression depth for both air and He-0 2. The present experiments

  19. Assessment of Aeromedical Evacuation Transport Patient Outcomes With and Without Cabin Altitude Restriction

    DTIC Science & Technology

    2017-08-24

    reaction to stress (physical restraints) Other • Acute post-hemorrhagic anemia • Post-operative infection • Traumatic shock • Fat embolism ...decompression sickness/air gas embolism , and severe pulmonary disease [9]. The goal of this retrospective matched case-control study was to determine whether...patients who have cardiopulmonary concerns, free air in any closed cavity (e.g., skull, peritoneal cavity, injury, embolism ), or evolved gas (e.g

  20. Hyperintense White Matter Lesions in 50 High-Altitude Pilots with Neurologic Decompression Sickness

    DTIC Science & Technology

    2012-12-01

    Environ Med 2004 ; 75 : 969 – 72 . 4. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL . Brain ferritin iron as a risk factor for...Coyle T, Lancaster J, et al. Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal...Digital brain atlases . Trends Neurosci 1995 ; 18 : 210 – 1 . 28. Miura K, Soyama Y, Morikawa Y, Nishijo M, Nakanishi Y, et al

  1. Hypoxia awareness training for aircrew: a comparison of two techniques.

    PubMed

    Singh, Bhupinder; Cable, Gordon G; Hampson, Greg V; Pascoe, Glenn D; Corbett, Mark; Smith, Adrian

    2010-09-01

    Major hazards associated with hypoxia awareness training are the risks of decompression sickness, barotrauma, and loss of consciousness. An alternate method has been developed which combines exposure to a simulated altitude of 10,000 ft (3048 m) with breathing of a gas mixture containing 10% oxygen and 90% nitrogen. The paradigm, called Combined Altitude and Depleted Oxygen (CADO), places the subjects at a physiological altitude of 25,000 ft (7620 m) and provides demonstration of symptoms of hypoxia and the effects of pressure change. CADO is theoretically safer than traditional training at a simulated altitude of 25,000 ft (7620 m) due to a much lower risk of decompression sickness (DCS) and has greater fidelity of training for fast jet aircrew (mask-on hypoxia). This study was conducted to validate CADO by comparing it with hypobaric hypoxia. There were 43 subjects who were exposed to two regimens of hypoxia training: hypobaric hypoxia (HH) at a simulated altitude of 25,000 ft (7620 m) and CADO. Subjective, physiological, and performance data of the subjects were collected, analyzed, and compared. There were no significant differences in the frequency and severity of the 24 commonly reported symptoms, or in the physiological response, between the two types of hypoxia exposure. CADO is similar to HH in terms of the type and severity of symptoms experienced by subjects, and appears to be an effective, useful, and safe tool for hypoxia training.

  2. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    PubMed

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  3. The effects of different rates of ascent on the incidence of altitude decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.

    1989-01-01

    The effect of different rates of ascent on the incidence of altitude decompression sickness (DCS) was analyzed by a retrospective study on 14,123 man-flights involving direct ascent up to 38,000 ft altitude. The data were classified on the basis of altitude attained, denitrogenation at ground level, duration of stay at altitude, rest or exercise while at altitude, frequency of exercise at altitude, and ascent rates. This database was further divided on the basis of ascent rates into different groups from 1000 ft/min up to 53,000 ft/min. The database was analyzed using multiple correlation and regression methods, and the results of the analysis reveal that ascent rates influence the incidence of DCS in combination with the various factors mentioned above. Rate of ascent was not a significant predictor of DCS and showed a low, but significant multiple correlation (R=0.31) with the above factors. Further, the effects of rates below 2500 ft/min are significantly different from that of rates above 2500 ft/min on the incidence of symptoms (P=0.03) and forced descent (P=0.01). At rates above 2500 ft/min and up to 53,000 ft/min, the effects of ascent rates are not significantly different (P greater than 0.05) in the population examined while the effects of rates below 2500 ft/min are not clear.

  4. Dual-frequency ultrasound for detecting and sizing bubbles.

    PubMed

    Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J

    2005-01-01

    ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound. c2005 Elsevier Ltd. All rights reserved.

  5. Decompression Sickness and U-2 Operations: Summary of Research, Findings, and Recommendations Regarding Use of Exercise During Prebreathe

    DTIC Science & Technology

    2010-03-01

    Research Laboratory Hypobaric DCS Research Database developed at Brooks AFB, TX, which has detailed information on over 3,000 research chamber... hyperbaric oxygen therapy resulting in complete resolution of all symptoms. After instituting EDP, the same pilot flew 36 U-2 high flights without any...consultation with base SGP and USAFSAM Hyperbarics and MAJCOM/SGPA. Earlier guidance in the 1980’s was much more restrictive and, in fact, permanently

  6. The Proceedings of the Hypobaric Decompression Sickness Workshop Held in Armstrong Laboratory, Brooks AFB, Texas on 16-18 October 1990.

    DTIC Science & Technology

    1992-06-01

    exhibited by humans, ostium secundum (15) and, like humans with PFO, are generally a3ymptomatic. Yucatan Miniature Swine exhibited an incidence of 8...W. Corin; A. Fazel; W.W.R. Biederman; F.G. Spinale and P.C. Gillette. Heritable Ventricular Septal Defect In Yucatan Miniature Swine. Laboratory...of sleep, poor nutrition , and recent illness; exercising prior to flight (two separate cases of bends); dehydration. 448 Immediately following are 7

  7. Documentation for the USAF School of Aerospace Medicine Altitude Decompression Sickness Research Database

    DTIC Science & Technology

    2010-05-01

    following investigators have been listed on protocols where DCS and/or VGE were the primary data gathered (omits PRK and LASIK ): Jimmy D. Adams, PhD...there was a difference in the level of upper vs . lower-body joint pain which was evident statistically when many non-ambulatory vs . ambulatory studies...5,000 fpm vs . 80,000 fpm ascents to 40,000 ft (90-min prebreathe, 90-min exposure), there were a few more neurologic and respiratory symptoms

  8. The Influence of Thermal Exposure on Diver Susceptibility to Decompression Sickness

    DTIC Science & Technology

    2007-11-01

    day. Wet pot pressure was monitored with a Druck 0-150 pounds per square inch gauge (psig) pressure transducer (G. E. Sensing; New Fairfield, CT...Neurological examination was within normal limits except for the loss of pinpoint sensation over dorsal surface of the 3d , 4 h, and 5 h digits of the...right hand up to the knuckle region and loss of two-point discrimination over 3d and 4 h digit palmer surface. Intense pruritis remained as did 4/10 pain

  9. Design and Testing of Suit Regulator Test Rigs

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.

  10. Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy.

    PubMed

    Lambrechts, Kate; Pontier, Jean-Michel; Mazur, Aleksandra; Theron, Michaël; Buzzacott, Peter; Wang, Qiong; Belhomme, Marc; Guerrero, François

    2015-05-15

    Literature highlights the involvement of disseminated thrombosis in the pathophysiology of decompression sickness (DCS). We examined the effect of several antithrombotic treatments targeting various pathways on DCS outcome: acetyl salicylate, prasugrel, abciximab, and enoxaparin. Rats were randomly assigned to six groups. Groups 1 and 2 were a control nondiving group (C; n = 10) and a control diving group (CD; n = 30). Animals in Groups 3 to 6 were treated before hyperbaric exposure (HBE) with either prasugrel (n = 10), acetyl salicylate (n = 10), enoxaparin (n = 10), or abciximab (n = 10). Blood samples were taken for platelet factor 4 (PF4), thiobarbituric acid reactive substances (TBARS), and von Willebrand factor analysis. Onset of DCS symptoms and death were recorded during a 60-min observation period after HBE. Although we observed fewer outcomes of DCS in all treated groups compared with the CD, statistical significance was reached in abciximab only (20% vs. 73%, respectively, P = 0.007). We also observed significantly higher levels of plasmatic PF4 in abciximab (8.14 ± 1.40 ng/ml; P = 0.004) and enoxaparin groups (8.01 ± 0.80 ng/ml; P = 0.021) compared with the C group (6.45 ± 1.90 ng/ml) but not CD group (8.14 ± 1.40 ng/ml). Plasmatic levels of TBARS were significantly higher in the CD group than the C group (49.04 ± 11.20 μM vs. 34.44 ± 5.70 μM, P = 0.002). This effect was prevented by all treatments. Our results suggest that abciximab pretreatment, a powerful glycoprotein IIb/IIIa receptor antagonist, has a strong protective effect on decompression risk by significantly improving DCS outcome. Besides its powerful inhibitory action on platelet aggregation, we suggest that abciximab could also act through its effects on vascular function, oxidative stress, and/or inflammation. Copyright © 2015 the American Physiological Society.

  11. The Mars Project: Avoiding Decompression Sickness on a Distant Planet

    NASA Astrophysics Data System (ADS)

    Conkin, Johnny

    2000-05-01

    A cost-effective approach for Mars exploration is to use available resources, such as water and atmospheric gases. Nitrogen (N2) and argon (Ar) are available and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch (psia). The habitat and space suit are designed as an integrated system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars, but the risk of decompression sickness (DCS) during the extravehicular activity in a 3.75-psia suit, after exposure to any of the three habitat conditions, may limit unrestricted exploration. I evaluate here the risk of DCS since a significant proportion of a trinary breathing gas in the habitat might contain Ar. I draw on past experience and published information to extrapolate into untested, multivariable conditions to evaluate risk. A rigorous assessment of risk as a probability of DCS for each habitat condition is not yet possible. Based on many assumptions about Ar in hypobaric decompressions, I conclude that the presence of Ar significantly increases the risk of DCS. The risk is significant even with the best habitat option: 2.56 psia oxygen, 3.41 psia N2, and 2.20 psia Ar. Several hours of prebreathing 100% 02, a higher suit pressure, or a combination of other important variables such as limited exposure time on the surface or exercise during prebreathe would be necessary to reduce the risk of DCS to an acceptable level. The acceptable level for DCS risk on Mars has not yet been determined. Mars is a great distance from Earth and therefore from primary medical care. The acceptable risk would necessarily be defined by the capability to treat DCS in the Rover vehicle, in the habitat, or both.

  12. Exploiting Aerobic Fitness To Reduce Risk Of Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Wessel, James H., III

    2007-01-01

    Decompression sickness (DCS) is multivariable. But we hypothesize an aerobically fit person is less likely to experience hypobaric DCS than an unfit person given that fitness is exploited as part of the denitrogenation (prebreathe, PB) process prior to an altitude exposure. Aerobic fitness is peak oxygen uptake (VO2pk, ml/kg/min). METHODS: Treadmill or cycle protocols were used over 15 years to determine VO2pks. We evaluated dichotomous DCS outcome and venous gas emboli (VGE) outcome detected in the pulmonary artery with Doppler ultrasound associated with VO2pk for two classes of experiments: 1) those with no PB or PB under resting conditions prior to ascent in an altitude chamber, and 2) PB that included exercise for some part of the PB. There were 165 exposures (mean VO2pk 40.5 +/- 7.6 SD) with 25 cases of DCS in the first protocol class and 172 exposures (mean VO2pk 41.4 +/- 7.2 SD) with 25 cases of DCS in the second. Similar incidence of the DCS (15.2% vs. 14.5%) and VGE (45.5% vs. 44.8%) between the two classes indicates that decompression stress was similar. The strength of association between outcome and VO2pk was evaluated using univariate logistic regression. RESULTS: An inverse relationship between the DCS outcome and VO2pk was evident, but the relationship was strongest when exercise was done as part of the PB (exercise PB, coef. = -0.058, p = 0.07; rest or no PB, coef. = -0.005, p = 0.86). There was no relationship between VGE outcome and VO2pk (exercise PB, coef. = -0.003, p = 0.89; rest or no PB, coef. = 0.014, p = 0.50). CONCLUSIONS: A significant change in probability of DCS was associated with fitness only when exercise was included in the denitrogenation process. We believe a fit person that exercises during PB efficiently eliminates dissolved nitrogen from tissues.

  13. Exploiting Aerobic Fitness to Reduce Risk of Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Gernhardt, M. L.; Wessel, J. H.

    2007-01-01

    Decompression sickness (DCS) is multivariable. But we hypothesize an aerobically fit person is less likely to experience hypobaric DCS than an unfit person given that fitness is exploited as part of the denitrogenation (prebreathe, PB) process prior to an altitude exposure. Aerobic fitness is peak oxygen uptake (VO2pk, ml/kg/min). Treadmill or cycle protocols were used over 15 years to determine VO2pks. We evaluated dichotomous DCS outcome and venous gas emboli (VGE) outcome detected in the pulmonary artery with Doppler ultrasound associated with VO2pk for two classes of experiments: 1) those with no PB or PB under resting conditions prior to ascent in an altitude chamber, and 2) PB that included exercise for some part of the PB. There were 165 exposures (mean VO2pk 40.5 plus or minus 7.6 SD) with 25 cases of DCS in the first protocol class and 172 exposures (mean VO2pk 41.4 plus or minus 7.2 SD) with 25 cases of DCS in the second. Similar incidence of the DCS (15.2% vs. 14.5%) and VGE (45.5% vs. 44.8%) between the two classes indicates that decompression stress was similar. The strength of association between outcome and VO2pk was evaluated using univariate logistic regression. An inverse relationship between the DCS outcome and VO2pk was evident, but the relationship was strongest when exercise was done as part of the PB (exercise PB, coef. = -0.058, p = 0.07; rest or no PB, coef. = -0.005, p = 0.86). There was no relationship between VGE outcome and VO2pk (exercise PB, coef. = -0.003, p = 0.89; rest or no PB, coef. = 0.014, p = 0.50). A significant change in probability of DCS was associated with fitness only when exercise was included in the denitrogenation process. We believe a fit person that exercises during PB efficiently eliminates dissolved nitrogen from tissues.

  14. The Mars Project: Avoiding Decompression Sickness on a Distant Planet

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2000-01-01

    A cost-effective approach for Mars exploration is to use available resources, such as water and atmospheric gases. Nitrogen (N2) and argon (Ar) are available and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch (psia). The habitat and space suit are designed as an integrated system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars, but the risk of decompression sickness (DCS) during the extravehicular activity in a 3.75-psia suit, after exposure to any of the three habitat conditions, may limit unrestricted exploration. I evaluate here the risk of DCS since a significant proportion of a trinary breathing gas in the habitat might contain Ar. I draw on past experience and published information to extrapolate into untested, multivariable conditions to evaluate risk. A rigorous assessment of risk as a probability of DCS for each habitat condition is not yet possible. Based on many assumptions about Ar in hypobaric decompressions, I conclude that the presence of Ar significantly increases the risk of DCS. The risk is significant even with the best habitat option: 2.56 psia oxygen, 3.41 psia N2, and 2.20 psia Ar. Several hours of prebreathing 100% 02, a higher suit pressure, or a combination of other important variables such as limited exposure time on the surface or exercise during prebreathe would be necessary to reduce the risk of DCS to an acceptable level. The acceptable level for DCS risk on Mars has not yet been determined. Mars is a great distance from Earth and therefore from primary medical care. The acceptable risk would necessarily be defined by the capability to treat DCS in the Rover vehicle, in the habitat, or both.

  15. Could some aviation deep vein thrombosis be a form of decompression sickness?

    PubMed

    Buzzacott, Peter; Mollerlokken, Andreas

    2016-10-01

    Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.

  16. The use of portable 2D echocardiography and 'frame-based' bubble counting as a tool to evaluate diving decompression stress.

    PubMed

    Germonpré, Peter; Papadopoulou, Virginie; Hemelryck, Walter; Obeid, Georges; Lafère, Pierre; Eckersley, Robert J; Tang, Meng-Xing; Balestra, Costantino

    2014-03-01

    'Decompression stress' is commonly evaluated by scoring circulating bubble numbers post dive using Doppler or cardiac echography. This information may be used to develop safer decompression algorithms, assuming that the lower the numbers of venous gas emboli (VGE) observed post dive, the lower the statistical risk of decompression sickness (DCS). Current echocardiographic evaluation of VGE, using the Eftedal and Brubakk method, has some disadvantages as it is less well suited for large-scale evaluation of recreational diving profiles. We propose and validate a new 'frame-based' VGE-counting method which offers a continuous scale of measurement. Nine 'raters' of varying familiarity with echocardiography were asked to grade 20 echocardiograph recordings using both the Eftedal and Brubakk grading and the new 'frame-based' counting method. They were also asked to count the number of bubbles in 50 still-frame images, some of which were randomly repeated. A Wilcoxon Spearman ρ calculation was used to assess test-retest reliability of each rater for the repeated still frames. For the video images, weighted kappa statistics, with linear and quadratic weightings, were calculated to measure agreement between raters for the Eftedal and Brubakk method. Bland-Altman plots and intra-class correlation coefficients were used to measure agreement between raters for the frame-based counting method. Frame-based counting showed a better inter-rater agreement than the Eftedal and Brubakk grading, even with relatively inexperienced assessors, and has good intra- and inter-rater reliability. Frame-based bubble counting could be used to evaluate post-dive decompression stress, and offers possibilities for computer-automated algorithms to allow near-real-time counting.

  17. The effect of differences in time to detection of circulating microbubbles on the risk of decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Gilbert, J. H.; Powell, M. R.; Waligora, J. M.

    1992-01-01

    Circulating microbubbles (CMB) are frequently detected prior to the appearance of symptoms of Decompression Sickness (DCS). It is difficult to analyze the effect of CMB on symptoms due to differences in the time to detection of CMB. This paper uses survival analysis models to evaluate the risk of symptoms in the presence of CMB. Methods: Information on 81 exposures to an altitude of 6,400 m (6.5 psi) for a period of three hours, with simulated extravehicular activities, was examined. The presence or absence of CMB was included as a time dependent covariate of the Cox proportional hazards regression model. Using this technique, the subgroup of exposures with CMB was analyzed further. Mean (S.D.) time in minutes to onset of CMB and symptoms were 125 (63) and 165 (33) respectively, following the three hours exposure. The risk of symptoms (17/81) increased 14 times in the presence of CMB, after controlling for variations in time to detection of CMB. Further, the risk was lower when time to detection of CMB was greater than 60 minutes (risk ratio = 0.96; 95 percent confidence intervals = 0.94 - 0.99 0.99 P less than 0.01) compared to CMB before 60 minutes at altitude. Conclusions: Survival analysis showed that individual risk of DCS changes significantly due to variations in time to detection of CMB. This information is important in evaluating the risk of DCS in the presence of CMB.

  18. Modeling the effects of exercise during 100% oxygen prebreathe on the risk of hypobaric decompression sickness

    NASA Technical Reports Server (NTRS)

    Loftin, K. C.; Conkin, J.; Powell, M. R.

    1997-01-01

    BACKGROUND: Several previous studies indicated that exercise during prebreathe with 100% O2 decreased the incidence of hypobaric decompression sickness (DCS). We report a meta-analysis of these investigations combined with a new study in our laboratory to develop a statistical model as a predictive tool for DCS. HYPOTHESIS: Exercise during prebreathe increases N2 elimination in a theoretical 360-min half-time compartment decreasing the incidence of DCS. METHODS: A dose-response probability tissue ratio (TR) model with 95% confidence limits was created for two groups, prebreathe with exercise (n = 113) and resting prebreathe (n = 113), using nonlinear regression analysis with maximum likelihood optimization. RESULTS: The model predicted that prebreathe exercise would reduce the residual N2 in a 360-min half-time compartment to a level analogous to that in a 180-min compartment. This finding supported the hypothesis. The incidence of DCS for the exercise prebreathe group was significantly decreased (Chi-Square = 17.1, p < 0.0001) from the resting prebreathe group. CONCLUSIONS: The results suggested that exercise during prebreathe increases tissue perfusion and N2 elimination approximately 2-fold and markedly lowers the risk of DCS. Based on the model, the prebreathe duration may be reduced from 240 min to a predicted 91 min for the protocol in our study, but this remains to be verified. The model provides a useful planning tool to develop and test appropriate prebreathe exercise protocols and to predict DCS risks for astronauts.

  19. Reducing intraocular-pressure spike after intravitreal-bevacizumab injection with ocular decompression using a sterile cotton swab soaked in proparacaine 0.5%: A quasi-experimental study.

    PubMed

    Qureshi, Naveed A; Mansoor, Hassan; Ahmad, Sabihuddin; Zafar, Sarah; Asif, Muhammad

    2016-01-01

    The study was conducted to determine the effect of preinjection ocular decompression by a cotton swab soaked in local anesthetic on the immediate postinjection rise in intraocular pressure (IOP) after intravitreal bevacizumab (IVB). A nonrandomized, quasi-experimental interventional study was conducted at Al-Shifa Trust Eye Hospital, Pakistan, from August 1, 2013 to July 31, 2014. One hundred ( n = 100) patients receiving 0.05-mL IVB injection for the first time were assigned to two preinjection anesthetic methods: one with ocular decompression using a sterile cotton swab soaked in proparacaine 0.5%, and the other without ocular decompression using proparacaine 0.5% eyedrops. The IOP was recorded in the eye receiving IVB at three time intervals: Time 1 (preinjection), Time 2 (immediately after injection), and Time 3 (30 minutes after injection). There was a significant difference in the mean IOP change (between Time 1 and Time 2) for the group injected with ocular decompression [ M = 1.00, standard deviation (SD) = 1.47] and the group injected without ocular decompression ( M = 5.00, SD = 2.38; t (68) = 9.761, p < 0.001). There was also a significant difference in the mean IOP change (between Time 1 and Time 3) for the group injected with ocular decompression ( M = 0.428, SD = 1.58) and the group injected without ocular decompression ( M = 4.318, SD = 3.34; t (58) = 7.111, p < 0.001). Patients receiving IVB injections with ocular-decompression soaking in proparacaine 0.5% experience significantly lower postinjection IOP spike, and that too for a considerably shorter duration as compared to those receiving IVB without ocular decompression.

  20. Human tolerance to space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  1. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  2. Altitude Decompression Sickness between 6858 and 9144 m Following a 1-h Prebreathe

    DTIC Science & Technology

    2005-01-01

    benefit of a 1-h prebreathe in comparison to no 6858 m after 1 h of prebreathe. However, during 6858-m and 7620-m exposures, a 1-h prebreathe is highly...first 90 min of exposure. Use of 4-h vs. 8-h exposures METHODS does not appear to underestimate DCS risk at or above 7620 m. Keywords: DCS, hypobaric ...exposure. This allowed their endpoint criteria for defining a symptom as DCS comparison of these results with the majority of Air were more severe than

  3. Diving the wreck: risk and injury in sport scuba diving.

    PubMed

    Hunt, J C

    1996-07-01

    This paper utilizes psychoanalytic theory to examine risk and injury in the case of a male deep sea diver. It examines the unconscious conflicts which appeared to fuel the diver's involvement in deep diving and to lead to a near fatal incident of decompression sickness. Particular attention is paid to the role of the diver's father in the evolution of the preoedipal and oedipal fantasies and conflicts which appear to be linked to the injury. The research is based on interviews with and fieldwork among recreational and deep divers.

  4. Studies on the Mechanism and Prevention of Decompression Sickness.

    DTIC Science & Technology

    1982-07-12

    Washington, D.C., 1981, 3p. 37. Reversibility of Dysbaric Alteration of the Blood-Brain Barrier. Chryssanthou, C., Fuhrer R., and Higgins , D.; Undersea Biomed...revised mianunscriptI received I is truiarv 17(,. ,- , 11 82 C. 11 (R lKS~SAN(1 Hit Chirs san thou, C. P. 1976. Ost5 onik risc dk sha riqu c I ie I a...Caison-Krankheit. Orthop. Untall- Chir . 75:28-42. Jones, J. P., Jr., L. Sakovich. and C. F. Anderson. 1974. Pages 117-I132 in I . Becktman and D). IlIliott

  5. Aseptic necrosis of the femoral head after pregnancy: a case report.

    PubMed

    Nassar, Kawtar; Rachidi, Wafae; Janani, Saadia; Mkinsi, Ouafa

    2016-01-01

    A documented case of beginning aseptic necrosis of the femoral head associated with pregnancy together with a review of the literature about this rare complication of pregnancy is presented. The known risk factors of osteonecrosis are; steroid use, alcoholism, organ transplantation, especially after kidney transplant or bone marrow transplantation bone, systemic lupus erythematosus, dyslipidemia especially hypertriglyceridemia, dysbaric decompression sickness, drepanocytosis and Gaucher's disease. Among the less established factors, we mention procoagulations abnormalities, HIV infection, chemotherapy. We report a case of osteonecrosis of femoral head after pregnancy.

  6. Seventh Annual Congress of the European Undersea Biomedical Society and Symposium on Decompression Sickness Held at Cambridge, England on July 21-24 1981,

    DTIC Science & Technology

    1981-09-09

    oxygen. The last paper of Session 1 was given by Dr. P. Bennett (Duke Univ. Medical Center, NC), and described the Duke "Atlantis" series of deep ...Medicine, Scotland) led off with a presentation on thermal comfort and deep -core temperatures in Antarctic scientific divers. During air diving under ice...than 300 msw (for humans) and deeper than 800 msw (for animals, including several recent dives using baboons to as deep as 1,030 msw) call for a new

  7. Effect of Severity, Time to Recompression with Oxygen, and Re-Treatment on Outcome in Forty-Nine Cases of Spinal Cord Decompression Sickness

    DTIC Science & Technology

    1993-01-01

    by physical therapy or no treatment noted that many patients showed gradual recovery, especially if the insult resulted in only mild symptoms (1. 9...GOUP dysba rism, central nervous system, model, hyperbaric oxygen therapy 19. ABSTRACT (Continue on reverse if nece=A iwdýt4~b boknub7 NTIS CRA&I DIDIIC...oxygen therapy The effect of clinical severity and time to recompression with oxygen on outcome from spinal cord DCS is not well defined in the diving

  8. Development of a Minimal-Bulk Oxygen Delivery Product to Enhance Survival During Hemorrhagic Shock/Studies Regarding the Use of Perfluorocarbon- Derived Intravascular Microbubbles from Oxygen Transport

    DTIC Science & Technology

    2009-07-01

    TREATED PIGS A few minu tes after th e Hextend infusion was initiated, th e arterial pr essures started to incr ease gradually as demonstrated in Figure...Until the end of treatment both panels displays SAP (systolic arterial pressure) and DAP (diastolic arterial pr essure ) as mean ± SE, after...toxicity, high pressu re nervous syndrome, work to lerance at pr essure , hyperbaric oxygen treatment for decompression sickness and clinical use

  9. [The research progress of diving medicine in China].

    PubMed

    Fang, Yi-Qun; Bao, Xiao-Chen; Li, Ci; Meng, Miao; Yuan, Heng-Rong; Ma, Jun; Wang, Yan

    2012-11-01

    Diving medicine is one of the branches of military medicine, and plays an important role in naval development. This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the past few years in China. The article describes our research achievement in conventional diving and its medical support, researches on saturation diving and its medical support, submarine escape and its medical support, effects of hyperbaric environments and fast buoyancy ascent on immunological and cardiological functions. Diving disorders (including decompression sickness and oxygen toxicity) are also introduced.

  10. The relationship of intravascular bubbles to bends at altitude

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Dixon, G. A.; Olson, R. M.; Moore, A. A.

    1986-01-01

    In response to recent findings attesting to a correlation between intravehicular bubbling and decompression sickness at intermediate altitudes, an attempt was made to define a minimum pressure for a pressure suit which would obviate the need for prebreathing 100 percent oxygen prior to extravehicular activity (EVA). Fifty-seven male subjects were exposed to altitudes ranging from 16,000 to 30,000 ft in two separate protocols. The first was designed to determine a pressure at which no bends occurred if a crewmember were decompressed from a sea level space station pressure just prior to EVA without prebreathing 100 percent oxygen. The other study was designed to define an altitude and exercise regimen at which bends-susceptible and bends-resistant crewmembers could be separated. It is shown that the close association which exists between severe bubbling and bends at a pressure altitude of 4.3 psia (30,000 ft) decreases as pressure is increased and essentially disappears at pressures less than or equal to 7.8 psia (16,000 ft).

  11. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  12. Underwater and hyperbaric medicine as a branch of occupational and environmental medicine.

    PubMed

    Lee, Young Il; Ye, Byeong Jin

    2013-12-19

    Exposure to the underwater environment for occupational or recreational purposes is increasing. As estimated, there are around 7 million divers active worldwide and 300,000 more divers in Korea. The underwater and hyperbaric environment presents a number of risks to the diver. Injuries from these hazards include barotrauma, decompression sickness, toxic effects of hyperbaric gases, drowning, hypothermia, and dangerous marine animals. For these reasons, primary care physicians should understand diving related injuries and assessment of fitness to dive. However, most Korean physicians are unfamiliar with underwater and hyperbaric medicine (UHM) in spite of scientific and practical values.From occupational and environmental medicine (OEM) specialist's perspective, we believe that UHM should be a branch of OEM because OEM is an area of medicine that deals with injuries caused by physical and biological hazards, clinical toxicology, occupational diseases, and assessment of fitness to work. To extend our knowledge about UHM, this article will review and update on UHM including barotrauma, decompression illness, toxicity of diving gases and fitness for diving.

  13. Variability in circulating gas emboli after a same scuba diving exposure.

    PubMed

    Papadopoulou, V; Germonpré, P; Cosgrove, D; Eckersley, R J; Dayton, P A; Obeid, G; Boutros, A; Tang, M-X; Theunissen, S; Balestra, C

    2018-06-01

    A reduction in ambient pressure or decompression from scuba diving can result in ultrasound-detectable venous gas emboli (VGE). These environmental exposures carry a risk of decompression sickness (DCS) which is mitigated by adherence to decompression schedules; however, bubbles are routinely observed for dives well within these limits and significant inter-personal variability in DCS risk exists. Here, we assess the variability and evolution of VGE for 2 h post-dive using echocardiography, following a standardized pool dive in calm warm conditions. 14 divers performed either one or two (with a 24 h interval) standardized scuba dives to 33 mfw (400 kPa) for 20 min of immersion time at NEMO 33 in Brussels, Belgium. Measurements were performed at 21, 56, 91 and 126 min post-dive: bubbles were counted for all 68 echocardiography recordings and the average over ten consecutive cardiac cycles taken as the bubble score. Significant inter-personal variability was demonstrated despite all divers following the same protocol in controlled pool conditions: in the detection or not of VGE, in the peak VGE score, as well as time to VGE peak. In addition, intra-personal differences in 2/3 of the consecutive day dives were seen (lower VGE counts or faster clearance). Since VGE evolution post-dive varies between people, more work is clearly needed to isolate contributing factors. In this respect, going toward a more continuous evaluation, or developing new means to detect decompression stress markers, may offer the ability to better assess dynamic correlations to other physiological parameters.

  14. Neurologic decompression sickness following cabin pressure fluctuations at high altitude.

    PubMed

    Auten, Jonathan D; Kuhne, Michael A; Walker, Harlan M; Porter, Henry O

    2010-04-01

    Decompression sickness (DCS) occurs in diving, altitude chamber exposures, and unpressurized or depressurized high-altitude flights. Because DCS takes many forms, in-flight cases may be misinterpreted as hypoxia, hyperventilation, or viral illness, with resulting failure to respond appropriately. In this case, a 28-yr-old male pilot of a single-seat, tactical aircraft experienced 12 rapid pressure fluctuations while flying at 43,000 ft above sea level. He had no symptoms and decided to complete the flight, which required an additional 2 h in the air. Approximately 1 h later he began to experience fatigue, lightheadedness, and confusion, which he interpreted as onset of a viral illness. However, symptoms progressed to visual, cognitive, motor, and sensory degradations and it was with some difficulty that he landed safely at his destination. Neurologic DCS was suspected on initial evaluation by flight line medical personnel because of the delayed onset and symptom progression. He was transferred to a local Emergency Department and noted to have altered mental status, asymmetric motor deficits, and non-dermatomal paresthesias of the upper and lower extremities. Approximately 3.5 h after the incident and 2.5 h after the onset of symptoms he began hyperbaric oxygen therapy. He received partial relief at 30 min of the Navy DiveTable 6 and full resolution at 90 min; there were no recurrent symptoms at a 1-yr follow-up. This case highlights the importance of early recognition of in-flight DCS symptoms and landing as soon as possible rather than as soon as practical in all likely scenarios.

  15. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli

    NASA Technical Reports Server (NTRS)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    INTRODUCTION: Pulmonary altitude decompression sickness (DCS) is a rare condition. 'Chokes' which are characterized by the triad of substernal pain, cough, and dyspnea, are considered to be associated with severe accumulation of gas bubbles in the pulmonary capillaries and may rapidly develop into a life-threatening medical emergency. This study was aimed at characterizing early symptomatology and the appearance of venous gas emboli (VGE). METHODS: Symptoms of simulated-altitude DCS and VGE (with echo-imaging ultrasound) were analyzed in 468 subjects who participated in 22 high altitude hypobaric chamber research protocols from 1983 to 2001 at Brooks Air Force Base, TX. RESULTS: Of 2525 subject-exposures to simulated altitude, 1030 (41%) had symptoms of DCS. Only 29 of those included DCS-related pulmonary symptoms. Of these, only 3 subjects had all three pulmonary symptoms of chokes; 9 subjects had two of the pulmonary symptoms; and 17 subjects had only one. Of the 29 subject-exposures with pulmonary symptoms, 27 had VGE and 21 had severe VGE. The mean onset times of VGE and symptoms in the 29 subject-exposures were 42 +/- 30 min and 109 +/- 61 min, respectively. In 15 subjects, the symptoms disappeared during recompression to ground level followed by 2 h of oxygen breathing. In the remaining 14 cases, the symptoms disappeared with immediate hyperbaric oxygen treatment. CONCLUSIONS: Pulmonary altitude DCS or chokes is confirmed to be a rare condition. Our data showed that when diagnosed early, recompression to ground level pressure and/or hyperbaric oxygen treatment was 100% successful in resolving the symptoms.

  16. The probability and severity of decompression sickness

    PubMed Central

    Hada, Ethan A.; Vann, Richard D.; Denoble, Petar J.

    2017-01-01

    Decompression sickness (DCS), which is caused by inert gas bubbles in tissues, is an injury of concern for scuba divers, compressed air workers, astronauts, and aviators. Case reports for 3322 air and N2-O2 dives, resulting in 190 DCS events, were retrospectively analyzed and the outcomes were scored as (1) serious neurological, (2) cardiopulmonary, (3) mild neurological, (4) pain, (5) lymphatic or skin, and (6) constitutional or nonspecific manifestations. Following standard U.S. Navy medical definitions, the data were grouped into mild—Type I (manifestations 4–6)–and serious–Type II (manifestations 1–3). Additionally, we considered an alternative grouping of mild–Type A (manifestations 3–6)–and serious–Type B (manifestations 1 and 2). The current U.S. Navy guidance allows for a 2% probability of mild DCS and a 0.1% probability of serious DCS. We developed a hierarchical trinomial (3-state) probabilistic DCS model that simultaneously predicts the probability of mild and serious DCS given a dive exposure. Both the Type I/II and Type A/B discriminations of mild and serious DCS resulted in a highly significant (p << 0.01) improvement in trinomial model fit over the binomial (2-state) model. With the Type I/II definition, we found that the predicted probability of ‘mild’ DCS resulted in a longer allowable bottom time for the same 2% limit. However, for the 0.1% serious DCS limit, we found a vastly decreased allowable bottom dive time for all dive depths. If the Type A/B scoring was assigned to outcome severity, the no decompression limits (NDL) for air dives were still controlled by the acceptable serious DCS risk limit rather than the acceptable mild DCS risk limit. However, in this case, longer NDL limits were allowed than with the Type I/II scoring. The trinomial model mild and serious probabilities agree reasonably well with the current air NDL only with the Type A/B scoring and when 0.2% risk of serious DCS is allowed. PMID:28296928

  17. [Fatty acid composition of the lipids in human blood plasma and erythrocyte membranes during simulation of extravehicular activities of cosmonauts].

    PubMed

    Skedina, M A; Katuntsev, V P; Buravkova, L B; Naĭdina, V P

    1998-01-01

    Dynamics of the lipoacidic content of total plasma lipids and erythtocyte membranes was studied in 32 experiments with ten apparently healthy male subjects aged 27 to 41 years who were exposed to repeated decompression from the normal ground down to 40-35 kPa. For two hours of exposure to lowered pressure the subjects were breathing pure oxygen in mask and performing incremental physical work mimicking loading of the upper extremities of cosmonauts doing extravehicular activities (EVA) at the energy cost of 3 kcal/min. Decompression sessions were repeated with intervals from 3 to 5 days. In seven experiments, the subjects developed symptoms of the decompression sickness (DCS). Penetration of gas bubbles (GB) into the pulmonary artery was registered in 27 cases (84.4%). In 24 cases maximal intensity of the US signals from GB reached 3 to 4 Spencer's points. No changes in the lipidoacidic content of blood plasma or erythrocyte membranes were determined following the first exposure to decompression. BY the onset of repeated decompression, total number of lipids in erythrocyte membranes decreased from 54.6 to 40.4 mg% in the group of subjects who had not displayed DCS symptoms (n = 5) and from 51.2 to 35.2 mg% (p < 0.05) in the group of subjects with DCS symptoms (n = 5). In the subjects with DCS, polyunsaturated linoleic acid (18:2) tended to decrease against the upward trend of saturated fatty acids (16:0, 18:0). In these subjects, arachidonic acid in erythrocyte membranes (20:4) decreased following each decompression exposure and significantly increased (p < 0.05) in-between. In both groups, blood plasma showed slight fluctuations in the lipoacidic contents. These data suggest that exposure to the variety of the EVA-simulating factors may entail quite distinct but reversible modifications in the lipid metabolism in blood and the structural/functional state of erythrocyte membranes. The most marked alterations were observed in the subjects with the DCS symptoms during high intensity of US signals from GB in the venous blood flow.

  18. Decompression to altitude: assumptions, experimental evidence, and future directions.

    PubMed

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  19. Prebreathe Protocol for Extravehicular Activity Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Ross, Jerry; Duncan, Michael

    2008-01-01

    In the performance of EVA by that National Aeronautics and Space Administration (NASA) astronauts, there exists a risk of DCS as the suit pressure is reduced to 4.3 pounds per square inch, absolute (psia) from the International Space Station (ISS) pressure of 14.7 psia. Several DCS-preventive procedures have been developed and implemented. Each of these procedures involve the use of oxygen (O2) prebreathe to effectively washout tissue nitrogen (N2).The management of the ISS Programs convened an expert independent peer review Team to conduct a review of the Decompression Sickness (DCS) risks associated with the Extra Vehicular Activity (EVA) Campout Prebreathe (PB) protocol for its consideration for use on future missions. The major findings and recommendations of the expert panel are: There is no direct experimental data to confirm the potential DCS risks of the Campout PB protocol. However, based on model data, statistical probability, physiology, and information derived from similar PB protocols, there is no compelling evidence to suggest that the Campout PB protocol is less safe than the other NASA approved PB protocols.

  20. Diving behavior and fishing performance: the case of lobster artisanal fishermen of the Yucatan coast, Mexico.

    PubMed

    Huchim-Lara, Oswaldo; Salas, Silvia; Chin, Walter; Montero, Jorge; Fraga, Julia

    2015-01-01

    An average of 209 cases of decompression sickness (DCS) have been reported every year among artisanal fishermen. divers of the Yucatan Peninsula, Mexico. DCS is a major problem among fishermen divers worldwide. This paper explores how diving behavior and fishing techniques among fishermen relate to the probability of experiencing DCS (Pdcs). Fieldwork was conducted in two communities during the 2012-2013 fishing season. Fishermen were classified into three groups (two per group) according to their fishing performance and followed during their journeys. Dive profiles were recorded using Sensus Ultra dive recorders (Reefet Inc.). Surveys were used to record fishing yields from cooperative and individual fishermen along with fishing techniques and dive behavior. 120 dives were recorded. Fishermen averaged three dives/day, with an average depth of 47 ± 2 feet of sea water (fsw) and an average total bottom time (TBT) of 95 ± 11 minutes. 24% of dives exceeded the 2008 U.S. Navy no-decompression limit. The average ascent rate was 20 fsw/minute, and 5% of those exceeded 40 fsw/minute. Inadequate decompression was observed in all fishermen. Fishermen are diving outside the safety limits of both military and recreational standards. Fishing techniques and dive behavior were important factors in Pdcs. Fishermen were reluctant to seek treatment, and symptoms were relieved with analgesics.

  1. Decompression tables for inside chamber attendants working at altitude.

    PubMed

    Bell, James; Thombs, Paul A; Davison, William J; Weaver, Lindell K

    2014-01-01

    Hyperbaric oxygen (HBO2) multiplace chamber inside attendants (IAs) are at risk for decompression sickness (DCS). Standard decompression tables are formulated for sea-level use, not for use at altitude. At Presbyterian/St. Luke's Medical Center (Denver, Colorado, 5,924 feet above sea level) and Intermountain Medical Center (Murray, Utah, 4,500 feet), the decompression obligation for IAs is managed with U.S. Navy Standard Air Tables corrected for altitude, Bühlmann Tables, and the Nobendem© calculator. IAs also breathe supplemental oxygen while compressed. Presbyterian/St. Luke's (0.83 atmospheres absolute/atm abs) uses gauge pressure, uncorrected for altitude, at 45 feet of sea water (fsw) (2.2 atm abs) for routine wound care HBO2 and 66 fsw (2.8 atm abs) for carbon monoxide/cyanide poisoning. Presbyterian/St. Luke's provides oxygen breathing for the IAs at 2.2 atm abs. At Intermountain (0.86 atm abs), HBO2 is provided at 2.0 atm abs for routine treatments and 3.0 atm abs for carbon monoxide poisoning. Intermountain IAs breathe intermittent 50% nitrogen/50% oxygen at 3.0 atm abs and 100% oxygen at 2.0 atm abs. The chamber profiles include a safety stop. From 1990-2013, Presbyterian/St. Luke's had 26,900 total IA exposures: 25,991 at 45 fsw (2.2 atm abs) and 646 at 66 fsw (2.8 atm abs); there have been four cases of IA DCS. From 2008-2013, Intermountain had 1,847 IA exposures: 1,832 at 2 atm abs and 15 at 3 atm abs, with one case of IA DCS. At both facilities, DCS incidents occurred soon after the chambers were placed into service. Based on these results, chamber inside attendant risk for DCS at increased altitude is low when the inside attendants breathe supplemental oxygen.

  2. Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles

    NASA Astrophysics Data System (ADS)

    Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.

    2014-12-01

    Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.

  3. Treatment of micro air bubbles in rat adipose tissue at 25 kPa altitude exposures with perfluorocarbon emulsions and nitric oxide.

    PubMed

    Randsøe, Thomas; Hyldegaard, O

    2014-01-01

    Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving. The effect is ascribed to an increased solubility and transport capacity of respiratory gases in the PFC emulsion and possibly enhanced nitrogen washout through NO-increased blood flow rate and/or the removal of endothelial micro bubble nuclei precursors. Previous reports have shown that metabolic gases (i.e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation of nitrogen, or in contrast (2) promote bubble growth and stabilization through an increased oxygen supply. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 4-500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 36 min to 25 kPa (~10,376 m above sea level) and bubbles studied for 210 min during continued oxygen breathing (FIO2 = 1). Rats were administered PFC, NO, or combined PFC and NO. In all groups, most bubbles grew transiently, followed by a stabilization phase. There were no differences in the overall bubble growth or decay between groups or when compared with previous data during oxygen breathing alone at 25 kPa. During extreme altitude exposures, the contribution of metabolic gases to bubble growth compromises the therapeutic effects of PFC and NO, but PFC and NO do not induce additional bubble growth.

  4. Aerobic exercise before diving reduces venous gas bubble formation in humans

    PubMed Central

    Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O

    2004-01-01

    We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001

  5. Decompression Sickness After Air Break in Prebreathe Described with a Survival Model

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Pilmanis, A. A.

    2010-01-01

    Data from Brooks City-Base show the decompression sickness (DCS) and venous gas emboli (VGE) consequences of air breaks in a resting 100% O2 prebreathe (PB) prior to a hypobaric exposure. METHODS: DCS and VGE survival times from 95 controls for a 60 min PB prior to 2-hr or 4-hr exposures to 4.37 psia are statistically compared to 3 break in PB conditions: a 10 min (n=40), 20 min (n=40), or 60 min break (n=32) 30 min into the PB followed by 30 min of PB. Ascent rate was 1,524 meters / min and all exposures included light exercise and 4 min of VGE monitoring of heart chambers at 16 min intervals. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where exponential N2 washin during air break was described with a 10 min half-time and washout during PB with a 60 min half-time. RESULTS: There was no difference in VGE or DCS survival times among 3 different air breaks, or when air breaks were compared to control VGE times. However, 10, 20, and 60 min air breaks had significantly earlier survival times compared to control DCS times, certainly early in the exposures. CONCLUSION: Air breaks of 10, 20, and 60 min after 30 min of a 60 min PB reduced DCS survival time. The survival model combined discrete comparisons into a global description mechanistically linked to asymmetrical N2 washin and washout kinetics based on inspired pN2. Our unvalidated regression is used to compute additional PB time needed to compensate for an air break in PB within the range of tested conditions.

  6. Central nervous system decompression sickness and venous gas emboli in hypobaric conditions.

    PubMed

    Balldin, Ulf I; Pilmanis, Andrew A; Webb, James T

    2004-11-01

    Altitude decompression sickness (DCS) that involves the central nervous system (CNS) is a rare but potentially serious condition. Identification of early symptoms and signs of this condition might improve treatment. We studied data from 26 protocols carried out in our laboratory over the period 1983-2003; all were designed to provoke DCS in a substantial proportion of subjects. The data set included 2843 cases. We classified subject-exposures that resulted in DCS as: 1) neurological DCS of peripheral and/or central origin (NEURO); 2) a subset of those that involved only the CNS (CNS); and 3) all other cases, i.e., DCS cases that did not have a neurological component (OTHER). For each case, echo imaging data were used to document whether venous gas emboli (VGE) were present, and their level was classified as: 1) any level, i.e., Grade 1 or higher (VGE-1); and 2) high level, Grade 4 (VGE-4). There were 1108 cases of altitude DCS in the database; 218 were classified as NEURO and 49 of those as CNS. VGE-1 were recorded in 83.8% of OTHER compared with 58.7% of NEURO and 55.1% of CNS (both p < 0.001 compared with OTHER). The corresponding values for VGE-4 were 48.8%, 37.0%, and 34.7% (p < 0.001, compared to OTHER). Hyperbaric oxygen (HBO) was used to treat about half of the CNS cases, while all other cases were treated with 2 h breathing 100% oxygen at ground level. Since only about half of the rare cases of hypobaric CNS DCS cases were accompanied by any level of VGE, echo imaging for bubbles may have limited application for use as a predictor of such cases.

  7. Monitoring cognitive function and need with the automated neuropsychological assessment metrics in Decompression Sickness (DCS) research

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Sammuel G.

    1993-01-01

    Hypobaric decompression sickness (DCS) research presents the medical monitor with the difficult task of assessing the onset and progression of DCS largely on the basis of subjective symptoms. Even with the introduction of precordial Doppler ultrasound techniques for the detection of venous gas emboli (VGE), correct prediction of DCS can be made only about 65 percent of the time according to data from the Armstrong Laboratory's (AL's) hypobaric DCS database. An AL research protocol concerned with exercise and its effects on denitrogenation efficiency includes implementation of a performance assessment test battery to evaluate cognitive functioning during a 4-h simulated 30,000 ft (9144 m) exposure. Information gained from such a test battery may assist the medical monitor in identifying early signs of DCS and subtle neurologic dysfunction related to cases of asymptomatic, but advanced, DCS. This presentation concerns the selection and integration of a test battery and the timely graphic display of subject test results for the principal investigator and medical monitor. A subset of the Automated Neuropsychological Assessment Metrics (ANAM) developed through the Office of Military Performance Assessment Technology (OMPAT) was selected. The ANAM software provides a library of simple tests designed for precise measurement of processing efficiency in a variety of cognitive domains. For our application and time constraints, two tests requiring high levels of cognitive processing and memory were chosen along with one test requiring fine psychomotor performance. Accuracy, speed, and processing throughout variables as well as RMS error were collected. An automated mood survey provided 'state' information on six scales including anger, happiness, fear, depression, activity, and fatigue. An integrated and interactive LOTUS 1-2-3 macro was developed to import and display past and present task performance and mood-change information.

  8. The effect of simulated weightlessness on hypobaric decompression sickness

    NASA Technical Reports Server (NTRS)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    BACKGROUND: A discrepancy exists between the incidence of ground-based decompression sickness (DCS) during simulated extravehicular activity (EVA) at hypobaric space suit pressure (20-40%) and crewmember reports during actual EVA (zero reports). This could be due to the effect of gravity during ground-based DCS studies. HYPOTHESIS: At EVA suit pressures of 29.6 kPa (4.3 psia), there is no difference in the incidence of hypobaric DCS between a control group and group exposed to simulated weightlessness (supine body position). METHODS: Male subjects were exposed to a hypobaric pressure of 29.6 kPa (4.3 psi) for up to 4 h. The control group (n = 26) pre-oxygenated for 60 min (first 10 min exercising) before hypobaric exposure and walking around in the altitude chamber. The test group (n = 39) remained supine for a 3 h prior to and during the 60-min pre-oxygenation (also including exercise) and at hypobaric pressure. DCS symptoms and venous gas emboli (VGE) at hypobaric pressure were registered. RESULTS: DCS occurred in 42% in the control and in 44% in simulated weightlessness group (n.s.). The mean time for DCS to develop was 112 min (SD +/- 61) and 123 min (+/- 67), respectively. VGE occurred in 81% of the control group subjects and in 51% of the simulated weightlessness subjects (p = 0.02), while severe VGE occurred in 58% and 33%, respectively (p = 0.08). VGE started after 113 min (+/- 43) in the control and after 76 min (+/- 64) in the simulated weightlessness group. CONCLUSIONS: No difference in incidence of DCS was shown between control and simulated weightlessness conditions. VGE occurred more frequently during the control condition with bubble-releasing arm and leg movements.

  9. Association of microparticles and neutrophil activation with decompression sickness.

    PubMed

    Thom, Stephen R; Bennett, Michael; Banham, Neil D; Chin, Walter; Blake, Denise F; Rosen, Anders; Pollock, Neal W; Madden, Dennis; Barak, Otto; Marroni, Alessandro; Balestra, Costantino; Germonpre, Peter; Pieri, Massimo; Cialoni, Danilo; Le, Phi-Nga Jeannie; Logue, Christopher; Lambert, David; Hardy, Kevin R; Sward, Douglas; Yang, Ming; Bhopale, Veena B; Dujic, Zeljko

    2015-09-01

    Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS. Copyright © 2015 the American Physiological Society.

  10. Enhancement of preoxygenation for decompression sickness protection: effect of exercise duration

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.; Fischer, Michele D.; Kannan, Nandini

    2002-01-01

    INTRODUCTION: Since strenuous exercise for 10 min during preoxygenation was shown to provide better protection from decompression sickness (DCS) incidence than resting preoxygenation, a logical question was: would a longer period of strenuous exercise improve protection even further? HYPOTHESIS: Increased strenuous exercise duration during preoxygenation increases DCS protection. METHODS: There were 60 subjects, 30 men and 30 women, who were exposed to 9,144 m (4.3 psia) for 4 h while performing mild, upper body exercise. Before the exposures, each subject performed three preoxygenation profiles on different days in balanced order: a 90-min resting preoxygenation control; a 240-min resting preoxygenation control; and a 90-min preoxygenation including exercise during the first 15 min. The subjects were monitored at altitude for venous gas emboli (VGE) with an echo-imaging system and observed for signs and symptoms of DCS. RESULTS: There were no significant differences in occurrence of DCS following any of the three preoxygenation procedures. Results were also comparable to an earlier report of 42% DCS with a 60-min preoxygenation including a 10-min exercise. There was no difference between VGE incidence in the comparison of protection offered by a 90-min preoxygenation with or without 13 min of strenuous exercise. The DCS incidence following a 240-min resting preoxygenation, 40%, was higher than observed during NASA studies and nearly identical with the earlier 42% DCS after a 60-min preoxygenation including exercise during the first 10 min. CONCLUSION: The protection offered by a 10 min exercise in a 60-min preoxygenation was not increased with extension of the preoxygenation exercise period to 15 min in a 90-min preoxygenation, indicating an upper time limit to the beneficial effects of strenuous exercise.

  11. Compatible atmospheres for a space suit, Space Station, and Shuttle based on physiological principles

    NASA Technical Reports Server (NTRS)

    Hills, B. A.

    1985-01-01

    Fundamental physiological principles have been invoked to design compatible environments for a space suit, Space Station and the spacecraft used to transport the astronauts from earth. These principles include the long-term memory of tissues for a bubble-provoking decompression, the intermittent nature of blood flow in the tight connective tissue(s) responsible for the bends whose incidence in aviators has been shown to be related to bubble volume by the Weibull distribution. In the overall design an astronaut breathing a mixture of 30 percent O2 in N2 for 4-5 h in a spacecraft at 11.9 psia can transfer to a Space Station filled with the same mix at 8.7 psia and, after a further 4-5 h, go EVA at any time without any oxygen prebreathing at any stage. The probable incidence of decompression sickness has been estimated as less than 0.5 percent using the present suit operating at 4.3 psia but the risk could be reduced to zero if the suit pressure were increased to 6.5 psia.

  12. Use of ultrasound in altitude decompression modeling

    NASA Technical Reports Server (NTRS)

    Olson, Robert M.; Pilmanis, Andrew A.

    1993-01-01

    A model that predicts the probability of developing decompression sickness (DCS) with various denitrogenation schedules is being developed by the Armstrong Laboratory, using human data from previous exposures. It was noted that refinements are needed to improve the accuracy and scope of the model. A commercially developed ultrasonic echo imaging system is being used in this model development. Using this technique, bubbles images from a subject at altitude can be seen in the gall bladder, hepatic veins, vena cava, and chambers of the heart. As judged by their motion and appearance in the vena cava, venous bubbles near the heart range in size from 30 to 300 M. The larger bubbles skim along the top, whereas the smaller ones appear as faint images near the bottom of the vessel. Images from growing bubbles in a model altitude chamber indicate that they grow rapidly, going from 20 to 100 M in 3 sec near 30,000 ft altitude. Information such as this is valuable in verifying those aspects of the DCS model dealing with bubble size, their growth rate, and their site of origin.

  13. Cardiovascular Pressures with Venous Gas Embolism and Decompression

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.

    1995-01-01

    Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.

  14. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  15. Summaries of Research 1984.

    DTIC Science & Technology

    1984-01-01

    JOURNAL OF BUNE AND JOINT SURGERY (AMJ 19d4 JAN;o(1):107-12 CASUALTY CARE M0095.PN.0Ol.,)dJ REPORT N0.18 ANTIBODIES BCNE AND BONES HLA ANTIGENS AD A145...7;304(LllB):177-d4 HYPERBARIC MEuICINE M0099.01C.OuO l kPURT NO.21 CENTRAL NERVOUS SYSTEM DISEASES DECOMPRESSION SICKNESS DOGS A AD A145 175 N14RI 84-0012...JOURNAL OF SUkGiLAL RESEARCH 1S84 MAY;36(51:.516-2i CASUALTY CARE M0U95.0O1.hU2 KLPUKT NJ.7 DOGS ESCHEkdCHIA CJLi i;AFECTIONS 16UPRUFEN INDOMETHACIN 1

  16. Health and Safety Benefits of Small Pressurized Suitport Rovers as EVA Surface Support Vehicles

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F. J.

    2008-01-01

    Pressurized safe-haven providing SPE protection and decompression sickness (DCS) treatment capabilities within 20 mins at all times. Up to 50% reduction in time spent in EVA suits (vs. Unpressurized Rovers) for equal or greater Boots-on-Surface EVA exploration time. Reduces suit-induced trauma and provides improved options for nutrition, hydration, and waste-management. Time spent inside SPR during long translations may be spent performing resistive and cardiovascular exercise. Multiple shorter EVAs versus single 8 hr EVAs increases DCS safety and decreases prebreathe requirements. SPRs also offer many potential operational, engineering and exploration benefits not addressed here.

  17. Patent foramen ovale: a new disease?

    PubMed

    Drighil, Abdenasser; El Mosalami, Hanane; Elbadaoui, Nadia; Chraibi, Said; Bennis, Ahmed

    2007-10-31

    Patent foramen ovale is a frequent remnant of the fetal circulation. Affecting approximately 25% of the adult population. Its recognition, evaluation and treatment has attracted increasing interest as the importance and frequency of its implication in several pathologic processes, including ischemic stroke secondary to paradoxic embolism, the platypnea-orthodeoxia syndrome, decompression sickness (DCS) (an occupational hazard for underwater divers and high altitude aviators and astronauts) and migraine headache, has become better understood. Echocardiographic techniques have emerged as the principle means for diagnosis and assessment of PFO, in particular contrast echocardiography and transcranial Doppler. Its treatment remains controversial with a general tendency to propose a percutaneous closure among the symptomatic patients.

  18. Modeling Oxygen Prebreathe Protocols for Exploration Extravehicular Activities Using Variable Pressure Suits

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Conkin, Johnny; Gernhardt, Michael L.

    2017-01-01

    Exploration missions are expected to use variable pressure extravehicular activity (EVA) spacesuits as well as a spacecraft "exploration atmosphere" of 56.5 kPa (8.2 psia), 34% O2, both of which provide the possibility of reducing the oxygen prebreathe times necessary to reduce decompression sickness (DCS) risk. Previous modeling work predicted 8.4% DCS risk for an EVA beginning at the exploration atmosphere, followed by 15 minutes of in-suit O2 prebreathe, and 6 hours of EVA at 29.6 kPa (4.3 psia). In this study we model notional prebreathe protocols for a variable pressure suit where the exploration atmosphere is unavailable.

  19. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  20. Shallow Water Diving - The NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel; Kelsey-Seybold

    2010-01-01

    This slide presentation reviews some of the problems and solutions that personnel have experienced during sessions in the Neutral Bu0yancy Lab (NBL). It reviews the standard dive that occurs at the NBL, Boyles and Henry's laws as they relate to the effects of diving. It then reviews in depth some of the major adverse physiologic events that happen during a diving session: Ear and Sinus Barotrauma, Decompression Sickness, (DCS), Pulmonary Barotrauma (i.e., Arterial Gas Embolism (AGE). Mediastinal Emphysema, Subcutaneous Emphysema, and Pneumothorax) Oxygen Toxicity and Hypothermia. It includes information about the pulmonary function in NBL divers. Also included is recommendations about flying after diving.

  1. Portable Sensor for Detecting Microbubbles in Real Time to Prevent Decompression Sickness for Safe Diving During Subaquatic Navy Activities

    DTIC Science & Technology

    2015-03-17

    different manner as to what it was  originally proposed. The  hyaluronic   acid  was degassed prior to filling and bubbles were  introduced in a controlled...in the PZT when the PZT is actuated when the bubble crosses the PZT center. Some experiments were conducted with water, others with hyaluronic acid ...at 0.66% and with hyaluronic acid at 1.05%. Also, 38 of these experiments also monitored the signal of 3 pill microphones. 25 additional experiments

  2. Case Descriptions and Observations About Cutis Marmorata From Hypobaric Decompressions

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    There is disagreement about the pathophysiology, classification, and treatment of cutis marmorata (CM), so there is disagreement about the disposition and medical status of a person that had CM. CM is rare, associated with stressful decompressions, and may be associated with serious signs and symptoms of decompression sickness (DCS). CM presents as purple or bluish-red skin mottling, often in the pectoral region, shoulders, chest, or upper abdomen. It is unethical to induce CM in humans so all information comes from retrospective analysis of case reports, or from animal models. A literature search, seven recent case reports from the Johnson Space Center and Brooks Air Force Base Hypobaric DCS Databases, interviews with DCS treatment experts, and responses to surveys provided the factual information used to arrive at our conclusions and recommendations. The "weight of evidence" indicates that CM is a local, not centrally mediated or systemic response to bubbles. It is unclear whether obstruction of arterial or venous blood flow is the primary insult since the lesion is reported under either condition. Any neurological or cardiovascular involvements are coincidental, developing along the same time course. The skin could be the source of the bubbles due to its mass, the associated layer of fat, and the variable nature of skin blood flow. CM should not be categorized as Type II DCS, should be included with other skin manifestations in a category called cutaneous DCS, and hyperbaric treatment is only needed if ground level oxygen is ineffective in the case of altitude-induced CM.

  3. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal stenosis, the use of PM and DTI techniques reduces decompression levels and increases safety and benefits of surgery.

  4. Evidence-Based Approach to the Analysis of Serious Decompression Sickness with Application to EVA Astronauts

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2001-01-01

    It is important to understand the risk of serious hypobaric decompression sickness (DCS) in order to develop procedures and treatment responses to mitigate the risk. Since it is not ethical to conduct prospective tests about serious DCS with humans, the necessary information was gathered from 73 published reports. We hypothesize that a 4-hr 100% oxygen (O2) prebreathe results in a very low risk of serious DCS, and test this through analysis. We evaluated 258 tests containing information from 79,366 exposures in attitude chambers. Serious DCS was documented in 918 men during the tests. Serious DCS are signs and symptoms broadly classified as Type II DCS. A risk function analysis with maximum likelihood optimization was performed to identify significant explanatory variables, and to create a predictive model for the probability of serious DCS [P(serious DCS)]. Useful variables were Tissue Ratio, the planned time spent at altitude (T(sub alt)), and whether or not repetitive exercise was performed at altitude. Tissue Ratio is P1N2/P2, where P1N2 is calculated nitrogen (N2) pressure in a compartment with a 180-min half-time for N2 pressure just before ascent, and P2 is ambient pressure after ascent. A prebreathe and decompression profile Shuttle astronauts use for extravehicular activity (EVA) includes a 4-hr prebreathe with 100% O2, an ascent to P2 = 4.3 lb per sq. in. absolute, and a T(sub alt) = 6 hr. The P(serious DCS) is: 0.0014 (0.00096 - 0.00196, 95% confidence interval) with exercise and 0.00025 (0.00016 - 0.00035) without exercise. Given 100 Shuttle EVAs to date and no report of serious DCS, the true risk is less than 0.03 with 95% confidence (Binomial Theorem). It is problematic to estimate the risk of serious DCS since it appears infrequently, even if the estimate is based on thousands of altitude chamber exposures. The true risk to astronauts may lie between the extremes of the confidence intervals (0.00016 - 0.00196) since the contribution of other factors, particularly exercise, to the risk of serious DCS during EVA is unknown. A simple model that only accounts for four important variables in retrospective data is still helpful to increase our understanding about the risk of serious DCS.

  5. Autogenic-Feedback Training (AFT) as a preventive method for space motion sickness: Background and experimental design

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.

    1993-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. The background research is reviewed and the experimental design of a formal life sciences shuttle flight experiment designed to prevent space motion sickness in shuttle crew members is presented. This experiment utilizes a behavioral medicine approach to solving this problem. This method, Autogenic-Feedback Training (AFT), involves training subjects to voluntarily control several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during ground-based tests in over 200 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Proposed changes to this experiment for future manifests are included.

  6. [New approaches in neurosurgery and hyperbaric medicine--the importance of preventive and industrial medicine].

    PubMed

    Kohshi, K; Munaka, M; Abe, H; Tosaki, T

    1999-12-01

    Neurosurgical patients have been mainly treated by surgical procedures over the past decades. In addition, hyperbaric oxygen (HBO) therapy in neurosurgery has been used in patients with ischemic cerebrovascular diseases, head trauma, spinal damage, postoperative brain edema and others. However, the main therapeutic methods for neurosurgical diseases have changed dramatically due to developments in radiological techniques, such as radiosurgery and intravascular surgery. With changes in therapeutic methods, HBO therapy may become a very important treatment option for neurosurgical patients. For example, HBO therapy combined with radiotherapy (UOEH regimen) and anticoagulant therapy appear to be very effective in the treatments of malignant brain tumors and ischemic cerebrovascular diseases, respectively. On the other hand, medical examinations under hyper- and hypobaric environments have not yet been fully studied in the central nervous system compared to those in the cardiopulmonary systems. Moreover, the mechanisms of cerebral lesions in decompression sickness and acute mountain sickness remain unclear. Clinical neurologic approaches are very important in these fields. Hence, clinicians and researchers skilled in both neurosurgery and hyperbaric medicine will be required for advanced treatment and preventive and industrial medicine.

  7. Age affects severity of venous gas emboli on decompression from 14.7 to 4.3 psia

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Powell, Michael R.; Gernhardt, Michael L.

    2003-01-01

    INTRODUCTION: Variables that define who we are, such as age, weight and fitness level influence the risk of decompression sickness (DCS) and venous gas emboli (VGE) from diving and aviation decompressions. We focus on age since astronauts that perform space walks are approximately 10 yr older than our test subjects. Our null hypothesis is that age is not statistically associated with the VGE outcomes from decompression to 4.3 psia. METHODS: Our data are from 7 different NASA tests where 188 men and 50 women performed light exercise at 4.3 psia for planned exposures no less than 4 h. Prebreathe (PB) time on 100% oxygen ranged from 150-270 min, including ascent time, with exercise of different intensity and length being performed during the PB in four of the seven tests with 150 min of PB. Subjects were monitored for VGE in the pulmonary artery using a Doppler ultrasound bubble detector for a 4-min period every 12 min. There were six design variables; the presence or absence of lower body adynamia and five PB variables; plus five concomitant variables on physical characteristics: age, weight height, body mass index, and gender that were available for logistic regression (LR). We used LR models for the probability of DCS and VGE, and multinomial logit (ML) models for the probability of Spencer VGE Grades 0-IV at exposure times of 61, 95, 131, 183 min, and for the entire exposure. RESULTS: Age was significantly associated with VGE in both the LR and ML models, so we reject the null hypothesis. Lower body adynamia was significant for all responses. CONCLUSIONS: Our selection of tests produced a wide range of the explanatory variables, but only age, lower body adynamia, height, and total PB time was helpful in various combinations to model the probability of DCS and VGE.

  8. Hyperbaric oxygen treatment for air or gas embolism.

    PubMed

    Moon, R E

    2014-01-01

    Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.

  9. Compressed Air Working in Chennai During Metro Tunnel Construction: Occupational Health Problems.

    PubMed

    Kulkarni, Ajit C

    2017-01-01

    Chennai metropolis has been growing rapidly. Need was felt of a metro rail system. Two corridors were planned. Corridor 1, of 23 km starting from Washermanpet to Airport. 14.3 km of this would be underground. Corridor 2, of 22 km starting from Chennai Central Railway station to St. Thomas Mount. 9.7 km of this would be underground. Occupational health centre's role involved selection of miners and assessing their fitness to work under compressed air. Planning and execution of compression and decompression, health monitoring and treatment of compression related illnesses. More than thirty five thousand man hours of work was carried out under compressed air pressure ranged from 1.2 to 1.9 bar absolute. There were only three cases of pain only ( Type I) decompression sickness which were treated with recompression. Vigilant medical supervision, experienced lock operators and reduced working hours under pressure because of inclement environmental conditions viz. high temperature and humidity, has helped achieve this low incident. Tunnelling activity will increase in India as more cities will soon opt for underground metro railway. Indian standard IS 4138 - 1977 " Safety code for working in compressed air" needs to be updated urgently keeping pace with modern working methods.

  10. Neurology of microgravity and space travel

    NASA Technical Reports Server (NTRS)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  11. THE COURSE OF EXPERIMENTAL HEMOTHORAX IN RADIATION SICKNESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.C.

    1957-05-01

    Experimental hemothorax induced by injecting 10 to 12 ml of autogenous blood into the pleural cavity of healthy rabbits was borne well without any marked general reaction. Rabbits irradiated with 600 r were more affected by experimental hemothorax. Instead of absorption, exudation accumulated in the pleural cavity. In rabbits irradiated with 600 r, experimental hemothorax markediy shortened the latent period of radiation sickness and hastened its climax. (C.H.)

  12. Effect of hypobaric air, oxygen, heliox (50:50), or heliox (80:20) breathing on air bubbles in adipose tissue.

    PubMed

    Hyldegaard, O; Madsen, J

    2007-09-01

    The fate of bubbles formed in tissues during decompression to altitude after diving or due to accidental loss of cabin pressure during flight has only been indirectly inferred from theoretical modeling and clinical observations with noninvasive bubble-measuring techniques of intravascular bubbles. In this report we visually followed the in vivo resolution of micro-air bubbles injected into adipose tissue of anesthetized rats decompressed from 101.3 kPa to and held at 71 kPa corresponding to approximately 2.750 m above sea level, while the rats breathed air, oxygen, heliox (50:50), or heliox (80:20). During air breathing, bubbles initially grew for 30-80 min, after which they remained stable or began to shrink slowly. Oxygen breathing caused an initial growth of all bubbles for 15-85 min, after which they shrank until they disappeared from view. Bubble growth was significantly greater during breathing of oxygen compared with air and heliox breathing mixtures. During heliox (50:50) breathing, bubbles initially grew for 5-30 min, from which point they shrank until they disappeared from view. After a shift to heliox (80:20) breathing, some bubbles grew slightly for 20-30 min, then shrank until they disappeared from view. Bubble disappearance was significantly faster during breathing of oxygen and heliox mixtures compared with air. In conclusion, the present results show that oxygen breathing at 71 kPa promotes bubble growth in lipid tissue, and it is possible that breathing of heliox may be beneficial in treating decompression sickness during flight.

  13. Relationship of the time course of venous gas bubbles to altitude decompression illness

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Foster, P. P.; Powell, M. R.; Waligora, J. M.

    1996-01-01

    The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.

  14. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number densities of CD samples with low nominal decompression rates are several orders of magnitude lower than for SD experiments and the bubble diameters are larger. The reproducibility of MSD experiments with low nominal decompression rates is worse than for CD runs. Commonly used SD techniques are therefore not suitable to simulate melt degassing during continuous magma ascent with low ascent rates.

  15. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  16. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  17. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  18. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  19. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  20. Core decompression of the equine navicular bone: an in vivo study in healthy horses.

    PubMed

    Jenner, Florien; Kirker-Head, Carl

    2011-02-01

    To determine the physiologic response of the equine navicular bone to core decompression surgery in healthy horses. Experimental in vivo study. Healthy adult horses (n=6). Core decompression was completed by creating three 2.5-mm-diameter drill channels into the navicular bone under arthroscopic control. The venous (P(V)), arterial (P(A)), articular (P(DIPJ)), and intraosseous pressures (IOP) were recorded before and after decompression drilling. Each IOP measurement consisted of a baseline (IOP(B)) and a stress test (intramedullary injection of saline solution, IOP(S)) recording. Lameness was assessed subjectively and using force plate gait analysis. Fluorochrome bone labeling was performed. Horses were euthanatized at 12 weeks. Navicular bone mineral density (BMD) was measured, and bone histology evaluated. Peak IOP (IOP(max)) after stress testing was significantly (P<.05) reduced immediately after core decompression; however, the magnitude of these effects was decreased at 3 and 6 weeks after decompression. A significant (P<.05) correlation existed between IOP(max) and BMD. No lameness was observed beyond the first week after surgery. Substantial remodeling and neovascularization was evident adjacent the surgery sites. Navicular bone core decompression surgery reduced IOP(max), and, with the exception of a mild short-lived lameness, caused no other adverse effects in healthy horses during the 12-week study period. © Copyright 2011 by The American College of Veterinary Surgeons.

  1. The effect of repeated altitude exposures on the incidence of decompression sickness

    NASA Technical Reports Server (NTRS)

    Pilmanis, Andrew A.; Webb, James T.; Kannan, Nandini; Balldin, Ulf

    2002-01-01

    INTRODUCTION: Repeated altitude exposures in a single day occur during special operations parachute training, hypobaric chamber training, unpressurized flight, and extravehicular space activity. Inconsistent and contradictory information exists regarding the risk of decompression sickness (DCS) during such hypobaric exposures. HYPOTHESIS: We hypothesized that four short exposures to altitude with and without ground intervals would result in a lower incidence of DCS than a single exposure of equal duration. METHODS: The 32 subjects were exposed to 3 different hypobaric exposures--condition A: 2 h continuous exposure (control); condition B: four 30-min exposures with descent/ascent but no ground interval between the exposures; condition C: four 30-min exposures with descent/ascent and 60 min of ground interval breathing air between exposures. All exposures were to 25,000 ft with 100% oxygen breathing. Subjects were observed for symptoms of DCS, and precordial monitoring of venous gas emboli (VGE) was accomplished with a SONOS 1000 echo-imaging system. RESULTS: DCS occurred in 19 subjects during A (mean onset 70+/-29 min), 7 subjects in B (60+/-34 min), and 2 subjects in C (40+/-18 min). There was a significant difference in DCS incidence between B and A (p = 0.0015) and C and A (p = 0.0002), but no significant difference between B and C. There were 28 cases of VGE in A (mean onset 30+/-23 min), 21 in B (41+/-35 min), and 21 in C (41+/-32 min) with a significant onset curve difference between B and A and between C and A, but not between B and C. Exposure A resulted in four cases of serious respiratory/neurological symptoms, while B had one and C had none. All symptoms resolved during recompression to ground level. CONCLUSION: Data indicate that repeated simulated altitude exposures to 25,000 ft significantly reduce DCS and VGE incidence compared with a single continuous altitude exposure.

  2. The Decompression Sickness and Venous Gas Emboli Consequences of Air Breaks During 100% Oxygen Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Gernhardt, M. L.; Powell, M. R.

    2004-01-01

    Not enough is known about the increased risk of hypobaric decompression sickness (DCS) and production of venous (VGE) and arterial (AGE) gas emboli following an air break in an otherwise normal 100% resting oxygen (O2) prebreathe (PB), and certainly a break in PB when exercise is used to accelerate nitrogen (N2) elimination from the tissues. Current Aeromedical Flight Rules at the Johnson Space Center about additional PB payback times are untested, possibly too conservative, and therefore not optimized for operational use. A 10 min air break at 90 min into a 120 min PB that includes initial dual-cycle ergometry for 10 min will show a measurable increase in the risk of DCS and VGE after ascent to 4.3 psia compared to a 10 min break at 15 min into the PB, or when there is no break in PB. Data collection with humans begins in 2005, but here we first evaluate the hypothesis using three models of tissue N2 kinetics: Model I is a simple single half-time compartment exponential model, Model II is a three compartment half-time exponential model, and Model III is a variable half-time compartment model where the percentage of maximum O2 consumption for the subject during dual-cycle ergometry exercise defines the half-time compartment. Model I with large rate constants to simulate an exercise effect always showed a late break in PB had the greatest consequence. Model II showed an early break had the greatest consequence. Model III showed there was no difference between early or late break in exercise PB. Only one of these outcomes will be observed when humans are tested. Our results will favor one of these models, and so advance our understanding of tissue N2 kinetics, and of altitude DCS after an air break in PB.

  3. Spacelab experiments on space motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1987-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  4. Spacelab experiments on space motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1985-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurement of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which 4 observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  5. Spacelab experiments on space motion sickness.

    PubMed

    Oman, C M

    1987-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  6. Experimental and computational studies on the femoral fracture risk for advanced core decompression.

    PubMed

    Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S

    2014-04-01

    Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ambulation Increases Decompression Sickness in Spacewalk Simulations

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS. METHODS Four experiments will replicate the CEVIS exercise-enhanced oxygen prebreathe protocol, each with a different exception. The first of these is currently underway. Experiment 1 - Subjects complete controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining nonambulatory throughout. Experiment 2 - Subjects remain non-ambulatory during the preflight period and ambulatory at 4.3 psi. Experiment 3 - Subjects ambulate during the preflight period and remain non-ambulatory at 4.3 psi. Experiment 4 - The order of heavy and light exercise employed in the CEVIS protocol is reversed, with the light exercise occurring first (subjects remain non-ambulatory throughout). Decompression stress is assessed with non-invasive ultrasound during each of 14 epochs of a 4 hour simulated spacewalk at 4.3 psi; aural Doppler is used to monitor bubbles (Spencer grade 0-IV scale) passing through the pulmonary artery, and two-dimensional echocardiographic imaging is used to look for left ventricular gas emboli (LVGE; the presence of which is a test termination criterion). Venous blood is collected at baseline and twice following repressurization to determine if the decompression stress is correlated with microparticles (cell fragments) accumulation. The plan is to test 25-50 subjects in each experiment. Fisher Exact Tests (one-tailed) are used to compare test and control groups. Trials are suspended when the DCS or grade IV VGE observations reach 70% confidence of DCS risk >15% and grade IV VGE risk >20%. RESULTS Experiment 1 was concluded with 20 complete trials (15 male, 5 female) since the statistical outcome would not change with five additional trials. The observed DCS was significantly greater in Experiment 1 than in CEVIS trials (4/20 [20%] vs. 0/45 [0%], respectively, p=0.007), as was the frequency of peak grade IV VGE (6/21 [29%; including one additional subject that presented grade IV VGE but whose trial was ended before completion when LVGE were observed] vs. 3/45 [7%], respectively, p=0.024). Experiment 3 trials are now underway, with 11 trials completed (10 male, 1 female). Preliminary results indicate no difference in observed DCS between Experiment 3 and CEVIS trials (1/11 [9%] vs. 0/45 [0%], respectively, p=0.196), or between Experiment 3 and Experiment 1 trials (p=0.405). The frequency of peak grade IV VGE in Experiment 3 (2/11 [18%]) did not differ from CEVIS or Experiment 1 trials (p=0.251 and p=0.425, respectively). Microparticle patterns are widely variable and still under analysis. DISCUSSION The results of the Experiment 1 trials support the thesis that decompression stress is increased by ambulation exercise, given the higher incidence of DCS and grade IV VGE when compared to the non-ambulatory PRP CEVIS trials. Experiment 3 trials are incomplete, but suggest that the effect of ambulation during ground level preflight oxygen breathing alone, when subjects are undersaturated with inert gas, may not differ in risk from ambulation at both preflight and spacesuit pressures, the latter when subjects are supersaturated with inert gas. Further trials are needed to confirm the relative effects of ambulation in undersaturated vs. supersaturated states and to determine whether light exercise facilitates the removal of heavy exercise-induced nucleation (Experiment 4).

  8. Preconditioning to Reduce Decompression Stress in Scuba Divers.

    PubMed

    Germonpré, Peter; Balestra, Costantino

    2017-02-01

    Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.

  9. Role of the vestibular end organs in experimental motion sickness - A primate model

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto

    1990-01-01

    Experimental studies of the role of vestibular end organs in motion sickness experienced by squirrel monkeys are reviewed. The first experiments in motion-sickness-susceptible squirrel monkeys were performed under a free-moving condition with horizontal rotation and vertical oscillation. In the following experiments, the vestibular-visual conflict in the pitch plane was given to the chair-restrained (upright position) squirrel monkeys. Results of this study showed that the existence of otolith afferents, which continually signal the directional change of gravity and linear acceleration vectors, was necessary for the elicitation of emesis by the sensory conflict in pitch.

  10. Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.

    PubMed

    Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda

    2016-01-01

    The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.

  11. Compressed Air Working in Chennai During Metro Tunnel Construction: Occupational Health Problems

    PubMed Central

    Kulkarni, Ajit C.

    2017-01-01

    Chennai metropolis has been growing rapidly. Need was felt of a metro rail system. Two corridors were planned. Corridor 1, of 23 km starting from Washermanpet to Airport. 14.3 km of this would be underground. Corridor 2, of 22 km starting from Chennai Central Railway station to St. Thomas Mount. 9.7 km of this would be underground. Occupational health centre's role involved selection of miners and assessing their fitness to work under compressed air. Planning and execution of compression and decompression, health monitoring and treatment of compression related illnesses. More than thirty five thousand man hours of work was carried out under compressed air pressure ranged from 1.2 to 1.9 bar absolute. There were only three cases of pain only ( Type I) decompression sickness which were treated with recompression. Vigilant medical supervision, experienced lock operators and reduced working hours under pressure because of inclement environmental conditions viz. high temperature and humidity, has helped achieve this low incident. Tunnelling activity will increase in India as more cities will soon opt for underground metro railway. Indian standard IS 4138 – 1977 ” Safety code for working in compressed air” needs to be updated urgently keeping pace with modern working methods. PMID:29618908

  12. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    PubMed Central

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  13. Anti-motion-sickness therapy. [amphetamine preparation effects in human acceleration tolerance

    NASA Technical Reports Server (NTRS)

    Wood, C. D.

    1973-01-01

    Neither alterations in environmental temperature nor moderate intake of alcohol was found to alter susceptibility to motion sickness in subjects exposed to rotation in the Pensacola slow rotation room. Scopolamine with d-amphetamine was found to be the most effective preparation for the prevention of motion sickness under the experimental conditions of the studies reported here. Promethazine in combination with d-amphetamine was in the same range of effectiveness. Drug actions suggest that acetylcholine and norepinephrine may be involved in motion sickness.

  14. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    PubMed

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  15. Decryption-decompression of AES protected ZIP files on GPUs

    NASA Astrophysics Data System (ADS)

    Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc

    2011-10-01

    AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.

  16. Isosorbide-Induced Decompression Effect on the Scala Media: Participation of Plasma Osmolality and Plasma Arginine Vasopressin.

    PubMed

    Takeda, Taizo; Takeda, Setsuko; Uehara, Natsumi; Yanagisawa, Shungaku; Furukawa, Tatsuya; Nibu, Ken-Ichi; Kakigi, Akinobu

    2017-04-01

    The correlation between the isosorbide-induced decompression effect on the endolymphatic space and plasma osmolality (p-OSM) or plasma arginine vasopressin (p-AVP) was investigated on comparing two different dosages of isosorbide (2.8 and 1.4 g/kg) to elucidate why the decompression effect is delayed with a large dose of isosorbide. Two experiments were performed using 80 guinea pigs. Experiment 1 was designed to morphologically investigate the sequential influence of the oral intake of 1.4- and 2.8-g/kg doses of isosorbide on the endolymphatic volume. The animals used were 50 guinea pigs (control: 10, experimental: 40). All animals underwent surgical obliteration of the endolymphatic sac of the left ear. One month after the surgery, control animals were sacrificed 3 hours after the intake of distilled water, and experimental animals were sacrificed 3 and 6 hours after the isosorbide intake. All of the left temporal bone served for the quantitative assessment of changes in the endolymphatic space, and the cross-sectional area of the scala media was measured from the mid-modiolar sections of the cochlea.Experiment 2 was designed to investigate changes in p-OSM and p-AVP levels 3 hours after the oral intake of isosorbide. Animals used were 15 guinea pigs (control: 5, experimental: 10). The control group received the oral administration of distilled water (4 ml/kg), and the experimental animals were subdivided into two groups consisting of 10 animals each by the dosage of isosorbide (1.4 or 2.8 g/kg). All animals were sacrificed for the measurement of p-OSM and p-AVP concentrations 3 hours after the intake of water or 70% isosorbide solution. Morphologically, an isosorbide-induced decompression effect was noted in animals with both 1.4- and 2.8-g/kg doses of isosorbide. According to the regression analysis, however, the volumetric decrease of the endolymphatic space was more evident in cases with the small dose (1.4 g/kg) 3 hours after the intake (analysis of covariance [ANCOVA], p < 0.001). Six hours after, the decompression effect was significantly greater in cases with the large dose (2.8 g/kg) (ANCOVA, p < 0.001).Isosorbide intake caused a rise in p-OSM levels dose-dependently. The Cochran-Cox test revealed that the differences in the mean values among control and isosorbide groups were significant (p < 0.01). Regarding the p-AVP level, a significant increase was evident in cases with the large dose (2.8 g/kg) (p < 0.01, Cochran-Cox test), and not in cases with the small dose (1.4 g/kg). An isosorbide-induced decompression effect of the endolymphatic space was evident in spite of two different dosages of isosorbide (2.8 and 1.4 g/kg). Three hours after the isosorbide intake, however, the decompression effect was more marked in the group with the small dose (1.4 g/kg). Since significant rises in p-OSM and p-AVP were evident in the group with the large dose, this early rise of p-AVP due to dehydration seems to be the major reason for the delayed decompression effect in cases with a large isosorbide intake.

  17. Gender Consideration in Experiment Design for Air Break in Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Dervay, Joseph P.; Gernhardt, Michael L.

    2007-01-01

    If gender is a confounder of the decompression sickness (DCS) or venous gas emboli (VGE) outcomes of a proposed air break in oxygen prebreathe (PB) project, then decisions about the final experiment design must be made. We evaluated if the incidence of DCS and VGE from tests in altitude chambers over 20 years were different between men and women after resting and exercise PB protocols. Nitrogen washout during PB is our primary risk mitigation strategy to prevent subsequent DCS and VGE in subjects. Bubbles in the pulmonary artery (venous blood) were detected from the precordial position using Doppler ultrasound bubble detectors. The subjects were monitored for VGE for four min at about 15 min intervals for the duration of the altitude exposure, with maximum bubble grade assigned a Spencer Grade of IV.

  18. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior.

  19. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1980-01-01

    The etiology of motion sickness is explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviors.

  20. CONNECTION BETWEEN THE INCREASED FIBRINOGEN CONCENTRATION IN DOGS WITH RADIATION SICKNESS AND THE FIBRINOGENASE ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordeeva, K.V.

    1963-11-01

    A study was made of the concentration of blood plasma fibrinogen in relation to the changes of fibrinogenase activity. Dogs with radiation sickness (severe, moderately severe, and mild) served as experimental animals. A rise of the blood plasma fibrinogen content was observed in dogs with severe and moderately severe radiation sickness. This phenomenon is especially pronounced at the height of radiation sickness. The activity of fibrinogenase in severe radiation sickness was considerably decreased at the initial period and at the height of the disease. The rise of fibrinogen content in severe and moderately severe radiation sickness should be regarded asmore » an adaptive reaction directed to control hemorrhages, not as the sequence of raduced fibrinogenase activity. (auth)« less

  1. Crystallisation regimes and kinetics in experimentally decompressed dacitic magma

    NASA Astrophysics Data System (ADS)

    Blum-Oeste, N.; Schmidt, B. C.; Webb, S. L.

    2011-12-01

    Kinetic processes during magma ascent may have a strong influence on the eruption style. In water bearing dacitic magmas decompression induced exsolution of water and accompanying crystallisation of plagioclase are the main processes which drive the system towards a new equilibrium state. We present new data on the evolution of residual glass composition and crystal size distributions of plagioclase from decompression experiments. Experiments have been conducted in cold seal pressure vessels at 850°C on a natural dacite composition from Taapaca volcano (N. Chile). After an initial equilibration at 2kbar decompression rates between 6.3 and 450bar/h were applied to final pressures between 50 and 1550bar where samples were rapidly quenched. Complementary equilibrium experiments were done at corresponding pressures. The glass composition evolves from the initial state towards the equilibrium at the final pressure. The completeness of this re-equilibration depends on run duration and reaction rates. We introduce the "re-equilibration index" (REI), a fraction between 0 (initial state) and 1 (final state) which allows comparison of chemical components in terms of re-equilibration at different decompression rates. REI divided by the decompression duration gives the "re-equilibration rate" (RER). The REI varies among oxides and it decreases with increasing decompression rate. The highest REIs of ~0.9 have been found for MgO, K2O and Al2O3 at 6.3bar/h whereas Na2O shows the lowest number with 0.25 at this decompression rate. Towards faster decompression all REIs tend to decrease which shows a decreasing completeness of re-equilibration. At 450bar/h the highest REIs are ~0.25. RERs increase from below ~0.005/h at 6.3bar/h up to almost 0.08/h for Al2O3 at 450bar/h. The variability of RERs of different oxides also increases with decompression rates. At 450bar/h the RERs reach from <0.005/h up to 0.08/h. Although RERs strongly increase from low to high decompression rates, this does not compensate for the decreasing duration available for re-equilibration as REIs clearly show. The volume fraction of plagioclase decreases from ~21% at 6.3bar/h to ~16% at 450bar/h which fits the decrease in REIs. The population density of small crystals decreases whereas the population density of larger crystals increases from slow to fast decompression. This reflects a transition from nucleation controlled crystallisation at slow decompression to a growth dominated regime at fast decompression. As RERs show re-equilibration is faster in the growth dominated regime. Although this transition in nucleation processes might be counter-intuitive it can be explained by the observation of slightly higher water concentrations at fast decompression rates resulting in higher liquidus temperatures and thus lower undercooling.

  2. An appraisal of the value of vitamin B 12 in the prevention of motion sickness

    NASA Astrophysics Data System (ADS)

    Kohl, Randall L.; Lacey, Carol L.; Homick, Jerry L.

    Unpublished reports have suggested that hydroxycobalamin (B 12, i.m.) prevents motion sickness. Some biomedical evidence supports this contention in that B 12 influences the metabolism of histidine and choline; dietary precursors to neurotransmitters with established roles in motion sickness. Susceptibility to motion sickness was evaluated after B 12 (1000 μg, i.m.). Subjects initially completed vestibular function and motion sickness susceptibility tests to establish normal vestibular function. The experimental motion stressor was a modified coriolis sickness susceptibility test. Subjects executed standardized head movements at successively higher RPM until a malaise III endpoint was reached. Following two baseline tests with this motion stressor, subjects received a B 12 injection, a second injection two weeks later, and a final motion sickness test three weeks later. No significant differences in susceptibility were noted after B 12. Hematological parameters revealed no B 12 deficiency before injection. The possibility that patients with B 12 deficiencies are more susceptible to motion sickness cannot be ruled out.

  3. Long-term effects of core decompression by drilling. Demonstration of bone healing and vessel ingrowth in an animal study.

    PubMed

    Simank, H G; Graf, J; Kerber, A; Wiedmaier, S

    1997-01-01

    Avascular necrosis of the femoral head is associated with bone marrow hyperpression. Although core decompression by drilling is an accepted treatment regimen, until today no experimental results exist concerning the physiological effects of this procedure. Published clinical data are controversial. In an animal study marrow decompression was carried out by drilling of both hips in 18 healthy male sheep. In the right hip of each animal a resorbable stent was implanted in order to prolong the duration of core decompression. Over a time period of 24 weeks the effects were studied by measurement of the intraosseous pressure, by the plastination method and by morphological examination with light and electron microscopy. Bone drilling is a procedure of high short-time efficacy in decompressing the bone marrow. But decompression lasts only for a short time period. Three weeks postoperatively the drill channel is sealed by hematoma and fibrous tissue in both hips (with/without stent) and no significant decompressive effect is measured. Ingrowth of vessels along the drill channel is found in all hips after a time period of 3 weeks. These vessels originate from the periosteum as well as from the bone marrow and form temporary anastomoses between the periostal-diaphyseal-metaphyseal and the epiphyseal-physeal circulatory system. In conclusion, for the first time an anastomosis induced by drilling between both circulatory systems of bone is demonstrated and the importance of the periosteum is confirmed. The time of decreased core pressure induced by drilling is too short for substitution of a necrotic area and could be the explanation of the inferior clinical results of the procedure.

  4. Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats.

    PubMed

    Hamasato, Eduardo Kenji; Lovelock, Dennis; Palermo-Neto, João; Deak, Terrence

    2017-12-01

    Acute illness not only reduces the expression of social behavior by sick rodents, but can also lead to avoidance responses when detected by healthy, would-be social partners. When healthy animals interact with a sick partner, an intriguing question arises: does exposure to a sick conspecific elicit an anticipatory immune response that would facilitate defense against future infection? To address this question, healthy adult male Sprague-Dawley rats (N=64) were given a brief social interaction (30min) with a partner that was either sick (250μg/kg injection with lipopolysaccharide [LPS] 3h prior to test) or healthy (sterile saline injection). During this exposure, social behavior directed toward the healthy or sick conspecific was measured. Additionally, the impact of housing condition was assessed, with rats group- or isolate-housed. Immediately after social interaction, brains were harvested for cytokine assessments within socially-relevant brain structures (olfactory bulb, amygdala, hippocampus and PVN). As expected, behavioral results demonstrated that (i) there was a robust suppression of social interaction directed against sick conspecifics; and (ii) isolate-housing generally increased social behavior. Furthermore, examination of central cytokine expression in healthy experimental subjects revealed a modest increase in TNF-α in rats that interacted with a sick social partner, but only in the olfactory bulb. Among the LPS-injected partners, expected increases in IL-1β, IL-6, and TNF-α expression were observed across all brain sites. Moreover, IL-1β and IL-6 expression was exacerbated in LPS-injected partners that interacted with isolate-housed experimental subjects. Together, these data replicate and extend our prior work showing that healthy rats avoid sick conspecifics, and provide preliminary evidence for an anticipatory cytokine response when rats are exposed to a sick partner. These data also provide new evidence to suggest that recent housing history potently modulates cytokine responses evoked by LPS. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An appraisal of the value of vitamin B12 in the prevention of motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Lacey, C. L.; Homick, J. L.

    1983-01-01

    It has been suggested that vitamin B12 given by intramuscular injection can significantly reduce the occurrence of motion sickness in susceptible individuals (Banks, 1980). Since it is known that B12 influences the metabolism of histidine and choline, dietary precursors to neurotransmitters with established roles in motion sickness, an experimental evaluation has been undertaken of the efficacy of B12 in the prevention of motion sickness induced by controlled coriolis simulation. Subjects executed standardized head movements at successively higher rpm until a malaise III endpoint was reached. Following two baseline tests with this motion stressor, subjects received a B12 injection, a second injection two weeks later, and a final motion sickness test three weeks later. No significant differences in the susceptibility to motion sickness were noted after B12.

  6. The relative risk of decompression sickness during and after air travel following diving.

    PubMed

    Freiberger, J J; Denoble, P J; Pieper, C F; Uguccioni, D M; Pollock, N W; Vann, R D

    2002-10-01

    Decompression sickness (DCS) can be provoked by post-dive flying but few data exist to quantify the risk of different post-dive, preflight surface intervals (PFSI). We conducted a case-control study using field data from the Divers Alert Network to evaluate the relative risk of DCS from flying after diving. The PFSI and the maximum depths on the last day of diving (MDLD) were analyzed from 627 recreational dive profiles. The data were divided into quartiles based on surface interval and depth. Injured divers (cases) and uninjured divers (controls) were compared using logistic regression to determine the association of DCS with time and depth while controlling for diver and dive profiles characteristics. These included PFSI, MDLD, gender, height, weight, age, and days of diving. The means (+/-SD) for cases and controls were as follows: PFSI, 20.7 +/- 9.6 h vs. 27.1 +/- 6.7 h; MDLD, 22.5 +/- 14 meters sea water (msw) vs. 19 +/- 11.3 msw; male gender, 60% vs. 70%; weight, 75.8 +/- 18 kg vs. 77.6 +/- 16 kg; height, 173 +/- 16 cm vs. 177 +/- 9 cm; age, 36.8 +/- 10 yr vs. 42.9 +/- 11 yr; diving > or = 3 d, 58% vs. 97%. Relative to flying > 28 h after diving, the odds of DCS (95% CI) were: 1.02 (0.61, 1.7) 24-28 h; 1.84 (1.0, 3.3) 20-24 h; and 8.5 (3.85, 18.9) < 20 h. Relative to a depth of < 14.7 msw, the odds of DCS (95% CI) were: 1.2 (0.6, 1.7) 14.7-18.5 msw; 2.9 (1.65, 5.3) 18.5-26 msw; and 5.5 (2.96, 1 0.0) > 26 msw. Odds ratios approximate relative risk in rare diseases such as DCS. This study demonstrated an increase in relative risk from flying after diving following shorter PFSIs and/or greater dive depths on the last day. The relative risk increases geometrically as the PFSI becomes smaller.

  7. Towards Probablistic Assessment of Hypobaric Decompression Sickness Treatment

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Abercromby, A. F.; Feiveson, A. H.; Gernhardt, M. L.; Norcross, J. R.; Ploutz-Snyder, R.; Wessel, J. H., III

    2013-01-01

    INTRODUCTION: Pressure, oxygen (O2), and time are the pillars to effective treatment of decompression sickness (DCS). The NASA DCS Treatment Model links a decrease in computed bubble volume to the resolution of a symptom. The decrease in volume is realized in two stages: a) during the Boyle's Law compression and b) during subsequent dissolution of the gas phase by the O2 window. METHODS: The cumulative distribution of 154 symptoms that resolved during repressurization was described with a log-logistic density function of pressure difference (deltaP as psid) associated with symptom resolution and two other explanatory variables. The 154 symptoms originated from 119 cases of DCS during 969 exposures in 47 different altitude tests. RESULTS: The probability of symptom resolution [P(symptom resolution)] = 1 / (1+exp(- (ln(deltaP) - 1.682 + 1.089×AMB - 0.00395×SYMPTOM TIME) / 0.633)), where AMB is 1 when the subject ambulated as part of the altitude exposure or else 0 and SYMPTOM TIME is the elapsed time in min from start of the altitude exposure to recognition of a DCS symptom. The P(symptom resolution) was estimated from computed deltaP from the Tissue Bubble Dynamics Model based on the "effective" Boyle's Law change: P2 - P1 (deltaP, psid) = P1×V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. V2 continues to decrease through time at P2, at a faster rate if 100% ground level O2 was breathed. The computed deltaP is the effective treatment pressure at any point in time as if the entire ?deltaP was just from Boyle's Law compression. DISCUSSION: Given the low probability of DCS during extravehicular activity and the prompt treatment of a symptom with options through the model it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.

  8. Loss of cabin pressurization in U.S. Naval aircraft: 1969-90.

    PubMed

    Bason, R; Yacavone, D W

    1992-05-01

    During the 22-year period from 1 January 1969 to 31 December 1990, there were 205 reported cases of loss of cabin pressure in US Naval aircraft; 21 were crew-initiated and 184 were deemed accidental. The ambient altitudes varied from 10,000 ft (3048 m) to 40,000 ft. (12192 m). The most common reason for crew-initiated decompression was to clear smoke and fumes from the cockpit/cabin (95%). The most common cause for accidental loss of cabin pressure was mechanical (73.37%), with aircraft structural damage accounting for the remaining 26.63%. Serious physiological problems included 1 pneumothorax, 11 cases of Type I decompression sickness, 23 cases of mild to moderate hypoxia with no loss of consciousness, 18 cases of hypoxia with loss of consciousness, and 3 lost aircraft with 4 fatalities due to incapacitation by hypoxia. In addition, 12 ejections were attributed to loss of cockpit pressure. Nine of the ejections were deliberate and three were accidental, caused by wind blast activation of the face curtain. Three aviators lost their lives following ejection and seven aircraft were lost. While the incidence of loss of cabin pressure in Naval aircraft appears low, it none-the-less presents a definite risk to the aircrew. Lectures on the loss of cabin/cockpit pressurization should continue during indoctrination and refresher physiology training.

  9. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.

  10. [Experimental study on establishment of a simple model of rats crush injury-crush syndrome].

    PubMed

    Chen, Xi; Liu, Yuehong; Xu, Wei; Qin, Tingwu; Zhao, Luping; Liu, Shuping; Zhang, Yi; Tan, Hong; Zhou, Yu

    2013-01-01

    To establish a repeatable, simple, and effective model of rat crush injury and crush syndrome. A total of 42 female Sprague Dawley rats (2-month-old, (CS) so as to lay a foundation for further study on CS. weighing 160-180 g) were divided randomly into the control group (n=6) and experimental group (n=36). The rats of the experimental group were used to establish the crush injury and CS model in both lower limbs by self-made crush injury mould. The survival rate and hematuria rate were observed after decompression. The biochemical indexes of blood were measured at 2, 4, 8, 12, 24, and 48 hours after decompression. The samples of muscle, kidney, and heart were harvested for morphological observation. There was no treatment in the control group, and the same tests were performed. Seven rats died and 15 rats had hematuria during compression in the experimental group. Swelling of the lower limb and muscle tissue was observed in the survival rats after reperfusion. The liver function test results showed that the levels of alanine transaminase and aspartate aminotransferase in the experimental group were significantly higher than those in the control group (P < 0.05). The renal function test results showed that blood urea nitrogen level increased significantly after 2 hours of decompression in the experimental group, showing significant difference when compared with that in the control group at 12, 24, and 48 hours after decompression (P < 0.05); the creatinine level of the experimental group was higher than that of the control group at 4, 8, 12, and 24 hours, showing significant difference at 8, 12, and 24 hours (P < 0.05). The serum K+ concentration of the experimental group was higher than that of the control group at all time, showing significant difference at the other time (P < 0.05) except at 2 hours. The creatine kinase level showed an increasing tendency in the experimental group, showing significant difference when compared with the level of the control group at 4, 8, 12, and 24 hours (P < 0.05). The histological examination of the experimental group showed that obvious edema and necrosis of the muscle were observed at different time points; glomeruli congestion and swelling, renal tubular epithelial cell degeneration, edema, necrosis, and myoglobin tube type were found in the kidneys; and myocardial structure had no obvious changes. The method of the crush injury and CS model by self-made crush injury mould is a simple and effective procedure and the experimental result is stable. It is a simple method to establish an effective model of rats crush injury and CS.

  11. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  12. In-Suit Light Exercise (ISLE) Prebreathe Protocol Peer Review Assessment. Part 2; Appendices

    NASA Technical Reports Server (NTRS)

    Brady, Timothy K.; Polk, James D.

    2011-01-01

    The performance of extravehicular activity (EVA) by National Aeronautics and Space Administration astronauts involves the risk of decompression sickness. This risk has been mitigated by the use of oxygen "prebreathe" to effectively wash out tissue nitrogen prior to each EVA. Now that the Space Shuttle Program (SSP) is being retired, high-pressure oxygen will become a limited resource. The In-Suit Light Exercise (ISLE) Prebreathe Protocol offers several potential benefits including its potential to save 6 pounds of oxygen per EVA. At the request of the NASA Engineering and Safety Center, the peer review convened on October 14, 2010. The major recommendation of the Review Committee was that the ISLE protocol was acceptable for operational use as a prebreathe option prior to EVA. The appendices to Volume I of the report are contained in this document.

  13. In-Suit Light Exercise (ISLE) Prebreathe Protocol Peer Review Assessment. Volume 1

    NASA Technical Reports Server (NTRS)

    Brady, Timothy K.; Polk, James D.

    2011-01-01

    The performance of extravehicular activity (EVA) by National Aeronautics and Space Administration astronauts involves the risk of decompression sickness. This risk has been mitigated by the use of oxygen "prebreathe" to effectively wash out tissue nitrogen prior to each EVA. Now that the Space Shuttle Program (SSP) is being retired, high-pressure oxygen will become a limited resource. The In-Suit Light Exercise (ISLE) Prebreathe Protocol offers several potential benefits including its potential to save 6 pounds of oxygen per EVA. At the request of the NASA Engineering and Safety Center, the peer review convened on October 14, 2010. The major recommendation of the Review Committee was that the ISLE protocol was acceptable for operational use as a prebreathe option prior to EVA. The results from the peer review are contained in this document.

  14. Novel Anti-Adhesive CMC-PE Hydrogel Significantly Enhanced Morphological and Physiological Recovery after Surgical Decompression in an Animal Model of Entrapment Neuropathy.

    PubMed

    Urano, Hideki; Iwatsuki, Katsuyuki; Yamamoto, Michiro; Ohnisi, Tetsuro; Kurimoto, Shigeru; Endo, Nobuyuki; Hirata, Hitoshi

    2016-01-01

    We developed a novel hydrogel derived from sodium carboxymethylcellulose (CMC) in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC to prevent perineural adhesions. This hydrogel has previously shown excellent anti-adhesive effects even after aggressive internal neurolysis in a rat model. Here, we confirmed the effects of the hydrogel on morphological and physiological recovery after nerve decompression. We prepared a rat model of chronic sciatic nerve compression using silicone tubing. Morphological and physiological recovery was confirmed at one, two, and three months after nerve decompression by assessing motor conduction velocity (MCV), the wet weight of the tibialis anterior muscle and morphometric evaluations of nerves. Electrophysiology showed significantly quicker recovery in the CMC-PE group than in the control group (24.0 ± 3.1 vs. 21.0± 2.1 m/s (p < 0.05) at one months and MCV continued to be significantly faster thereafter. Wet muscle weight at one month significantly differed between the CMC-PE (BW) and control groups (0.148 ± 0.020 vs. 0.108 ± 0.019%BW). The mean wet muscle weight was constantly higher in the CMC-PE group than in the control group throughout the experimental period. The axon area at one month was twice as large in the CMC-PE group compared with the control group (24.1 ± 17.3 vs. 12.3 ± 9 μm2) due to the higher ratio of axons with a larger diameter. Although the trend continued throughout the experimental period, the difference decreased after two months and was not statistically significant at three months. Although anti-adhesives can reduce adhesion after nerve injury, their effects on morphological and physiological recovery after surgical decompression of chronic entrapment neuropathy have not been investigated in detail. The present study showed that the new anti-adhesive CMC-PE gel can accelerate morphological and physiological recovery of nerves after decompression surgery.

  15. Evaluation of a new antinauseant drug for the prevention of motion sickness

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Knepton, J.

    1977-01-01

    The new drug, AHR 5645B, together with other drugs was evaluated in tests, conducted with eight male subjects, concerning its ability to prevent motion sickness. It was found that AHR 5645B, used in doses of 20, 50, and 100 mg, was not efficacious in preventing experimental motion sickness. A combination of 50 mg meclizine and 25 mg ephedrine sulfate produced the best results. Favorable results were also obtained with a combination of 12.5 mg promethazine hydrochloride and 12.5 mg ephedrine sulfate. The findings in the reported experiment point to the difficulty of identifying a highly efficacious antimotion sickness drug for everyone.

  16. Defining Nitrogen Kinetics for Air Break in Prebreath

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2010-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe(PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. METHODS: Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without airbreaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and airbreaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the airbreak was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = (Delta)P defined decompression dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. RESULTS: The log likelihood (LL) without decompression dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. CONCLUSION: The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included airbreaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an airbreak in PB within the narrow range of tested conditions.

  17. Dive Risk Factors, Gas Bubble Formation, and Decompression Illness in Recreational SCUBA Diving: Analysis of DAN Europe DSL Data Base.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2017-01-01

    Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the "mathematical ability" to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended "safe" one (9-10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as "undeserved." Conclusion: The DAN DB analysis shows that most dives were made in a "safe zone," even if data show an evident "gray area" in the "mathematical" ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.

  18. Ultrafast cavitation induced by an X-ray laser in water drops

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef

    2016-11-01

    Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.

  19. Sulfur isotope fractionation between fluid and andesitic melt: An experimental study

    USGS Publications Warehouse

    Fiege, Adrian; Holtz, François; Shimizu, Nobumichi; Mandeville, Charles W.; Behrens, Harald; Knipping, Jaayke L.

    2014-01-01

    Glasses produced from decompression experiments conducted by Fiege et al. (2014a) were used to investigate the fractionation of sulfur isotopes between fluid and andesitic melt upon magma degassing. Starting materials were synthetic glasses with a composition close to a Krakatau dacitic andesite. The glasses contained 4.55–7.95 wt% H2O, ∼140 to 2700 ppm sulfur (S), and 0–1000 ppm chlorine (Cl). The experiments were carried out in internally heated pressure vessels (IHPV) at 1030 °C and oxygen fugacities (fO2) ranging from QFM+0.8 log units up to QFM+4.2 log units (QFM: quartz–fayalite–magnetite buffer). The decompression experiments were conducted by releasing pressure (P) continuously from ∼400 MPa to final P of 150, 100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were annealed for 0–72 h (annealing time, tA) at the final P and quenched rapidly from 1030 °C to room temperature (T).The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large fluid–melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to determine the isotopic composition of the glasses before and after decompression. Mass balance calculations were applied to estimate the gas–melt S isotope fractionation factor αg-m.No detectable effect of r and tA on αg-m was observed. However, SIMS data revealed a remarkable increase of αg-m from ∼0.9985 ± 0.0007 at >QFM+3 to ∼1.0042 ± 0.0042 at ∼QFM+1. Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger than predicted by previous works. Based on our experimental results and on previous findings for S speciation in fluid and silicate melt a new model predicting the effect of fO2 on αg-m (or Δ34Sg–m) in andesitic systems at 1030 °C is proposed. Our experimental results as well as our modeling are of high importance for the interpretation of S isotope signatures in natural samples (e.g., melt inclusions or volcanic gases).

  20. The effect of mild motion sickness and sopite syndrome on multitasking cognitive performance.

    PubMed

    Matsangas, Panagiotis; McCauley, Michael E; Becker, William

    2014-09-01

    In this study, we investigated the effects of mild motion sickness and sopite syndrome on multitasking cognitive performance. Despite knowledge on general motion sickness, little is known about the effect of motion sickness and sopite syndrome on multitasking cognitive performance. Specifically, there is a gap in existing knowledge in the gray area of mild motion sickness. Fifty-one healthy individuals performed a multitasking battery. Three independent groups of participants were exposed to two experimental sessions. Two groups received motion only in the first or the second session, whereas the control group did not receive motion. Measurements of motion sickness, sopite syndrome, alertness, and performance were collected during the experiment Only during the second session, motion sickness and sopite syndrome had a significant negative association with cognitive performance. Significant performance differences between symptomatic and asymptomatic participants in the second session were identified in composite (9.43%), memory (31.7%), and arithmetic (14.7%) task scores. The results suggest that performance retention between sessions was not affected by mild motion sickness. Multitasking cognitive performance declined even when motion sickness and soporific symptoms were mild. The results also show an order effect. We postulate that the differential effect of session on the association between symptomatology and multitasking performance may be related to the attentional resources allocated to performing the multiple tasks. Results suggest an inverse relationship between motion sickness effects on performance and the cognitive effort focused on performing a task. Even mild motion sickness has potential implications for multitasking operational performance.

  1. Vestibular selection criteria development. [assessing susceptability to motion sickness during orbital space flight

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.

    1981-01-01

    The experimental elicitation of motion sickness using a short arm centrifuge or a rotating chair surrounded by a striped cylindrical enclosure failed to reveal any systematic group or consistent individual relationship between changes in heart rate, blood pressure, and body temperature and the appearance of symptoms of motion sickness. A study of the influence of vision on susceptability to motion sickness during sudden stop simulation shows that having the eyes open during any part of the sudden stop assessment is more stressful than having them closed throughout the test. Subjects were found to be highly susceptible to motion sickness when tested in free fall and in high force phases of flight. The effect of touch and pressure cues on body orientation during rotation and in parabolic flight are considered as sensory as well as motor adaptation.

  2. Experimental evidence of low-density liquid water upon rapid decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Shen, Guoyin

    2018-01-01

    Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter. PMID:29440411

  3. Reducing absenteeism in hospital cleaning staff: pilot of a theory based intervention.

    PubMed

    Michie, S; Wren, B; Williams, S

    2004-04-01

    To develop, pilot, and evaluate a workplace intervention to reduce sickness absence, based on a demand-control-support model of job strain. Changes in the working arrangements of hospital cleaning staff were introduced with the aim of increasing their control over work and the support received at work. The study design was quasi-experimental, with 221 cleaning staff in the intervention group and 91 catering staff in the control group. The dependent variable was the difference in percentage monthly sickness absence between the 12 months preceding and following the intervention. Differences in sickness absence between staff groups for each month after the intervention were compared with differences between staff groups for the equivalent month one year prior to it. There was a significant reduction in the difference in sickness absence rates between the intervention and control group of 2.3% in the six months after the intervention, compared to the six months before. The difference was not maintained at 12 months. These results suggest that a workplace intervention aimed at increasing control and support at work has a small effect on reducing sickness absence among hospital cleaning staff in the short term. Future research should seek to replicate this effect in larger, experimental studies, analyse postulated mediators of such theory based interventions, and develop interventions that maintain improvement.

  4. KSC-02pd1410

    NASA Image and Video Library

    2002-09-30

    KENNEDY SPACE CENTER, FLA. - Jack Wilcox (at the microphone) answers questions from the media during a reunion with his rescuers at the Hangar AF docks, Cape Canaveral Air Force Station. At right is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando.

  5. Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department.

    PubMed

    Permentier, Kris; Vercammen, Steven; Soetaert, Sylvia; Schellemans, Christian

    2017-12-01

    The goal of this article was to provide an overview of the literature available on carbon dioxide intoxication. Articles were included based on their focus on medical or physiological effects of carbon dioxide. Studies related to decompression sickness were excluded. Mechanisms of carbon dioxide poising (both as an asphyxiant and as a toxicant) were described. Our review suggested that precautions are needed when handling dry ice or while working in confined spaces. Pre-hospital responders also need to pay attention for the possible diagnosis of CO 2 intoxication for their own safety. When confronted with a victim, he/she should be removed from the dangerous area as fast as possible and oxygen should be administered. Without adequate treatment, victims may show acute reduced cognitive performance, respiratory failure, and circulatory arrest. Therefore, carbon dioxide poisoning is a rare but not to miss diagnosis in the emergency department.

  6. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  7. On how whales avoid decompression sickness and why they sometimes strand.

    PubMed

    Blix, Arnoldus Schytte; Walløe, Lars; Messelt, Edward B

    2013-09-15

    Whales are unique in that the supply of blood to the brain is not by the internal carotid arteries, but by way of thoracic and intra-vertebral arterial retia. We found in the harbor porpoise (Phocoena phocoena) that these retia split up into smaller anastomosing vessels and thin-walled sinusoid structures that are embedded in fat. The solubility of nitrogen is at least six times larger in fat than in water, and we suggest that nitrogen in supersaturated blood will be absorbed in the fat, by diffusion, during the very slow passage of the blood through the arterial retia. Formation of nitrogen bubbles that may reach the brain is thereby avoided. We also suggest that mass stranding of whales may be due to disturbances to their normal dive profiles, resulting in extra release of nitrogen that may overburden the nitrogen 'trap' and allow bubbles to reach the brain and cause abnormal behavior.

  8. [The effect of vestibuloprotectors on the cyclic nucleotide system in experimental motion sickness].

    PubMed

    Leshchiniuk, I I; Konovalova, E O; Kvitchataia, A I; Shamraĭ, V G; Bobkov, Iu G

    1989-01-01

    Changes in the blood plasma cyclic nucleotide (cAMP and cGMP) level under the effect of vestibuloprotectors: bemytil and etoxibemytil were studied in rats with experimental motion sickness. It is established that rotation causes increase in the cAMP level and decrease in the cGMP level. The effect of the vestibuloprotectors is determined by the dose of the drug and is aimed first of all at maintaining a stable cAMP level in vestibular exertion. Under conditions of this experiment etoxibemytil was more effective than bemytil.

  9. Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Graybiel, Ashton; Johnson, Walter H.; Money, Kenneth E.

    1987-01-01

    Von Baumgarten and coworkers (1979, 1981) have suggested that asymmetries in otolith function between the left and right labyrinths may result from differences in otoconial mass and could play a role in space motion sickness. Such asymmetries would be centrally compensated for under terrestrial conditions, but on exposure to weightlessness the persisting central compensation would produce a central imbalance that could lead to motion sickness. In this work ocular counterrolling was used as a way of measuring the relative 'efficiency' of the left and right otoliths; the ocular counterrolling scores of individuals were compared with their susceptibility to motion sickness during passive exposure to variations in Gz in parabolic flight maneuvers. The experimental findings indicate that large asymmetries in counterrolling for leftward and rightward body tilts are associated with greater susceptibility to motion sickness in parabolic flight.

  10. Effect of passengers' active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars.

    PubMed

    Wada, Takahiro; Yoshida, Keigo

    2016-08-01

    This study examined the effect of passengers' active head-tilt and eyes-open/eyes-closed conditions on the severity of motion sickness in the lateral acceleration environment of cars. In the centrifugal head-tilt condition, participants intentionally tilted their heads towards the centrifugal force, whereas in the centripetal head-tilt condition, the participants tilted their heads against the centrifugal acceleration. The eyes-open and eyes-closed cases were investigated for each head-tilt condition. In the experimental runs, the sickness rating in the centripetal head-tilt condition was significantly lower than that in the centrifugal head-tilt condition. Moreover, the sickness rating in the eyes-open condition was significantly lower than that in the eyes-closed condition. The results suggest that an active head-tilt motion against the centrifugal acceleration reduces the severity of motion sickness both in the eyes-open and eyes-closed conditions. They also demonstrate that the eyes-open condition significantly reduces the motion sickness even when the head-tilt strategy is used. Practitioner Summary: Little is known about the effect of head-tilt strategies on motion sickness. This study investigated the effects of head-tilt direction and eyes-open/eyes-closed conditions on motion sickness during slalom automobile driving. Passengers' active head tilt towards the centripetal direction and the eyes-open condition greatly reduce the severity of motion sickness.

  11. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1994-01-01

    The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.

  12. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    PubMed

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  13. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar.

    PubMed

    Kvadsheim, P H; Miller, P J O; Tyack, P L; Sivle, L D; Lam, F P A; Fahlman, A

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N(2) gas bubbles. Increased tissue and blood N(2) levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N(2) tension [Formula: see text], but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N(2) tension [Formula: see text] from dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked, and Cuvier's beaked whales before and during exposure to Low- (1-2 kHz) and Mid- (2-7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N(2) levels, with deep diving generally resulting in higher end-dive [Formula: see text] as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N(2) levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N(2) tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS.

  14. Relationship of Exercise, Age, and Gender on Decompression Sickness and Venous Gas Emboli During 2-Hour Oxygen Prebreathe Prior to Hypobaric Exposure

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Gernhardt, M. L.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Beltran, E.; Fife, C. E.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; hide

    2000-01-01

    We evaluated four 2-hour oxygen prebreathe protocols combining adynamia (non-walking) and 4 different amounts of exercise for potential use with extravehicular activity (EVA) on the International Space Station. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase 11: same ergometry plus 24 min of light exercise that simulated space suit preparations. Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. After 80 min on 100% O2, the subjects breathed 26.5% O2 - 73.5% N2 for 30 min at 10.2 psi. All subjects performed a series of upper body exercises from a recumbent position for 4 hrs at 4.3 psi to simulate EVA work. Venous gas emboli (VGE) were monitored every 12 min using precordial Doppler ultrasound. The 39 female and 126 male exposures were analyzed for correlations between decompression sickness (DCS) or VGE, and risk variables. The duration and quantity of exercise during prebreathe inversely relates to DCS and VGE incidence. The type and distribution of the 19 cases of DCS were similar to historical cases. There was no correlation of age, gender, body mass index, or fitness level with greater incidence of DCS or all VGE. However there were more Grade IV VGE in males > 40 years (10 of 19) than in those =< 40 years (3 of 107), with p<0.01 from Fisher's Exact Chi square The latency time for VGE was longer (103 min +/- 56 SD, n = 15 versus 53 min +/- 31, n =13) when the ergometry occurred about 15 min into the prebreathe than when performed at the start of the prebreathe, but the order of the ergometry did not influence the overall DCS and VGE incidence. An increasing amount of exercise during prebreathes reduced the risk of DCS during subsequent exposures to 4.3 psi. Age, gender, or fitness level did not correlate with the incidence of DCS or VGE (combination of Grades I-IV). However males greater than 40 years had a higher incidence of Grade IV VGE.

  15. Pleasant music as a countermeasure against visually induced motion sickness.

    PubMed

    Keshavarz, Behrang; Hecht, Heiko

    2014-05-01

    Visually induced motion sickness (VIMS) is a well-known side-effect in virtual environments or simulators. However, effective behavioral countermeasures against VIMS are still sparse. In this study, we tested whether music can reduce the severity of VIMS. Ninety-three volunteers were immersed in an approximately 14-minute-long video taken during a bicycle ride. Participants were randomly assigned to one of four experimental groups, either including relaxing music, neutral music, stressful music, or no music. Sickness scores were collected using the Fast Motion Sickness Scale and the Simulator Sickness Questionnaire. Results showed an overall trend for relaxing music to reduce the severity of VIMS. When factoring in the subjective pleasantness of the music, a significant reduction of VIMS occurred only when the presented music was perceived as pleasant, regardless of the music type. In addition, we found a gender effect with women reporting more sickness than men. We assume that the presentation of pleasant music can be an effective, low-cost, and easy-to-administer method to reduce VIMS. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures.

    PubMed

    Helland, Arne; Lydersen, Stian; Lervåg, Lone-Eirin; Jenssen, Gunnar D; Mørland, Jørg; Slørdal, Lars

    2016-09-01

    Simulator sickness is a major obstacle to the use of driving simulators for research, training and driver assessment purposes. The purpose of the present study was to investigate the possible influence of simulator sickness on driving performance measures such as standard deviation of lateral position (SDLP), and the effect of alcohol or repeated simulator exposure on the degree of simulator sickness. Twenty healthy male volunteers underwent three simulated driving trials of 1h's duration with a curvy rural road scenario, and rated their degree of simulator sickness after each trial. Subjects drove sober and with blood alcohol concentrations (BAC) of approx. 0.5g/L and 0.9g/L in a randomized order. Simulator sickness score (SSS) did not influence the primary outcome measure SDLP. Higher SSS significantly predicted lower average speed and frequency of steering wheel reversals. These effects seemed to be mitigated by alcohol. Higher BAC significantly predicted lower SSS, suggesting that alcohol inebriation alleviates simulator sickness. The negative relation between the number of previous exposures to the simulator and SSS was not statistically significant, but is consistent with habituation to the sickness-inducing effects, as shown in other studies. Overall, the results suggest no influence of simulator sickness on SDLP or several other driving performance measures. However, simulator sickness seems to cause test subjects to drive more carefully, with lower average speed and fewer steering wheel reversals, hampering the interpretation of these outcomes as measures of driving impairment and safety. BAC and repeated simulator exposures may act as confounding variables by influencing the degree of simulator sickness in experimental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (Δ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  18. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  19. Motion Sickness-Induced Food Aversions in the Squirrel Monkey

    NASA Technical Reports Server (NTRS)

    Roy, M. Aaron; Brizzee, Kenneth R.

    1979-01-01

    Conditioned aversions to colored, flavored water were established in Squirrel monkeys (Saimiri sciureus) by following consumption with 90 min of simultaneous rotational and vertical stimulation. The experimental group (N= 13) drank significantly less of the green, almond-flavored test solution than did the control group (N=14) during three post-treatment preference testing days. Individual differences were noted in that two experimental monkeys readily drank the test solution after rotational stimulation. Only two of the experimental monkeys showed emesis during rotation, yet 10 monkeys in this group developed an aversion. These results suggest that: (1) motion sickness can be readily induced in Squirrel monkeys with simultaneous rotational and vertical stimulation, and (2) that conditioned food aversions are achieved in the absence of emesis in this species.

  20. CLINICAL AND TREATMENT FEATURES OF OPEN INFECTED FRACTURES IN THE KNEE JOINT REGION IN CONJUNCTION WITH RADIATION SICKNESS (EXPERIMENTAL STUDY)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakharov, B.V.

    1963-08-01

    Clinical aspects and the course of treatment of open infected fractures in the knee joint region against a background of moderate and severe radiation sickness are discussed. The experiment involved 35 healthy dogs of both sexes. In all, three experiments were involved: on open infected fractures in the knee joint region in conjunction with radiation sickness; open infected fractures in the knee joint region without radiation sickness; radiation sickness without trauma. Infected open injury to the knee joint against a radiation sickness background is a severe affection. The use of delayed surgical and drug treatment (antibiotics, vitamins, antihistamine preparations) affordedmore » survival of at least one-half of the animals. Oral use of phenoxymethyl-penicillin in large doses established in the blood and synovial fluid of the damaged knee joint a therapeutic concentration of antibiotic of long duration (not less than a day). In radiation damage to knee joint accompanied by fracture of the bone fragment, the best method of surgical treatment is osteosynthesis using metal parts. In open infection of a damaged knee joint against a radiation sickness background, even with proper treatment a tendency toward formation of deforming arthrosis was observed. (OTS)« less

  1. Histological analysis of the influence of certain extremal factors on the postradiational changes in the tissues of experimental animals

    NASA Technical Reports Server (NTRS)

    Sutulov, L. S.; Gaydamakin, N. A.; Sutulov, Y. L.

    1975-01-01

    Protons with energies of 120 MeV at a dose of 640 rads or gamma-neutron radiation at a dose of 300 rads produce radiation sickness of moderate severity in rats. The significance of toxemia and disturbances to the endocrine regulatory system in the development of metabolic processes in various stages of radiation sickness are discussed.

  2. Venous gas embolism after an open-water air dive and identical repetitive dive.

    PubMed

    Schellart, N A M; Sterk, W

    2012-01-01

    Decompression tables indicate that a repetitive dive to the same depth as a first dive should be shortened to obtain the same probability of occurrence of decompression sickness (pDCS). Repetition protocols are based on small numbers, a reason for re-examination. Since venous gas embolism (VGE) and pDCS are related, one would expect a higher bubble grade (BG) of VGE after the repetitive dive without reducing bottom time. BGs were determined in 28 divers after a first and an identical repetitive air dive of 40 minutes to 20 meters of sea water. Doppler BG scores were transformed to log number of bubbles/cm2 (logB) to allow numerical analysis. With a previously published model (Model2), pDCS was calculated for the first dive and for both dives together. From pDCS, theoretical logBs were estimated with a pDCS-to-logB model constructed from literature data. However, pDCS the second dive was provided using conditional probability. This was achieved in Model2 and indirectly via tissue saturations. The combination of both models shows a significant increase of logB after the second dive, whereas the measurements showed an unexpected lower logB. These differences between measurements and model expectations are significant (p-values < 0.01). A reason for this discrepancy is uncertain. The most likely speculation would be that the divers, who were relatively old, did not perform physical activity for some days before the first dive. Our data suggest that, wisely, the first dive after a period of no exercise should be performed conservatively, particularly for older divers.

  3. Use of psychological decompression in military operational environments.

    PubMed

    Hughes, Jamie G H Hacker; Earnshaw, N Mark; Greenberg, Neil; Eldridge, Rod; Fear, Nicola T; French, Claire; Deahl, Martin P; Wessely, Simon

    2008-06-01

    This article reviews the use of psychological decompression as applied to troops returning from active service in operational theaters. Definitions of the term are considered and a brief history is given. Current policies and practices are described and the question of mandatory decompression is considered. Finally, the evidence base for the efficacy of decompression is examined and some conclusions are drawn. This article highlights variations in the definition and practice of decompression and its use. Although there is, as yet, no evidence that decompression works, there is also no evidence to the contrary. Given the lack of knowledge as to the balance of risks and benefits of decompression and the absence of any definitive evidence that decompression is associated with improved mental health outcomes or that lack of decompression is associated with the reverse, it is argued that the use of decompression should remain a matter for discretion.

  4. Use of promethazine to hasten adaptation to provocative motion

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1994-01-01

    In an earlier study, the authors found that severely motion sick individuals could be greatly relieved of their symptoms by intramuscular injections of promethazine (50 mg) or scopolamine (.5 mg). Comparable 50-mg injections of promethazine also have been found effective in alleviating symptoms of space motion sickness. The concern has risen, however, that such drugs may delay or retard the acquisition of adaptation to stressful environments. In the current study, we controlled arousal using a mental arithmetic task and precisely equated the exposure history (number of head movements during rotation) of a placebo, control group and an experimental group who had received promethazine. No differences in total adaptation or in rates of adaptation were present between the two groups. Another experimental group also received promethazine and was allowed to make as many head movements as they could, before reaching nausea, up to 800. This group showed a greater level of adaptation than the placebo group. These results suggest a strategy for dealing with space motion sickness that is described.

  5. Effectiveness of new legislation on partial sickness benefit on work participation: a quasi-experiment in Finland

    PubMed Central

    Kausto, Johanna; Viikari-Juntura, Eira; Virta, Lauri J; Gould, Raija; Koskinen, Aki; Solovieva, Svetlana

    2014-01-01

    Objectives To examine the effect of the new legislation on partial sickness benefit on subsequent work participation of Finns with long-term sickness absence. Additionally, we investigated whether the effect differed by sex, age or diagnostic category. Design A register-based quasi-experimental study compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post differences in the outcome. The preintervention and postintervention period each consisted of 365 days. Setting Nationwide, individual-level data on the beneficiaries of partial or full sickness benefit in 2008 were obtained from national sickness insurance, pension and earnings registers. Participants 1738 persons in the intervention and 56 754 persons in the comparison group. Outcome Work participation, measured as the proportion (%) of time within 365 days when participants were gainfully employed and did not receive either partial or full ill-health-related or unemployment benefits. Results Although work participation declined in both groups, the decline was 5% (absolute difference-in-differences) smaller in the intervention than in the comparison group, with a minor sex difference. The beneficial effect of partial sick leave was seen especially among those aged 45–54 (5%) and 55–65 (6%) and in mental disorders (13%). When the groups were rendered more exchangeable (propensity score matching on age, sex, diagnostic category, income, occupation, insurance district, work participation, sickness absence, rehabilitation periods and unemployment, prior to intervention and their interaction terms), the effects on work participation were doubled and seen in all age groups and in other diagnostic categories than traumas. Conclusions The results suggest that the new legislation has potential to increase work participation of the population with long-term sickness absence in Finland. If applied in a larger scale, partial sick leave may turn out to be a useful tool in reducing withdrawal of workers from the labour market due to health reasons. PMID:25539780

  6. Pulmonary Edema and Plasma Volume Changes in Dysbarism. M.S. Thesis - Texas Univ.

    NASA Technical Reports Server (NTRS)

    Joki, J. A.

    1972-01-01

    Two groups of anesthetized, fasted pigs were utilized. One group of 13 animals (8.5 to 16.6 kilograms) was exposed to a high-pressure environment, and the other group of eight animals (6.9 to 20.0 kilograms) constituted the control group. The experimental group was subjected to an atmosphere of 90 percent nitrogen and 10 percent oxygen at a pressure of 50 psig for 30 minutes and then decompressed at a rate 10 psi/min. Plasma volumes, using both iodine-125-tagged-albumin and chromium-51-tagged-cell dilution techniques, were measured before, immediately after, and at 30 and 60 minutes after decompression. Aortic and right-ventricular systolic pressures were also recorded. At 60 minutes after decompression, blood samples were taken, the animals were sacrificed, and the water content of the lungs, kidneys, livers, and spleens was estimated by measuring tissue wet weight and dry weight. Protein extravasation and tissue blood volumes were determined by measuring the iodine-125-tagged-albumin and chromium-51-tagged-cell spaces in homo-genates of the organs under investigation.

  7. The use of adaptation to reduce simulator sickness in driving assessment and research.

    PubMed

    Domeyer, Joshua E; Cassavaugh, Nicholas D; Backs, Richard W

    2013-04-01

    The technical advancement of driving simulators has decreased their cost and increased both their accuracy and fidelity. This makes them a useful tool for examining driving behavior in risky or unique situations. With the approaching increase of older licensed drivers due to aging of the baby boomers, driving simulators will be important for conducting driving research and evaluations for older adults. With these simulator technologies, some people may experience significant effects of a unique form of motion sickness, known as simulator sickness. These effects may be more pronounced in older adults. The present study examined the feasibility of an intervention to attenuate symptoms of simulator sickness in drivers participating in a study of a driving evaluation protocol. Prior to beginning the experiment, the experimental groups did not differ in subjective simulator sickness scores as indicated by Revised Simulator Sickness Questionnaire scores (all p>0.5). Participants who experienced a two-day delay between an initial acclimation to the driving simulator and the driving session experienced fewer simulator sickness symptoms as indicated by RSSQ total severity scores than participants who did not receive a two-day delay (F(1,88)=4.54, p=.036, partial η(2)=.049). These findings have implications for improving client well-being and potentially increasing acceptance of driving simulation for driving evaluations and for driving safety research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of clinical outcomes in decompression and fusion versus decompression only in patients with ossification of the posterior longitudinal ligament: a meta-analysis.

    PubMed

    Mehdi, Syed K; Alentado, Vincent J; Lee, Bryan S; Mroz, Thomas E; Benzel, Edward C; Steinmetz, Michael P

    2016-06-01

    OBJECTIVE Ossification of the posterior longitudinal ligament (OPLL) is a pathological calcification or ossification of the PLL, predominantly occurring in the cervical spine. Although surgery is often necessary for patients with symptomatic neurological deterioration, there remains controversy with regard to the optimal surgical treatment. In this systematic review and meta-analysis, the authors identified differences in complications and outcomes after anterior or posterior decompression and fusion versus after decompression alone for the treatment of cervical myelopathy due to OPLL. METHODS A MEDLINE, SCOPUS, and Web of Science search was performed for studies reporting complications and outcomes after decompression and fusion or after decompression alone for patients with OPLL. A meta-analysis was performed to calculate effect summary mean values, 95% CIs, Q statistics, and I(2) values. Forest plots were constructed for each analysis group. RESULTS Of the 2630 retrieved articles, 32 met the inclusion criteria. There was no statistically significant difference in the incidence of excellent and good outcomes and of fair and poor outcomes between the decompression and fusion and the decompression-only cohorts. However, the decompression and fusion cohort had a statistically significantly higher recovery rate (63.2% vs 53.9%; p < 0.0001), a higher final Japanese Orthopaedic Association score (14.0 vs 13.5; p < 0.0001), and a lower incidence of OPLL progression (< 1% vs 6.3%; p < 0.0001) compared with the decompression-only cohort. There was no statistically significant difference in the incidence of complications between the 2 cohorts. CONCLUSIONS This study represents the only comprehensive review of outcomes and complications after decompression and fusion or after decompression alone for OPLL across a heterogeneous group of surgeons and patients. Based on these results, decompression and fusion is a superior surgical technique compared with posterior decompression alone in patients with OPLL. These results indicate that surgical decompression and fusion lead to a faster recovery, improved postoperative neurological functioning, and a lower incidence of OPLL progression compared with posterior decompression only. Furthermore, decompression and fusion did not lead to a greater incidence of complications compared with posterior decompression only.

  9. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  10. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test

    PubMed Central

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; DeMarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression. PMID:23950656

  11. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test.

    PubMed

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; Demarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression.

  12. Legislative change enabling use of early part-time sick leave enhanced return to work and work participation in Finland.

    PubMed

    Viikari-Juntura, Eira; Virta, Lauri J; Kausto, Johanna; Autti-Rämö, Ilona; Martimo, Kari-Pekka; Laaksonen, Mikko; Leinonen, Taina; Husgafvel-Pursiainen, Kirsti; Burdorf, Alex; Solovieva, Svetlana

    2017-09-01

    Objectives The aim of the study was to assess the effectiveness of the use of part-time sick leave at the early (first 12 weeks) stage of work disability due to mental disorder or musculoskeletal disease on sustained return to work (RTW) and overall work participation. Methods In a nation-wide register-based quasi-experimental study, we compared sustained RTW (ie, ≥28 consecutive days at work) and 2-year work participation between the part- and full-time sickness absence (SA) benefit groups (N=1878 in each group) using propensity-score matching. Persons who received partial or full SA benefit due to musculoskeletal diseases or mental disorders between January 1, 2010 and December 31, 2011 were eligible as cases or controls, respectively. Results A higher proportion showed sustained RTW after part- compared to full-time sick leave [absolute risk difference 8.0%, 95% confidence interval (95% CI) 5.3-10.9]. Moreover, the proportion of time at work was at a 10.5% higher level in the part- compared to full-time sick leave group. The prevalence of full disability retirement was almost three-fold among the full- compared to part-time sick leave group, whereas partial disability retirement was 4.5-fold more prevalent in the part- compared to full-time sick leave group. Conclusions The use of part-time sick leave during the first three months of SA enhances RTW and overall work participation during two years among persons with mental disorders and musculoskeletal diseases. The prescription of part-time sick leave can be recommended at an early stage of work disability.

  13. KSC-02pd1405

    NASA Image and Video Library

    2002-09-30

    KENNEDY SPACE CENTER, FLA. -- Jack Wilcox, right, returns to the ship that helped rescue him at sea Sept. 11. With him is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando. The reunion was held at the Hangar AF docks on the Cape Canaveral Air Force Station.

  14. KSC-02pd1409

    NASA Image and Video Library

    2002-09-30

    KENNEDY SPACE CENTER, FLA. - KENNEDY SPACE CENTER, FLA. - Jack Wilcox answers questions from the media during a reunion at the Hangar AF docks, Cape Canaveral Air Force Station, with his rescuers. At right is his wife, Patty. Wilcox reunited with the men aboard KSC's Freedom Star SRB retrieval ship that was in the vicinity when Wilcox suffered decompression sickness on a diving expedition 20 miles off shore in the Atlantic Ocean. When the Freedom Star team heard the call for help, they asked the Coast Guard if they could assist. The ship was out on a crane certification exercise and coincidentally had a diver medical technician and other divers training on the crane. The ship's divers were trained for the hyperbaric chamber on board. Upon reaching the Army dock, KSC Occupational Health physician Skip Beeler entered the chamber and continued the process of helping to stabilize Wilcox. After several hours in the chamber, Wilcox, who lives in Orlando, was airlifted to Florida Hospital Orlando.

  15. Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans

    NASA Astrophysics Data System (ADS)

    de Quirós, Yara Bernaldo; González-Díaz, Óscar; Saavedra, Pedro; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Jepson, Paul D.; Mazzariol, Sandro; di Guardo, Giovanni; Fernández, Antonio

    2011-12-01

    Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen.

  16. Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans

    PubMed Central

    de Quirós, Yara Bernaldo; González-Díaz, Óscar; Saavedra, Pedro; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Jepson, Paul D.; Mazzariol, Sandro; Di Guardo, Giovanni; Fernández, Antonio

    2011-01-01

    Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen. PMID:22355708

  17. Caisson disease during the construction of the Eads and Brooklyn Bridges: A review.

    PubMed

    Butler, W P

    2004-01-01

    The Eads Bridge (St. Louis) and the Brooklyn Bridge (New York City) were testing grounds for caisson construction. These caissons were enormous compressed air boxes used to build riverine piers and abutments anchoring the bridges. Caisson meant faster and cheaper construction, but there was a hidden cost---caisson disease (decompression sickness). Within caissons, workers labored at pressures as high as 55 psig and caisson disease was common. This discourse is a brief history of the caisson, a brief discussion of the illness as viewed in the mid 1800's, and an abbreviated history of the Eads and Brooklyn Bridges. It also provides a detailed description and evaluation of the observations, countermeasures, and recommendations of Dr. Alphonse Jaminet, the Eads Bridge physician, and Dr. Andrew Smith, the Brooklyn Bridge physician, who published reports of their experience in 1871 and 1873, respectively. These and other primary sources permit a detailed examination of early caisson disease and Jaminet's and Smith's thinking also serve as good examples from which to study and learn.

  18. The "Skull Flap" a new conceived device for decompressive craniectomy experimental study on dogs to evaluate the safety and efficacy in reducing intracranial pressure and subsequent impact on brain perfusion.

    PubMed

    Salvatore, Chibbaro; Fabrice, Vallee; Marco, Marsella; Leonardo, Tigan; Thomas, Lilin; Benoit, Lecuelle; Bernard, George; Pierre, Kehrli; Eric, Vicaut; Paolo, Diemidio

    2013-10-01

    Decompressive craniectomy (DC) is a procedure performed increasingly often in current neurosurgical practice. Significant perioperative morbidity may be associated to this procedure because of the large skull defect; also, later closure of the skull defect (cranioplasty) may be associated to post-operative morbidity as much as any other reconstructive operation. The authors present a newly conceived/developed device: The "Skull Flap" (SF). This system, placed at the time of the craniectomy, offers the possibility to provide cranial reconstruction sparing patients a second operation. In other words, DC and cranioplasty essentially take place at the same time and in addition, patients retain their own bone flap. The current study conducted on animal models, represents the logical continuation of a prior recent study, realized on cadaver specimens, to assess the efficacy and safety of this recently developed device. This is an experimental pilot study on dogs to assess both safety and efficacy of the SF device. Two groups of experimental raised intracranial pressure animal models underwent DC; in the first group of dogs, the bone flap was left in raised position above the skull defect using the SF device; on the second group the flap was discarded. All dogs underwent transcranial Doppler (TCD) to assess brain perfusion. Head computed tomography (CT) scan to determine flap position was also obtained in the group in which the SF device was placed. SF has proved to be a strong fixation device that allows satisfactory brain decompression by keeping the bone flap elevated from the swollen brain; later on, the SF allows cranial reconstruction in a simple way without requiring a second staged operation. In addition, it is relevant to note that brain perfusion was measured and found to be better in the group receiving the SF (while the flap being in a raised as well as in its natural position) comparing to the other group. The SF device has proved to be very easy to place, well-adaptable to a different type of flaps and ultimately very effective in maintaining satisfactory brain decompression and later on, making easy bone flap repositioning after brain swelling has subsided.

  19. Zero-gravity venting of three refrigerants

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Aydelott, J. C.; Amling, G. E.

    1974-01-01

    An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.

  20. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression.

    PubMed

    Schulte, Tobias L; Hurschler, Christof; Haversath, Marcel; Liljenqvist, Ulf; Bullmann, Viola; Filler, Timm J; Osada, Nani; Fallenberg, Eva-Maria; Hackenberg, Lars

    2008-08-01

    Undercutting decompression is a common surgical procedure for the therapy of lumbar spinal canal stenosis. Segmental instability, due to segmental degeneration or iatrogenic decompression is a typical problem that is clinically addressed by fusion, or more recently by semi-rigid stabilization devices. The objective of this experimental biomechanical study was to investigate the influence of spinal decompression alone, as well as in conjunction with two semi-rigid stabilizing implants (Wallis, Dynesys) on the range of motion (ROM) of lumbar spine segments. A total of 21 fresh-frozen human lumbar spine motion segments were obtained. Range of motion and neutral zone (NZ) were measured in flexion-extension (FE), lateral bending (LAT) and axial rotation (ROT) for each motion segment under four conditions: (1) with all stabilizing structures intact (PHY), (2) after bilateral undercutting decompression (UDC), (3) after additional implantation of Wallis (UDC-W) and (4) after removal of Wallis and subsequent implantation of Dynesys (UDC-D). Measurements were performed using a sensor-guided industrial robot in a pure-moment-loading mode. Range of motion was defined as the angle covered between loadings of -5 and +5 Nm during the last of three applied motion cycles. Untreated physiologic segments showed the following mean ROM: FE 6.6 degrees , LAT 7.4 degrees , ROT 3.9 degrees . After decompression, a significant increase of ROM was observed: 26% FE, 6% LAT, 12% ROT. After additional implantation of a semi-rigid device, a decrease in ROM compared to the situation after decompression alone was observed with a reduction of 66 and 75% in FE, 6 and 70% in LAT, and 5 and 22% in ROT being observed for the Wallis and Dynesys, respectively. When the flexion and extension contribution to ROM was separated, the Wallis implant restricted extension by 69% and flexion by 62%, the Dynesys by 73 and 75%, respectively. Compared to the intact status, instrumentation following decompression led to a ROM reduction of 58 and 68% in FE, 1 and 68% in LAT, -6 and 13% in ROT, 61 and 65% in extension and 54 and 70% in flexion for Wallis and Dynesys. The effect of the implants on NZ corresponded to that on ROM. In conclusion, implantation of the Wallis and Dynesys devices following decompression leads to a restriction of ROM in all motion planes investigated. Flexion-extension is most affected by both implants. The Dynesys implant leads to an additional strong restriction in lateral bending. Rotation is only mildly affected by both implants. Wallis and Dynesys restrict not only isolated extension, but also flexion. These biomechanical results support the hypothesis that postoperatively, the semi-rigid implants provide a primary stabilizing function directly. Whether they can improve the clinical outcome must still be verified in prospective clinical investigations.

  1. Estimated Tissue and Blood N2 Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar

    PubMed Central

    Kvadsheim, P. H.; Miller, P. J. O.; Tyack, P. L.; Sivle, L. D.; Lam, F. P. A.; Fahlman, A.

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS. PMID:22590458

  2. Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Conkin, Johnny; Wessel, James H., III; Norsk, Peter; Law, Jennifer; Arias, Diana; Goodwin, Tom; Crucian, Brian; Whitmire, Alexandra; Bloomberg, Jacob; hide

    2015-01-01

    Extravehicular activity (EVA) is at the core of a manned space exploration program. Some elements of exploration may be safely and effectively performed by robots, but certain critical elements will require the trained, assertive, and reasoning mind of a human crewmember. To effectively use these skills, NASA needs a safe, effective, and efficient EVA component integrated into the human exploration program. The EVA preparation time should be minimized and the suit pressure should be low to accommodate EVA tasks without causing undue fatigue, physical discomfort, or suit-related trauma. Commissioned in 2005, the Exploration Atmospheres Working Group (EAWG) had the primary goal of recommending to NASA an internal environment that allowed efficient and repetitive EVAs for missions that were to be enabled by the former Constellation Program. At the conclusion of the EAWG meeting, the 8.0 psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of missions. After re-evaluation in 2012, the 8/32 environment was altered to 8.2 psia and 34% O2 to reduce the hypoxic stress to a crewmember. These two small changes increase alveolar O2 pressure by 11 mmHg, which is expected to significantly benefit crewmembers. The 8.2/34 environment (inspired O2 pressure = 128 mmHg) is also physiologically equivalent to the staged decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 pressure = 127 mmHg) used on 34 different shuttle missions for approximately a week each flight. As a result of selecting this internal environment, NASA gains the capability for efficient EVA with low risk of decompression sickness (DCS), but not without incurring the additional negative stimulus of hypobaric hypoxia to the already physiologically challenging spaceflight environment. This report provides a review of the human health and performance risks associated with the use of the 8.2 psia / 34% O2 environment during spaceflight. Of most concern are the potential effects on the central nervous system (CNS), including increased intracranial pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. Other areas of focus include validation of the DCS mitigation strategy, incidence and treatment of transient acute mountain sickness (AMS), development of new exercise countermeasure protocols, effective food preparation at 8.2 psia, assurance of quality sleep, and prevention of suit-induced injury. Although missions proposing to use an 8.2/34 environment are still years away, it is recommended that these studies begin early enough to ensure that the correct decisions pertaining to vehicle design, mission operational concepts, and human health countermeasures are appropriately informed.

  3. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    PubMed

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  4. Doppler recordings after diving to depth of 30 meters at high altitude of 4,919 meters (16,138 feet) during the Tilicho Lake Expedition 2007.

    PubMed

    Kot, J; Sicko, Z; Zyszkowski, M; Brajta, M

    2014-01-01

    When going to high altitude (higher than 2,400 meters above mean sea level [about 8,200 feet]), human physiology is strongly affected by changes in atmospheric conditions, including decreased ambient pressure and hypobaric hypoxia, which can lead to severe hypoxemia, brain and/or pulmonary edema, negative changes in body and blood composition, as well as disturbances in regional microcirculation. When adding other factors, such as dehydration, physical exercise and exposure to low temperature, it is likely that nitrogen desaturation after diving at such environmental conditions is far from optimal, There are only single reports on diving at high alti-tudes. In 2007 a Polish team of climbers and divers participated in the Tilicho Lake and Peak Expedition to the Himalaya Mountains in Nepal. During this expedition, four divers conducted six dives in the Tilicho Lake at altitude of 4,919 meters above mean sea level equivalent (16,138 feet) to a maximum depth of 15 meters of fresh water (mfw) (equivalent to 28 mfw at sea level by the Cross Correction method) and 30 mfw (equivalent to 57 mfw at sea level "by Cross correction). Decompression debt was calculated using Cross Correction with some additional safety add-ons. Precordial Doppler recordings were taken every 15 minutes until 90 minutes after surfacing. No signs or symptoms of decompression sickness were observed after diving but in one diver, very high bubble grade Doppler signals were recorded. It can be concluded that diving at high altitude should be accompanied by additional safety precautions as well as taking into account personal sensitivity for such conditions.

  5. Threshold altitude for bubble decay and stabilization in rat adipose tissue at hypobaric exposures.

    PubMed

    Randsoe, Thomas; Hyldegaard, Ole

    2013-07-01

    Bubble formation during altitude exposures, causing altitude decompression sickness (aDCS), has been referred to in theoretical models as venous gas embolisms (VGE). This has also been demonstrated by intravascular gas formation. Previous reports indicate that the formation of VGE and aDCS incidence increase abruptly for exposures exceeding 40-44 kPa ambient pressures. Further, extravascular micro air bubbles injected into adipose tissue grow transiently, then shrink and disappear while breathing oxygen (F1O2 = 1.0) at 71 kPa. At 25 kPa similar air bubbles will grow and stabilize during oxygen breathing without disappearing. We hypothesize that an ambient pressure threshold for either extravascular bubble stabilization or disappearance may be identified between 71 and 25 kPa. Whether extravascular bubbles will stabilize above a certain threshold has not been demonstrated before. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 2-35 min to either 60, 47, or 36 kPa and bubbles studied for 215 min during continued oxygen breathing (F1O2 = 1). Significantly more bubbles shrank and disappeared at 60 (14 of 17) and 47 kPa (14 of 15) as compared to bubbles exposed to 36 kPa (3 of 15) ambient pressure. The results indicate that a threshold causing extravascular bubble stabilization or decay is between 47 to 36 kPa. The results are in agreement with previous reports demonstrating an increase in the formation of VGE and symptoms of aDCS at altitudes higher than 44 kPa ambient pressure.

  6. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity. Copyright © 2015 the American Physiological Society.

  7. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals. PMID:25999860

  8. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.

  9. Shoulder function and work disability after decompression surgery for subacromial impingement syndrome: a randomised controlled trial of physiotherapy exercises and occupational medical assistance.

    PubMed

    Svendsen, Susanne W; Christiansen, David H; Haahr, Jens Peder; Andrea, Linda C; Frost, Poul

    2014-06-21

    Surgery for subacromial impingement syndrome is often performed in working age and postoperative physiotherapy exercises are widely used to help restore function. A recent Danish study showed that 10% of a nationwide cohort of patients retired prematurely within two years after surgery. Few studies have compared effects of different postoperative exercise programmes on shoulder function, and no studies have evaluated workplace-oriented interventions to reduce postoperative work disability. This study aims to evaluate the effectiveness of physiotherapy exercises and occupational medical assistance compared with usual care in improving shoulder function and reducing postoperative work disability after arthroscopic subacromial decompression. The study is a mainly pragmatic multicentre randomised controlled trial. The trial is embedded in a cohort study of shoulder patients referred to public departments of orthopaedic surgery in Central Denmark Region. Patients aged ≥18-≤63 years, who still have shoulder symptoms 8-12 weeks after surgery, constitute the study population. Around 130 participants are allocated to: 1) physiotherapy exercises, 2) occupational medical assistance, 3) physiotherapy exercises and occupational medical assistance, and 4) usual care. Intervention manuals allow individual tailoring. Primary outcome measures include Oxford Shoulder Score and sickness absence due to symptoms from the operated shoulder. Randomisation is computerised with allocation concealment by randomly permuted block sizes. Statistical analyses will primarily be performed according to the intention-to-treat principle. The paper presents the rationale, design, methods, and operational aspects of the Shoulder Intervention Project (SIP). SIP evaluates a new rehabilitation approach, where physiotherapy and occupational interventions are provided in continuity of surgical episodes of care. If successful, the project may serve as a model for rehabilitation of surgical shoulder patients. Current Controlled Trials ISRCTN55768749.

  10. Intraoperative Computed Tomography for Cervicomedullary Decompression of Foramen Magnum Stenosis in Achondroplasia: Two Case Reports

    PubMed Central

    Arishima, Hidetaka; Tsunetoshi, Kenzo; Kodera, Toshiaki; Kitai, Ryuhei; Takeuchi, Hiroaki; Kikuta, Ken-ichiro

    2013-01-01

    The authors report two cases of cervicomedullary decompression of foramen magnum (FM) stenosis in children with achondroplasia using intraoperative computed tomography (iCT). A 14-month-old girl with myelopathy and retarded motor development, and a 10-year-old girl who had already undergone incomplete FM decompression was presented with myelopathy. Both patients underwent decompressive sub-occipitalcraniectomy and C1 laminectomy without duraplasty using iCT. It clearly showed the extent of FM decompression during surgery, which finally enabled sufficient decompression. After the operation, their myelopathy improved. We think that iCT can provide useful information and guidance for sufficient decompression for FM stenosis in children with achondroplasia. PMID:24140778

  11. Intraoperative computed tomography for cervicomedullary decompression of foramen magnum stenosis in achondroplasia: two case reports.

    PubMed

    Arishima, Hidetaka; Tsunetoshi, Kenzo; Kodera, Toshiaki; Kitai, Ryuhei; Takeuchi, Hiroaki; Kikuta, Ken-Ichiro

    2013-01-01

    The authors report two cases of cervicomedullary decompression of foramen magnum (FM) stenosis in children with achondroplasia using intraoperative computed tomography (iCT). A 14-month-old girl with myelopathy and retarded motor development, and a 10-year-old girl who had already undergone incomplete FM decompression was presented with myelopathy. Both patients underwent decompressive sub-occipitalcraniectomy and C1 laminectomy without duraplasty using iCT. It clearly showed the extent of FM decompression during surgery, which finally enabled sufficient decompression. After the operation, their myelopathy improved. We think that iCT can provide useful information and guidance for sufficient decompression for FM stenosis in children with achondroplasia.

  12. Experiment M131. Human vestibular function

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Miller, E. F., II; Homick, J. L.

    1977-01-01

    The lower susceptibility to vestibular stimulation aloft, compared with that on ground under experimental conditions, is attributed to a precondition, namely, either there is no need to adapt, or, as exemplified by the Skylab 3 pilot, adaptation to weightlessness is achieved. Findings in some of the astronauts emphasize the distinction between two categories of vestibular side effects: immediate reflex phenomena (illusions, sensations of turning, etc.), and delayed epiphenomena that include the constellation of symptoms and syndromes comprising motion sickness. The drug combinations 1-scopolamine and d-amphetamine and promethazine hydrochloride and ephedrine sulfate are effective in prevention and treatment of motion sickness. It is concluded that prevention of motion sickness in any stressful motion environment involves selection, adaptation, and the use of drugs.

  13. Therapeutic effectiveness of medications taken during spaceflight

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.; Putcha, Lakshmi

    1992-01-01

    The therapeutic effectiveness of medications during spaceflight is considered in light of extensive anecdotal and experimental evidence. Attention is given to a range of medications for space motion sickness, sleeplessness, and physical discomfort. About 70 individual cases are reviewed in which crewmembers used such medications as: (1) scopolamine hydrobromide, dextroamphetamine sulfate, and promethazine hydrochloride for motion sickness; (2) metoclopramide hydrochloride and naloxone hydrochloride for bowel motility; and (3) aspirin and acetaminophen for headache and back pain. The effectiveness of orally ingested medications for space motion sickness is shown to be very low, while promethazine hydrochloride is effective when administered intramuscularly. The medications for pain are shown to be generally effective, and the use of sleep-inducing medications is limited by potentially detrimental performance effects.

  14. Effectiveness of new legislation on partial sickness benefit on work participation: a quasi-experiment in Finland.

    PubMed

    Kausto, Johanna; Viikari-Juntura, Eira; Virta, Lauri J; Gould, Raija; Koskinen, Aki; Solovieva, Svetlana

    2014-12-24

    To examine the effect of the new legislation on partial sickness benefit on subsequent work participation of Finns with long-term sickness absence. Additionally, we investigated whether the effect differed by sex, age or diagnostic category. A register-based quasi-experimental study compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post differences in the outcome. The preintervention and postintervention period each consisted of 365 days. Nationwide, individual-level data on the beneficiaries of partial or full sickness benefit in 2008 were obtained from national sickness insurance, pension and earnings registers. 1738 persons in the intervention and 56,754 persons in the comparison group. Work participation, measured as the proportion (%) of time within 365 days when participants were gainfully employed and did not receive either partial or full ill-health-related or unemployment benefits. Although work participation declined in both groups, the decline was 5% (absolute difference-in-differences) smaller in the intervention than in the comparison group, with a minor sex difference. The beneficial effect of partial sick leave was seen especially among those aged 45-54 (5%) and 55-65 (6%) and in mental disorders (13%). When the groups were rendered more exchangeable (propensity score matching on age, sex, diagnostic category, income, occupation, insurance district, work participation, sickness absence, rehabilitation periods and unemployment, prior to intervention and their interaction terms), the effects on work participation were doubled and seen in all age groups and in other diagnostic categories than traumas. The results suggest that the new legislation has potential to increase work participation of the population with long-term sickness absence in Finland. If applied in a larger scale, partial sick leave may turn out to be a useful tool in reducing withdrawal of workers from the labour market due to health reasons. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Observed behaviours of pre-term children in a social play situation with classroom peers.

    PubMed

    Nadeau, Line; Tessier, Réjean; Descôteaux, Amélie

    2009-08-01

    A number of studies have reported social adjustment problems in pre-term children. To observe the pre-term's behaviour in an experimental situation and correlate these observed behaviours with the children's peer-rated social behaviours (withdrawal, aggression and sociability/leadership). Of 56 pre-term children, 24 were classified as the sick pre-term (SPT) group and 32 children as the healthy pre-term (HPT) group. The comparison group comprised 56 healthy full-terms. The experimental situation used a game called Rush Hour, a labyrinth-type board game. The play situation was videotaped and behaviours (number of consecutive moves) were coded in real time. At 12 years of age, the sick pre-term (SPT) group exhibited fewer consecutive moves during the game than the other two groups, especially when the task became more complex (involving four consecutives moves). Moreover, the Complex Task Index was correlated with the social withdrawal score rated by peers. The at-birth sick pre-term gradually became less involved in a complex decision-making task and this was understood as a lesser ability to make a decision in a complex setting.

  16. Effect of vaccination with recombinant canine distemper virus vaccine immediately before exposure under shelter-like conditions.

    PubMed

    Larson, L J; Schultz, R D

    2006-01-01

    Vaccination with modified-live virus (MLV) canine distemper virus (CDV) vaccine has historically been recommended for animals in high-risk environments because of the rapid onset of immunity following vaccination. Recombinant CDV (rCDV) vaccine was deemed a suitable alternative to MLV-CDV vaccination in pet dogs, but insufficient data precluded its use where CDV was a serious threat to puppies, such as in shelters, kennels, and pet stores. In this study, dogs experimentally challenged hours after a single dose of rCDV or MLV vaccine became sick but recovered, whereas unvaccinated dogs became sick and died. Dogs vaccinated with a single dose of rCDV or MLV vaccine 1 week before being experimentally challenged remained healthy and showed no clinical signs. Dogs given one dose of rCDV vaccine hours before being placed in a CDV-contaminated environment did not become sick. These findings support the hypothesis that rCDV vaccine has a similar time-to-immunity as MLV-CDV vaccines and can likewise protect dogs in high-risk environments after one dose.

  17. Needle Decompression of Tension Pneumothorax with Colorimetric Capnography.

    PubMed

    Naik, Nimesh D; Hernandez, Matthew C; Anderson, Jeff R; Ross, Erika K; Zielinski, Martin D; Aho, Johnathon M

    2017-11-01

    The success of needle decompression for tension pneumothorax is variable, and there are no objective measures assessing effective decompression. Colorimetric capnography, which detects carbon dioxide present within the pleural space, may serve as a simple test to assess effective needle decompression. Three swine underwent traumatically induced tension pneumothorax (standard of care, n = 15; standard of care with needle capnography, n = 15). Needle thoracostomy was performed with an 8-cm angiocatheter. Similarly, decompression was performed with the addition of colorimetric capnography. Subjective operator assessment of decompression was recorded and compared with true decompression, using thoracoscopic visualization for both techniques. Areas under receiver operating curves were calculated and pairwise comparison was performed to assess statistical significance (P < .05). The detection of decompression by needle colorimetric capnography was found to be 100% accurate (15 of 15 attempts), when compared with thoracoscopic assessment (true decompression). Furthermore, it accurately detected the lack of tension pneumothorax, that is, the absence of any pathologic/space-occupying lesion, in 100% of cases (10 of 10 attempts). Standard of care needle decompression was detected by operators in 9 of 15 attempts (60%) and was detected in 3 of 10 attempts when tension pneumothorax was not present (30%). True decompression, under direct visualization with thoracoscopy, occurred 15 of 15 times (100%) with capnography, and 12 of 15 times (80%) without capnography. Areas under receiver operating curves were 0.65 for standard of care and 1.0 for needle capnography (P = .002). Needle decompression with colorimetric capnography provides a rapid, effective, and highly accurate method for eliminating operator bias for tension pneumothorax decompression. This may be useful for the treatment of this life-threatening condition. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Testosterone treatment diminishes sickness behavior in male songbirds.

    PubMed

    Ashley, Noah T; Hays, Quentin R; Bentley, George E; Wingfield, John C

    2009-06-01

    Males of many vertebrate species are typically more prone to disease and infection than female conspecifics, and this sexual difference is partially influenced by the immunosuppressive properties of testosterone (T) in males. T-induced immunosuppression has traditionally been viewed as a pleiotropic handicap, rather than an adaptation. Recently, it has been hypothesized that suppression of sickness behavior, or the symptoms of infection, may have adaptive value if sickness interferes with the expression of T-mediated behaviors important for male reproductive success. We conduct a classic hormone replacement experiment to examine if T suppresses sickness behavior in a seasonally-breeding songbird, Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). Triggered experimentally by bacterial lipopolysaccharide (LPS), sickness behavior includes decreased activity, anorexia, and weight loss. Gonadectomized (GDX) males that were treated with silastic implants filled with T exhibited suppression of behavioral and physiological responses to LPS compared to GDX and sham-GDX controls given empty implants. Sickness responses of control groups were statistically indistinguishable. T-implanted birds had significantly higher plasma T than control groups and levels were within the range associated with aggressive interactions during male-to-male contests. These findings imply that suppression of sickness behavior could occur when T is elevated to socially-modulated levels. Alternatively, it is possible that this suppressive effect is mediated through a stress-induced mechanism, as corticosterone levels were elevated in T-implanted subjects compared to controls. We propose that males wounded and infected during contests may gain a brief selective advantage by suppressing sickness responses that would otherwise impair competitive performance. The cost of immunosuppression would be manifested in males through an increased susceptibility to disease, which is presumably offset by capitalizing upon limited reproductive opportunities.

  19. The effect of autogenic training and biofeedback on motion sickness tolerance.

    PubMed

    Jozsvai, E E; Pigeau, R A

    1996-10-01

    Motion sickness is characterized by symptoms of vomiting, drowsiness, fatigue and idiosyncratic changes in autonomic nervous system (ANS) responses such as heart rate (HR) and skin temperature (ST). Previous studies found that symptoms of motion sickness are controllable through self-regulation of ANS responses and the best method to teach such control is autogenic-feedback (biofeedback) training. Recent experiments indicated that biofeedback training is ineffective in reducing symptoms of motion sickness or in increasing tolerance to motion. If biofeedback facilitates learning of ANS self-regulation then autogenic training with true feedback (TFB) should lead to better control over ANS responses and better motion tolerance than autogenic training with false feedback (FFB). If there is a relationship between ANS self-regulation and coping with motion stress, a significant correlation should be found between amounts of control over ANS responses and measures of motion tolerance and/or symptoms of motion sickness. There were 3 groups of 6 subjects exposed for 6 weeks to weekly sessions of Coriolis stimulation to induce motion sickness. Between the first and second Coriolis sessions, subjects in the experimental groups received five episodes of autogenic training with either true (group TFB) or false (group FFB) feedback on their HR and ST. The control group (CTL) received no treatment. Subjects learned to control their HR and ST independent of whether they received true or false feedback. Learned control of ST and HR was not related to severity of motion sickness or subject's ability to withstand Coriolis stimulation following treatment. A lack of significant correlation between these variables suggested that subjects were not able to apply their skills of ANS self-regulation in the motion environment, and/ or such skills had little value in reducing symptoms of motion sickness or enhancing their ability to withstand rotations.

  20. Cardiopulmonary Changes with Moderate Decompression in Rats

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Little, T.; Doursout, M.-F.; Butler, B. D.; Chelly, J. E.

    1996-01-01

    Sprague-Dawley rats were compressed to 616 kPa for 120 min then decompressed at 38 kPa/min to assess the cardiovascular and pulmonary responses to moderate decompression stress. In one series of experiments the rats were chronically instrumented with Doppler ultrasonic probes for simultaneous measurement of blood pressure, cardiac output, heart rate, left and right ventricular wall thickening fraction, and venous bubble detection. Data were collected at base-line, throughout the compression/decompression protocol, and for 120 min post decompression. In a second series of experiments the pulmonary responses to the decompression protocol were evaluated in non-instrumented rats. Analyses included blood gases, pleural and bronchoalveolar lavage (BAL) protein and hemoglobin concentration, pulmonary edema, BAL and lung tissue phospholipids, lung compliance, and cell counts. Venous bubbles were directly observed in 90% of the rats where immediate post-decompression autopsy was performed and in 37% using implanted Doppler monitors. Cardiac output, stroke volume, and right ventricular wall thickening fractions were significantly decreased post decompression, whereas systemic vascular resistance was increased suggesting a decrease in venous return. BAL Hb and total protein levels were increased 0 and 60 min post decompression, pleural and plasma levels were unchanged. BAL white blood cells and neutrophil percentages were increased 0 and 60 min post decompression and pulmonary edema was detected. Venous bubbles produced with moderate decompression profiles give detectable cardiovascular and pulmonary responses in the rat.

  1. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  2. Lupines, manganese, and devil-sickness: an Anglo-Saxon medical response to epilepsy.

    PubMed

    Dendle, P

    2001-01-01

    The most frequently prescribed herb for "devil-sickness" in the vernacular medical books from Anglo-Saxon England, the lupine, is exceptionally high in manganese. Since manganese depletion has been linked with recurring seizures in both clinical and experimental studies, it is possible that lupine administration responded to the particular pathophysiology of epilepsy. Lupine is not prescribed for seizures in classical Mediterranean medical sources, implying that the Northern European peoples (if not the Anglo-Saxons themselves) discovered whatever anticonvulsive properties the herb may exhibit.

  3. Modafinil as a potential motion sickness countermeasure.

    PubMed

    Hoyt, Robert E; Lawson, Benton D; McGee, Heather A; Strompolis, Melissa L; McClellan, Molly A

    2009-08-01

    Motion sickness adversely affects military air and sea operations. Medications help prevent motion sickness but are frequently associated with side effects. Better medications or combinations of medications are needed. Dextroamphetamine has documented anti-motion sickness effects but also has a potential for abuse. Modafinil is a relatively new central nervous system stimulant that has none of the drawbacks of dextroamphetamine, but has not been evaluated for the treatment of motion sickness. This double-blind, placebo-controlled study evaluated the anti-motion sickness efficacy of modafinil, alone or in combination with oral scopolamine. Moderate nausea was induced via a Coriolis cross-coupling stimulus. There were 60 participants who were assigned randomly to 1 of 3 conditions: 1) 2 placebo pills (DP); 2) modafinil plus placebo (MP); or 3) modafinil plus oral scopolamine (MS). The primary measure of drug efficacy was the number of head tilts tolerated upon reaching moderate nausea for 1 min without abatement. The combination of modafinil and scopolamine (MS) allowed subjects to tolerate significantly more head tilts than placebo, but modafinil alone (MP) failed to differ significantly from placebo (DP). No significant cognitive performance decrements were observed among the three experimental conditions. Modafinil was not found to be more effective than placebo. Further testing is recommended to determine whether the potentially promising combination of modafinil and scopolamine provides better efficacy or fewer side effects than scopolamine administered alone.

  4. Use of the impedance threshold device improves survival rate and neurological outcome in a swine model of asphyxial cardiac arrest*.

    PubMed

    Pantazopoulos, Ioannis N; Xanthos, Theodoros T; Vlachos, Ioannis; Troupis, Georgios; Kotsiomitis, Evangelos; Johnson, Elisabeth; Papalois, Apostolos; Skandalakis, Panagiotis

    2012-03-01

    To assess whether intermittent impedance of inspiratory gas exchange improves hemodynamic parameters, 48-hr survival, and neurologic outcome in a swine model of asphyxial cardiac arrest treated with active compression-decompression cardiopulmonary resuscitation. Prospective, randomized, double-blind study. Laboratory investigation. Thirty healthy Landrace/Large-White piglets of both sexes, aged 10 to 15 wks, whose average weight was 19 ± 2 kg. At approximately 7 mins following endotracheal tube clamping, ventricular fibrillation was induced and remained untreated for another 8 mins. Before initiation of cardiopulmonary resuscitation, animals were randomly assigned to either receive active compression-decompression cardiopulmonary resuscitation plus a sham impedance threshold device (control group, n = 15), or active compression-decompression cardiopulmonary resuscitation plus an active impedance threshold device (experimental group, n = 15). Electrical defibrillation was attempted every 2 mins until return of spontaneous circulation or asystole. Return of spontaneous circulation was observed in six (40%) animals treated with the sham valve and 14 (93.3%) animals treated with the active valve (p = .005, odds ratio 21.0, 95% confidence interval 2.16-204.6). Neuron-specific enolase and S-100 levels increased in the ensuing 4 hrs post resuscitation in both groups, but they were significantly elevated in animals treated with the sham valve (p < .01). At 48 hrs, neurologic alertness score was significantly better in animals treated with the active valve (79.1 ± 18.7 vs. 50 ± 10, p < .05) and was strongly negatively correlated with 1- and 4-hr postresuscitation neuron-specific enolase (r = -.86, p < .001 and r = -.87, p < .001, respectively) and S-100 (r = -.77, p < .001 and r = -0.8, p = .001) values. In this model of asphyxial cardiac arrest, intermittent airway occlusion with the impedance threshold device during the decompression phase of active compression-decompression cardiopulmonary resuscitation significantly improved hemodynamic parameters, 24- and 48-hr survival, and neurologic outcome evaluated both with clinical and biochemical parameters (neuron-specific enolase, S-100).

  5. Do lower vertebrates suffer from motion sickness?

    NASA Astrophysics Data System (ADS)

    Lychakov, Dmitri

    The poster presents literature data and results of the author’s studies with the goal to find out whether the lower animals are susceptible to motion sickness (Lychakov, 2012). In our studies, fish and amphibians were tested for 2 h and more by using a rotating device (f = 0.24 Hz, a _{centrifugal} = 0.144 g) and a parallel swing (f = 0.2 Hz, a _{horizontal} = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any characteristic reactions of the motion sickness (sopite syndrome, prodromal preparatory behavior, vomiting). At the same time, in toads there appeared characteristic stress reactions (escape response, an increase of the number of urinations, inhibition of appetite), as well as some other reactions not associated with motion sickness (regular head movements, eye retractions). In trout fry the used stimulation promoted division of the individuals into the groups differing by locomotor reaction to stress, as well as the individuals with the well-expressed compensatory reaction that we called the otolithotropic reaction. Analysis of results obtained by other authors confirms our conclusions. Thus, the lower vertebrates, unlike mammals, are immune to motion sickness either under the land conditions or under conditions of weightlessness. On the basis of available experimental data and theoretical concepts of mechanisms of development the motion sickness, formulated in several hypotheses (mismatch hypothesis, Traisman‘ s hypothesis, resonance hypothesis), there presented the synthetic hypothesis of motion sickness that has the conceptual significance. According to the hypothesis, the unusual stimulation producing sensor-motor or sensor-sensor conflict or an action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by CNS as poisoning and causes the corresponding reactions. The motion sickness actually is a byproduct of technical evolution. It is suggested that in the lower vertebrates, unlike mammals, there is absent the hypothetical center of subjective «nauseating» sensations; therefore, they are immune to the motion sickness. This work was partly supported by Russian grant RFFI 14-04-00601.

  6. Decompression scenarios in a new underground transportation system.

    PubMed

    Vernez, D

    2000-10-01

    The risks of a public exposure to a sudden decompression, until now, have been related to civil aviation and, at a lesser extent, to diving activities. However, engineers are currently planning the use of low pressure environments for underground transportation. This method has been proposed for the future Swissmetro, a high-speed underground train designed for inter-urban linking in Switzerland. The use of a low pressure environment in an underground public transportation system must be considered carefully regarding the decompression risks. Indeed, due to the enclosed environment, both decompression kinetics and safety measures may differ from aviation decompression cases. A theoretical study of decompression risks has been conducted at an early stage of the Swissmetro project. A three-compartment theoretical model, based on the physics of fluids, has been implemented with flow processing software (Ithink 5.0). Simulations have been conducted in order to analyze "decompression scenarios" for a wide range of parameters, relevant in the context of the Swissmetro main study. Simulation results cover a wide range from slow to explosive decompression, depending on the simulation parameters. Not surprisingly, the leaking orifice area has a tremendous impact on barotraumatic effects, while the tunnel pressure may significantly affect both hypoxic and barotraumatic effects. Calculations have also shown that reducing the free space around the vehicle may mitigate significantly an accidental decompression. Numeric simulations are relevant to assess decompression risks in the future Swissmetro system. The decompression model has proven to be useful in assisting both design choices and safety management.

  7. Effect of Orbital Decompression on Corneal Topography in Patients with Thyroid Ophthalmopathy

    PubMed Central

    Kim, Su Ah; Jung, Su Kyung; Paik, Ji Sun; Yang, Suk-Woo

    2015-01-01

    Objective To evaluate changes in corneal astigmatism in patients undergoing orbital decompression surgery. Methods This retrospective, non randomized comparative study involved 42 eyes from 21 patients with thyroid ophthalmopathy who underwent orbital decompression surgery between September 2011 and September 2014. The 42 eyes were divided into three groups: control (9 eyes), two-wall decompression (25 eyes), and three-wall decompression (8 eyes). The control group was defined as the contralateral eyes of nine patients who underwent orbital decompression surgery in only one eye. Corneal topography (Orbscan II), Hertel exophthalmometry, and intraocular pressure were measured at 1 month before and 3 months after surgery. Corneal topographic parameters analyzed were total astigmatism (TA), steepest axis (SA), central corneal thickness (CCT), and anterior chamber depth (ACD). Results Exophthalmometry values and intraocular pressure decreased significantly after the decompression surgery. The change (absolute value (|x|) of the difference) in astigmatism at the 3 mm zone was significantly different between the decompression group and the controls (p = 0.025). There was also a significant change in the steepest axis at the 3 mm zone between the decompression group and the controls (p = 0.033). An analysis of relevant changes in astigmatism showed that there was a dominant tendency for incyclotorsion of the steepest axis in eyes that underwent decompression surgery. Using Astig PLOT, the mean surgically induced astigmatism (SIA) was 0.21±0.88 D with an axis of 46±22°, suggesting that decompression surgery did change the corneal shape and induced incyclotorsion of the steepest axis. Conclusions There was a significant change in corneal astigmatism after orbital decompression surgery and this change was sufficient to affect the optical function of the cornea. Surgeons and patients should be aware of these changes. PMID:26352432

  8. Modeling a 15-min extravehicular activity prebreathe protocol using NASA's exploration atmosphere (56.5 kPa/34% O2)

    NASA Astrophysics Data System (ADS)

    Abercromby, Andrew F. J.; Conkin, Johnny; Gernhardt, Michael L.

    2015-04-01

    NASA's plans for future human exploration missions utilize a new atmosphere of 56.5 kPa (8.2 psia), 34% O2, 66% N2 to enable rapid extravehicular activity (EVA) capability with minimal gas losses; however, existing EVA prebreathe protocols to mitigate risk of decompression sickness (DCS) are not applicable to the new exploration atmosphere. We provide preliminary analysis of a 15-min prebreathe protocol and examine the potential benefits of intermittent recompression (IR) and an abbreviated N2 purge on crew time and gas consumables usage. A probabilistic model of decompression stress based on an established biophysical model of DCS risk was developed, providing significant (p<0.0001) prediction and goodness-of-fit with 84 cases of DCS in 668 human altitude exposures including a variety of pressure profiles. DCS risk for a 15-min prebreathe protocol was then estimated under different exploration EVA scenarios. Estimated DCS risk for all EVA scenarios modeled using the 15-min prebreathe protocol ranged between 6.1% and 12.1%. Supersaturation in neurological tissues (5- and 10-min half-time compartments) is prevented and tissue tensions in faster half-time compartments (≤40 min), where the majority of whole-body N2 is located, are reduced to about the levels (30.0 vs. 27.6 kPa) achieved during a standard Shuttle prebreathe protocol. IR reduced estimated DCS risk from 9.7% to 7.9% (1.8% reduction) and from 8.4% to 6.1% (2.3% reduction) for the scenarios modeled; the penalty of N2 reuptake during IR may be outweighed by the benefit of decreased bubble size. Savings of 75% of purge gas and time (0.22 kg gas and 6 min of crew time per person per EVA) are achievable by abbreviating the EVA suit purge to 20% N2 vs. 5% N2 at the expense of an increase in estimated DCS risk from 9.7% to 12.1% (2.4% increase). A 15-min prebreathe protocol appears feasible using the new exploration atmosphere. IR between EVAs may enable reductions in suit purge and prebreathe requirements, decompression stress, and/or suit operating pressures. Ground trial validation is required before operational implementation.

  9. New discoveries in the transmission biology of sleeping sickness parasites: applying the basics.

    PubMed

    MacGregor, Paula; Matthews, Keith R

    2010-09-01

    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available.

  10. Decompression from He-N2-O2 (TRIMIX) Bounce Dives Is Not More Efficient Than From He-O2 (HELIOX) Bounce Dives

    DTIC Science & Technology

    2015-05-28

    Diver Characteristics Appendix E Diving Schedule Appendix F Medical Incidents Appendix G UBA Gas Compositions iv ACKNOWLEDGEMENTS The...experimental dives (median = 3). The schedule of each diver’s participation in experimental dives is given in Appendix E . Divers were required to avoid any...divers’ participation on each test schedule is given in Appendix E . The numbers of completed man-dives on the two schedules are not multiples of the

  11. Pictorial essay: Role of ultrasound in failed carpal tunnel decompression.

    PubMed

    Botchu, Rajesh; Khan, Aman; Jeyapalan, Kanagaratnam

    2012-01-01

    USG has been used for the diagnosis of carpal tunnel syndrome. Scarring and incomplete decompression are the main causes for persistence or recurrence of symptoms. We performed a retrospective study to assess the role of ultrasound in failed carpal tunnel decompression. Of 422 USG studies of the wrist performed at our center over the last 5 years, 14 were for failed carpal tunnel decompression. Scarring was noted in three patients, incomplete decompression in two patients, synovitis in one patient, and an anomalous muscle belly in one patient. No abnormality was detected in seven patients. We present a pictorial review of USG findings in failed carpal tunnel decompression.

  12. Pictorial essay: Role of ultrasound in failed carpal tunnel decompression

    PubMed Central

    Botchu, Rajesh; Khan, Aman; Jeyapalan, Kanagaratnam

    2012-01-01

    USG has been used for the diagnosis of carpal tunnel syndrome. Scarring and incomplete decompression are the main causes for persistence or recurrence of symptoms. We performed a retrospective study to assess the role of ultrasound in failed carpal tunnel decompression. Of 422 USG studies of the wrist performed at our center over the last 5 years, 14 were for failed carpal tunnel decompression. Scarring was noted in three patients, incomplete decompression in two patients, synovitis in one patient, and an anomalous muscle belly in one patient. No abnormality was detected in seven patients. We present a pictorial review of USG findings in failed carpal tunnel decompression. PMID:22623813

  13. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  14. Microstructures Developed During Natural and Experimental Decompression of Peridotite From Pressures of 10-15 GPa

    NASA Astrophysics Data System (ADS)

    Green, H. W.; Dobrzhinetskaya, L. F.

    2004-12-01

    Evidence is now robust that continental rocks and sediments can be subducted to P > 6 GPa during continental collision and returned to the surface. Moreover, mantle rocks exhumed with this subducted material carry evidence of P > 9 GPa and perhaps much more. We present a short review of natural examples and discuss them in the context of decompression experiments conducted on garnet lherzolite over the range 14 -> 5 GPa. Experiments at 14 GPa dissolved all enstatite (En) and about 85% diopside (Di) into garnet, yielding run products of 40% Ol + 55% Grt + 5% Di. Re-annealing this product at 13 or 12 GPa resulted in exsolution of Di as blebs at garnet grain boundaries and oriented platelets of Ol chemistry within grt. Specimens first equilibrated at 8 GPa dissolved abundant En but little Di. When re-annealed at 5 GPa, En exsolved as blebs at garnet boundaries -- very similar to interstitial blebs of enstatite along grt grain boundaries in UHP (>200 km) Norwegian grt-harzburgite. In the latter rocks, abundant En and rare Di exsolution lamellae are also found in the cores of large garnets. Our experiments do not show such lamellae, supporting the arguments of van Roermund and Drury (1998) that they are produced only in the cores of large grains and that the interstitial pyroxenes found in their specimens are also exsolution products. Ol has not been reported with exsolution morphology in natural UHP products, nor did we observe it in our experiments at P = 5 GPa. On the other hand, our observation that Ol may be exsolved during decompression of majoritic garnet during decompression at higher P is consistent with expansion of the garnet field at the expense of wadsleyite at P > 13 GPa reported by Ringwood (1991). Di, En, and/or Ol do occur along grain boundaries within larger polycrystalline garnets and within embayments at the margins of smaller amoeboid garnets in subduction zone garnet peridotites. Such garnets also may contain rounded, non-oriented, inclusions of each of these minerals, or all three together, consistent with the results of majoritic garnet decompression presented above. Our results suggest that some Ol in this microstructure may have exsolved during decompression of majoritic garnet.

  15. Influence of long-term intermittent exposures to hypoxia on decompression-induced pulmonary haemorrhage.

    PubMed Central

    Fang, H S; Chen, C F

    1976-01-01

    Healthy male rats were acclimatized by being placed in a decompression chamber at a simulated altitude of 18 000 feet (5486 m) for three hours daily for 84 days. The altitude acclimatized rats paired with unacclimatized rats were rapidly decompressed together. The range of decompression was performed from on atmospheric pressure to an ambient pressure of 30 mmHg in 0-2 seconds. It was found that in control rats, 14 of 20 lung (70%) exhibited pulmonary haemorrhage following rapid decompression. In altitude acclimatized rats, however, only 6 of 20 (30%) revealed decompression-induced haemorrhage. The difference was statistically significant. The present findings indicate that long-term intermittent exposures to hypoxia might increase the resistance of pulmonary tissue to rapid decompression, resulting in a decrease in frequency and severity of pulmonary haemorrhage. The possible mechanism of such a phenomenon is discussed. PMID:1257942

  16. Low back pain media campaign: no effect on sickness behaviour.

    PubMed

    Werner, Erik L; Ihlebaek, Camilla; Laerum, Even; Wormgoor, Marjon E A; Indahl, Aage

    2008-05-01

    To evaluate the effect of a media campaign on popular beliefs about LBP, and eventual changes in sick leave, imaging examinations, and surgery. Quasi-experimental telephone survey of 1500 randomly chosen people before, during, and after a media campaign in two Norwegian counties, with residents of an adjacent county as the control group. Data on sickness absence, surgery rates for disc herniation and imaging examinations on LBP in the area were collected at the same intervals. The campaign led to a small but statistically significant shift in beliefs about LBP in the general public. In particular, beliefs about the use of X-rays, and the importance of remaining active and at work, seemed to have changed in response to the campaign messages. However, this change in attitude and understanding of the condition did not lead to any corresponding change in sickness behaviour. Although the media campaign seemed to somewhat improve beliefs about LBP in the general public, the magnitude of this was too small to produce any significant change in behaviour. A media campaign on LBP should not be limited to small areas and low-budget. A much larger investment is needed for a media campaign to have sufficient impact on public's beliefs on LBP to lead to altered sickness behaviour.

  17. Trends in Orbital Decompression Techniques of Surveyed American Society of Ophthalmic Plastic and Reconstructive Surgery Members.

    PubMed

    Reich, Shani S; Null, Robert C; Timoney, Peter J; Sokol, Jason A

    To assess current members of the American Society of Ophthalmic Plastic and Reconstructive Surgery (ASOPRS) regarding preference in surgical techniques for orbital decompression in Graves' disease. A 10-question web-based, anonymous survey was distributed to oculoplastic surgeons utilizing the ASOPRS listserv. The questions addressed the number of years of experience performing orbital decompression surgery, preferred surgical techniques, and whether orbital decompression was performed in collaboration with an ENT surgeon. Ninety ASOPRS members participated in the study. Most that completed the survey have performed orbital decompression surgery for >15 years. The majority of responders preferred a combined approach of floor and medial wall decompression or balanced lateral and medial wall decompression; only a minority selected a technique limited to 1 wall. Those surgeons who perform fat decompression were more likely to operate in collaboration with ENT. Most surgeons rarely remove the orbital strut, citing risk of worsening diplopia or orbital dystopia except in cases of optic nerve compression or severe proptosis. The most common reason given for performing orbital decompression was exposure keratopathy. The majority of surgeons perform the surgery without ENT involvement, and number of years of experience did not correlate significantly with collaboration with ENT. The majority of surveyed ASOPRS surgeons prefer a combined wall approach over single wall approach to initial orbital decompression. Despite the technological advances made in the field of modern endoscopic surgery, no single approach has been adopted by the ASOPRS community as the gold standard.

  18. Decompression management by 43 models of dive computer: single square-wave exposures to between 15 and 50 metres' depth.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2014-12-01

    Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.

  19. Thermal vesiculation during volcanic eruptions.

    PubMed

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive-explosive transition in volcanic eruptions.

  20. Individual Susceptibility to Hypobaric Environments: An Update

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Watkins, Sharmi

    2009-01-01

    Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from neutral buoyancy training dives. There is increasing recognition that DCS risk is different between diving and altitude exposures, with many individual parameters and environmental factors implicated as risk factors for development of DCS in divers but are not recognized as risk factors in altitude exposures. Much of the literature to date has focused on patent foramen ovale (PFO), which has long been considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude exposures remains unclear. Knowledge of those risk factors specific to hypobaric DCS may help identify susceptible individuals and aid in astronaut selection, crew assignment, and mission planning. This paper reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement activation, cigarette smoking, fluid balance, and ambient temperature. Further research to evaluate pertinent risk factors for DCS in altitude exposures is recommended.

  1. Inner Ear Barotrauma After Underwater Pool Competency Training Without the Use of Compressed Air Case and Review.

    PubMed

    McIntire, Sean; Boujie, Lee

    2016-01-01

    Inner ear barotrauma can occur when the gas-filled chambers of the ear have difficulty equalizing pressure with the outside environment after changes in ambient pressure. This can transpire even with small pressure changes. Hypobaric or hyperbaric environments can place significant stress on the structures of the middle and inner ear. If methods to equalize pressure between the middle ear and other connected gas-filled spaces (i.e., Valsalva maneuver) are unsuccessful, middle ear overpressurization can occur. This force can be transmitted to the fluid-filled inner ear, making it susceptible to injury. Damage specifically to the structures of the vestibulocochlear system can lead to symptoms of vertigo, hearing loss, and tinnitus. This article discusses the case of a 23-year-old male Marine who presented with symptoms of nausea and gait instability after performing underwater pool competency exercises to a maximum depth of 13 feet, without breathing compressed air. Diagnosis and management of inner ear barotrauma are reviewed, as is differentiation from inner ear decompression sickness. 2016.

  2. Neuropsychological Testing of Astronauts

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher; Vander Ark, Steve; Eksuzian, Daniel; Sipes, Walter; Kane, Robert; Vanderploeg, Rodney; Retzlaff, Paul; Elsmore, Tim; Moore, Jeffrey

    2004-01-01

    The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a computer program that administers a battery of five timed neuro-cognitive tests. WinSCAT was developed to give astronauts an objective and automated means of assessing their cognitive functioning during space flight, as compared with their own baseline performances measured during similar prior testing on the ground. WinSCAT is also intended for use by flight surgeons to assess cognitive impairment after exposure of astronauts to such cognitive assaults as head trauma, decompression sickness, and exposure to toxic gas. The tests were selected from among a group of tests, denoted the Automated Neuropsychological Assessment Metrics, that were created by the United States Navy and Army for use in evaluating the cognitive impairment of military personnel who have been subjected to medication or are suspected to have sustained brain injuries. These tests have been validated in a variety of clinical settings and are now in the public domain. The tests are presented in a Microsoft Windows shell that facilitates administration and enables immediate reporting of test scores in numerical and graphical forms.

  3. Bubbles in live-stranded dolphins.

    PubMed

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-07

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  4. Pulmonary artery location during microgravity activity: Potential impact for chest-mounted Doppler during space travel

    NASA Technical Reports Server (NTRS)

    Hadley, A. T., III; Conkin, J.; Waligora, J. M.; Horrigan, D. J., Jr.

    1984-01-01

    Doppler, or ultrasonic, monitoring for pain manifestations of decompression sickness (the bends) is accomplished by placing a sensor on the chest over the pulmonary artery and listening for bubbles. Difficulties have arisen because the technician notes that the pulmonary artery seems to move with subject movement in a one-g field and because the sensor output is influenced by only slight degrees of sensor movement. This study used two subjects and mapped the position of the pulmonary artery in one-g, microgravity, and two-g environments using ultrasound. The results showed that the pulmonary artery is fixed in location in microgravity and not affected by subject position change. The optimal position corresponded to where the Doppler signal is best heard with the subject in a supine position in a one-g environment. The impact of this result is that a proposed multiple sensor array on the chest proposed for microgravity use may not be necessary to monitor an astronaut during extravehicular activities. Instead, a single sensor of approximately 1 inch diameter and mounted in the position described above may suffice.

  5. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  6. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  7. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  8. 46 CFR Appendix A to Part 197 - Air No-Decompression Limits

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air No-Decompression Limits A Appendix A to Part 197... STANDARDS GENERAL PROVISIONS Pt. 197, App. A Appendix A to Part 197—Air No-Decompression Limits The following table gives the depth versus bottom time limits for single, no-decompression, air dives made...

  9. Relative efficacy of the proposed Space Shuttle antimotion sickness medications

    NASA Astrophysics Data System (ADS)

    Hordinsky, J. R.; Schwartz, E.; Beier, J.; Martin, J.; Aust, G.

    1982-07-01

    Space motion sickness has been estimated as affecting between 1/3 and 1/2 of all space flight participants. NASA has at the moment proposed a combination of promethazine and ephedrine ( P/E) and one of scopolamine and dextroamphetamine ( S/D), both given orally, as well as a transdermally applied scopolamine (TAS), as preventive and ameliorative measures. The reported double-blind study tests the early phase actions and efficacy of the transdermal scopolamine (Transderm ™-V of ALZA Corporation) and compares these in detail to the oral medications. Motion sickness resistance was tested by standardized head movements while accelerating at 0.2°/sec 2 to a maximum rotation of 240°/sec, with an intermediate plateau of 10 min at 180°/sec. To permit weighting motion sickness protection against other system influences, cardiovascular, psychological (subjective and objective), and visual parameter changes were documented for the three therapeutic modes. The relative impact of the various modalities on operational and experimental components of space missions is discussed. A comparison to intramuscularly administered promethazine (a backup therapeutic mode suggested for Space Shuttle use) is also included.

  10. New pharmacologic approaches to the prevention of space/motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Macdonald, Scott

    1991-01-01

    Three fundamental approaches used in the selection of new agents for the evaluation in the prevention of space-motion sickness (SMS) are reviewed, with emphasis on drugs under investigation at the Johnson Space Center. These approaches are: (1) the selection of agents from drug classes that possess pharmacologic properties of established antimotion sickness agents, (2) the selection of drugs that are used to prevent emesis caused by means other than the exposure to motion, and (3) basic research that characterizes individual differences in susceptibility to SMS. In the latter type of studies, it was found that subjects who were more resistant to SMS had higher plasma AVP after severe nausea than subjects with lower resistance. The review details the experimental data collected on AVP and adrenocorticotropin. It is noted that data support interrelated roles for AVP and opioid peptides in SMS.

  11. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.

    PubMed

    Mishima, Osamu

    2011-12-08

    Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water. © 2011 American Chemical Society

  12. Surgical decompression is associated with decreased mortality in patients with sepsis and ureteral calculi.

    PubMed

    Borofsky, Michael S; Walter, Dawn; Shah, Ojas; Goldfarb, David S; Mues, Adam C; Makarov, Danil V

    2013-03-01

    The combination of sepsis and ureteral calculus is a urological emergency. Traditional teaching advocates urgent decompression with nephrostomy tube or ureteral stent placement, although published outcomes validating this treatment are lacking. National practice patterns for such scenarios are currently undefined. Using a retrospective study design, we defined the surgical decompression rate in patients admitted to the hospital with severe infection and ureteral calculi. We determined whether a mortality benefit is associated with this intervention. Patient demographics and hospital characteristics were extracted from the 2007 to 2009 Nationwide Inpatient Sample. We identified 1,712 patients with ureteral calculi and sepsis. Multivariate logistic regression was performed to determine the association between mortality and surgical decompression. Of the patients 78% underwent surgical decompression. Mortality was higher in those not treated with surgical decompression (19.2% vs 8.82%, p <0.001). Lack of surgical decompression was independently associated with an increased OR of mortality even when adjusting for patient demographics, comorbidities and geographic region of treatment (OR 2.6, 95% CI 1.9-3.7). Absent surgical decompression is associated with higher odds of mortality in patients with sepsis and ureteral calculi. Further research to determine predictors of surgical decompression is necessary to ensure that all patients have access to this life saving therapy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Influence of surgical decompression on the expression of inflammatory and tissue repair biomarkers in periapical cysts.

    PubMed

    Rodrigues, Janderson Teixeira; Dos Santos Antunes, Henrique; Armada, Luciana; Pires, Fábio Ramôa

    2017-12-01

    The biologic effects of surgical decompression on the epithelium and connective tissues of periapical cysts are not fully understood. The aim of this study was to evaluate the expression of tissue repair and inflammatory biomarkers in periapical cysts before and after surgical decompression. Nine specimens of periapical cysts treated with decompression before undergoing complete enucleation were immunohistochemically analyzed to investigate the expression of interleukin-1β, tumor necrosis factor-α, transforming growth factor-β1, matrix metalloproteinase-9, Ki-67, and epidermal growth factor receptor. Expression of the biomarkers was classified as positive, focal, or negative. Ki-67 immunoexpression was calculated as a cell proliferation index. The expression of the biomarkers was compared in the specimens from decompression and from the final surgical procedure. Computed tomography demonstrated that volume was reduced in all cysts after decompression. There were no differences in the immunoexpression of the proinflammatory and tissue repair biomarkers when comparing the specimens obtained before and after the decompression. Surgical decompression was efficient in reducing the volume of periapical cysts before complete enucleation. When comparing the specimens obtained from surgical decompression and from complete surgical removal, the immunohistochemical analysis did not show a decrease in proinflammatory biomarkers; neither did it show an increase in tissue repair biomarkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Temporary percutaneous T-fastener gastropexy and continuous decompressive gastrostomy in dogs with experimentally induced gastric dilatation.

    PubMed

    Fox-Alvarez, W Alexander; Case, J Brad; Cooke, Kirsten L; Garcia-Pereira, Fernando L; Buckley, Gareth J; Monnet, Eric; Toskich, Beau B

    2016-07-01

    OBJECTIVE To evaluate a percutaneous, continuous gastric decompression technique for dogs involving a temporary T-fastener gastropexy and self-retaining decompression catheter. ANIMALS 6 healthy male large-breed dogs. PROCEDURES Dogs were anesthetized and positioned in dorsal recumbency with slight left-lateral obliquity. The gastric lumen was insufflated endoscopically until tympany was evident. Three T-fasteners were placed percutaneously into the gastric lumen via the right lateral aspect of the abdomen, caudal to the 13th rib and lateral to the rectus abdominis muscle. Through the center of the T-fasteners, a 5F locking pigtail catheter was inserted into the gastric lumen and attached to a device measuring gas outflow and intragastric pressure. The stomach was insufflated to 23 mm Hg, air was allowed to passively drain from the catheter until intraluminal pressure reached 5 mm Hg for 3 cycles, and the catheter was removed. Dogs were hospitalized and monitored for 72 hours. RESULTS Mean ± SD catheter placement time was 3.3 ± 0.5 minutes. Mean intervals from catheter placement to a ≥ 50% decrease in intragastric pressure and to ≤ 6 mm Hg were 2.1 ± 1.3 minutes and 8.4 ± 5.1 minutes, respectively. After catheter removal, no gas or fluid leakage at the catheter site was visible laparoscopically or endoscopically. All dogs were clinically normal 72 hours after surgery. CONCLUSIONS AND CLINICAL RELEVANCE The described technique was performed rapidly and provided continuous gastric decompression with no evidence of postoperative leakage in healthy dogs. Investigation is warranted to evaluate its effectiveness in dogs with gastric dilatation-volvulus.

  15. Susceptibility of the squirrel monkey to different motion conditions

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Daunton, Nancy G.; Coleman, J.

    1991-01-01

    The exact stimulus eliciting vomiting in animal studies of motion sickness is difficult to specify because the vestibular stimulation produced by many motion conditions is confounded by voluntary movements with animals. This is an important problem because experiments with animal models of motion sickness can provide useful information about antimotion sickness drugs or the role of neural mechanisms, only when animals are exposed to the same motion stimuli in each experimental session. A series of tests were conducted to determine the susceptibility of 15 adult squirrel monkeys to motion sickness in freely moving and restrained test conditions. Canal stimulation was varied by exposing the monkey in freely moving conditions to varying degrees of angular velocity (60, 90, 120, 150 deg/sec), and in restrained conditions to one angular velocity (150 deg/sec) and to cross-coupling effects of whole-body roll movements during rotation. Otolith stimulation was investigated by using sinusoidal vertical linear acceleration during free movement conditions, and off-vertical rotation and earth-horizontal (BBQ) rotation while restrained. The percentage of freely moving animal vomiting during vertical axis rotation was 27, 93, 86, and 92 for the angular velocities of 60, 90, 120, and 150 deg/sec respectively. None of the monkeys vomited during vertical axis rotation or cross-coupled rotation when restrained. Otolith stimulation appears to be a less provocative stimulus for the squirrel monkey as the percentage of animals vomiting were 13, 0, and 7 for the conditions of free movement during oscillation, restraint during off-vertical, and BBQ rotation respectively. Motion sickness to the point of vomiting occurred regularly only in conditions where self-motion was possible. Such effects could occur because voluntary movement during motion augments vestibular effects by producing self-inflicted cross-coupling, but the failure to elicit vomiting with experimenter-coupling cross-coupling argues against this interpretation. Alternatively, these results might imply that feedback from movement control mechanisms may play an important role in sensory conflict as suggested by Oman's sensory-motor conflict theory.

  16. Orbital Decompression

    MedlinePlus

    ... A Complications of Sinusitis Epistaxis (Nosebleeds) Allergic Rhinitis (Hay Fever) Headaches and Sinus Disease Disorders of Smell & ... DCR) Disclosure Statement Printer Friendly Orbital Decompression John Lee, MD INTRODUCTION Orbital decompression is a surgical procedure ...

  17. Skin colour changes during experimentally-induced sickness.

    PubMed

    Henderson, Audrey J; Lasselin, Julie; Lekander, Mats; Olsson, Mats J; Powis, Simon J; Axelsson, John; Perrett, David I

    2017-02-01

    Skin colour may be an important cue to detect sickness in humans but how skin colour changes with acute sickness is currently unknown. To determine possible colour changes, 22 healthy Caucasian participants were injected twice, once with lipopolysaccharide (LPS, at a dose of 2ng/kg body weight) and once with placebo (saline), in a randomised cross-over design study. Skin colour across 3 arm and 3 face locations was recorded spectrophotometrically over a period of 8h in terms of lightness (L ∗ ), redness (a ∗ ) and yellowness (b ∗ ) in a manner that is consistent with human colour perception. In addition, carotenoid status was assessed as we predicted that a decrease it skin yellowness would reflect a drop in skin carotenoids. We found an early change in skin colouration 1-3h post LPS injection with facial skin becoming lighter and less red whilst arm skin become darker but also less red and less yellow. The LPS injection also caused a drop in plasma carotenoids from 3h onwards. However, the timing of the carotenoid changes was not consistent with the skin colour changes suggesting that other mechanisms, such as a reduction of blood perfusion, oxygenation or composition. This is the first experimental study characterising skin colour associated with acute illness, and shows that changes occur early in the development of the sickness response. Colour changes may serve as a cue to health, prompting actions from others in terms of care-giving or disease avoidance. Specific mechanisms underlying these colour changes require further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. An experimental study of permeability development as a function of crystal-free melt viscosity

    NASA Astrophysics Data System (ADS)

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.

    2016-02-01

    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ∼102 to ∼106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection limit (∼10-15 m2), and a maximum porosity of 63 vol.%. Additionally, although the measured porosities of basaltic andesite experiments are ∼10-35 vol.% lower than calculated equilibrium porosities, μ-FTIR analyses confirm the basaltic andesite melts remained in equilibrium during degassing. We show that the low porosities and permeabilities are a consequence of short melt relaxation timescales during syn- and post-decompression degassing. Our results suggest that basaltic andesite melts reached ϕc > 63 vol.% and subsequently degassed; loss of internal bubble pressure caused the bubbles to shrink and their connecting apertures to seal before quench, closing the connected pathways between bubbles. Our results challenge the hypothesis that low viscosity melts have a permeability threshold of ∼30 vol.%, and instead support the high permeability thresholds observed in analogue experiments on low viscosity materials. Importantly, however, these low viscosity melts are unable to maintain high porosities once the percolation threshold is exceeded because of rapid outgassing and collapse of the permeable network. We conclude, therefore, that melt viscosity has little effect on percolation threshold development, but does influence outgassing.

  19. Frequency of decompression illness among recent and extinct mammals and "reptiles": a review

    NASA Astrophysics Data System (ADS)

    Carlsen, Agnete Weinreich

    2017-08-01

    The frequency of decompression illness was high among the extinct marine "reptiles" and very low among the marine mammals. Signs of decompression illness are still found among turtles but whales and seals are unaffected. In humans, the risk of decompression illness is five times increased in individuals with Patent Foramen Ovale; this condition allows blood shunting from the venous circuit to the systemic circuit. This right-left shunt is characteristic of the "reptile" heart, and it is suggested that this could contribute to the high frequency of decompression illness in the extinct reptiles.

  20. Frequency of decompression illness among recent and extinct mammals and "reptiles": a review.

    PubMed

    Carlsen, Agnete Weinreich

    2017-08-01

    The frequency of decompression illness was high among the extinct marine "reptiles" and very low among the marine mammals. Signs of decompression illness are still found among turtles but whales and seals are unaffected. In humans, the risk of decompression illness is five times increased in individuals with Patent Foramen Ovale; this condition allows blood shunting from the venous circuit to the systemic circuit. This right-left shunt is characteristic of the "reptile" heart, and it is suggested that this could contribute to the high frequency of decompression illness in the extinct reptiles.

  1. QRFXFreeze: Queryable Compressor for RFX.

    PubMed

    Senthilkumar, Radha; Nandagopal, Gomathi; Ronald, Daphne

    2015-01-01

    The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreeze, which not only reduces the space of storage but also supports efficient querying. The compressor does this without decompressing the compressed XML file. The compressor supports all kinds of XML documents along with insert, update, and delete operations. The forte of QRFXFreeze is that the textual data are semantically compressed and are indexed to reduce the querying time. Experimental results show that the proposed compressor performs much better than other well-known compressors.

  2. Probabilistic Assessment of Hypobaric Decompression Sickness Treatment Success

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Abercromby, Andrew F. J.; Dervay, Joseph P.; Feiveson, Alan H.; Gernhardt, Michael L.; Norcross, Jason R.; Ploutz-Snyder, Robert; Wessel, James H., III

    2014-01-01

    The Hypobaric Decompression Sickness (DCS) Treatment Model links a decrease in computed bubble volume from increased pressure (DeltaP), increased oxygen (O2) partial pressure, and passage of time during treatment to the probability of symptom resolution [P(symptom resolution)]. The decrease in offending volume is realized in 2 stages: a) during compression via Boyle's Law and b) during subsequent dissolution of the gas phase via the O2 window. We established an empirical model for the P(symptom resolution) while accounting for multiple symptoms within subjects. The data consisted of 154 cases of hypobaric DCS symptoms along with ancillary information from tests on 56 men and 18 women. Our best estimated model is P(symptom resolution) = 1 / (1+exp(-(ln(Delta P) - 1.510 + 0.795×AMB - 0.00308×Ts) / 0.478)), where (DeltaP) is pressure difference (psid), AMB = 1 if ambulation took place during part of the altitude exposure, otherwise AMB = 0; and where Ts is the elapsed time in mins from start of the altitude exposure to recognition of a DCS symptom. To apply this model in future scenarios, values of DeltaP as inputs to the model would be calculated from the Tissue Bubble Dynamics Model based on the effective treatment pressure: (DeltaP) = P2 - P1 | = P1×V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. If 100% ground level O2 (GLO) was breathed in place of air, then V2 continues to decrease through time at P2 at a faster rate. This calculated value of (DeltaP then represents the effective treatment pressure at any point in time. Simulation of a "pain-only" symptom at 203 min into an ambulatory extravehicular activity (EVA) at 4.3 psia on Mars resulted in a P(symptom resolution) of 0.49 (0.36 to 0.62 95% confidence intervals) on immediate return to 8.2 psia in the Multi-Mission Space Exploration Vehicle. The P(symptom resolution) increased to near certainty (0.99) after 2 hrs of GLO at 8.2 psia or with less certainty on immediate pressurization to 14.7 psia [0.90 (0.83 - 0.95)]. Given the low probability of DCS during EVA and the prompt treatment of a symptom with guidance from the model, it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.

  3. Needle Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations

    DTIC Science & Technology

    2012-07-06

    SUBJECT: Needle Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations 2012-05 2 demonstrating the...Decompression of Tension Pneumothorax Tactical Combat Casualty Care Guideline Recommendations 2012-05 3 needle may be too short to reliably reach the...at the AAL as the preferred site for needle decompression of a presumed tension pneumothorax . Further, studies evaluating chest wall thickness are

  4. Factors associated with spinal fusion after posterior fossa decompression in pediatric patients with Chiari I malformation and scoliosis.

    PubMed

    Mackel, Charles E; Cahill, Patrick J; Roguski, Marie; Samdani, Amer F; Sugrue, Patrick A; Kawakami, Noriaki; Sturm, Peter F; Pahys, Joshua M; Betz, Randal R; El-Hawary, Ron; Hwang, Steven W

    2016-12-01

    OBJECTIVE The authors performed a study to identify clinical characteristics of pediatric patients diagnosed with Chiari I malformation and scoliosis associated with a need for spinal fusion after posterior fossa decompression when managing the scoliotic curve. METHODS The authors conducted a multicenter retrospective review of 44 patients, aged 18 years or younger, diagnosed with Chiari I malformation and scoliosis who underwent posterior fossa decompression from 2000 to 2010. The outcome of interest was the need for spinal fusion after decompression. RESULTS Overall, 18 patients (40%) underwent posterior fossa decompression alone, and 26 patients (60%) required a spinal fusion after the decompression. The mean Cobb angle at presentation and the proportion of patients with curves > 35° differed between the decompression-only and fusion cohorts (30.7° ± 11.8° vs 52.1° ± 26.3°, p = 0.002; 5 of 18 vs 17 of 26, p = 0.031). An odds ratio of 1.0625 favoring a need for fusion was established for each 1° of increase in Cobb angle (p = 0.012, OR 1.0625, 95% CI 1.0135-1.1138). Among the 14 patients older than 10 years of age with a primary Cobb angle exceeding 35°, 13 (93%) ultimately required fusion. Patients with at least 1 year of follow-up whose curves progressed more 10° after decompression were younger than those without curve progression (6.1 ± 3.0 years vs 13.7 ± 3.2 years, p = 0.001, Mann-Whitney U-test). Left apical thoracic curves constituted a higher proportion of curves in the decompression-only group (8 of 16 vs 1 of 21, p = 0.002). CONCLUSIONS The need for fusion after posterior fossa decompression reflected the curve severity at clinical presentation. Patients presenting with curves measuring > 35°, as well as those greater than 10 years of age, may be at greater risk for requiring fusion after posterior fossa decompression, while patients less than 10 years of age may require routine monitoring for curve progression. Left apical thoracic curves may have a better response to Chiari malformation decompression.

  5. Decompression Surgery Alone Versus Decompression Plus Fusion in Symptomatic Lumbar Spinal Stenosis: A Swiss Prospective Multicenter Cohort Study With 3 Years of Follow-up.

    PubMed

    Ulrich, Nils H; Burgstaller, Jakob M; Pichierri, Giuseppe; Wertli, Maria M; Farshad, Mazda; Porchet, François; Steurer, Johann; Held, Ulrike

    2017-09-15

    Retrospective analysis of a prospective, multicenter cohort study. To estimate the added effect of surgical fusion as compared to decompression surgery alone in symptomatic lumbar spinal stenosis patients with spondylolisthesis. The optimal surgical management of lumbar spinal stenosis patients with spondylolisthesis remains controversial. Patients of the Lumbar Stenosis Outcome Study with confirmed DLSS and spondylolisthesis were enrolled in this study. The outcomes of this study were Spinal Stenosis Measure (SSM) symptoms (score range 1-5, best-worst) and function (1-4) over time, measured at baseline, 6, 12, 24, and 36 months follow-up. In order to quantify the effect of fusion surgery as compared to decompression alone and number of decompressed levels, we used mixed effects models and accounted for the repeated observations in main outcomes (SSM symptoms and SSM function) over time. In addition to individual patients' random effects, we also fitted random slopes for follow-up time points and compared these two approaches with Akaike's Information Criterion and the chi-square test. Confounders were adjusted with fixed effects for age, sex, body mass index, diabetes, Cumulative Illness Rating Scale musculoskeletal disorders, and duration of symptoms. One hundred thirty-one patients undergoing decompression surgery alone (n = 85) or decompression with fusion surgery (n = 46) were included in this study. In the multiple mixed effects model the adjusted effect of fusion compared with decompression alone surgery on SSM symptoms was 0.06 (95% confidence interval: -0.16-0.27) and -0.07 (95% confidence interval: -0.25-0.10) on SSM function, respectively. Among the patients with degenerative lumbar spinal stenosis and spondylolisthesis our study confirms that in the two groups, decompression alone and decompression with fusion, patients distinctively benefited from surgical treatment. When adjusted for confounders, fusion surgery was not associated with a more favorable outcome in both SSM scores as compared to decompression alone surgery. 3.

  6. Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis.

    PubMed

    Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G

    2016-04-01

    This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Behavior of fragmentation front in a porous viscoelastic material

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takayama, K.

    2002-12-01

    We are developing laboratory experiments to investigate dynamics of magma fragmentation during explosive volcanic eruptions. Fragmentation of such a mixture as magma consisting of viscoelastic melt, bubbles and solid particles, is not known yet, and experiments are necessary to establish a mathematical model. It has been shown that viscoelastic silicone compound (Dow Corning 3179) is a useful analogous material to simulate magma fragmentation. In the previous work, a porous specimen made of the compound was rapidly decompressed and development of brittle fragmentation was observed. However, there were arguments that the experiment was different from actual processes which produce fragments as small as volcanic ash, because in the experiment the specimen was broken into only several pieces. This time, results of the improved experiments are presented. The experimental apparatus is a kind of a vertical shock tube, which mainly consists of a high pressure test section and low pressure chambers. The test section is made of acrylic tube of which inner diameter is 25 mm. The internal phenomenon is recorded by a high-speed video camera. Pressure is measured in the gas above and beneath the specimen by piezoelectric transducers. The specimen is prepared in the following way. First, an acrylic tube filled with the compound is put in a nitrogen tank and kept at 45 bar for more than 8 hours. The compound absorbs the gas and equilibrates with the nitrogen. Next, the tank is decompressed back to the atmospheric pressure slowly. Nitrogen exsolves and bubbles are formed in the compound quite uniformly. Finally, the expanded compound sticking out of both ends of the tube is cut down, and the tube containing the specimen is attached to the shock tube. The specimen is rapidly decompressed by 24, 16, and 8 bars. The high-speed video images demonstrate a sequence of the fragmentation process. We observe propagation of a clear fracture front at 50 m/s for 24 bar of decompression and at smaller speed for smaller decompression. The pressure change associated with development of the fragmentation is analyzed and effects of over pressure in the pores and permeable gas flow on fragmentation behavior are discussed.

  8. Multiple Small Diameter Drillings Increase Femoral Neck Stability Compared with Single Large Diameter Femoral Head Core Decompression Technique for Avascular Necrosis of the Femoral Head.

    PubMed

    Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E

    2016-10-26

    Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.

  9. Deep lateral wall orbital decompression following strabismus surgery in patients with Type II ophthalmic Graves' disease.

    PubMed

    Ellis, Michael P; Broxterman, Emily C; Hromas, Alan R; Whittaker, Thomas J; Sokol, Jason A

    2018-01-10

    Surgical management of ophthalmic Graves' disease traditionally involves, in order, orbital decompression, followed by strabismus surgery and eyelid surgery. Nunery et al. previously described two distinct sub-types of patients with ophthalmic Graves' disease; Type I patients exhibit no restrictive myopathy (no diplopia) as opposed to Type II patients who do exhibit restrictive myopathy (diplopia) and are far more likely to develop new-onset worsening diplopia following medial wall and floor decompression. Strabismus surgery involving extra-ocular muscle recession has, in turn, been shown to potentially worsen proptosis. Our experience with Type II patients who have already undergone medial wall and floor decompression and strabismus surgery found, when additional decompression is necessary, deep lateral wall decompression (DLWD) appears to have a low rate of post-operative primary-gaze diplopia. A case series of four Type II ophthalmic Graves' disease patients, all of whom had already undergone decompression and strabismus surgery, and went on to develop worsening proptosis or optic nerve compression necessitating further decompression thereafter. In all cases, patients were treated with DLWD. Institutional Review Board approval was granted by the University of Kansas. None of the four patients treated with this approach developed recurrent primary-gaze diplopia or required strabismus surgery following DLWD. While we still prefer to perform medial wall and floor decompression as the initial treatment for ophthalmic Graves' disease, for proptosis following consecutive strabismus surgery, DLWD appears to be effective with a low rate of recurrent primary-gaze diplopia.

  10. The scent of disease: human body odor contains an early chemosensory cue of sickness.

    PubMed

    Olsson, Mats J; Lundström, Johan N; Kimball, Bruce A; Gordon, Amy R; Karshikoff, Bianka; Hosseini, Nishteman; Sorjonen, Kimmo; Olgart Höglund, Caroline; Solares, Carmen; Soop, Anne; Axelsson, John; Lekander, Mats

    2014-03-01

    Observational studies have suggested that with time, some diseases result in a characteristic odor emanating from different sources on the body of a sick individual. Evolutionarily, however, it would be more advantageous if the innate immune response were detectable by healthy individuals as a first line of defense against infection by various pathogens, to optimize avoidance of contagion. We activated the innate immune system in healthy individuals by injecting them with endotoxin (lipopolysaccharide). Within just a few hours, endotoxin-exposed individuals had a more aversive body odor relative to when they were exposed to a placebo. Moreover, this effect was statistically mediated by the individuals' level of immune activation. This chemosensory detection of the early innate immune response in humans represents the first experimental evidence that disease smells and supports the notion of a "behavioral immune response" that protects healthy individuals from sick ones by altering patterns of interpersonal contact.

  11. Effects of decompression on operator performance.

    DOT National Transportation Integrated Search

    1966-04-01

    The study was performed to provide more quantitative estimates of degradation of pilot performance following decompression and the extent to which a decompression with mask donning interrupts the task of piloting. The experiments utilized a Scow comp...

  12. Edema and elasticity of a fronto-temporal decompressive craniectomy

    PubMed Central

    Takada, Daikei; Nagai, Hidemasa; Moritake, Kouzo; Akiyama, Yasuhiko

    2012-01-01

    Background: Decompressive craniectomy is undertaken for relief of brain herniation caused by acute brain swelling. Brain stiffness can be estimated by palpating the decompressive cranial defect and can provide some relatively subjective information to the neurosurgeon to help guide care. The goal of the present study was to objectively evaluate transcutaneous stiffness of the cranial defect using a tactile resonance sensor and to describe the values in patients with a decompressive window in order to characterize the clinical association between brain edema and stiffness. Methods: Data were prospectively collected from 13 of 37 patients who underwent a decompressive craniectomy in our hospital during a 5-year period. Transcutaneous stiffness was measured as change in frequency and as elastic modulus. Results: Stiffness variables of the decompressive site were measured without any adverse effect and subsequent calculations revealed change in frequency = 101.71 ± 36.42 Hz, and shear elastic modulus = 1.99 ± 1.11 kPa. Conclusions: The elasticity of stiffness of a decompressive site correlated with brain edema, cisternal cerebrospinal fluid pressure, and brain shift, all of which are related to acute brain edema. PMID:22347679

  13. [Two-wall decompression without resection of the medial wall. Effect on squint angle].

    PubMed

    Bertelmann, E; Rüther, K

    2011-11-01

    Postoperative new onset diplopia can be a disadvantage for surgical orbital decompression in patients with exophthalmos in thyroid eye disease. The various modifications of decompression (number and combination of walls) differ in their influence on the postoperative squint angle. We report on postoperative diplopia in a modified 2 wall decompression strategy (lateral wall and floor). This study was a retrospective analysis of 36 consecutive 2-wall decompressions performed between 2006-2010 in 24 patients with 6 months of stable exophthalmos in thyroid eye disease after medical therapy and radiotherapy. The preoperative and postoperative squint angle in prism cover test (PCT), motility, induction of diplopia, reduction of exophthalmos, visual acuity and complications were evaluated. In all 36 decompressions the postoperative squint angle was equal to or less than before surgery. In 8 eyes additional squint surgery was performed. The mean reduction in exopthalmos was 4.3 mm. An adverse effect of decompression on the postoperative squint angle was not evident in this study. New induction of diplopia was not observed at all. One possible explanation is the preservation of the medial wall.

  14. [Theoretical evaluation of the risk of decompression illness during simulated extravehicular activity].

    PubMed

    Nikolaev, V P

    2008-01-01

    Theoretical analysis of the risk of decompression illness (DI) during extravehicular activity following the Russian and NASA decompression protocols (D-R and D-US, respectively) was performed. In contrast to the tradition approach to decompression stress evaluation by the factor of tissue supersaturation with nitrogen, our probabilistic theory of decompression safety provides a completely reasoned evaluation and comparison of the levels of hazard of these decompression protocols. According to this theory, the function of cumulative DI risk is equal to the sum of functions of cumulative risk of lesion of all body tissues by gas bubbles and their supersaturation by solute gases. Based on modeling of dynamics of these functions, growth of the DI cumulative risk in the course of D-R and D-US follows essentially similar trajectories within the time-frame of up to 330 minutes. However, further extension of D-US but not D-R raises the risk of DI drastically.

  15. A Review of Physiological and Performance Limits in Saturation Diving: 1968-1983.

    DTIC Science & Technology

    1987-06-01

    diving: (i) Temperature (both hypo - and hyper-thermia) (2) Compression/hydrostatic pressure (especially on neurologic functioning) (3) Inert gas...experimental support (Torok, 1980); caloric , indirect and other effects have also been proposed (Bachrach & Bradley, 1973). Vestibular symptoms subside...Garrard et al, 1981; Doran & Garrard, 1984). The deficit is estimated at 4-8g/day, but is reversible with decompression. Diet supplementation can

  16. An evaluation of potential decompression hazards in small pressurized aircraft.

    DOT National Transportation Integrated Search

    1967-06-01

    Over 300 decompression tests were conducted to determine potential hazards of ejection or incapacitating or fatal head injuries in small volume pressurized aircraft in the event of sudden decompression following the loss of a window, emergency exit, ...

  17. Beta-endorphin and arginine vasopressin following stressful sensory stimuli in man

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.

    1992-01-01

    This experimentation partially defines, for the first time, the response of beta-endorphin (ENDO) in man during tests designed to elicit nausea and motion sickness. These responses are similar to those associated with arginine vasopressin (AVP) and adreno-corticotropin (ACTH) to the extent that all hormones rise in response to motion sickness (p less than 0.003). Repeated exposure diminished motion-induced release of ENDO (p less than 0.005) and AVP (p less than 0.004) despite a three-fold increase in resistance to motion stimuli. Higher post-stress levels of AVP (p less than 0.04) and ACTH (p less than 0.02) were correlated with greater resistance to motion sickness. These data support the hypothesis that release of AVP is a significant link between stressful motion and motion-induced nausea and other autonomic system changes. Further, resistant individual apparently can tolerate higher peripheral levels of AVP before nausea results. Peripheral release of ENDO and ACTH may follow release of AVP; however, given the extensive and complex functional interactions that exist between AVP and the opiate systems, it is not yet possible to define a clear role for ENDO in the etiology of motion sickness.

  18. Effect of Inert Gas Switching at Depth on Decompression Outcome in Rats

    DTIC Science & Technology

    1989-01-01

    Indcuae Security Classification) Effect Of inert gas switching at depth on decompression outcome in rats Liil RVRcCall1urn M~E 16. SUPPLEMENTARY...CLASSIrICATrIONOF TI PAGE All other edition% -ate obsfee UNCLASSIFIED Effect of inert gas switching at depth on decompression outcome in rats R. S... Effect of inert gas Although various models of inert gas transport in the switching at depth on decompression outcome in rats. J. Appl

  19. [Patent foramen ovale and decompression illness in divers].

    PubMed

    Sivertsen, Wiebke; Risberg, Jan; Norgård, Gunnar

    2010-04-22

    About 25 % of the population has patent foramen ovale, and the condition has been assumed to be a causal factor in decompressive illness. Transcatheter closure is possible and is associated with a relatively low risk, but it has not been clarified whether there is an indication for assessment and treatment of the condition in divers. The present study explored a possible relationship between a patent foramen ovale and the risk for decompression illness in divers, if there are categories of divers that should be screened for the condition and what advice should be given to divers with this condition. The review is based on literature identified through a search in Pubmed and the authors' long clinical experience in the field. The risk of decompression illness for divers with a persistent foramen ovale is about five times higher than that in divers without this condition, but the absolute risk for decompression illness is only 2.5 after 10,000 dives. A causal association has not been shown between patent foramen ovale and decompression illness. Even if closure of patent foramen ovale may be done with relatively small risk, the usefulness of the procedure has not been documented in divers. We do not recommend screening for patent foramen ovale in divers because the absolute risk of decompression illness is small and transcatheter closure is only indicated after decompression illness in some occupational divers.

  20. Optokinetic motion sickness - Attenuation of visually-induced apparent self-rotation by passive head movements

    NASA Technical Reports Server (NTRS)

    Teixeira, R. A.; Lackner, J. R.

    1979-01-01

    An experimental study was conducted on seven normal subjects to evaluate the effectiveness of passive head movements in suppressing the optokinetically-induced illusory self-rotation. Visual simulation was provided by a servo-controlled optokinetic drum. Each subject participated in two experimental sessions. In one condition, the subject's head remained stationary while he gazed passively at a moving stripe pattern. In the other, he gazed passively and relaxed his neck muscles while his head was rotated from side to side. It appears that suppression of optokinetically-induced illusory self-rotation with passive head movements results from the operation of a spatial constancy mechanism interrelating visual, vestibular, and kinesthetic information on ongoing body orientation. The results support the view that optokinetic 'motion sickness' is related, at least in part, to an oculomotor disturbance rather than a visually triggered disturbance of specifically vestibular etiology.

  1. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  2. The effect of cinnarizine and cocculus indicus on simulator sickness.

    PubMed

    Lucertini, Marco; Mirante, Nadia; Casagrande, Maria; Trivelloni, Pierandrea; Lugli, Vittoria

    2007-05-16

    Pensacola Simulator Sickness Questionnaire (SSQ) is a valuable method to analyse symptoms evoked by exposure to a flight simulator environment that can also be adopted to evaluate the effectiveness of preventive tools, aiming at reducing simulator sickness (SS). In this study we analysed SSQ data in subjects undergoing a standard ground based spatial disorientation training inside a flight simulator, in order to evaluate the SS prevention obtained with two different pharmacological tools. Twelve males volunteers participated to an experimental design based on a double-blind, balanced administration of either 30 mg cinnarizine (CIN), or Cocculus Indicus 6CH (COC), or placebo (PLC) before one trial of about one hour spent inside a spatial disorientation trainer. All subjects underwent the three different conditions (CIN, COC, PLC) during 3 non-consecutive days separated by at least 2 weeks. During each experimental day, all subjects filled in SSQ. In addition, both postural instability (with the use of a static stabilometric platform), and sleepiness symptoms were evaluated. All the tests were performed before and after the simulated flight, at different times, in one-and-half-hour intervals. Results indicated a strong increase of sickness after flight simulation that linearly decreased, showing pre-simulator scores after 1.30 hours. In contrast to both PLC and COC, CIN showed significant side effects immediately following flight simulation, with no benefit at the simultaneous SSQ scores. Globally, no highly significant differences between COC and PLC were observed, although a minor degree of postural instability could be detected after COC administration. As far as the present exposure to a simulator environment is concerned, none of the pharmacological tools administered in this study resulted effective in reducing SS symptoms as detected by the SSQ. Moreover, CIN significantly increased sleepiness and postural instability in most subjects.

  3. Shoulder function and work disability after decompression surgery for subacromial impingement syndrome: a randomised controlled trial of physiotherapy exercises and occupational medical assistance

    PubMed Central

    2014-01-01

    Background Surgery for subacromial impingement syndrome is often performed in working age and postoperative physiotherapy exercises are widely used to help restore function. A recent Danish study showed that 10% of a nationwide cohort of patients retired prematurely within two years after surgery. Few studies have compared effects of different postoperative exercise programmes on shoulder function, and no studies have evaluated workplace-oriented interventions to reduce postoperative work disability. This study aims to evaluate the effectiveness of physiotherapy exercises and occupational medical assistance compared with usual care in improving shoulder function and reducing postoperative work disability after arthroscopic subacromial decompression. Methods/Design The study is a mainly pragmatic multicentre randomised controlled trial. The trial is embedded in a cohort study of shoulder patients referred to public departments of orthopaedic surgery in Central Denmark Region. Patients aged ≥18–≤63 years, who still have shoulder symptoms 8–12 weeks after surgery, constitute the study population. Around 130 participants are allocated to: 1) physiotherapy exercises, 2) occupational medical assistance, 3) physiotherapy exercises and occupational medical assistance, and 4) usual care. Intervention manuals allow individual tailoring. Primary outcome measures include Oxford Shoulder Score and sickness absence due to symptoms from the operated shoulder. Randomisation is computerised with allocation concealment by randomly permuted block sizes. Statistical analyses will primarily be performed according to the intention-to-treat principle. Discussion The paper presents the rationale, design, methods, and operational aspects of the Shoulder Intervention Project (SIP). SIP evaluates a new rehabilitation approach, where physiotherapy and occupational interventions are provided in continuity of surgical episodes of care. If successful, the project may serve as a model for rehabilitation of surgical shoulder patients. Trial registration Current Controlled Trials ISRCTN55768749. PMID:24952581

  4. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to increased WMH.

  5. Pharmacological versus microvascular decompression approaches for the treatment of trigeminal neuralgia: clinical outcomes and direct costs

    PubMed Central

    Lemos, Laurinda; Alegria, Carlos; Oliveira, Joana; Machado, Ana; Oliveira, Pedro; Almeida, Armando

    2011-01-01

    In idiopathic trigeminal neuralgia (TN) the neuroimaging evaluation is usually normal, but in some cases a vascular compression of trigeminal nerve root is present. Although the latter condition may be referred to surgery, drug therapy is usually the first approach to control pain. This study compared the clinical outcome and direct costs of (1) a traditional treatment (carbamazepine [CBZ] in monotherapy [CBZ protocol]), (2) the association of gabapentin (GBP) and analgesic block of trigger-points with ropivacaine (ROP) (GBP+ROP protocol), and (3) a common TN surgery, microvascular decompression of the trigeminal nerve (MVD protocol). Sixty-two TN patients were randomly treated during 4 weeks (CBZ [n = 23] and GBP+ROP [n = 17] protocols) from cases of idiopathic TN, or selected for MVD surgery (n = 22) due to intractable pain. Direct medical cost estimates were determined by the price of drugs in 2008 and the hospital costs. Pain was evaluated using the Numerical Rating Scale (NRS) and number of pain crises; the Hospital Anxiety and Depression Scale, Sickness Impact Profile, and satisfaction with treatment and hospital team were evaluated. Assessments were performed at day 0 and 6 months after the beginning of treatment. All protocols showed a clinical improvement of pain control at month 6. The GBP+ROP protocol was the least expensive treatment, whereas surgery was the most expensive. With time, however, GBP+ROP tended to be the most and MVD the least expensive. No sequelae resulted in any patient after drug therapies, while after MDV surgery several patients showed important side effects. Data reinforce that, (1) TN patients should be carefully evaluated before choosing therapy for pain control, (2) different pharmacological approaches are available to initiate pain control at low costs, and (3) criteria for surgical interventions should be clearly defined due to important side effects, with the initial higher costs being strongly reduced with time. PMID:21941455

  6. Upper extremity palsy following cervical decompression surgery results from a transient spinal cord lesion.

    PubMed

    Hasegawa, Kazuhiro; Homma, Takao; Chiba, Yoshikazu

    2007-03-15

    Retrospective analysis. To test the hypothesis that spinal cord lesions cause postoperative upper extremity palsy. Postoperative paresis, so-called C5 palsy, of the upper extremities is a common complication of cervical surgery. Although there are several hypotheses regarding the etiology of C5 palsy, convincing evidence with a sufficient study population, statistical analysis, and clear radiographic images illustrating the nerve root impediment has not been presented. We hypothesized that the palsy is caused by spinal cord damage following the surgical decompression performed for chronic compressive cervical disorders. The study population comprised 857 patients with chronic cervical cord compressive lesions who underwent decompression surgery. Anterior decompression and fusion was performed in 424 cases, laminoplasty in 345 cases, and laminectomy in 88 cases. Neurologic characteristics of patients with postoperative upper extremity palsy were investigated. Relationships between the palsy, and patient sex, age, diagnosis, procedure, area of decompression, and preoperative Japanese Orthopaedic Association score were evaluated with a risk factor analysis. Radiographic examinations were performed for all palsy cases. Postoperative upper extremity palsy occurred in 49 cases (5.7%). The common features of the palsy cases were solely chronic compressive spinal cord disorders and decompression surgery to the cord. There was no difference in the incidence of palsy among the procedures. Cervical segments beyond C5 were often disturbed with frequent multiple segment involvement. There was a tendency for spontaneous improvement of the palsy. Age, decompression area (anterior procedure), and diagnosis (ossification of the posterior longitudinal ligament) are the highest risk factors of the palsy. The results of the present study support our hypothesis that the etiology of the palsy is a transient disturbance of the spinal cord following a decompression procedure. It appears to be caused by reperfusion after decompression of a chronic compressive lesion of the cervical cord. We recommend that physicians inform patients and surgeons of the potential risk of a spinal cord deficit after cervical decompression surgery.

  7. Return-to-work of sick-listed workers without an employment contract--what works?

    PubMed

    Vermeulen, Sylvia J; Tamminga, Sietske J; Schellart, Antonius Jm; Ybema, Jan Fekke; Anema, Johannes R

    2009-07-14

    In the past decade flexible labour market arrangements have emerged as a significant change in the European Union labour market. Studies suggest that these new types of labour arrangements may be linked to ill health, an increased risk for work disability, and inadequate vocational rehabilitation. Therefore, the objectives of this study were: 1. to examine demographic characteristics of workers without an employment contract sick-listed for at least 13 weeks, 2. to describe the content and frequency of occupational health care (OHC) interventions for these sick-listed workers, and 3. to examine OHC interventions as possible determinants for return-to-work (RTW) of these workers. A cohort of 1077 sick-listed workers without an employment contract were included at baseline, i.e. 13 weeks after reporting sick. Demographic variables were available at baseline. Measurement of cross-sectional data took place 4-6 months after inclusion. Primary outcome measures were: frequency of OHC interventions and RTW-rates. Measured confounding variables were: gender, age, type of worker (temporary agency worker, unemployed worker, or remaining worker without employment contract), level of education, reason for absenteeism (diagnosis), and perceived health. The association between OHC interventions and RTW was analysed with a logistic multiple regression analysis. At 7-9 months after the first day of reporting sick only 19% of the workers had (partially or completely) returned to work, and most workers perceived their health as fairly poor or poor. The most frequently reported (49%) intervention was 'the OHC professional discussed RTW'. However, the intervention 'OHC professional made and discussed a RTW action plan' was reported by only 19% of the respondents. The logistic multiple regression analysis showed a significant positive association between RTW and the interventions: 'OHC professional discussed RTW'; and 'OHC professional made and discussed a RTW action plan'. The intervention 'OHC professional referred sick-listed worker to a vocational rehabilitation agency' was significantly associated with no RTW. This is the first time that characteristics of a large cohort of sick-listed workers without an employment contract were examined. An experimental or prospective study is needed to explore the causal nature of the associations found between OHC interventions and RTW.

  8. Anti-inflammatory Effect of Astaxanthin on the Sickness Behavior Induced by Diabetes Mellitus.

    PubMed

    Ying, Chang-jiang; Zhang, Fang; Zhou, Xiao-yan; Hu, Xiao-tong; Chen, Jing; Wen, Xiang-ru; Sun, Ying; Zheng, Kui-yang; Tang, Ren-xian; Song, Yuan-jian

    2015-10-01

    Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown. The aim of this study was to investigate the effects of astaxanthin on diabetes-elicited abnormal behavior in mice and its corresponding mechanisms. An experimental diabetic model was induced by streptozotocin (150 mg/kg) and astaxanthin (25 mg/kg/day) was provided orally for 10 weeks. Body weight and water consumption were measured, and the sickness behavior was evaluated by the open field test (OFT) and closed field test (CFT). The expression of glial fibrillary acidic protein (GFAP) was measured, and the frontal cortical cleaved caspase-3 positive cells, interleukin-6 (IL-6), and interleukin-1β (IL-1β) expression levels were also investigated. Furthermore, cystathionine β-synthase (CBS) in the frontal cortex was detected to determine whether the protective effect of astaxanthin on sickness behavior in diabetic mice is closely related to CBS. As expected, we observed that astaxanthin improved general symptoms and significantly increase horizontal distance and the number of crossings in the OFT and CFT. Furthermore, data showed that astaxanthin could decrease GFAP-positive cells in the brain and down-regulate the cleaved caspase-3, IL-6, and IL-1β, and up-regulate CBS in the frontal cortex. These results suggest that astaxanthin provides neuroprotection against diabetes-induced sickness behavior through inhibiting inflammation, and the protective effects may involve CBS expression in the brain.

  9. Efficacy of 'Tailored Physical Activity' or 'Chronic Pain Self-Management Program' on return to work for sick-listed citizens: design of a randomised controlled trial.

    PubMed

    Andersen, Lotte Nygaard; Juul-Kristensen, Birgit; Roessler, Kirsten Kaya; Herborg, Lene Gram; Sørensen, Thomas Lund; Søgaard, Karen

    2013-01-23

    Pain affects quality of life and can result in absence from work. Treatment and/or prevention strategies for musculoskeletal pain-related long-term sick leave are currently undertaken in several health sectors. Moreover, there are few evidence-based guidelines for such treatment and prevention. The aim of this study is to evaluate the efficacy of 'Tailored Physical Activity' or 'Chronic Pain Self-Management Program' for sick-listed citizens with pain in the back and/or the upper body. This protocol describes the design of a parallel randomised controlled trial on the efficacy of 'Tailored Physical Activity' or a 'Chronic Pain Self-management Program' versus a reference group for sick-listed citizens with complaints of pain in the back or upper body. Participants will have been absent from work due to sick-listing for 3 to 9 weeks at the time of recruitment. All interventions will be performed at the 'Health Care Center' in the Sonderborg Municipality, and a minimum of 138 participants will be randomised into one of the three groups.All participants will receive 'Health Guidance', a (1.5-hour) individualised dialogue focusing on improving ways of living, based on assessments of risk behavior, motivation for change, level of self-care and personal resources. In addition, the experimental groups will receive either 'Tailored Physical Activity' (three 50-minute sessions/week over 10 weeks) or 'Chronic Pain Self-Management Program' (2.5-hours per week over 6 weeks). The reference group will receive only 'Health Guidance'.The primary outcome is the participants' sick-listed status at 3 and 12 months after baseline. The co-primary outcome is the time it takes to return to work. In addition, secondary outcomes include anthropometric measurements, functional capacity and self-reported number of sick days, musculoskeletal symptoms, general health, work ability, physical capacity, kinesiophobia, physical functional status, interpersonal problems and mental disorders. There are few evidence-based interventions for rehabilitation programmes assisting people with musculoskeletal pain-related work absence. This study will compare outcomes of interventions on return to work in order to increase the knowledge of evidence-based rehabilitation of sick-listed citizens to prevent long-term sick-leave and facilitate return to work. The trial is registered in the ClinicalTrials.gov, number NCT01356784.

  10. Critical Appraisal on Orbital Decompression for Thyroid Eye Disease: A Systematic Review and Literature Search.

    PubMed

    Boboridis, Konstadinos G; Uddin, Jimmy; Mikropoulos, Dimitrios G; Bunce, Catey; Mangouritsas, George; Voudouragkaki, Irini C; Konstas, Anastasios G P

    2015-07-01

    Orbital decompression is the indicated procedure for addressing exophthalmos and compressive optic neuropathy in thyroid eye disease. There are an abundance of techniques for removal of orbital bone, fat, or a combination published in the scientific literature. The relative efficacy and complications of these interventions in relation to the specific indications remain as yet undocumented. We performed a systematic review of the current published evidence for the effectiveness of orbital decompression, possible complications, and impact on quality of life. We searched the current databases for medical literature and controlled trials, oculoplastic textbooks, and conference proceedings to identify relevant data up to February 2015. We included randomized controlled trials (RCTs) comparing two or more interventions for orbital decompression. We identified only two eligible RCTs for inclusion in the review. As a result of the significant variability between studies on decompression, i.e., methodology and outcome measures, we did not perform a meta-analysis. One study suggests that the transantral approach and endonasal technique had similar effects in reducing exophthalmos but the latter is safer. The second study provides evidence that intravenous steroids may be superior to primary surgical decompression in the management of compressive optic neuropathy requiring less secondary surgical procedures. Most of the published literature on orbital decompression consists of retrospective, uncontrolled trials. There is evidence from those studies that removal of the medial and lateral wall (balanced) and the deep lateral wall decompression, with or without fat removal, may be the most effective surgical methods with only few complications. There is a clear unmet need for controlled trials evaluating the different techniques for orbital decompression. Ideally, future studies should address the effectiveness, possible complications, quality of life, and cost of each intervention.

  11. Predictors of surgical revision after in situ decompression of the ulnar nerve.

    PubMed

    Krogue, Justin D; Aleem, Alexander W; Osei, Daniel A; Goldfarb, Charles A; Calfee, Ryan P

    2015-04-01

    This study was performed to identify factors associated with the need for revision surgery after in situ decompression of the ulnar nerve for cubital tunnel syndrome. This case-control investigation examined all patients treated at one institution with open in situ decompression for cubital tunnel syndrome between 2006 and 2011. The case patients were 44 failed decompressions that required revision, and the controls were 79 randomly selected patients treated with a single operation. Demographic data and disease-specific data were extracted from the medical records. The rate of revision surgery after in situ decompression was determined from our 5-year experience. A multivariate logistic regression model was used based on univariate testing to determine predictors of revision cubital tunnel surgery. Revision surgery was required in 19% (44 of 231) of all in situ decompressions performed during the study period. Predictors of revision surgery included a history of elbow fracture or dislocation (odds ratio [OR], 7.1) and McGowan stage I disease (OR, 3.2). Concurrent surgery with in situ decompression was protective against revision surgery (OR, 0.19). The rate of revision cubital tunnel surgery after in situ nerve decompression should be weighed against the benefits of a less invasive procedure compared with transposition. When considering in situ ulnar nerve decompression, prior elbow fracture as well as patients requesting surgery for mild clinically graded disease should be viewed as risk factors for revision surgery. Patient factors often considered relevant to surgical outcomes, including age, sex, body mass index, tobacco use, and diabetes status, were not associated with a greater likelihood of revision cubital tunnel surgery. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1992-01-01

    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility.

  13. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    NASA Astrophysics Data System (ADS)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  14. "White Cord Syndrome" of Acute Hemiparesis After Posterior Cervical Decompression and Fusion for Chronic Cervical Stenosis.

    PubMed

    Antwi, Prince; Grant, Ryan; Kuzmik, Gregory; Abbed, Khalid

    2018-05-01

    "White cord syndrome" is a very rare condition thought to be due to acute reperfusion of chronically ischemic areas of the spinal cord. Its hallmark is the presence of intramedullary hyperintense signal on T2-weighted magnetic resonance imaging sequences in a patient with unexplained neurologic deficits following spinal cord decompression surgery. The syndrome is rare and has been reported previously in 2 patients following anterior cervical decompression and fusion. We report an additional case of this complication. A 68-year-old man developed acute left-sided hemiparesis after posterior cervical decompression and fusion for cervical spondylotic myelopathy. The patient improved with high-dose steroid therapy. The rare white cord syndrome following either anterior cervical decompression and fusion or posterior cervical decompression and fusion may be due to ischemic-reperfusion injury sustained by chronically compressed parts of the spinal cord. In previous reports, patients have improved following steroid therapy and acute rehabilitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  16. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  17. Summary of Payload Integration Plan (PIP) for Starlab-1 flight experiment, enclosure 3

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W.; Kamiya, J.; Miller, N.; Sharp, J.

    1988-01-01

    The objectives of the Autogenic Feedback Training (AFT) are to: determine if preflight AFT is an effective treatment for space adaptation syndrome (SAS); determine if preflight improvements in motion sickness tolerance can be used to predict crewmembers' success in controlling symptoms in flight; and identify differences and similarities between the physiological data from preflight motion sickness tests and data collected during symptom episodes in space. The goal is to test the AFT on 8 trained and 8 control subjects. At present 2 trained and 2 contol subjects were tested. The testing will continue until the experimental goal of testing 16 individual is reached.

  18. Chronic Decompression Illness Cognitive Dysfunction Improved with Hyperbaric Oxygen: A Case Report

    DTIC Science & Technology

    2018-11-09

    Altitude chamber exposures are used for training to allow aircrew to experience their hypoxia and pressure effect symptoms. Decompression illness ...chamber decompression illness is around 0.25% (1). Because the evolution of gas within the tissue or vasculature is being treated upon recompression

  19. Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)

    NASA Astrophysics Data System (ADS)

    Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie

    2013-04-01

    In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.

  20. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.

  1. A current review of core decompression in the treatment of osteonecrosis of the femoral head.

    PubMed

    Pierce, Todd P; Jauregui, Julio J; Elmallah, Randa K; Lavernia, Carlos J; Mont, Michael A; Nace, James

    2015-09-01

    The review describes the following: (1) how traditional core decompression is performed, (2) adjunctive treatments, (3) multiple percutaneous drilling technique, and (4) the overall outcomes of these procedures. Core decompression has optimal outcomes when used in the earliest, precollapse disease stages. More recent studies have reported excellent outcomes with percutaneous drilling. Furthermore, adjunct treatment methods combining core decompression with growth factors, bone morphogenic proteins, stem cells, and bone grafting have demonstrated positive results; however, larger randomized trial is needed to evaluate their overall efficacy.

  2. Decompression Device Using a Stainless Steel Tube and Wire for Treatment of Odontogenic Cystic Lesions: A Technical Report.

    PubMed

    Jung, Eun-Joo; Baek, Jin-A; Leem, Dae-Ho

    2014-11-01

    Decompression is considered an effective treatment for odontogenic cystic lesions in the jaw. A variety of decompression devices are successfully used for the treatment of keratocystic odontogenic tumors, radicular cysts, dentigerous cysts, and ameloblastoma. The purpose of these devices is to keep an opening between the cystic lesion and the oral environment during treatment. The aim of this report is to describe an effective decompression tube using a stainless steel tube and wire for treatment of jaw cystic lesions.

  3. Orbital fat decompression for thyroid eye disease: retrospective case review and criteria for optimal case selection.

    PubMed

    Prat, Marta Calsina; Braunstein, Alexandra L; Dagi Glass, Lora R; Kazim, Michael

    2015-01-01

    The purpose of this study is to identify the subgroups of thyroid eye disease (TED) patients most likely to benefit from orbital fat decompression. This retrospective study reviews 217 orbits of 109 patients who underwent orbital fat decompression for proptosis secondary to thyroid eye disease. Charts were reviewed for demographic, radiographic, clinical, and surgical data. Three groups of patients were defined for the purposes of statistical analysis: those with proptosis secondary to expansion of the fat compartment (group I), those with proptosis secondary to enlargement of the extraocular muscles (group II), and those with proptosis secondary to enlargement of both fat and muscle (group III). Groups I and II, and those patients with greater preoperative proptosis and those with a history of radiation therapy were most likely to benefit from orbital fat decompression. However, even those in group III or with lesser proptosis appreciated significant benefit. While orbital fat decompression can and, at times, should be combined with bone decompression to treat proptosis resulting from thyroid eye disease, orbital fat decompression alone is associated with lower rates of surgical morbidity, and is especially effective for group I and II patients, those with greater preoperative proptosis, and those with a history of radiation.

  4. Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis.

    PubMed

    Lubelski, Daniel; Healy, Andrew T; Mageswaran, Prasath; Benzel, Edward C; Mroz, Thomas E

    2014-09-01

    Few studies have evaluated the extent of biomechanical destabilization of thoracic decompression on the upper and lower thoracic spine. The present study evaluates lower thoracic spinal stability after laminectomy, unilateral facetectomy, and unilateral costotransversectomy in thoracic spines with intact sternocostovertebral articulations. To assess the biomechanical impact of decompression and fixation procedures on lower thoracic spine stability. Biomechanical cadaveric study. Sequential surgical decompression (laminectomy, unilateral facetectomy, unilateral costotransversectomy) and dorsal fixation were performed on the lower thoracic spine (T8-T9) of human cadaveric spine specimens with intact rib cages (n=10). An industrial robot was used to apply pure moments to simulate flexion-extension (FE), lateral bending (LB), and axial rotation (AR) in the intact specimens and after decompression and fixation. Global range of motion (ROM) between T1-T12 and intrinsic ROM between T7-T11 were measured for each specimen. The decompression procedures caused no statistically significant change in either global or intrinsic ROM compared with the intact state. Instrumentation, however, reduced global motion for AR (45° vs. 30°, p=.0001), FE (24° vs. 19°, p=.02), and LB (47° vs. 36°, p=.0001) and for intrinsic motion for AR (17° vs. 4°, p=.0001), FE (8° vs. 1°, p=.0001), and LB (12° vs. 1°, p=.0001). No significant differences were identified between decompression of the upper versus lower thoracic spine, with trends toward significantly greater ROM for AR and lower ROM for LB in the lower thoracic spine. The lower thoracic spine was not destabilized by sequential unilateral decompression procedures. Addition of dorsal fixation increased segment rigidity at intrinsic levels and also reduced overall ROM of the lower thoracic spine to a greater extent than did fusing the upper thoracic spine (level of the true ribs). Despite the lack of true ribs, the lower thoracic spine was not significantly different compared with the upper thoracic spine in FE and LB after decompression, although there were trends toward significance for greater AR after decompression. In certain patients, instrumentation may not be needed after unilateral decompression of the lower thoracic spine; further validation and additional clinical studies are warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Cold injury to a diver's hand after a 90-min dive in 6 degrees C water.

    PubMed

    Laden, Gerard D M; Purdy, Gerard; O'Rielly, Gerard

    2007-05-01

    We present here a case of non-freezing cold injury (NFCI) in a sport scuba diver. There are similarities between the presenting symptoms of NFCI and decompression sickness, e.g., pain and/or altered sensation in an extremity, often reported as numbness. In both conditions patients have been known to describe their lower limbs or feet as feeling woolly. Both conditions are the result of environmental exposure. Additionally, there are no good (high sensitivity and specificity) diagnostic tests for either condition. Diagnosis is made based on patient history, clinical presentation, and examination. NFCI is most frequently seen in military personnel, explorers, and the homeless. When affecting the feet of soldiers it is often referred to as "trench foot." Historically, NFCI has been and continues to be of critical importance in infantry warfare in cold and wet environments. A high priority should be given to prevention of NFCI during military operational planning. With the advent of so-called "technical diving" characterized by going deeper for longer (often in cold water) and adventure tourism, this extremely painful condition is likely to increase in prevalence. NFCI is treated symptomatically.

  6. A Software Tool for the Annotation of Embolic Events in Echo Doppler Audio Signals

    PubMed Central

    Pierleoni, Paola; Maurizi, Lorenzo; Palma, Lorenzo; Belli, Alberto; Valenti, Simone; Marroni, Alessandro

    2017-01-01

    The use of precordial Doppler monitoring to prevent decompression sickness (DS) is well known by the scientific community as an important instrument for early diagnosis of DS. However, the timely and correct diagnosis of DS without assistance from diving medical specialists is unreliable. Thus, a common protocol for the manual annotation of echo Doppler signals and a tool for their automated recording and annotation are necessary. We have implemented original software for efficient bubble appearance annotation and proposed a unified annotation protocol. The tool auto-sets the response time of human “bubble examiners,” performs playback of the Doppler file by rendering it independent of the specific audio player, and enables the annotation of individual bubbles or multiple bubbles known as “showers.” The tool provides a report with an optimized data structure and estimates the embolic risk level according to the Extended Spencer Scale. The tool is built in accordance with ISO/IEC 9126 on software quality and has been projected and tested with assistance from the Divers Alert Network (DAN) Europe Foundation, which employs this tool for its diving data acquisition campaigns. PMID:29242701

  7. Invited review: gender issues related to spaceflight: a NASA perspective.

    PubMed

    Harm, D L; Jennings, R T; Meck, J V; Powell, M R; Putcha, L; Sams, C P; Schneider, S M; Shackelford, L C; Smith, S M; Whitson, P A

    2001-11-01

    This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.

  8. Invited review: gender issues related to spaceflight: a NASA perspective

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Jennings, R. T.; Meck, J. V.; Powell, M. R.; Putcha, L.; Sams, C. P.; Schneider, S. M.; Shackelford, L. C.; Smith, S. M.; Whitson, P. A.

    2001-01-01

    This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.

  9. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting)

    NASA Technical Reports Server (NTRS)

    Balaban, C. D.

    1999-01-01

    Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.

  10. Prevention of experimental motion sickness by scopolamine absorbed through the skin

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Knepton, J.; Shaw, J.

    1976-01-01

    A double-blind placebo-controlled study compared the efficacy of the antimotion sickness drug scopolamine when administered by oral or transdermal routes. A secondary purpose was to extend our bioassay involving fixed-dose combinations of the homergic drugs promethazine and ephedrine. After receiving 12 apparently identical drug-placebo treatments, eight normal male students were exposed in a slow rotation room to stressful accelerations generated by their execution of 40 head movements out of the plane of the room's rotation at 1 rpm and at 1-rpm increments until either symptoms were experienced (just short of frank motion sickness) or the 27-rpm ceiling on the test was reached. Efficacy of a drug was defined in terms of the placebo-range and categorized as beneficial, inconsequential, or detrimental. The only detrimental effect was with scopolamine given orally. It is concluded that the advantages of the transdermal scopolamine, which include minimal side effects and prolonged effectiveness, deserve full exploitation.

  11. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  12. Metabolomic approach with LC-MS reveals significant effect of pressure on diver's plasma.

    PubMed

    Ciborowski, Michal; Javier Rupérez, F; Martínez-Alcázar, Ma Paz; Angulo, Santiago; Radziwon, Piotr; Olszanski, Romuald; Kloczko, Janusz; Barbas, Coral

    2010-08-06

    Professional and recreational diving are growing activities in modern life. Diving has been associated with increased prevalence of stroke, hypertension, asthma, diabetes, or bone necrosis. We evaluated the effect of increased pressure equivalent to diving at 30 and 60 m for 30 min in two groups of divers using an untargeted approach with LC-MS fingerprinting of plasma. We found over 100 metabolites to be altered in plasma post exposure and after the corresponding decompression procedures. Among them, a group of lysophosphatidylcholines and lysophosphatidylethanolamines were increased, including lysoplasmalogen, a thrombosis promoter, together with changes in metabolic rate-associated molecules such as acylcarnitines and hemolysis-related compounds. Moreover, three metabolites that could be associated to bone degradation show different intensities between experimental groups. Ultimately, this nontargeted, short-term study opens the possibility of discovering markers of long-term effect of pressure that could be employed in routine health control of divers and could facilitate the development of safer decompression procedures.

  13. Elective decompression of the left ventricle in pediatric patients may reduce the duration of venoarterial extracorporeal membrane oxygenation.

    PubMed

    Hacking, Douglas F; Best, Derek; d'Udekem, Yves; Brizard, Christian P; Konstantinov, Igor E; Millar, Johnny; Butt, Warwick

    2015-04-01

    We aimed to determine the effect of elective left heart decompression at the time of initiation of central venoarterial extracorporeal membrane oxygenation (VA ECMO) on VA ECMO duration and clinical outcomes in children in a single tertiary ECMO referral center with a large pediatric population from a national referral center for pediatric cardiac surgery. We studied 51 episodes of VA ECMO in a historical cohort of 49 pediatric patients treated between the years 1990 and 2013 in the Paediatric Intensive Care Unit (PICU) of the Royal Children's Hospital, Melbourne. The cases had a variety of diagnoses including congenital cardiac abnormalities, sepsis, myocarditis, and cardiomyopathy. Left heart decompression as an elective treatment or an emergency intervention for left heart distension was effectively achieved by a number of methods, including left atrial venting, blade atrial septostomy, and left ventricular cannulation. Elective left heart decompression was associated with a reduction in time on ECMO (128 h) when compared with emergency decompression (236 h) (P = 0.013). Subgroup analysis showed that ECMO duration was greatest in noncardiac patients (elective 138 h, emergency 295 h; P = 0.02) and in patients who died despite both emergency decompression and ECMO (elective 133 h, emergency 354 h; P = 0.002). As the emergency cases had a lower pH, a higher PaCO2 , and a lower oxygenation index and were treated with a higher mean airway pressure, positive end-expiratory pressure, and respiratory rate prior to receiving VA ECMO, we undertook multivariate linear regression modeling to show that only PaCO2 and the timing of left heart decompression were associated with ECMO duration. However, elective left heart decompression was not associated with a reduction in length of PICU stay, duration of mechanical ventilation, or duration of oxygen therapy. Elective left heart decompression was not associated with improved ECMO survival or survival to PICU discharge. Elective left heart decompression may reduce ECMO duration and has therefore the potential to reduce ECMO-related complications. A prospective, randomized controlled trial is indicated to study this intervention further. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial.

    PubMed

    Hofmeijer, Jeannette; Kappelle, L Jaap; Algra, Ale; Amelink, G Johan; van Gijn, Jan; van der Worp, H Bart

    2009-04-01

    Patients with space-occupying hemispheric infarctions have a poor prognosis, with case fatality rates of up to 80%. In a pooled analysis of randomised trials, surgical decompression within 48 h of stroke onset reduced case fatality and improved functional outcome; however, the effect of surgery after longer intervals is unknown. The aim of HAMLET was to assess the effect of decompressive surgery within 4 days of the onset of symptoms in patients with space-occupying hemispheric infarction. Patients with space-occupying hemispheric infarction were randomly assigned within 4 days of stroke onset to surgical decompression or best medical treatment. The primary outcome measure was the modified Rankin scale (mRS) score at 1 year, which was dichotomised between good (0-3) and poor (4-6) outcome. Other outcome measures were the dichotomy of mRS score between 4 and 5, case fatality, quality of life, and symptoms of depression. Analysis was by intention to treat. This trial is registered, ISRCTN94237756. Between November, 2002, and October, 2007, 64 patients were included; 32 were randomly assigned to surgical decompression and 32 to best medical treatment. Surgical decompression had no effect on the primary outcome measure (absolute risk reduction [ARR] 0%, 95% CI -21 to 21) but did reduce case fatality (ARR 38%, 15 to 60). In a meta-analysis of patients in DECIMAL (DEcompressive Craniectomy In MALignant middle cerebral artery infarction), DESTINY (DEcompressive Surgery for the Treatment of malignant INfarction of the middle cerebral arterY), and HAMLET who were randomised within 48 h of stroke onset, surgical decompression reduced poor outcome (ARR 16%, -0.1 to 33) and case fatality (ARR 50%, 34 to 66). Surgical decompression reduces case fatality and poor outcome in patients with space-occupying infarctions who are treated within 48 h of stroke onset. There is no evidence that this operation improves functional outcome when it is delayed for up to 96 h after stroke onset. The decision to perform the operation should depend on the emphasis patients and relatives attribute to survival and dependency.

  15. Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Stephens, S.; Teasdale, R.; Sparks, R. S. J.; Diller, K.

    2007-04-01

    A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm 2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ˜ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ˜ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250-700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.

  16. The effects of venting and decompression on Yellow Tang (Zebrasoma flavescens) in the marine ornamental aquarium fish trade

    PubMed Central

    Tissot, Brian N.; Heidel, Jerry R.; Miller-Morgan, Tim

    2015-01-01

    Each year, over 45 countries export 30 million fish from coral reefs as part of the global marine ornamental aquarium trade. This catch volume is partly influenced by collection methods that cause mortality. Barotrauma in fish resulting from forced ascent from depth can contribute to post-collection mortality. However, implementing decompression stops during ascent can prevent barotrauma. Conversely, venting (puncturing the swim bladder to release expanded internal gas) following ascent can mitigate some signs of barotrauma like positive buoyancy. Here, we evaluate how decompression and venting affect stress and mortality in the Yellow Tang (Zebrasoma flavescens). We examined the effects of three ascent treatments, each with decompression stops of varying frequency and duration, coupled with or without venting, on sublethal effects and mortality using histology and serum cortisol measurements. In fish subjected to ascent without decompression stops or venting, a mean post-collection mortality of 6.2% occurred within 24 h of capture. Common collection methods in the fishery, ascent without decompression stops coupled with venting, or one long decompression stop coupled with venting, resulted in no mortality. Histopathologic examination of heart, liver, head kidney, and swim bladder tissues in fish 0d and 21d post-collection revealed no significant barotrauma- or venting-related lesions in any treatment group. Ascent without decompression stops resulted in significantly higher serum cortisol than ascent with many stops, while venting alone did not affect cortisol. Future work should examine links in the supply chain following collection to determine if further handling and transport stressors affect survivorship and sublethal effects. PMID:25737809

  17. The floating anchored craniotomy

    PubMed Central

    Gutman, Matthew J.; How, Elena; Withers, Teresa

    2017-01-01

    Background: The “floating anchored” craniotomy is a technique utilized at our tertiary neurosurgery institution in which a traditional decompressive craniectomy has been substituted for a floating craniotomy. The hypothesized advantages of this technique include adequate decompression, reduction in the intracranial pressure, obviating the need for a secondary cranioplasty, maintained bone protection, preventing the syndrome of the trephined, and a potential reduction in axonal stretching. Methods: The bone plate is re-attached via multiple loosely affixed vicryl sutures, enabling decompression, but then ensuring the bone returns to its anatomical position once cerebral edema has subsided. Results: From the analysis of 57 consecutive patients analyzed at our institution, we have found that the floating anchored craniotomy is comparable to decompressive craniectomy for intracranial pressure reduction and has some significant theoretical advantages. Conclusions: Despite the potential advantages of techniques that avoid the need for a second cranioplasty, they have not been widely adopted and have been omitted from trials examining the utility of decompressive surgery. This retrospective analysis of prospectively collected data suggests that the floating anchored craniotomy may be applicable instead of decompressive craniectomy. PMID:28713633

  18. Cutting-edge endonasal surgical approaches to thyroid ophthalmopathy.

    PubMed

    Tyler, Matthew A; Zhang, Caroline C; Saini, Alok T; Yao, William C

    2018-04-01

    Thyroid orbitopathy is a poorly understood extrathyroidal manifestation of Graves' disease that can cause disfiguring proptosis and vision loss. Orbital decompression surgery for Graves' orbitopathy (GO) can address both cosmetic and visual sequelae of this autoimmune condition. Endonasal endoscopic orbital decompression provides unmatched visualization and access to inferomedial orbital wall and orbital apex. This review examines the state of the art approaches employed in endonasal endoscopic orbital decompression for GO. Review of literature evaluating novel surgical maneuvers for GO. Studies examining the efficacy of endonasal endoscopic orbital decompression are heterogenous and retrospective in design; however, they reveal this approach to be a safe and effective technique in the management of GO. Subtle variations in endoscopic techniques significantly affect postsurgical outcomes and can be tailored to the specific clinical indication in GO making endonasal endoscopic decompression the most versatile approach available. NA.

  19. Unusual Clinical Presentation and Role of Decompressive Craniectomy in Herpes Simplex Encephalitis.

    PubMed

    Singhi, Pratibha; Saini, Arushi Gahlot; Sahu, Jitendra Kumar; Kumar, Nuthan; Vyas, Sameer; Vasishta, Rakesh Kumar; Aggarwal, Ashish

    2015-08-01

    Decompressive craniectomy in pediatric central nervous infections with refractory intracranial hypertension is less commonly practiced. We describe improved outcome of decompressive craniectomy in a 7-year-old boy with severe herpes simplex encephalitis and medically refractory intracranial hypertension, along with a brief review of the literature. Timely recognition of refractory intracranial hypertension and surgical decompression in children with herpes simplex encephalitis can be life-saving. Additionally, strokelike atypical presentations are being increasingly recognized in children with herpes simplex encephalitis and should not take one away from the underlying herpes simplex encephalitis. © The Author(s) 2014.

  20. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  1. Enhanced Perfusion During Advanced Life Support Improves Survival With Favorable Neurologic Function in a Porcine Model of Refractory Cardiac Arrest

    PubMed Central

    Debaty, Guillaume; Metzger, Anja; Rees, Jennifer; McKnite, Scott; Puertas, Laura; Yannopoulos, Demetris; Lurie, Keith

    2016-01-01

    Objective To improve the likelihood for survival with favorable neurologic function after cardiac arrest, we assessed a new advanced life support approach using active compression-decompression cardiopulmonary resuscitation plus an intrathoracic pressure regulator. Design Prospective animal investigation. Setting Animal laboratory. Subjects Female farm pigs (n = 25) (39 ± 3 kg). Interventions Protocol A: After 12 minutes of untreated ventricular fibrillation, 18 pigs were randomized to group A—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with standard cardiopulmonary resuscitation; group B—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator; and group C—3 minutes of basic life support with active compression-decompression cardiopulmonary resuscitation plus an impedance threshold device, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator. Advanced life support always included IV epinephrine (0.05 μg/kg). The primary endpoint was the 24-hour Cerebral Performance Category score. Protocol B: Myocardial and cerebral blood flow were measured in seven pigs before ventricular fibrillation and then following 6 minutes of untreated ventricular fibrillation during sequential 5 minutes treatments with active compression-decompression plus impedance threshold device, active compression-decompression plus intrathoracic pressure regulator, and active compression-decompression plus intrathoracic pressure regulator plus epinephrine. Measurements and Main Results Protocol A: One of six pigs survived for 24 hours in group A versus six of six in groups B and C (p = 0.002) and Cerebral Performance Category scores were 4.7 ± 0.8, 1.7 ± 0.8, and 1.0 ± 0, respectively (p = 0.001). Protocol B: Brain blood flow was significantly higher with active compression-decompression plus intrathoracic pressure regulator compared with active compression-decompression plus impedance threshold device (0.39 ± 0.23 vs 0.27 ± 0.14 mL/min/g; p = 0.03), whereas differences in myocardial perfusion were not statistically significant (0.65 ± 0.81 vs 0.42 ± 0.36 mL/min/g; p = 0.23). Brain and myocardial blood flow with active compression-decompression plus intrathoracic pressure regulator plus epinephrine were significantly increased versus active compression-decompression plus impedance threshold device (0.40 ± 0.22 and 0.84 ± 0.60 mL/min/g; p = 0.02 for both). Conclusion Advanced life support with active compression-decompression plus intrathoracic pressure regulator significantly improved cerebral perfusion and 24-hour survival with favorable neurologic function. These findings support further evaluation of this new advanced life support methodology in humans. PMID:25756411

  2. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation.

    PubMed

    Awni, Sarah; Conn, Brendan

    2017-06-01

    The aim of this study was to investigate whether decompression treatment induces changes in the histology or biologic behavior of keratocystic odontogenic tumor (KCOT). Seventeen patients with KCOT underwent decompression treatment with or without enucleation. Histologic evaluation and immunohistochemical expression of p53, Ki-67, and Bcl-2 were analyzed by using conventional microscopy. KCOT showed significantly increased fibrosis (P = .01) and a subjective reduction in mitotic activity (P = .03) after decompression. There were no statistically significant changes in the expression of proliferation markers. An increase in daughter-cysts or epithelial rests was seen after decompression (P = .04). Recurrence was noted in four of 16 cases, and expression of p53 was strongly correlated with prolonged duration of treatment (P = .01) and intense inflammatory changes (P = .02). Structural changes in the KCOT epithelium or capsule following decompression facilitate surgical removal of the tumor. There was no statistical evidence that decompression influences expression of proliferation markers in the lining, indicating that the potential for recurrence may not be restricted to the cellular level. The statistically significant increase of p53 expression with increased duration of treatment and increase of inflammation may also indicate the possibility of higher rates of recurrence with prolonged treatment and significant inflammatory changes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. Changes in optical coherence tomography measurements after orbital wall decompression in dysthyroid optic neuropathy.

    PubMed

    Park, Kyung-Ah; Kim, Yoon-Duck; Woo, Kyung In

    2018-06-01

    The purpose of our study was to assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness after orbital wall decompression in eyes with dysthyroid optic neuropathy (DON). We analyzed peripapillary optical coherence tomography (OCT) images (Cirrus HD-OCT) from controls and patients with DON before and 1 and 6 months after orbital wall decompression. There was no significant difference in mean preoperative peripapillary retinal nerve fiber layer thickness between eyes with DON and controls. The superior and inferior peripapillary RNFL thickness decreased significantly 1 month after decompression surgery compared to preoperative values (p = 0.043 and p = 0.022, respectively). The global average, superior, temporal, and inferior peripapillary RNFL thickness decreased significantly 6 months after decompression surgery compared to preoperative values (p = 0.015, p = 0.028, p = 0.009, and p = 0.006, respectively). Patients with greater preoperative inferior peripapillary RNFL thickness tended to have better postoperative visual acuity at the last visit (p = 0.024, OR = 0.926). Our data revealed a significant decrease in peripapillary RNFL thickness postoperatively after orbital decompression surgery in patients with DON. We also found that greater preoperative inferior peripapillary RNFL thickness was associated with better visual outcomes. We suggest that RNFL thickness can be used as a prognostic factor for DON before decompression surgery.

  4. Decompression Mechanisms and Decompression Schedule Calculations.

    DTIC Science & Technology

    1984-01-20

    phisiology - The effects of altitude. Handbook of Physiology, Section 3: Respiration, Vol. II. W.O. Fenn and H. Rahn eds. Wash, D.C.; Am. Physiol. Soc. 1 4...decompression studies from other laboratories. METHODS Ten experienced and physically qualified divers ( ages 22-42) were compressed at a rate of 60...STATISTICS* --- ---------------------------------------------------------- EXPERIMENT N AGE (yr) HEIGHT (cm) WEIGHT (Kg) BODY FAT

  5. An experimental study of the fluid-melt partitioning of volatiles (H2O, CO2, S) during the degassing of ascending basalt

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Di Carlo, Ida; Scaillet, Bruno

    2017-04-01

    We performed decompression experiments to constrain the fluid-melt partitioning of volatiles (H2O, CO2, S) in ascending basalt magmas associated with violent eruptions. Experiments were conducted in an internally heated pressure vessel under oxidizing conditions (fO2: NNO+1.1) so that all sulphur occurs as sulfate (S6+) in the melt. Volatile-bearing (2.72 ± 0.02 wt% H2O, 1291 ± 85 ppm CO2, 1535 ± 369 ppm S) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, decompressed between 150 and 25 MPa at constant rates of 39 and 78 kPa/s (or 1.5 and 3 m/s), and rapidly quenched. Run products were characterized both chemically (by IR spectroscopy and electron microprobe analysis) and texturally (by scanning electron microscopy), and then compared with Stromboli pumice products (glass inclusions, volcanic gases). In H2O-CO2-S-bearing basaltic melts, bubbles start to nucleate heterogeneously on Fe sulfides for supersaturation pressures ΔPHeN ≤ 1 MPa and to nucleate homogeneously for ΔPHoN < 50 MPa (ΔPHeN and ΔPHoN are the difference between the saturation pressure and the pressure at which heterogeneous and homogeneous bubble nucleation are observed, respectively). Bubble growth, coalescence and outgassing occur in addition to continuous bubble nucleation, which is sustained by the preservation of CO2 supersaturated melts during decompression. In addition to model the degassing behaviour of sulphur (and also of CO2 and H2O), our experiments aim to assist in the interpretation of geochemical observables. On the one hand, the volatile degassing trend recorded by Stromboli natural glasses (unsealed glass embayments) was closely experimentally simulated, with a coupled decrease of H2O and S whereas CO2 concentrations remain elevated. On the other hand, the experimental H2O/CO2 and CO2/SO2 fluid molar ratios, calculated by mass balance, both reproduced or closely approached the lower ranges of gas ratios measured at Stromboli for quiescent magma degassing and explosive activity. Compared to models that attribute a deep origin to CO2-rich fluxes and high CO2/SO2 gas ratios, our experimental observations support a model of low pressure (Pf << 25 MPa) explosive degassing of CO2-rich melts generated as a result of disequilibrium degassing to generate Strombolian paroxysms.

  6. Return-to-work of sick-listed workers without an employment contract – what works?

    PubMed Central

    Vermeulen, Sylvia J; Tamminga, Sietske J; Schellart, Antonius JM; Ybema, Jan Fekke; Anema, Johannes R

    2009-01-01

    Background In the past decade flexible labour market arrangements have emerged as a significant change in the European Union labour market. Studies suggest that these new types of labour arrangements may be linked to ill health, an increased risk for work disability, and inadequate vocational rehabilitation. Therefore, the objectives of this study were: 1. to examine demographic characteristics of workers without an employment contract sick-listed for at least 13 weeks, 2. to describe the content and frequency of occupational health care (OHC) interventions for these sick-listed workers, and 3. to examine OHC interventions as possible determinants for return-to-work (RTW) of these workers. Methods A cohort of 1077 sick-listed workers without an employment contract were included at baseline, i.e. 13 weeks after reporting sick. Demographic variables were available at baseline. Measurement of cross-sectional data took place 4–6 months after inclusion. Primary outcome measures were: frequency of OHC interventions and RTW-rates. Measured confounding variables were: gender, age, type of worker (temporary agency worker, unemployed worker, or remaining worker without employment contract), level of education, reason for absenteeism (diagnosis), and perceived health. The association between OHC interventions and RTW was analysed with a logistic multiple regression analysis. Results At 7–9 months after the first day of reporting sick only 19% of the workers had (partially or completely) returned to work, and most workers perceived their health as fairly poor or poor. The most frequently reported (49%) intervention was 'the OHC professional discussed RTW'. However, the intervention 'OHC professional made and discussed a RTW action plan' was reported by only 19% of the respondents. The logistic multiple regression analysis showed a significant positive association between RTW and the interventions: 'OHC professional discussed RTW'; and 'OHC professional made and discussed a RTW action plan'. The intervention 'OHC professional referred sick-listed worker to a vocational rehabilitation agency' was significantly associated with no RTW. Conclusion This is the first time that characteristics of a large cohort of sick-listed workers without an employment contract were examined. An experimental or prospective study is needed to explore the causal nature of the associations found between OHC interventions and RTW. PMID:19602219

  7. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip.

    PubMed

    Nori, Madhavi; Marupaka, Sravan Kumar; Alluri, Swathi; Md, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-12-01

    Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. To study pre and post core decompression MRI changes in avascular necrosis of hip. This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip.

  8. Enough positive rate of paraspinal mapping and diffusion tensor imaging with levels which should be decompressed in lumbar spinal stenosis.

    PubMed

    Chen, Hua-Biao; Zhong, Zhi-Wei; Li, Chun-Sheng; Bai, Bo

    2016-07-01

    In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis. The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively. 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively). In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  9. Original endoscopic orbital decompression of lateral wall through hairline approach for Graves' ophthalmopathy: an innovation of balanced orbital decompression.

    PubMed

    Gong, Yi; Yin, Jiayang; Tong, Boding; Li, Jingkun; Zeng, Jiexi; Zuo, Zhongkun; Ye, Fei; Luo, Yongheng; Xiao, Jing; Xiong, Wei

    2018-01-01

    Orbital decompression is an important surgical procedure for treatment of Graves' ophthalmopathy (GO), especially in women. It is reasonable for balanced orbital decompression of the lateral and medial wall. Various surgical approaches, including endoscopic transnasal surgery for medial wall and eye-side skin incision surgery for lateral wall, are being used nowadays, but many of them lack the validity, safety, or cosmetic effect. Endoscopic orbital decompression of lateral wall through hairline approach and decompression of medial wall via endoscopic transnasal surgery was done to achieve a balanced orbital decompression, aiming to improve the appearance of proptosis and create conditions for possible strabismus and eyelid surgery afterward. From January 29, 2016 to February 14, 2017, this surgery was performed on 41 orbits in 38 patients with GO, all of which were at inactive stage of disease. Just before surgery and at least 3 months after surgery, Hertel's ophthalmostatometer and computed tomography (CT) were used to check proptosis and questionnaires of GO quality of life (QOL) were completed. The postoperative retroversion of eyeball was 4.18±1.11 mm (Hertel's ophthalmostatometer) and 4.17±1.14 mm (CT method). The patients' QOL was significantly improved, especially the change in appearance without facial scar. The only postoperative complication was local soft tissue depression at temporal region. Obvious depression occurred in four cases (9.76%), which can be repaired by autologous fat filling. This surgery is effective, safe, and cosmetic. Effective balanced orbital decompression can be achieved by using this original and innovative surgery method. The whole manipulation is safe and controllable under endoscope. The postoperative scar of endoscopic surgery through hairline approach is covered by hair and the anatomic structure of anterior orbit is not impacted.

  10. Percutaneous laser disc decompression versus conventional microdiscectomy for patients with sciatica: Two-year results of a randomised controlled trial.

    PubMed

    Brouwer, Patrick A; Brand, Ronald; van den Akker-van Marle, M Elske; Jacobs, Wilco Ch; Schenk, Barry; van den Berg-Huijsmans, Annette A; Koes, Bart W; Arts, Mark A; van Buchem, M A; Peul, Wilco C

    2017-06-01

    Background Percutaneous laser disc decompression is a minimally invasive treatment, for lumbar disc herniation and might serve as an alternative to surgical management of sciatica. In a randomised trial with two-year follow-up we assessed the clinical effectiveness of percutaneous laser disc decompression compared to conventional surgery. Materials and methods This multicentre randomised prospective trial with a non-inferiority design, was carried out according to an intent-to-treat protocol with full institutional review board approval. One hundred and fifteen eligible surgical candidates, with sciatica from a disc herniation smaller than one-third of the spinal canal, were randomly allocated to percutaneous laser disc decompression ( n = 55) or conventional surgery ( n = 57). The main outcome measures for this trial were the Roland-Morris Disability Questionnaire for sciatica, visual analogue scores for back and leg pain and the patient's report of perceived recovery. Results The primary outcome measures showed no significant difference or clinically relevant difference between the two groups at two-year follow-up. The re-operation rate was 21% in the surgery group, which is relatively high, and with an even higher 52% in the percutaneous laser disc decompression group. Conclusion At two-year follow-up, a strategy of percutaneous laser disc decompression, followed by surgery if needed, resulted in non-inferior outcomes compared to a strategy of microdiscectomy. Although the rate of reoperation in the percutaneous laser disc decompression group was higher than expected, surgery could be avoided in 48% of those patients that were originally candidates for surgery. Percutaneous laser disc decompression, as a non-surgical method, could have a place in the treatment arsenal of sciatica caused by contained herniated discs.

  11. Salvage C2 ganglionectomy after C2 nerve root decompression provides similar pain relief as a single surgical procedure for intractable occipital neuralgia.

    PubMed

    Pisapia, Jared M; Bhowmick, Deb A; Farber, Roger E; Zager, Eric L

    2012-02-01

    To determine the effectiveness of C2 nerve root decompression and C2 dorsal root ganglionectomy for intractable occipital neuralgia (ON) and C2 ganglionectomy after pain recurrence following initial decompression. A retrospective review was performed of the medical records of patients undergoing surgery for ON. Pain relief at the time of the most recent follow-up was rated as excellent (headache relieved), good (headache improved), or poor (headache unchanged or worse). Telephone contact supplemented chart review, and patients rated their preoperative and postoperative pain on a 10-point numeric scale. Patient satisfaction and disability were also examined. Of 43 patients, 29 were available for follow-up after C2 nerve root decompression (n = 11), C2 dorsal root ganglionectomy (n = 10), or decompression followed by ganglionectomy (n = 8). Overall, 19 of 29 patients (66%) experienced a good or excellent outcome at most recent follow-up. Among the 19 patients who completed the telephone questionnaire (mean follow-up 5.6 years), patients undergoing decompression, ganglionectomy, or decompression followed by ganglionectomy experienced similar outcomes, with mean pain reduction ratings of 5 ± 4.0, 4.5 ± 4.1, and 5.7 ± 3.5. Of 19 telephone responders, 13 (68%) rated overall operative results as very good or satisfactory. In the third largest series of surgical intervention for ON, most patients experienced favorable postoperative pain relief. For patients with pain recurrence after C2 decompression, salvage C2 ganglionectomy is a viable surgical option and should be offered with the potential for complete pain relief and improved quality of life (QOL). Copyright © 2012. Published by Elsevier Inc.

  12. Evaluation of biological models using Spacelab

    NASA Technical Reports Server (NTRS)

    Tollinger, D.; Williams, B. A.

    1980-01-01

    Biological models of hypogravity effects are described, including the cardiovascular-fluid shift, musculoskeletal, embryological and space sickness models. These models predict such effects as loss of extracellular fluid and electrolytes, decrease in red blood cell mass, and the loss of muscle and bone mass in weight-bearing portions of the body. Experimentation in Spacelab by the use of implanted electromagnetic flow probes, by fertilizing frog eggs in hypogravity and fixing the eggs at various stages of early development and by assessing the role of the vestibulocular reflex arc in space sickness is suggested. It is concluded that the use of small animals eliminates the uncertainties caused by corrective or preventive measures employed with human subjects.

  13. [Theoretical analysis of recompression-based therapies of decompression illness].

    PubMed

    Nikolaev, V P; Sokolov, G M; Komarevtsev, V N

    2011-01-01

    Theoretical analysis is concerned with the benefits of oxygen, air and nitrogen-helium-oxygen recompression schedules used to treat decompression illness in divers. Mathematical modeling of tissue bubbles dynamics during diving shows that one-hour oxygen recompression to 200 kPa does not diminish essentially the size of bubble enclosed in a layer that reduces tenfold the intensity of gas diffusion from bubbles. However, these bubbles dissolve fully in all the body tissues equally after 2-hr. air compression to 800 kPa and ensuing 2-d decompression by the Russian navy tables, and 1.5-hr. N-He-O2 compression to this pressure followed by 5-day decompression. The overriding advantage of the gas mixture recompression is that it obviates the narcotic action of nitrogen at the peak of chamber pressure and does not create dangerous tissue supersaturation and conditions for emergence of large bubbles at the end of decompression.

  14. Cutting‐edge endonasal surgical approaches to thyroid ophthalmopathy

    PubMed Central

    Tyler, Matthew A.; Zhang, Caroline C.; Saini, Alok T.

    2018-01-01

    Objective Thyroid orbitopathy is a poorly understood extrathyroidal manifestation of Graves' disease that can cause disfiguring proptosis and vision loss. Orbital decompression surgery for Graves' orbitopathy (GO) can address both cosmetic and visual sequelae of this autoimmune condition. Endonasal endoscopic orbital decompression provides unmatched visualization and access to inferomedial orbital wall and orbital apex. This review examines the state of the art approaches employed in endonasal endoscopic orbital decompression for GO. Methods Review of literature evaluating novel surgical maneuvers for GO. Results Studies examining the efficacy of endonasal endoscopic orbital decompression are heterogenous and retrospective in design; however, they reveal this approach to be a safe and effective technique in the management of GO. Conclusion Subtle variations in endoscopic techniques significantly affect postsurgical outcomes and can be tailored to the specific clinical indication in GO making endonasal endoscopic decompression the most versatile approach available. Level of Evidence NA. PMID:29721541

  15. Graphics processing unit-assisted lossless decompression

    DOEpatents

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  16. Hormonal status and fluid electrolyte metabolism in motion sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, A.I.; Nichiporuk, I.A.; Yasnetsov, V.V.

    1988-04-01

    In the first experimental series, 10 healthy male test subjects with a high susceptibility to motion sickness showed a significant increase of ACTH, cortisol, STH, prolactin, ADH, aldosterone concentrations, and plasma renin activity after vestibular tests. The 10 subjects with a moderate susceptibility exhibited a still higher increase of the hormones, except plasma renin. The 8 test subjects with a low susceptibility displayed a considerable increase in ACTH, cortisol, and STH after vestibular stimulation. In the second experimental series, the increase of STH, cortisol, ADH, aldosterone and renin occurred immediately after rotation in the moderate susceptibility subjects and an hourmore » after exposure in the high susceptibility subjects. This may be indicative of specific immediate adaptation mechanisms or excitation transfer in the CNS in high susceptibility persons. In the third experimental animal series, the permeability of the blood-brain barrier for /sup 125/I and IgG increased after rotation. Greater concentrations of potassium, chloride, and urea in CSF are suggestive of an inhibition process activation in the CNS and, probably, of an active urea transport by the vascular plexus epithelium which maintains constant osmotic pressure of cerebral extracellular fluid and prevents hyper-hydration of CNS neurons.« less

  17. Delayed facial nerve decompression for Bell's palsy.

    PubMed

    Kim, Sang Hoon; Jung, Junyang; Lee, Jong Ha; Byun, Jae Yong; Park, Moon Suh; Yeo, Seung Geun

    2016-07-01

    Incomplete recovery of facial motor function continues to be long-term sequelae in some patients with Bell's palsy. The purpose of this study was to investigate the efficacy of transmastoid facial nerve decompression after steroid and antiviral treatment in patients with late stage Bell's palsy. Twelve patients underwent surgical decompression for Bell's palsy 21-70 days after onset, whereas 22 patients were followed up after steroid and antiviral therapy without decompression. Surgical criteria included greater than 90 % degeneration on electroneuronography and no voluntary electromyography potentials. This study was a retrospective study of electrodiagnostic data and medical chart review between 2006 and 2013. Recovery from facial palsy was assessed using the House-Brackmann grading system. Final recovery rate did not differ significantly in the two groups; however, all patients in the decompression group recovered to at least House-Brackmann grade III at final follow-up. Although postoperative hearing threshold was increased in both groups, there was no significant between group difference in hearing threshold. Transmastoid decompression of the facial nerve in patients with severe late stage Bell's palsy at risk for a poor facial nerve outcome reduced severe complications of facial palsy with minimal morbidity.

  18. Electromagnetic image-guided orbital decompression: technique, principles, and preliminary experience with 6 consecutive cases.

    PubMed

    Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora

    2014-12-01

    To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.

  19. The effect of nonlinear decompression history on H2O/CO2 vesiculation in rhyolitic magmas

    NASA Astrophysics Data System (ADS)

    Su, Yanqing; Huber, Christian

    2017-04-01

    Magma ascent rate is one of the key parameters that control volcanic eruption style, tephra dispersion, and volcanic atmospheric impact. Many methods have been employed to investigate the magma ascent rate in volcanic eruptions, and most rely on equilibrium thermodynamics. Combining the mixed H2O-CO2 solubility model with the diffusivities of both H2O and CO2 for normal rhyolitic melt, we model the kinetics of H2O and CO2 in rhyolitic eruptions that involve nonlinear decompression rates. Our study focuses on the effects of the total magma ascent time, the nonlinearity of decompression paths, and the influence of different initial CO2/H2O content on the posteruptive H2O and CO2 concentration profiles around bubbles within the melt. Our results show that, under most circumstances, volatile diffusion profiles do not constrain a unique solution for the decompression rate of magmas during an eruption, but, instead, provide a family of decompression paths with a well-defined trade-off between ascent time and nonlinearity. An important consequence of our analysis is that the common assumption of a constant decompression rate (averaged value) tends to underestimate the actual magma ascent time.

  20. Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury.

    PubMed

    Howard, Jerry Lee; Cipolle, Mark D; Anderson, Meredith; Sabella, Victoria; Shollenberger, Daniele; Li, P Mark; Pasquale, Michael D

    2008-08-01

    Using decompressive craniectomy as part of the treatment regimen for severe traumatic brain injury (STBI) has become more common at our Level I trauma center. This study was designed to examine this practice with particular attention to long-term functional outcome. A retrospective review of prospectively collected data was performed for patients with STBI admitted from January 1, 2003 to December 31, 2005. Our institution manages patients using the Brain Trauma Foundation Guidelines. Data collected from patients undergoing decompressive craniectomy included: age, Injury Severity Score, admission and follow-up Glasgow Coma Score, timing of, and indication for decompressive craniectomy, and procedure-related complications. The Extended Glasgow Outcome Scale (GOSE) was performed by a experienced trauma clinical research coordinator using a structured phone interview to assess long-term outcome in the survivors. Student's t test and chi2 were used to examine differences between groups. Forty STBI patients were treated with decompressive craniectomy; 24 were performed primarily in conjunction with urgent evacuation of extra-axial hemorrhage and 16 were performed primarily in response to increased intracranial pressure with 4 of these after an initial craniotomy. Decompressive craniectomy was very effective at lowering intracranial pressure in these 16 patients (35.0 mm Hg +/- 13.5 mm Hg to 14.6 mm Hg +/- 8.7 mm Hg, p = 0.005). Twenty-two decompressive craniectomy patients did not survive to hospital discharge, whereas admission Glasgow Coma Score and admission pupil size and reactivity correlated with outcome, age, and Injury Severity Score did not. At a mean of 11 months (range, 3-26 months) after decompressive craniectomy, 6 survivors had a poor functional outcome (GOSE 1-4), whereas 12 survivors had a good outcome (GOSE 5-8). Therefore, 70% of these patients had an unfavorable outcome (death or severe disability), and 30% had a favorable long-term functional outcome. Fifteen of 18 survivors went on to cranioplasty, whereas 4 of 18 had cerebrospinal infection. The majority of survivors after decompressive craniectomy have a good functional outcome as analyzed by GOSE. Overall, 30% of patients with STBI who underwent decompressive craniectomy had a favorable long-term outcome. Improving patient selection and optimizing timing of this procedure may further improve outcome in these very severely brain injured patients.

  1. Piezosurgery in Modified Pterional Orbital Decompression Surgery in Graves Disease.

    PubMed

    Grauvogel, Juergen; Scheiwe, Christian; Masalha, Waseem; Jarc, Nadja; Grauvogel, Tanja; Beringer, Andreas

    2017-10-01

    Piezosurgery uses microvibrations to selectively cut bone, preserving the adjacent soft tissue. The present study evaluated the use of piezosurgery for bone removal in orbital decompression surgery in Graves disease via a modified pterional approach. A piezosurgical device (Piezosurgery medical) was used in 14 patients (20 orbits) with Graves disease who underwent orbital decompression surgery in additional to drills and rongeurs for bone removal of the lateral orbital wall and orbital roof. The practicability, benefits, and drawbacks of this technique in orbital decompression surgery were recorded. Piezosurgery was evaluated with respect to safety, preciseness of bone cutting, and preservation of the adjacent dura and periorbita. Preoperative and postoperative clinical outcome data were assessed. The orbital decompression surgery was successful in all 20 orbits, with good clinical outcomes and no postoperative complications. Piezosurgery proved to be a safe tool, allowing selective bone cutting with no damage to the surrounding soft tissue structures. However, there were disadvantages concerning the intraoperative handling in the narrow space and the efficiency of bone removal was limited in the orbital decompression surgery compared with drills. Piezosurgery proved to be a useful tool in bone removal for orbital decompression in Graves disease. It is safe and easy to perform, without any danger of damage to adjacent tissue because of its selective bone-cutting properties. Nonetheless, further development of the device is necessary to overcome the disadvantages in intraoperative handling and the reduced bone removal rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Constraints on Mantle Plume Melting Conditions in the Martian Mantle Based on Improved Melting Phase Relationships of Olivine-Phyric Shergottite Yamato 980459

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Rapp, Jennifer F.; Usui, Tomohiro; Draper, David S.; Filiberto, Justin

    2016-01-01

    Martian meteorite Yamato 980459 (hereafter Y98) is an olivine-phyric shergottite that has been interpreted as closely approximating a martian mantle melt [1-4], making it an important constraint on adiabatic decompression melting models. It has long been recognized that low pressure melting of the Y98 composition occurs at extremely high temperatures relative to martian basalts (1430 degC at 1 bar), which caused great difficulties in a previous attempt to explain Y98 magma generation via a mantle plume model [2]. However, previous studies of the phase diagram were limited to pressures of 2 GPa and less [2, 5], whereas decompression melting in the present-day martian mantle occurs at pressures of 3-7 GPa, with the shallow boundary of the melt production zone occurring just below the base of the thermal lithosphere [6]. Recent experimental work has now extended our knowledge of the Y98 melting phase relationships to 8 GPa. In light of this improved petrological knowledge, we are therefore reassessing the constraints that Y98 imposes on melting conditions in martian mantle plumes. Two recently discovered olivine- phyric shergottites, Northwest Africa (NWA) 5789 and NWA 6234, may also be primary melts from the martian mantle [7, 8]. However, these latter meteorites have not been the subject of detailed experimental petrology studies, so we focus here on Y98.

  3. The Newcastle Papers in Industrial Medicine over the Last 21 Years

    PubMed Central

    Browne, R. C.

    1968-01-01

    The Chair of Industrial Health in Newcastle upon Tyne was first filled in March, 1946. For about the first 12 years diseases of coalminers posed the main clinical and research problems. They stimulated surveys of pneumoconiosis in the Durham and Northumberland coalfields and led to studies of ϰ-ray viewing techniques and of the relationship of radiological appearance to symptoms in dust disease of the chest. A section of medical statistics, now headed by a professor, was one of the earliest elements of the department to be inaugurated, and this was followed by a section of pulmonary physiology. The emphasis on industrial pulmonary disease, on which 14 papers have been published, has gradually widened and become transferred from coal to beryllium, asbestos, and antimony. Coalminers with nystagmus were shown to be socially similar to miners without the disease but psychologically less stable. They also suffered from a breakdown of their binocular vision. A darkness-induced nystagmus was experimentally produced in kittens, with increasing difficulty as they became older. Decompression sickness has become an important interest. In the build-up of the department demands for occupational hygiene soon led to the formation of a section which started work on the decalcification of teeth by organic acids in a fruit salt factory. Lead poisoning in shipbreakers and smelters, and vanadium poisoning in fitters and gasmakers were studied jointly with clinicians. The thermal decomposition of protective coatings and welding rods has also attracted research, as also have the noise levels in a glassblowing school and in several power stations. All medical, engineering, and public health undergraduates are taught by the department, and also the honours chemists. All medical undergraduates and honours engineers are examined in industrial health. The departmental budget (including the field service) is about £54,000, and the department inhabits 12,660 sq. ft. of space. PMID:5663422

  4. Sub-diffraction Imaging via Surface Plasmon Decompression

    DTIC Science & Technology

    2014-06-08

    of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. The views, opinions and/or findings...adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. Conference Name...diffraction imaging based on a process of adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved

  5. Early Outcomes of Endoscopic Contralateral Foraminal and Lateral Recess Decompression via an Interlaminar Approach in Patients with Unilateral Radiculopathy from Unilateral Foraminal Stenosis.

    PubMed

    Kim, Hyeun Sung; Patel, Ravish; Paudel, Byapak; Jang, Jee-Soo; Jang, Il-Tae; Oh, Seong-Hoon; Park, Jae Eun; Lee, Sol

    2017-12-01

    Percutaneous endoscopic contralateral interlaminar lumbar foraminotomy (PECILF) for lumbar degenerative spinal stenosis is an established procedure. Better preservation of contralateral facet joint compared with that of the approach side has been shown with uniportal bilateral decompression. The aim of this retrospective case series was to analyze the early clinical and radiologic outcomes of stand-alone contralateral foraminotomy and lateral recess decompression using PECILF. Twenty-six consecutive patients with unilateral lower limb radiculopathy underwent contralateral foraminotomy and lateral recess decompression using PECILF. Their clinical outcomes were evaluated with visual analog scale leg pain score, Oswestry Disability Index, and the MacNab criteria. Completeness of decompression was documented with a postoperative magnetic resonance imaging. Mean age for the study group was 62.9 ± 9.2 years and the male/female ratio was 4:9. A total of 30 levels were decompressed, with 18 patients (60%) undergoing decompression at L4-L5, 9 at L5-S1 (30%), 2 at L3-L4 (6.7%), and 1 at L2-L3 (3.3%). Mean estimated blood loss was 27 ± 15 mL per level. Mean operative duration was 48 ± 12 minutes/level. Visual analog scale leg score improved from 7.7 ± 1 to 1.8 ± 0.8 (P < 0.0001). Oswestry Disability Index improved from 64.4 ± 5.8 to 21 ± 4.5 (P < 0.0001). Mean follow-up of the study was 13.7 ± 2.7 months. According to the MacNab criteria, 10 patients (38.5%) had good results, 14 patients (53.8%) had excellent results, and 2 patients (7.7%) had fair results. One patient required revision surgery. Facet-preserving contralateral foraminotomy and lateral recess decompression with PECILF is effective for treatment of lateral recess and foraminal stenosis. Thorough decompression with acceptable early clinical outcomes and minimal perioperative morbidity can be obtained with the contralateral endoscopic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. How to study placebo responses in motion sickness with a rotation chair paradigm in healthy participants.

    PubMed

    Weimer, Katja; Horing, Björn; Muth, Eric R; Enck, Paul

    2014-12-14

    Placebo responses occur in every medical intervention when patients or participants expect to receive an effective treatment to relieve symptoms. However, underlying mechanisms of placebo responses are not fully understood. It has repeatedly been shown that placebo responses are associated with changes in neural activity but for many conditions it is unclear whether they also affect the target organ, such as the stomach in motion sickness. Therefore, we present a methodology for the multivariate assessment of placebo responses by subjective, behavioral and objective measures in motion sickness with a rotation chair paradigm. The physiological correlate of motion sickness is a shift in gastric myoelectrical activity towards tachygastria that can be recorded with electrogastrography. The presented study applied the so-called balanced placebo design (BPD) to investigate the effects of ginger compared to placebo and the effects of expectations by verbal information. However, the study revealed no significant main or interactional effects of ginger (as a drug) or information on outcome measures but showed interactions when sex of participants and experimenters are taken into considerations. We discuss limitations of the presented study and report modifications that were used in subsequent studies demonstrating placebo responses when rotation speed was lowered. In general, future placebo studies have to identify the appropriate target organ for the studied placebo responses and to apply the specific methods to assess the physiological correlates.

  7. Secondary prevention of work-related disability in nonspecific low back pain: does problem-solving therapy help? A randomized clinical trial.

    PubMed

    van den Hout, Johanna H C; Vlaeyen, Johan W S; Heuts, Peter H T G; Zijlema, Johan H L; Wijnen, Joseph A G

    2003-01-01

    Given the individual and economic burden of chronic work disability in low back pain patients, there is a need for effective preventive interventions. The aim of the present study was to investigate whether problem-solving therapy had a supplemental value when added to behavioral graded activity, regarding days of sick leave and work status. Randomized controlled trial. Employees who were recently on sick leave as a result of nonspecific low back pain were referred to the rehabilitation center by general practitioner, occupational physician, or rehabilitation physician. Forty-five employees had been randomly assigned to the experimental treatment condition that included behavioral graded activity and problem-solving therapy (GAPS), and 39 employees had been randomly assigned to behavioral graded activity and group education (GAGE). Days of sick leave and work status. Data were retrieved from occupational health services. Data analyses showed that employees in the GAPS group had significantly fewer days of sick leave in the second half-year after the intervention. Moreover, work status was more favorable for employees in this condition, in that more employees had a 100% return-to-work and fewer patients ended up receiving disability pensions one year after the intervention. Sensitivity analyses confirmed these results. The addition of problem-solving therapy to behavioral graded activity had supplemental value in employees with nonspecific low back pain.

  8. Effect of lipopolysaccharide on sickness behaviour in hens kept in cage and free range environments.

    PubMed

    Gregory, N G; Payne, S R; Devine, C D; Cook, C J

    2009-08-01

    The aim of this study was to assess whether environmental enrichment and environmental conditions can influence the expression of sickness behaviour. The behaviour in response to injection of lipopolysaccharide or saline was examined in a total of 96 62-weeks old hatchmate hens kept in a free range or cage environment. There were eight experimental treatments, each with 12 birds. Half the birds were sourced from a commercial cage layer unit (C/-) and half from a commercial free range unit (FR/-). After intraperitoneal injection with either lipopolysaccharide or saline (as a control), the hens were placed in either a cage (-/C) or free range (-/FR) environment. Lipopolysaccharide caused greater suppression of activity in free range (FR/FR) than in caged hens, including less walking (53% reduction), roosting (-86%) and preening (-60%) (p<0.05). Those responses were not observed in caged birds released into free range, nor in free range birds introduced to cages, suggesting that both the presence of and the familiarity with an environment affected sickness behaviour patterns. Increased sleeping was the most consistent response (+147%; p<0.001), and it was least influenced by environment. It was concluded that free range layer hens can express a greater range of sickness behaviours than caged hens, and this may make it more difficult to recognise disease expression in the caged environment.

  9. Effects of deformability of RBCs on their dynamics and blood flow passing through a stenosed microvessel: an immersed boundary-lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Alizadeh, As'ad; Dadvand, Abdolrahman

    2018-02-01

    In this paper, the motion of high deformable (healthy) and low deformable (sick) red blood cells in a microvessel with and without stenosis is simulated using a combined lattice Boltzmann-immersed boundary method. The RBC is considered as neo-Hookean elastic membrane with bending resistance. The motion and deformation of the RBC under different values of the Reynolds number are evaluated. In addition, the variations of blood flow resistance and time-averaged pressure due to the motion and deformation of the RBC are assessed. It was found that a healthy RBC moves faster than a sick one. The apparent viscosity and blood flow resistance are greater for the case involving the sick RBC. Blood pressure at the presence of stenosis and low deformable RBC increases, which is thought of as the reason of many serious diseases including cardiovascular diseases. As the Re number increases, the RBC deforms further and moves easier and faster through the stenosis. The results of this study were compared to the available experimental and numerical results, and good agreements were observed.

  10. Analysis of direct costs of decompressive craniectomy in victims of traumatic brain injury.

    PubMed

    Badke, Guilherme Lellis; Araujo, João Luiz Vitorino; Miura, Flávio Key; Guirado, Vinicius Monteiro de Paula; Saade, Nelson; Paiva, Aline Lariessy Campos; Avelar, Tiago Marques; Pedrozo, Charles Alfred Grander; Veiga, José Carlos Esteves

    2018-04-01

    Decompressive craniectomy is a procedure required in some cases of traumatic brain injury (TBI). This manuscript evaluates the direct costs and outcomes of decompressive craniectomy for TBI in a developing country and describes the epidemiological profile. A retrospective study was performed using a five-year neurosurgical database, taking a sample of patients with TBI who underwent decompressive craniectomy. Several variables were considered and a formula was developed for calculating the total cost. Most patients had multiple brain lesions and the majority (69.0%) developed an infectious complication. The general mortality index was 68.8%. The total cost was R$ 2,116,960.22 (US$ 661,550.06) and the mean patient cost was R$ 66,155.00 (US$ 20,673.44). Decompressive craniectomy for TBI is an expensive procedure that is also associated with high morbidity and mortality. This was the first study performed in a developing country that aimed to evaluate the direct costs. Prevention measures should be a priority.

  11. Decompression-Driven Superconductivity Enhancement in In2 Se3.

    PubMed

    Ke, Feng; Dong, Haini; Chen, Yabin; Zhang, Jianbo; Liu, Cailong; Zhang, Junkai; Gan, Yuan; Han, Yonghao; Chen, Zhiqiang; Gao, Chunxiao; Wen, Jinsheng; Yang, Wenge; Chen, Xiao-Jia; Struzhkin, Viktor V; Mao, Ho-Kwang; Chen, Bin

    2017-09-01

    An unexpected superconductivity enhancement is reported in decompressed In 2 Se 3 . The onset of superconductivity in In 2 Se 3 occurs at 41.3 GPa with a critical temperature (T c ) of 3.7 K, peaking at 47.1 GPa. The striking observation shows that this layered chalcogenide remains superconducting in decompression down to 10.7 GPa. More surprisingly, the highest T c that occurs at lower decompression pressures is 8.2 K, a twofold increase in the same crystal structure as in compression. It is found that the evolution of T c is driven by the pressure-induced R-3m to I-43d structural transition and significant softening of phonons and gentle variation of carrier concentration combined in the pressure quench. The novel decompression-induced superconductivity enhancement implies that it is possible to maintain pressure-induced superconductivity at lower or even ambient pressures with better superconducting performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Successful Treatment of Early Talar Osteonecrosis by Core Decompression Combined with Intraosseous Stem Cell Injection: A Case Report.

    PubMed

    Nevalainen, Mika T; Repo, Jussi P; Pesola, Maija; Nyrhinen, Jukka P

    2018-01-01

    Osteonecrosis of the talus is a fairly rare condition. Many predisposing factors have been identified including previous trauma, use of corticosteroids, alcoholism, and smoking. As a gold standard, magnetic resonance imaging (MRI) is the most sensitive and specific diagnostic examination to detect osteonecrosis. While many treatment options for talar osteonecrosis exist, core decompression is suggested on young patients with good outcome results. More recently, intraosseous stem cell and platelet-rich plasma (PRP) injection has been added to the core decompression procedure. We report a successful treatment of early talar osteonecrosis ARCO I (Association Research Circulation Osseous) by core decompression combined with stem cell and PRP injection. On 3-month and 15-month follow-up, MRI showed complete resolution of the osteonecrotic changes together with clinical improvement. This modified technique is a viable treatment option for early talar osteonecrosis. Nevertheless, future prospects should include a study comparing this combined technique with plain core decompression.

  13. Decompressive craniectomy and hydrocephalus: proposal of a therapeutic flow chart.

    PubMed

    Peraio, Simone; Calcagni, Maria Lucia; Mattoli, Maria Vittoria; Marziali, Giammaria; DE Bonis, Pasquale; Pompucci, Angelo; Anile, Carmelo; Mangiola, Annunziato

    2017-12-01

    Decompressive craniectomy (DC) may be necessary to save the lives of patients suffering from intracranial hypertension. However, this procedure is not complication-free. Its two main complications are hydrocephalus and the sinking skin-flap syndrome (SSFS). The radiological findings and the clinical evaluation may be not enough to decide when and/or how to treat hydrocephalus in a decompressed patient. SSFS and hydrocephalus may be not unrelated. In fact, a patient affected by hydrocephalus, after the ventriculo-peritoneal shunt, can develop SSFS; on the other hand, SSFS per se can cause hydrocephalus. Treating hydrocephalus in decompressed patients can be challenging. Radiological findings and clinical evaluation may not be enough to define the most appropriate therapeutic strategy. Cerebrospinal fluid (CSF) dynamics and metabolic evaluations can represent important diagnostic tools for assessing the need of a CSF shunt in patients with a poor baseline neurologic status. Based on our experience, we propose a flow chart for treating decompressed patients affected by ventriculomegaly.

  14. Therapeutic Work as a Facilitator for Return to Paid Work in Cancer Survivors.

    PubMed

    van Egmond, M P; Duijts, S F A; van Muijen, P; van der Beek, A J; Anema, J R

    2017-03-01

    Purpose The increase of flexible employment in European labour markets has contributed to workers' risk of job loss. For sick-listed workers with chronic illnesses, such as cancer, and especially those without an employment contract, participation in therapeutic work may be an important step towards paid employment. The purpose of this study was to determine the role of therapeutic employment as facilitator for return to paid work, in a cohort of sick-listed cancer survivors (CSs) with and without an employment contract. Methods In this longitudinal study, data were used from a cohort of Dutch CSs (N = 192), who applied for disability benefits after 2 years of sick leave. The primary outcome measure was return to paid work after 1 year. Logistic regression analysis was applied. Results Of the participating CSs (mean age 50.7 years, 33 % male), 69 % had an employment contract at baseline. CSs without an employment contract participated significantly less in therapeutic work (p < 0.001) and were less likely to return to paid work after 1 year (p = 0.001), than those with a contract. Participation in therapeutic work significantly increased the chance of return to paid work after 1 year (OR 6.97; 95 % CI 2.94-16.51), adjusted for age, gender, level of work disability and having an employment contract. Conclusions Participation in therapeutic work could be an important facilitator for return to paid work in sick-listed CSs. The effectiveness of therapeutic work as a means to return to paid employment for sick-listed workers should be studied in an experimental setting.

  15. Oxygen Equipment and Rapid Decompression Studies

    DTIC Science & Technology

    1979-03-01

    defined and discussed by Fritz Haber anti Hans Clamann (3) of the USAF School of Aviation Medicine.* These authors define two factors in a...for the pattern of airflow through the pene- tration; and (vi) maintenance of critical flow. The equation for rapid decompression as presented by Haber ...galley, controlling the pressure differential between the two compartments. Using the equation of Haber and Clamann (7), a decompression for the galley

  16. Bilateral Ocular Decompression Retinopathy after Ahmed Valve Implantation for Uveitic Glaucoma.

    PubMed

    Flores-Preciado, Javier; Ancona-Lezama, David Arturo; Valdés-Lara, Carlos Andrés; Díez-Cattini, Gian Franco; Coloma-González, Itziar

    2016-01-01

    We report the case of a 29-year-old man who underwent Ahmed valve implantation in both eyes as treatment for uveitic glaucoma, subsequently presenting with bilateral ocular decompression retinopathy in the postoperative period. Ocular decompression retinopathy is a rare complication of filtering surgery in patients with glaucoma; however, the course is benign in most cases, with spontaneous resolution of bleedings and improvement of visual acuity.

  17. Optic neuropathy in thyroid eye disease: results of the balanced decompression technique.

    PubMed

    Baril, Catherine; Pouliot, Denis; Molgat, Yvonne

    2014-04-01

    To determine the efficacy of combined endoscopic medial and external lateral orbital decompression for the treatment of compressive optic neuropathy (CON) in thyroid eye disease (TED). A retrospective review of all patients undergoing combined surgical orbital decompression for CON between 2000 and 2010 was conducted. Fifty-nine eyes of 34 patients undergoing combined surgical orbital decompression for CON. Clinical outcome measures included visual acuity, Hardy-Rand-Rittler (HRR) colour plate testing, relative afferent pupillary defect, intraocular pressure measurement, and Hertel exophthalmometry. A CON score was calculated preoperatively and postoperatively based on the visual acuity and the missed HRR plates. A higher CON score correlates with more severe visual dysfunction. All patients had improvement of their optic neuropathy after surgical decompression. CON score was calculated for 54 eyes and decreased significantly from a mean of 13.2 ± 10.35 preoperatively to a mean of 8.51 ± 10.24 postoperatively (p < 0.0001). Optic neuropathy was completely resolved in 93.22% (55/59 eyes). Eighteen of 34 patients (52.94%) experienced development of new-onset postoperative strabismus that required subsequent surgical intervention. Endoscopic medial combined with external lateral orbital decompression is an effective technique for the treatment of TED-associated CON. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.

  18. Resolution of Tachyarrhythmia Following Posterior Fossa Decompression Surgery for Chiari Malformation Type I.

    PubMed

    Elia, Christopher; Brazdzionis, James; Tashjian, Vartan

    2018-03-01

    Chiari malformation (CM) type I commonly presents with symptoms such as tussive headaches, paresthesias, and, in severe cases, corticobulbar dysfunction. However, patients may present with atypical symptoms lending to the complexity in this patient population. We present a case of a CM patient presenting with atypical cardiac symptoms and arrhythmias, all of which resolved after surgical decompression. A 31-year-old female presented with atypical chest pain, palpitations, tachycardia, headaches, and dizziness for 2 years. Multiple antiarrhythmics and ultimately cardiac ablation procedure proved to be ineffective. Magnetic resonance imaging revealed CM, and the patient ultimately underwent surgical decompression with subsequent resolution of her symptoms. The surgical management of CM patients presenting with atypical symptoms can be challenging and often lead to delays in intervention. To our knowledge this is the only reported case of a patient presenting with tachyarrhythmia and atypical chest pain with resolution after Chiari decompression. We believe the dramatic improvement documented in the present case should serve to advance Chiari decompression in CM patients presenting with refractory tachyarrhythmia in whom no other discernable cause has been elucidated. Further studies are needed to better correlate the findings and to hopefully establish a criteria for patients that will likely benefit from surgical decompression. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits.

    PubMed

    Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong

    2013-01-01

    Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.

  20. The Therapeutic Effect of Negative Pressure in Treating Femoral Head Necrosis in Rabbits

    PubMed Central

    Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong

    2013-01-01

    Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN. PMID:23383276

  1. Technique for Mini-open Decompression of Chiari Type I Malformation in Adults.

    PubMed

    Pakzaban, Peyman

    2017-08-01

    The technique for decompression of Chiari type I malformation relies on open exposure of craniocervical junction for suboccipital craniectomy and upper cervical laminectomy with or without duraplasty. There is no detailed technical report of a minimally invasive approach for Chiari decompression in adults. To describe a mini-open technique for decompression of Chiari type I malformation (including duraplasty) in adults. Six consecutive adult patients with symptomatic Chiari type I malformation underwent decompression through a 3 to 4 cm midline incision via a speculum retractor. All patients underwent a limited suboccipital craniectomy and C1 laminectomy with an ultrasonic bone scalpel. All patients underwent duraplasty with a synthetic dural substitute. In the 2 patients with syringomyelia, the arachnoid was opened and intradural dissection was carried out. In the remaining 4 patients, the arachnoid was left intact. All operations were completed successfully through the mini-open exposure. Mean surgery time, blood loss, and length of stay were 114 min, 55 mL, and 1.3 days, respectively. Mean follow-up was 13.2 months (range 9-18). All patients had excellent clinical outcomes as defined by scores of 15 (3 patients) or 16 (3 patients) on Chicago Chiari Outcome Scale. There were no neurological complications or cerebrospinal fluid leaks. Postop computed tomography revealed good boney decompression. In the 2 patients with syringomyelia, MRI at 6 months revealed resolution of the syrinx. Decompression of Chiari type I malformation in adults can be performed safely and effectively through the mini-open exposure described in this report. Copyright © 2017 by the Congress of Neurological Surgeons

  2. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip

    PubMed Central

    Marupaka, Sravan Kumar; Alluri, Swathi; MD, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-01-01

    Introduction Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. Aim To study pre and post core decompression MRI changes in avascular necrosis of hip. Materials and Methods This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Results Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Conclusion Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip. PMID:26816966

  3. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    PubMed

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (p<.01) and spondylolisthesis (HR, 0.33; 95% CI, 0.17-0.61) before surgery. Sagittal imbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Annual Historical Report - AMEDD Activities, Calendar Year 1986

    DTIC Science & Technology

    1987-01-01

    experimentation . A method was devised to determine the heat transfer properties of the head by use of a copper model which is unique and allows independent ...Church, VA 22041 Commander US Army Training and Doctrine Command ATTN: ATCD-S ATCD-ATMD Fort Monroe, VA 23651 Commander US Army Test and Experimentation ...4500 m). Soldiers with less than 20 torr increase test have only a 40-50% probability of acute mountain sickness. Therefore, CPT at sea level may be used

  5. Experimental magma degassing: The revenge of the deformed bubbles

    NASA Astrophysics Data System (ADS)

    Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.

    2013-12-01

    We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to rapid quench. For a volumetric loss of 75% at a final P of 75 MPa, the initial diameter of a bubble in the melt has to be ~1.5x the diameter of a bubble in the glass. At DRs of >0.17 MPa/s the decompression method has only minor influence on melt degassing. SD and CD result in BNDs of 10^4-10^5 mm^-3. Fast P drop leads to immediate super-saturation with H2O in the melt. At high DRs, the diffusional transport of H2O is very limited and therefore bubble nucleation is the predominant degassing process. CD rates of ≤0.17 MPa/s provide sufficient time for H2O diffusion into existing bubbles. BNDs of CD samples with low DRs are several orders of magnitude lower than for SD experiments. In contrast to SD, bubble growth is the favored degassing mechanism. CD samples quenched at different target P at 0.024 MPa/s trace an equilibrium degassing path in terms of residual H2O content in the glass. SD techniques, as used in many studies before, are therefore not suitable to simulate melt degassing at continuous magma ascent. [1] Giordano, D; Russell, JK; Dingwell, DB; 2008. EPSL, 271: 123-134. [2] Duan, ZH; Zhang, ZG; 2006. GCA, 70: 2311-2324. [3] Marxer, H; Nowak, M; 2013. EJM, in press.

  6. An atomistic model for cross-linked HNBR elastomers used in seals

    NASA Astrophysics Data System (ADS)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  7. Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results.

    PubMed

    Feitosa, Matheus Levi Tajra; Fadel, Leandro; Beltrão-Braga, Patrícia Cristina Baleeiro; Wenceslau, Cristiane Valverde; Kerkis, Irina; Kerkis, Alexandre; Birgel Júnior, Eduardo Harry; Martins, João Flávio Panattoni; Martins, Daniele dos Santos; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo

    2010-10-01

    Evaluate the bone tissue recovery following transplantation of ovine mesenchymal stem cells (MSC) from bone marrow and human immature dental-pulp stem cells (hIDPSC) in ovine model of induced osteonecrosis of femoral head (ONFH). Eight sheep were divided in three experimental groups. First group was composed by four animals with ONFH induced by ethanol through central decompression (CD), for control group without any treatment. The second and third group were compose by two animals, six weeks after ONFH induction received transplantation of heterologous ovine MSC (CD + oMSC), and hIDPSC (CD + hIDPSC), respectively. In both experiments the cells were transplanted without application of any type of immunosupression protocol. Our data indicate that both cell types used in experiments were able to proliferate within injured site providing bone tissue recovery. The histological results obtained from CD+hIDPSC suggested that the bone regeneration in such animals was better than that observed in CD animals. Mesenchymal stem cell transplant in induced ovine osteonecrosis of femoral head by central decompression technique is safe, and apparently favors bone regeneration of damaged tissues.

  8. Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature

    NASA Astrophysics Data System (ADS)

    Sarafian, Emily; Gaetani, Glenn A.; Hauri, Erik H.; Sarafian, Adam R.

    2017-03-01

    Decompression of hot mantle rock upwelling beneath oceanic spreading centers causes it to exceed the melting point (solidus), producing magmas that ascend to form basaltic crust ~6 to 7 kilometers thick. The oceanic upper mantle contains ~50 to 200 micrograms per gram of water (H2O) dissolved in nominally anhydrous minerals, which—relative to its low concentration—has a disproportionate effect on the solidus that has not been quantified experimentally. Here, we present results from an experimental determination of the peridotite solidus containing known amounts of dissolved hydrogen. Our data reveal that the H2O-undersaturated peridotite solidus is hotter than previously thought. Reconciling geophysical observations of the melting regime beneath the East Pacific Rise with our experimental results requires that existing estimates for the oceanic upper mantle potential temperature be adjusted upward by about 60°C.

  9. Alternative technique in atypical spinal decompression: the use of the ultrasonic scalpel in paediatric achondroplasia

    PubMed Central

    Woodacre, Timothy; Sewell, Matthew; Clarke, Andrew J; Hutton, Mike

    2016-01-01

    Spinal stenosis can be a very disabling condition. Surgical decompression carries a risk of dural tear and neural injury, which is increased in patients with severe stenosis or an atypical anatomy. We present an unusual case of symptomatic stenosis secondary to achondroplasia presenting in a paediatric patient, and highlight a new surgical technique used to minimise the risk of dural and neural injury during decompression. PMID:27288205

  10. The Air Force Mobile Forward Surgical Team (MFST): Using the Estimating Supplies Program to Validate Clinical Requirement

    DTIC Science & Technology

    2004-12-01

    conducted in an abbreviated, staged manner, such as laparotomies, decompression craniotomies , vascular shunts, or amputations. The FRSS provides...Performed at MFST Abbreviated laparotomy 36.29 Vascular shunt/ligate 32.84 Amputation 12.32 Decompression craniotomy 8.98 Thoracotomy 6.35...Vascular shunt/ligations 6 33 Abbreviated laparotomy 4 22 Amputation 3 16 Decompression craniotomy 3 16 Thoracotomy 2 10 Other 3 Total 18 100

  11. Bilateral Ocular Decompression Retinopathy after Ahmed Valve Implantation for Uveitic Glaucoma

    PubMed Central

    Flores-Preciado, Javier; Ancona-Lezama, David Arturo; Valdés-Lara, Carlos Andrés; Díez-Cattini, Gian Franco; Coloma-González, Itziar

    2016-01-01

    Case Report We report the case of a 29-year-old man who underwent Ahmed valve implantation in both eyes as treatment for uveitic glaucoma, subsequently presenting with bilateral ocular decompression retinopathy in the postoperative period. Discussion Ocular decompression retinopathy is a rare complication of filtering surgery in patients with glaucoma; however, the course is benign in most cases, with spontaneous resolution of bleedings and improvement of visual acuity. PMID:27920718

  12. Minimally invasive lumbar foraminotomy.

    PubMed

    Deutsch, Harel

    2013-07-01

    Lumbar radiculopathy is a common problem. Nerve root compression can occur at different places along a nerve root's course including in the foramina. Minimal invasive approaches allow easier exposure of the lateral foramina and decompression of the nerve root in the foramina. This video demonstrates a minimally invasive approach to decompress the lumbar nerve root in the foramina with a lateral to medial decompression. The video can be found here: http://youtu.be/jqa61HSpzIA.

  13. Validation of sick leave measures: self-reported sick leave and sickness benefit data from a Danish national register compared to multiple workplace-registered sick leave spells in a Danish municipality

    PubMed Central

    2012-01-01

    Background Previous validation studies of sick leave measures have focused on self-reports. Register-based sick leave data are considered to be valid; however methodological problems may be associated with such data. A Danish national register on sickness benefit (DREAM) has been widely used in sick leave research. On the basis of sick leave records from 3,554 and 2,311 eldercare workers in 14 different workplaces, the aim of this study was to: 1) validate registered sickness benefit data from DREAM against workplace-registered sick leave spells of at least 15 days; 2) validate self-reported sick leave days during one year against workplace-registered sick leave. Methods Agreement between workplace-registered sick leave and DREAM-registered sickness benefit was reported as sensitivities, specificities and positive predictive values. A receiver-operating characteristic curve and a Bland-Altman plot were used to study the concordance with sick leave duration of the first spell. By means of an analysis of agreement between self-reported and workplace-registered sick leave sensitivity and specificity was calculated. Ninety-five percent confidence intervals (95% CI) were used. Results The probability that registered DREAM data on sickness benefit agrees with workplace-registered sick leave of at least 15 days was 96.7% (95% CI: 95.6-97.6). Specificity was close to 100% (95% CI: 98.3-100). The registered DREAM data on sickness benefit overestimated the duration of sick leave spells by an average of 1.4 (SD: 3.9) weeks. Separate analysis on pregnancy-related sick leave revealed a maximum sensitivity of 20% (95% CI: 4.3-48.1). The sensitivity of self-reporting at least one or at least 56 sick leave day/s was 94.5 (95% CI: 93.4 – 95.5) % and 58.5 (95% CI: 51.1 – 65.6) % respectively. The corresponding specificities were 85.3 (95% CI: 81.4 – 88.6) % and 98.9 (95% CI: 98.3 – 99.3) %. Conclusions The DREAM register offered valid measures of sick leave spells of at least 15 days among eldercare employees. Pregnancy-related sick leave should be excluded in studies planning to use DREAM data on sickness benefit. Self-reported sick leave became more imprecise when number of absence days increased, but the sensitivity and specificity were acceptable for lengths not exceeding one week. PMID:22894644

  14. Validation of sick leave measures: self-reported sick leave and sickness benefit data from a Danish national register compared to multiple workplace-registered sick leave spells in a Danish municipality.

    PubMed

    Stapelfeldt, Christina Malmose; Jensen, Chris; Andersen, Niels Trolle; Fleten, Nils; Nielsen, Claus Vinther

    2012-08-15

    Previous validation studies of sick leave measures have focused on self-reports. Register-based sick leave data are considered to be valid; however methodological problems may be associated with such data. A Danish national register on sickness benefit (DREAM) has been widely used in sick leave research. On the basis of sick leave records from 3,554 and 2,311 eldercare workers in 14 different workplaces, the aim of this study was to: 1) validate registered sickness benefit data from DREAM against workplace-registered sick leave spells of at least 15 days; 2) validate self-reported sick leave days during one year against workplace-registered sick leave. Agreement between workplace-registered sick leave and DREAM-registered sickness benefit was reported as sensitivities, specificities and positive predictive values. A receiver-operating characteristic curve and a Bland-Altman plot were used to study the concordance with sick leave duration of the first spell. By means of an analysis of agreement between self-reported and workplace-registered sick leave sensitivity and specificity was calculated. Ninety-five percent confidence intervals (95% CI) were used. The probability that registered DREAM data on sickness benefit agrees with workplace-registered sick leave of at least 15 days was 96.7% (95% CI: 95.6-97.6). Specificity was close to 100% (95% CI: 98.3-100). The registered DREAM data on sickness benefit overestimated the duration of sick leave spells by an average of 1.4 (SD: 3.9) weeks. Separate analysis on pregnancy-related sick leave revealed a maximum sensitivity of 20% (95% CI: 4.3-48.1).The sensitivity of self-reporting at least one or at least 56 sick leave day/s was 94.5 (95% CI: 93.4 - 95.5) % and 58.5 (95% CI: 51.1 - 65.6) % respectively. The corresponding specificities were 85.3 (95% CI: 81.4 - 88.6) % and 98.9 (95% CI: 98.3 - 99.3) %. The DREAM register offered valid measures of sick leave spells of at least 15 days among eldercare employees. Pregnancy-related sick leave should be excluded in studies planning to use DREAM data on sickness benefit. Self-reported sick leave became more imprecise when number of absence days increased, but the sensitivity and specificity were acceptable for lengths not exceeding one week.

  15. Olivine Lamellae and Interstitial Blebs of Diopside and Enstatite Exsolved from Majoritic Garnet during Decompression in Multianvil Apparatus

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L. F.; Green, H. W.

    2003-12-01

    We present preliminary experimental data on the decompression of majoritic garnet primarily synthesized from a mineral mix of garnet peridotite bulk chemistry showing exsolution from majoritic garnet of olivine (Ol) in the form of oriented plates and pyroxenes as interstitial blebs. Experiments conducted at 14GPa/1673K demonstrate that all enstatite (En) and about 85% of diopside (Di) were dissolved into garnet yielding run products of approximately 40% Ol + 55% Grt + 5% Di. Garnet was found to be supersilicic with Si=3.17-3.31 p.f.u. Repeat of such experiments followed immediately by re-annealing at 13 and 12 GPa yielded exsolution of both Di and Ol. Olivine exsolved as micron-size plates nucleated within garnet on low-angle boundaries. In contrast, diopside exsolved abundantly as tiny blebs at garnet grain boundaries, exhibiting no typical exsolution microstructures. Similarly, in specimens annealed at 5 GPa after previous equilibration at 8GPa/1673K, En exsolved as small blebs at garnet boundaries. Under conditions similar to the latter experiments, interstitial blebs of natural enstatite also occur at garnet grain boundaries (Van Roermund et al., 2001) in Norwegian deep-seated (>200 km) subduction zone grt-peridotite. Our experiments show that Ol as well as En and Di may exsolve during decompression of majoritic garnets in the course of Grt peridotite exhumation. Examples of preservation of pyroxene exsolution lamellae in former majoritic garnets come from both xenoliths in kimberlites (Haggerty and Sautter, 1990; Sautter et al., 1991) as well as from very large garnets in subduction-zone peridotites (van Roermund and Drury, 1998). However, many other garnet peridotites from subduction zones contain Di, En, and/or Ol along grain boundaries within larger polycrystalline garnets and within embayments at the margins of smaller amoeboid garnets (e.g. Dobrzhinetskaya et al, 1996, Green and Dobrzhinetskaya, 2003). Such garnets also may contain rounded non-oriented inclusions of each of these minerals, or all three together, consistent with the results of majoritic garnet decompression presented above.

  16. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  17. Rabbitfish ("aras"): an unusual source of ciguatera poisoning.

    PubMed

    Raikhlin-Eisenkraft, Bianca; Bentur, Yedidia

    2002-01-01

    Ciguatera poisoning is the commonest fish-borne seafood intoxication. It is endemic to warm water tropical areas and is caused by consumption of bottom-dwelling shore reef fish, mostly during spring and summer. The causative agent, ciguatoxin, is a heat-stable ester complex that becomes concentrated in fish feeding on toxic dinoflagellates. The common clinical manifestations are a combination of gastrointestinal and neurologic symptoms. Severe poisoning may be associated with seizures and respiratory paralysis. To describe a series of patients who sustained ciguatera poisoning in an uncommon region and from an unexpected source. Two families complained of a sensation of "electrical currents," tremors, muscle cramps, nightmares, hallucinations, agitation, anxiety and nausea of varying severity several hours after consuming rabbitfish ("aras"). These symptoms lasted between 12 and 30 hours and resolved completely. The temporal relationship to a summer fish meal, the typical clinical manifestations along with the known feeding pattern of the rabbitfish suggested ciguatera poisoning. The Eastern Mediterranean basin is an unusual region and the rabbitfish an unusual source for ciguatera poisoning. There are no readily available and reliable means for detecting ciguatoxin in humans. A high index of suspicion is needed for diagnosis and a thorough differential diagnosis is essential to eliminate other poisonings, decompression sickness and encephalitis. Supportive therapy is the mainstay of treatment.

  18. Clinical utility of hyperbaric oxygen therapy in genitourinary medicine

    PubMed Central

    Gandhi, Jason; Seyam, Omar; Smith, Noel L.; Joshi, Gunjan; Vatsia, Sohrab; Khan, Sardar Ali

    2018-01-01

    Hyperbaric oxygen therapy (HBOT) is a medical technique which delivers oxygen at ambient pressures to increase the amount of dissolved oxygen in the blood and oxygen distribution to tissues. There are several beneficial properties of HBOT concomitant with elevated oxygen distribution in tissue including anti-inflammation, angiogenesis through vascular endothelial growth factor proliferation, augmented fibroblast activity through fibroblast growth factor proliferation, tissue and wound repair, enhancement of lymphocyte and macrophage activity, increased male testosterone secretion, and bactericidal activity. Given its renown in treating conditions such as decompression sickness and carbon monoxide poisoning, HBOT is making gradual strides for use in genitourinary medicine due to its low risk and likeliness to achieve favorable results. Early success has been observed in the treatment of Fournier's gangrene, radiation cystitis, and interstitial cystitis via the elimination of clinical symptoms such as pain. Further indications that have exhibited positive outcomes despite HBOT's ambiguous mechanism of action include cyclophosphamide hemorrhagic cystitis, emphysematous cystitis, pelvic radiation disease, radiation-induced proctopathy, dystrophic calcification of the prostate, erectile dysfunction secondary to urethroplasty, priapism, abnormal renal morphology, blood testosterone, calcific uremic arteriolopathy, and hidradenitis suppurativa. For other indications, multicenter studies must be conducted to determine HBOT's true efficacy, mechanism of action, risks, and advantages over conventional treatments.

  19. Metabolic rate measurements comparing supine with upright upper-body exercises

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Greenisen, Michael C.; Loftin, Karin C.; Beene, Donya; Freeman-Perez, Sondra; Hnatt, Linda

    1993-01-01

    The ground-based study that tested the hypothesis that metabolic rates during supine and upright upper-body exercises are similar (mean value of 200 kcal/h) is presented. Six subjects each performed supine or upright exercise at three exercise stations, a hand-cycle ergometer, a rope-pull device, and a torque wrench. After a baseline measurement of the metabolic rate at rest, the metabolic rate was measured twice at each exercise station. The mean metabolic rates (kcal/h) during supine (n = 6) and upright control (n = 4) exercise stations were not significantly different except for the rope-pull station, 153.5 +/- 16.6 (supine) as compared to 247.0 +/- 21.7 (upright), p is less than 0.05. This difference may be due in part to an increased mechanical efficiency of supine exercises (15.0 +/- 0.7 percent) as compared to that of upright exercises (11.0 +/- 1.08 percent), p is less than 0.05. The net energy input was significantly smaller for the supine rope-pull exercise (64 +/- 18) as compared to upright (176 +/- 20). The relationship between best-rest exercises, metabolic rates, and the incidence of decompression sickness (DCS) should be examined to determine the true risk of DCS in spaceflight extravehicular activities.

  20. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

Top