Design Issues and Inference in Experimental L2 Research
ERIC Educational Resources Information Center
Hudson, Thom; Llosa, Lorena
2015-01-01
Explicit attention to research design issues is essential in experimental second language (L2) research. Too often, however, such careful attention is not paid. This article examines some of the issues surrounding experimental L2 research and its relationships to causal inferences. It discusses the place of research questions and hypotheses,…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... during pregnancy. Specifically, this workshop will address experimental design issues in selecting the... countermeasures, including influenza therapies, that may be used during pregnancy; and (3) experimental design... pharmacokinetic studies, and (3) additional issues in experimental design. Background information on the public...
1988-12-01
engineering disciplines. (Here I refer to training in multifunction team mana ement dir’lplines, quality engineering methods, experimental design by such...4001 SSOME ISSUES S• View of strategic issues has been evolving - Speed of design and product deployment - to accelerate experimentation with new...manufacturingprocess design n New technologies (e.g., composites) which can revolutionize prod-uct technical design in some cases Issue still to be faced: " non
Experimental toxicology: Issues of statistics, experimental design, and replication.
Briner, Wayne; Kirwan, Jeral
2017-01-01
The difficulty of replicating experiments has drawn considerable attention. Issues with replication occur for a variety of reasons ranging from experimental design to laboratory errors to inappropriate statistical analysis. Here we review a variety of guidelines for statistical analysis, design, and execution of experiments in toxicology. In general, replication can be improved by using hypothesis driven experiments with adequate sample sizes, randomization, and blind data collection techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Revealing Student Thinking about Experimental Design and the Roles of Control Experiments
ERIC Educational Resources Information Center
Shi, Jia; Power, Joy M.; Klymkowsky, Michael W.
2011-01-01
Well-designed "controls" distinguish experimental from non-experimental studies. Surprisingly, we found that a high percentage of students had difficulty identifying control experiments even after completing three university-level laboratory courses. To address this issue, we designed and ran a revised cell biology lab course in which…
Solar energy program evaluation: an introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLeon, P.
The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the rolemore » and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)« less
ERIC Educational Resources Information Center
Lee, Jang Ho
2012-01-01
Experimental methods have played a significant role in the growth of English teaching and learning studies. The paper presented here outlines basic features of experimental design, including the manipulation of independent variables, the role and practicality of randomised controlled trials (RCTs) in educational research, and alternative methods…
14 CFR 21.191 - Experimental certificates.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Experimental certificates are issued for the following purposes: (a) Research and development. Testing new aircraft design concepts, new aircraft equipment, new aircraft installations, new aircraft operating... compliance for issuance of type and supplemental type certificates, flights to substantiate major design...
14 CFR 21.191 - Experimental certificates.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Experimental certificates are issued for the following purposes: (a) Research and development. Testing new aircraft design concepts, new aircraft equipment, new aircraft installations, new aircraft operating... compliance for issuance of type and supplemental type certificates, flights to substantiate major design...
14 CFR 21.191 - Experimental certificates.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Experimental certificates are issued for the following purposes: (a) Research and development. Testing new aircraft design concepts, new aircraft equipment, new aircraft installations, new aircraft operating... compliance for issuance of type and supplemental type certificates, flights to substantiate major design...
14 CFR 21.191 - Experimental certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Experimental certificates are issued for the following purposes: (a) Research and development. Testing new aircraft design concepts, new aircraft equipment, new aircraft installations, new aircraft operating... compliance for issuance of type and supplemental type certificates, flights to substantiate major design...
Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators
1993-05-01
Overview 22 3.1 Issues of Controller Design ........................ 22 3.2 Robot Behavior Control Philosophy .................. 23 3.3 Overview of the... designed and built by our lab as an 9 Figure 1.1- Hannibal. 10 experimental platform to explore planetary micro-rover control issues (Angle 1991). When... designing the robot, careful consideration was given to mobility, sensing, and robustness issues. Much has been said concerning the advan- tages of
Random Assignment: Practical Considerations from Field Experiments.
ERIC Educational Resources Information Center
Dunford, Franklyn W.
1990-01-01
Seven qualitative issues associated with randomization that have the potential to weaken or destroy otherwise sound experimental designs are reviewed and illustrated via actual field experiments. Issue areas include ethics and legality, liability risks, manipulation of randomized outcomes, hidden bias, design intrusiveness, case flow, and…
Dutch Research on Knowledge-Based Instructional Systems: Introduction to the Special Issue.
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
1994-01-01
Provides an overview of this issue that reviews Dutch research concerning knowledge-based instructional systems. Topics discussed include experimental research, conceptual models, design considerations, and guidelines; the design of student diagnostic modules, instructional modules, and interface modules; second-language teaching; intelligent…
"I Am Not a Big Man": Evaluation of the Issue Investigation Program
ERIC Educational Resources Information Center
Cincera, Jan; Simonova, Petra
2017-01-01
The article evaluates a Czech environmental education program focused on developing competence in issue investigation. In the evaluation, a simple quasi-experimental design with experimental (N = 200) and control groups was used. The results suggest that the program had a greater impact on girls than on boys, and that it increased their internal…
Preliminary Design of Winged Experimental Rocket by University Consortium
NASA Astrophysics Data System (ADS)
Wakita, Masashi; Yonemoto, Koichi; Akiyama, Tomoki; Aso, Shigeru; Kohsetsu, Yuji; Nagata, Harunori
The project of Winged Experimental Rocket described here is a proposal by the alliance of universities (University Consortium) expanding and integrating the research activities of reusable space transportation system performed by individual universities, and is the proposal that aims at flight proof of the results of advanced research conducted by the universities and JAXA using the university-centered experimental launch systems. This paper verifies the validity of the winged experimental rocket by surveying the technical issues that should be demonstrated and by estimating the airframe scale, weight and finally the total cost. The development schedule of this project was set to five years, where two airframes of different scales will be developed to minimize the risks. A 1.5-meter-long airframe will be first manufactured and conduct flight tests in the third year to verify the design issues. Then, a 2.5-meter-long airframe will be finally developed and conduct a complete flight demonstration of various research issues in the fifth year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less
Parallel Treatments Design: A Nested Single Subject Design for Comparing Instructional Procedures.
ERIC Educational Resources Information Center
Gast, David L.; Wolery, Mark
1988-01-01
This paper describes the parallel treatments design, a nested single subject experimental design that combines two concurrently implemented multiple probe designs, allows control for effects of extraneous variables through counterbalancing, and replicates its effects across behaviors. Procedural guidelines for the design's use and issues related…
14 CFR 21.273 - Airworthiness certificates other than experimental.
Code of Federal Regulations, 2010 CFR
2010-01-01
... experimental. 21.273 Section 21.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Procedures § 21.273 Airworthiness certificates other than experimental. (a) The manufacturer may issue an... basis of the inspection and production flight check, that each aircraft conforms to a type design for...
14 CFR 21.273 - Airworthiness certificates other than experimental.
Code of Federal Regulations, 2011 CFR
2011-01-01
... experimental. 21.273 Section 21.273 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Procedures § 21.273 Airworthiness certificates other than experimental. (a) The manufacturer may issue an... basis of the inspection and production flight check, that each aircraft conforms to a type design for...
ERIC Educational Resources Information Center
Al-Rabaani, Ahmed Hamed; Al-AAmri, Intisar Hamed
2017-01-01
The study aimed at investigating the effect of using cartoons on developing grade four students' awareness of water issues. It also aimed at examining their attitudes towards using cartoons in social studies lessons. An experimental design was used with pre-posttest. The experimental group consisted of (33) male and female students while the…
14 CFR 21.81 - Requirements for issue and amendment of Class I provisional type certificates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that— (1) The aircraft has been designed and constructed in accordance with the airworthiness... aircraft has been flown for at least 50 hours under an experimental certificate issued under §§ 21.191...
14 CFR 21.81 - Requirements for issue and amendment of Class I provisional type certificates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that— (1) The aircraft has been designed and constructed in accordance with the airworthiness... aircraft has been flown for at least 50 hours under an experimental certificate issued under §§ 21.191...
14 CFR 21.81 - Requirements for issue and amendment of Class I provisional type certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that— (1) The aircraft has been designed and constructed in accordance with the airworthiness... aircraft has been flown for at least 50 hours under an experimental certificate issued under §§ 21.191...
14 CFR 21.81 - Requirements for issue and amendment of Class I provisional type certificates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that— (1) The aircraft has been designed and constructed in accordance with the airworthiness... aircraft has been flown for at least 50 hours under an experimental certificate issued under §§ 21.191...
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Structural and compositional features of high-rise buildings: experimental design in Yekaterinburg
NASA Astrophysics Data System (ADS)
Yankovskaya, Yulia; Lobanov, Yuriy; Temnov, Vladimir
2018-03-01
The study looks at the specifics of high-rise development in Yekaterinburg. High-rise buildings are considered in the context of their historical development, structural features, compositional and imaginative design techniques. Experience of Yekaterinburg architects in experimental design is considered and analyzed. Main issues and prospects of high-rise development within the Yekaterinburg structure are studied. The most interesting and significant conceptual approaches to the structural and compositional arrangement of high-rise buildings are discussed.
ERIC Educational Resources Information Center
Little, Priscilla M. D.; Harris, Erin
As the amount of resources allocated to out-of-school (OST) programming and policymakers' demands for research-based results increase, there is increasing interest in rigorous research designs to examine OST program outcomes. This issue of "Out-of-School Time Evaluation Snapshots" reviews 27 quasi-experimental and experimental OST…
NASA Technical Reports Server (NTRS)
1981-01-01
This phase consists of the engineering design, fabrication, assembly, operation, economic analysis, and process support R&D for an Experimental Process System Development Unit (EPSDU). The mechanical bid package was issued and the bid responses are under evaluation. Similarly, the electrical bid package was issued, however, responses are not yet due. The majority of all equipment is on order or has been received at the EPSDU site. The pyrolysis/consolidation process design package was issued. Preparation of process and instrumentation diagram for the free-space reactor was started. In the area of melting/consolidation, Kayex successfully melted chunk silicon and have produced silicon shot. The free-space reactor powder was successfully transported pneumatically from a storage bin to the auger feeder twenty-five feet up and was melted. The fluid-bed PDU has successfully operated at silane feed concentrations up to 21%. The writing of the operating manual has started. Overall, the design phase is nearing completion.
40 CFR 180.31 - Temporary tolerances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... seeking an experimental permit for a pesticide chemical under the Federal Insecticide, Fungicide, and... period designed to allow the orderly marketing of the raw agricultural commodities produced while testing a pesticide chemical under an experimental permit issued under authority of the Federal Insecticide...
40 CFR 180.31 - Temporary tolerances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... seeking an experimental permit for a pesticide chemical under the Federal Insecticide, Fungicide, and... period designed to allow the orderly marketing of the raw agricultural commodities produced while testing a pesticide chemical under an experimental permit issued under authority of the Federal Insecticide...
40 CFR 180.31 - Temporary tolerances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... seeking an experimental permit for a pesticide chemical under the Federal Insecticide, Fungicide, and... period designed to allow the orderly marketing of the raw agricultural commodities produced while testing a pesticide chemical under an experimental permit issued under authority of the Federal Insecticide...
40 CFR 180.31 - Temporary tolerances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... seeking an experimental permit for a pesticide chemical under the Federal Insecticide, Fungicide, and... period designed to allow the orderly marketing of the raw agricultural commodities produced while testing a pesticide chemical under an experimental permit issued under authority of the Federal Insecticide...
40 CFR 180.31 - Temporary tolerances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... seeking an experimental permit for a pesticide chemical under the Federal Insecticide, Fungicide, and... period designed to allow the orderly marketing of the raw agricultural commodities produced while testing a pesticide chemical under an experimental permit issued under authority of the Federal Insecticide...
Computer aided design and manufacturing: analysis and development of research issues
NASA Astrophysics Data System (ADS)
Taylor, K.; Jadeja, J. C.
2005-11-01
The paper focuses on the current issues in the areas of computer aided manufacturing and design. The importance of integrating CAD and CAM is analyzed. The associated issues with the integration and recent advancements in this field have been documented. The development of methods for enhancing productivity is explored. A research experiment was conducted in the laboratories of West Virginia University with an objective to portray effects of various machining parameters on production. Graphical results and their interpretations are supplied to better realize the main purpose of the experimentation.
Design and analysis issues in quantitative proteomics studies.
Karp, Natasha A; Lilley, Kathryn S
2007-09-01
Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua
2014-07-08
An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less
Designing and Conducting Strong Quasi-Experiments in Education. Version 2
ERIC Educational Resources Information Center
Scher, Lauren; Kisker, Ellen; Dynarski, Mark
2015-01-01
The purpose of this paper is to describe best practices in designing and implementing strong quasi-experimental designs (QED) when assessing the effectiveness of policies, programs or practices. The paper first discusses the issues researchers face when choosing to conduct a QED, as opposed to a more rigorous randomized controlled trial design.…
The 1988 Get Away Special Experimenter's Symposium
NASA Technical Reports Server (NTRS)
Thomas, Lawrence R. (Editor); Mosier, Frances L. (Editor)
1988-01-01
The Get Away Special (GAS) Experimenter's Symposium was held to provide a formal opportunity for GAS experimenters to share the results of their projects. The focus of this symposium is on payloads that have been flown on shuttle missions and on GAS payloads that will be flown in the future. Experiment design and payload integration issues are also examined.
Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich
2016-01-01
Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
Political Issues Skills Kit: Comparing Political Experiences, Experimental Edition.
ERIC Educational Resources Information Center
Gillespie, Judith A.; Lazarus, Stuart
Designed to be an integral part of the second-semester "Comparing Political Experiences" course, this skills kit provides supplementary student activities for four documentary "Political Issues" units. The kit is divided into three sections on skills. The analytical skill section provides exercises on six analytical skills…
Experimental design, power and sample size for animal reproduction experiments.
Chapman, Phillip L; Seidel, George E
2008-01-01
The present paper concerns statistical issues in the design of animal reproduction experiments, with emphasis on the problems of sample size determination and power calculations. We include examples and non-technical discussions aimed at helping researchers avoid serious errors that may invalidate or seriously impair the validity of conclusions from experiments. Screen shots from interactive power calculation programs and basic SAS power calculation programs are presented to aid in understanding statistical power and computing power in some common experimental situations. Practical issues that are common to most statistical design problems are briefly discussed. These include one-sided hypothesis tests, power level criteria, equality of within-group variances, transformations of response variables to achieve variance equality, optimal specification of treatment group sizes, 'post hoc' power analysis and arguments for the increased use of confidence intervals in place of hypothesis tests.
ERIC Educational Resources Information Center
Olejnik, Stephen
The measurement of change in quasi-experimental educational research was discussed. Problems related to measuring change exist to varying degrees in all research designs; these issues are less troublesome in experimental studies because the investigator can manipulate the interest variables and observe their effects on other variables. Measuring…
Issues and recent advances in optimal experimental design for site investigation (Invited)
NASA Astrophysics Data System (ADS)
Nowak, W.
2013-12-01
This presentation provides an overview over issues and recent advances in model-based experimental design for site exploration. The addressed issues and advances are (1) how to provide an adequate envelope to prior uncertainty, (2) how to define the information needs in a task-oriented manner, (3) how to measure the expected impact of a data set that it not yet available but only planned to be collected, and (4) how to perform best the optimization of the data collection plan. Among other shortcomings of the state-of-the-art, it is identified that there is a lack of demonstrator studies where exploration schemes based on expert judgment are compared to exploration schemes obtained by optimal experimental design. Such studies will be necessary do address the often voiced concern that experimental design is an academic exercise with little improvement potential over the well- trained gut feeling of field experts. When addressing this concern, a specific focus has to be given to uncertainty in model structure, parameterizations and parameter values, and to related surprises that data often bring about in field studies, but never in synthetic-data based studies. The background of this concern is that, initially, conceptual uncertainty may be so large that surprises are the rule rather than the exception. In such situations, field experts have a large body of experience in handling the surprises, and expert judgment may be good enough compared to meticulous optimization based on a model that is about to be falsified by the incoming data. In order to meet surprises accordingly and adapt to them, there needs to be a sufficient representation of conceptual uncertainty within the models used. Also, it is useless to optimize an entire design under this initial range of uncertainty. Thus, the goal setting of the optimization should include the objective to reduce conceptual uncertainty. A possible way out is to upgrade experimental design theory towards real-time interaction with the ongoing site investigation, such that surprises in the data are immediately accounted for to restrict the conceptual uncertainty and update the optimization of the plan.
Experimental Design in Clinical 'Omics Biomarker Discovery.
Forshed, Jenny
2017-11-03
This tutorial highlights some issues in the experimental design of clinical 'omics biomarker discovery, how to avoid bias and get as true quantities as possible from biochemical analyses, and how to select samples to improve the chance of answering the clinical question at issue. This includes the importance of defining clinical aim and end point, knowing the variability in the results, randomization of samples, sample size, statistical power, and how to avoid confounding factors by including clinical data in the sample selection, that is, how to avoid unpleasant surprises at the point of statistical analysis. The aim of this Tutorial is to help translational clinical and preclinical biomarker candidate research and to improve the validity and potential of future biomarker candidate findings.
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
ERIC Educational Resources Information Center
de Anda, Diane
2007-01-01
This article discusses the difficulties in conducting intervention research or evaluating intervention programs in a school setting. In particular, the problems associated with randomization and obtaining control groups are examined. The use of quasi-experimental designs, specifically a paired comparison design using the individual as his or her…
Single subject controlled experiments in aphasia: The science and the state of the science
Thompson, Cynthia K.
2007-01-01
This paper discusses the use of single subject controlled experimental designs for investigating the effect of treatment for aphasia. A brief historical perspective is presented, followed by discussions of the advantages and disadvantages of single subject and group approaches, the basic requirements of single subject experimental research, and crucial considerations in design selection. In the final sections, results of reviews of published single subject controlled experiments are discussed, with emphasis on internal validity issues, the number of participants enrolled in published studies, operational specification of the dependent and independent variables, and reliability of measurement. Learning outcomes As a result of reading this paper, the participant will: (1) understand the mechanisms required for demonstration of internal and external validity using single subject controlled experimental designs, (2) become familiar with the basic requirements of single subject controlled experimental research, (3) understand the types of single subject controlled experimental designs that are the most appropriate for studying the effects of treatment for aphasia, and (4) become familiar with trends in the published aphasia treatment literature in which single subject controlled experimental designs have been used. PMID:16635494
[Research-oriented experimental course of plant cell and gene engineering for undergraduates].
Xiaofei, Lin; Rong, Zheng; Morigen, Morigen
2015-04-01
Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.
47 CFR 2.805 - Operation of radio frequency devices prior to equipment authorization.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of performance and determination of customer acceptability, during developmental, design, or pre... performance and determination of customer acceptability, during developmental, design, or pre-production... authority of an experimental radio service authorization issued under part 5 of this chapter. (c) Operation...
Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.
Multiple Questions Require Multiple Designs: An Evaluation of the 1981 Changes to the AFDC Program.
ERIC Educational Resources Information Center
Hedrick, Terry E.; Shipman, Stephanie L.
1988-01-01
Changes made in 1981 to the Aid to Families with Dependent Children (AFDC) program under the Omnibus Budget Reconciliation Act were evaluated. Multiple quasi-experimental designs (interrupted time series, non-equivalent comparison groups, and simple pre-post designs) used to address evaluation questions illustrate the issues faced by evaluators in…
Findings in Experimental Psychology as Functioning Principles of Theatrical Design.
ERIC Educational Resources Information Center
Caldwell, George
A gestalt approach to theatrical design seems to provide some ready and stable explanations for a number of issues in the scenic arts. Gestalt serves as the theoretical base for a number of experiments in psychology whose findings appear to delineate the principles of art to be used in scene design. The fundamental notion of gestalt theory…
Methods of Microcomputer Research in Early Childhood Special Education.
ERIC Educational Resources Information Center
Fujiura, Glenn; Johnson, Lawrence J.
1986-01-01
The review of some recent studies on use of microcomputers in early childhood special education highlights methodological issues including the qualitative quantitative distinction and the interdependence of research design and interpretation. Imbedding qualitative methods into quasi- or true-experimental designs can provide more information than…
47 CFR 2.805 - Operation of radio frequency products prior to equipment authorization.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Evaluation of performance and determination of customer acceptability, during developmental, design, or pre... performance and determination of customer acceptability, during developmental, design, or pre-production... under the authority of an experimental radio service authorization issued under part 5 of this chapter...
Aeroheating Design Issues for Reusable Launch Vehicles: A Perspective
NASA Technical Reports Server (NTRS)
Zoby, E. Vincent; Thompson, Richard A.; Wurster, Kathryn E.
2004-01-01
An overview of basic aeroheating design issues for Reusable Launch Vehicles (RLV), which addresses the application of hypersonic ground-based testing, and computational fluid dynamic (CFD) and engineering codes, is presented. Challenges inherent to the prediction of aeroheating environments required for the successful design of the RLV Thermal Protection System (TPS) are discussed in conjunction with the importance of employing appropriate experimental/computational tools. The impact of the information garnered by using these tools in the resulting analyses, ultimately enhancing the RLV TPS design is illustrated. A wide range of topics is presented in this overview; e.g. the impact of flow physics issues such as boundary-layer transition, including effects of distributed and discrete roughness, shock-shock interactions, and flow separation/reattachment. Also, the benefit of integrating experimental and computational studies to gain an improved understanding of flow phenomena is illustrated. From computational studies, the effect of low-density conditions and of uncertainties in material surface properties on the computed heating rates a r e highlighted as well as the significant role of CFD in improving the Outer Mold Line (OML) definition to reduce aeroheating while maintaining aerodynamic performance. Appropriate selection of the TPS design trajectories and trajectory shaping to mitigate aeroheating levels and loads are discussed. Lastly, an illustration of an aeroheating design process is presented whereby data from hypersonic wind-tunnel tests are integrated with predictions from CFD codes and engineering methods to provide heating environments along an entry trajectory as required for TPS design.
Aeroheating Design Issues for Reusable Launch Vehicles: A Perspective
NASA Technical Reports Server (NTRS)
Zoby, E. Vincent; Thompson, Richard A.; Wurster, Kathryn E.
2004-01-01
An overview of basic aeroheating design issues for Reusable Launch Vehicles (RLV), which addresses the application of hypersonic ground-based testing, and computational fluid dynamic (CFD) and engineering codes, is presented. Challenges inherent to the prediction of aeroheating environments required for the successful design of the RLV Thermal Protection System (TPS) are discussed in conjunction with the importance of employing appropriate experimental/computational tools. The impact of the information garnered by using these tools in the resulting analyses, ultimately enhancing the RLV TPS design is illustrated. A wide range of topics is presented in this overview; e.g. the impact of flow physics issues such as boundary-layer transition, including effects of distributed and discrete roughness, shockshock interactions, and flow separation/reattachment. Also, the benefit of integrating experimental and computational studies to gain an improved understanding of flow phenomena is illustrated. From computational studies, the effect of low-density conditions and of uncertainties in material surface properties on the computed heating rates are highlighted as well as the significant role of CFD in improving the Outer Mold Line (OML) definition to reduce aeroheating while maintaining aerodynamic performance. Appropriate selection of the TPS design trajectories and trajectory shaping to mitigate aeroheating levels and loads are discussed. Lastly, an illustration of an aeroheating design process is presented whereby data from hypersonic wind-tunnel tests are integrated with predictions from CFD codes and engineering methods to provide heating environments along an entry trajectory as required for TPS design.
Leigland, Sam
1996-01-01
Four adult humans were asked to asked to “find” and talk about a particular topic to a person in an adjoining room, and were instructed that they would hear a short beep (the only form of reply from the other person) when they were talking about the topic, or were “close” to the topic. In Session 1, the experimenter in the adjoining room presented the beeps in the manner of shaping, or the differential reinforcement of successive approximations, “toward” the designated topic. In Session 2, the same conditions were in effect but the experimenter was unable to hear the subject and the beeps were presented noncontingently in a way that roughly matched the frequency and distribution of presentations in Session 1. In Session 3, shaping conditions were again in effect but with a different topic than that designated for Session 1. Audio recordings were transcribed in a way that was designed to show the progress of shaping over time. These and additional forms of supporting data and accompanying rationale are presented and discussed in detail. Issues raised by the methodology and results of the experiment include the nature of the verbal operant, superstitious verbal behavior, and a variety of methodological issues relevant to the experimental analysis of ongoing or continuous verbal behavior. PMID:22477112
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
Dukkipati, S Shekar; Chihi, Aouatef; Wang, Yiwen; Elbasiouny, Sherif M
2017-01-01
The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic ( G93A ) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.
Teaching science for public understanding: Developing decision-making abilities
NASA Astrophysics Data System (ADS)
Siegel, Marcelle A.
One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.
Latency correction of event-related potentials between different experimental protocols
NASA Astrophysics Data System (ADS)
Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR
2014-06-01
Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
Research related to roads in USDA experimental forests [Chapter 16
W. J. Elliot; P. J. Edwards; R. B. Foltz
2014-01-01
Forest roads are essential in experimental forests and rangelands (EFRs) to allow researchers and the public access to research sites and for fire suppression, timber extraction, and fuel management. Sediment from roads can adversely impact watershed health. Since the 1930s, the design and management of forest roads has addressed both access issues and watershed health...
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)
2000-01-01
Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, R. J.; Feiveson, A. H.
2015-01-01
Back by popular demand, the JSC Biostatistics Lab is offering an opportunity for informal conversation about challenges you may have encountered with issues of experimental design, analysis, data visualization or related topics. Get answers to common questions about sample size, repeated measures, violation of distributional assumptions, missing data, multiple testing, time-to-event data, when to trust the results of your analyses (reproducibility issues) and more.
Optimal experimental designs for fMRI when the model matrix is uncertain.
Kao, Ming-Hung; Zhou, Lin
2017-07-15
This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Sequential experimental design based generalised ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-07-01
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.
Sequential experimental design based generalised ANOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover,more » generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.« less
Barlow, D H; Hayes, S C
1979-01-01
A little used and often confused design, capable of comparing two treatments within a single subject, has been termed, variously, a multielement baseline design, a multiple schedule design, and a randomization design. The background of these terms is reviewed, and a new, more descriptive term, Alternating Treatments Design, is proposed. Critical differences between this design and a Simultaneous Treatment Design are outlined, and experimental questions answerable by each design are noted. Potential problems with multiple treatment interference in this procedure are divided into sequential confounding, carryover effects, and alternation effects and the importance of these issues vis-a-vis other single-case experimental designs is considered. Methods of minimizing multiple treatment interference as well as methods of studying these effects are outlined. Finally, appropriate uses of Alternating Treatments Designs are described and discussed in the context of recent examples. PMID:489478
How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment
NASA Astrophysics Data System (ADS)
Baker, Lisa M.
While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation bias in earlier studies using science-like tasks, in which characteristics of the alternate hypothesis space may have made it unfeasible for participants to generate and test alternate hypotheses. In general, scientists and science undergraduates were found to engage in a systematic experimental design process that responded to salient features of the problem environment, including the constant potential for experimental error, availability of alternate hypotheses, and access to both theoretical knowledge and knowledge of experimental techniques.
ERIC Educational Resources Information Center
Turnšek, Nada
2013-01-01
The present study is based on a quasi-experimental research design and presents the results of an evaluation of Antidiscrimination and Diversity Training that took place at the Faculty of Education in Ljubljana, rooted in the anti-bias approach to educating diversity and equality issues (Murray & Urban, 2012). The experimental group included…
Statistical issues in the design and planning of proteomic profiling experiments.
Cairns, David A
2015-01-01
The statistical design of a clinical proteomics experiment is a critical part of well-undertaken investigation. Standard concepts from experimental design such as randomization, replication and blocking should be applied in all experiments, and this is possible when the experimental conditions are well understood by the investigator. The large number of proteins simultaneously considered in proteomic discovery experiments means that determining the number of required replicates to perform a powerful experiment is more complicated than in simple experiments. However, by using information about the nature of an experiment and making simple assumptions this is achievable for a variety of experiments useful for biomarker discovery and initial validation.
Management of geriatric incontinence in nursing homes.
Schnelle, J F; Traughber, B; Morgan, D B; Embry, J E; Binion, A F; Coleman, A
1983-01-01
A behavioral management system designed to reduce urinary incontinence was evaluated in two nursing homes with a pretest-posttest control group design with repeated measures. The primary components of the system were prompting and contingent social approval/disapproval which required approximately 2.5 minutes per patient per hour to administer. The frequency of correct toileting for experimental subjects increased by approximately 45%. The experimental groups were significantly different from the control groups on both incontinence and correct toileting measures. The results are discussed in view of the management issues inherent in nursing home settings. PMID:6885672
Tumlinson, Samuel E; Sass, Daniel A; Cano, Stephanie M
2014-03-01
While experimental designs are regarded as the gold standard for establishing causal relationships, such designs are usually impractical owing to common methodological limitations. The objective of this article is to illustrate how propensity score matching (PSM) and using propensity scores (PS) as a covariate are viable alternatives to reduce estimation error when experimental designs cannot be implemented. To mimic common pediatric research practices, data from 140 simulated participants were used to resemble an experimental and nonexperimental design that assessed the effect of treatment status on participant weight loss for diabetes. Pretreatment participant characteristics (age, gender, physical activity, etc.) were then used to generate PS for use in the various statistical approaches. Results demonstrate how PSM and using the PS as a covariate can be used to reduce estimation error and improve statistical inferences. References for issues related to the implementation of these procedures are provided to assist researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.
2013-08-01
This article discusses the paper "Experimental Design for Engineering Dimensional Analysis" by Albrecht et al. (2013, Technometrics). That paper provides and overview of engineering dimensional analysis (DA) for use in developing DA models. The paper proposes methods for generating model-robust experimental designs to supporting fitting DA models. The specific approach is to develop a design that maximizes the efficiency of a specified empirical model (EM) in the original independent variables, subject to a minimum efficiency for a DA model expressed in terms of dimensionless groups (DGs). This discussion article raises several issues and makes recommendations regarding the proposed approach. Also,more » the concept of spurious correlation is raised and discussed. Spurious correlation results from the response DG being calculated using several independent variables that are also used to calculate predictor DGs in the DA model.« less
Integration of a Computer-Based Consultant into the Clinical Setting*
Bischoff, Miriam B.; Shortliffe, Edward H.
1983-01-01
Studies of the attitudes of medical personnel regarding computer-based clinical consultation systems have shown that successful programs must be designed not only to satisfy a need for expert level advice but also to fit smoothly into the dally routine of physician/users. Planning for system use should accordingly be emphasized in all aspects of the system design. ONCOCIN is an oncology protocol management system that assists physicians with the management of outpatients enrolled in experimental cancer chemotherapy protocols. ONCOCIN was designed for initial implementation in the Stanford Oncology Day Care Center, where it has been in limited use since May of 1981. The clinic's physicians currently use the system dally in the management of patients with Hodgkin's and non-Hodgkin's lymphoma. This work has allowed us to study physician-computer interaction and to explore artificial intelligence research issues. This paper discusses the practical issues to consider when designing a consultation system for physicians and the logistical issues to address when integrating such a system into a clinic setting. We describe how ONCOCIN has addressed these issues, the problems encountered, their resolution, and the lessons learned.
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
[Problems of study designs with randomization, blinding and placebos].
Heusser, P
1999-04-01
As randomised double-blind trials are not rarely demanded as a prerequisite for the scientific acceptance of complementary medicine, the author has analysed the soundness of this demand on the basis of the international literature. As a result there appeared a number of methodological, practical and ethical problems which question the theoretically deduced primal value of this study design relative to the needs of medical practice and of health insurance issues. The experimental instruments of randomisation, blinding and placebo deliberately exclude essential therapeutic factors which are integral elements of complementary medical concepts; therefore, it is suggested to supplement quantitatively and collectively oriented experimental research by non-experimental procedures, which adequately reflect the context- and practice-related individual reality.
Autism genetics: Methodological issues and experimental design.
Sacco, Roberto; Lintas, Carla; Persico, Antonio M
2015-10-01
Autism is a complex neuropsychiatric disorder of developmental origin, where multiple genetic and environmental factors likely interact resulting in a clinical continuum between "affected" and "unaffected" individuals in the general population. During the last two decades, relevant progress has been made in identifying chromosomal regions and genes in linkage or association with autism, but no single gene has emerged as a major cause of disease in a large number of patients. The purpose of this paper is to discuss specific methodological issues and experimental strategies in autism genetic research, based on fourteen years of experience in patient recruitment and association studies of autism spectrum disorder in Italy.
Side scanner for supermarkets: a new scanner design standard
NASA Astrophysics Data System (ADS)
Cheng, Charles K.; Cheng, J. K.
1996-09-01
High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.
Studies of self-pollution in diesel school buses: methodological issues.
Borak, Jonathan; Sirianni, Greg
2007-09-01
Considerable interest has focused on levels of exhaust emissions in the cabins of diesel-powered school buses and their possible adverse health effects. Significantly different policy and engineering issues would be raised if compelling evidence found that inc-cabin contamination was due to self-pollution from bus emissions, rather than ambient pollution, neighboring vehicles, and/or re-entrained road dust. We identified 19 reports from 11 studies that measured diesel exhaust particulate in the cabins of 58 school bus of various type. Studies were evaluated in light of their experimental design, their data quality, and their capacity to quantify self-pollution. Only one study had a true experimental design, comparing the same buses with and without emission controls, while four others used intentional tracers to quantify tail pipe and/or crankcase emissions. Although definitive data are still lacking, these studies suggest that currently available control technologies can nearly eliminate particulate self-pollution inside diesel school buses.
2011-03-01
causal inference (e.g., longitudinal designs , training designs that include matched control groups ). Given the importance of time in our model... quantitative results. We did, of course, do qualitative research as part of this project in the form of focus groups and interviews. There are a... nonequivalent group designs . In T. D. Cook & D. T. Campbell, D. T. Quasi-experimentation: Design and Analysis Issues for Field Settings. (pp. 147-205
ERIC Educational Resources Information Center
Shoulders, Catherine Woglom
2012-01-01
The purpose of this study was to determine the effects of a socioscientific issues-based instructional model on secondary agricultural education students' content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science. This study utilized a pre-experimental, single group pretest-posttest design to assess…
Managing cognitive impairment in the elderly: conceptual, intervention and methodological issues.
Buckwalter, K C; Stolley, J M; Farran, C J
1999-11-11
With the aging of society, the incidence of dementia in the elderly is also increasing, and thus results in increased numbers of individuals with cognitive impairment. Nurses and other researchers have investigated issues concerning the management of cognitive impairment. This article highlights conceptual, intervention and methodological issues associated with this phenomenon. Cognitive change is a multivariate construct that includes alterations in a variety of information processing mechanisms such as problem solving ability, memory, perception, attention and learning, and judgement. Although there is a large body of research, conceptual, intervention and methodological issues remain. Much of the clinical research on cognitive impairment is atheoretical, with this issue only recently being addressed. While many clinical interventions have been proposed, few have been adequately tested. There are also various methodological concerns, such as small sample sizes and limited statistical power; study design issues (experimental vs. non-experimental), and internal and external validity problems. Clearly, additional research designed to intervene with these difficult behaviors is needed. A variety of psychosocial, environmental and physical parameters must be considered in the nursing care of persons with cognitive impairment. Special attention has been given to interventions associated with disruptive behaviors. Interventions are complex and knowledge must be integrated from both the biomedical and behavioral sciences in order to deal effectively with the numerous problems that can arise over a long and changing clinical course. Some researchers and clinicians have suggested that a new culture regarding dementia care is needed, one that focuses on changing attitudes and beliefs about persons with dementia and one that changes how organizations deliver that care. This review identifies key conceptual, intervention and methodological issues and recommends how these issues might be addressed in the future.
ERIC Educational Resources Information Center
Rakedzon, Tzipora; Baram-Tsabari, Ayelet
2017-01-01
This paper reports a study using a quasi-experimental design to examine whether an academic writing course in English can improve graduate students' academic and popular science writing skills. To address this issue, we designed pre- and post-assessment tasks, an intervention assessment task and a scoring rubric. The pre- and post-assessment tasks…
DOT National Transportation Integrated Search
1994-04-01
This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, "IVHS Institutional Issues and Ca...
DOT National Transportation Integrated Search
1994-04-01
This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, IVHS Institutional Issues and ...
ERIC Educational Resources Information Center
Bougot-Robin, Kristelle; Paget, Jack; Atkins, Stephen C.; Edel, Joshua B.
2016-01-01
It is not uncommon for students to view laboratory instruments as black boxes. Unfortunately, this can often result in poor experimental results and interpretation. To tackle this issue, a laboratory course was designed to enable students not only to critically think about operating principles of the instrument but also to improve interpretation…
Scanning and Measuring Device for Diagnostic of Barrel Bore
NASA Astrophysics Data System (ADS)
Marvan, Ales; Hajek, Josef; Vana, Jan; Dvorak, Radim; Drahansky, Martin; Jankovych, Robert; Skvarek, Jozef
The article discusses the design, mechanical design, electronics and software for robot diagnosis of barrels with caliber of 120 mm to 155 mm. This diagnostic device is intended primarily for experimental research and verification of appropriate methods and technologies for the diagnosis of the main bore guns. Article also discusses the design of sensors and software, the issue of data processing and image reconstruction obtained by scanning of the surface of the bore.
Voice Therapy: A Need for Research.
ERIC Educational Resources Information Center
Reed, Charles G.
1980-01-01
Conceptual and methodological guidelines for voice therapy research are presented, and suggestions are offered for selecting experimental designs. Divergent terminology, philosophy, and issues of voice therapy are examined to serve as an overview and as a basis for research direction. (Author/DLS)
Reform of experimental teaching based on quality cultivation
NASA Astrophysics Data System (ADS)
Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun
2017-08-01
Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.D.
The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.
Statistical design of quantitative mass spectrometry-based proteomic experiments.
Oberg, Ann L; Vitek, Olga
2009-05-01
We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.
Cause and cure of sloppiness in ordinary differential equation models.
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Cause and cure of sloppiness in ordinary differential equation models
NASA Astrophysics Data System (ADS)
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
The Effects of Tailoring Knowledge Acquisition on Colorectal Cancer Screening Self-Efficacy
Jerant, Anthony; To, Patricia; Franks, Peter
2015-01-01
Interventions tailored to psychological factors such as personal and vicarious behavioral experiences can enhance behavioral self-efficacy, but are complex to develop and implement. Information seeking theory suggests tailoring acquisition of health knowledge (without concurrent psychological factor tailoring) could enhance self-efficacy, simplifying the design of tailored behavior change interventions. To begin to examine this issue, the authors conducted exploratory analyses of data from a randomized controlled trial, comparing the effects of an experimental colorectal cancer (CRC) screening intervention tailoring knowledge acquisition with the effects of a non-tailored control on CRC screening knowledge and self-efficacy in 1159 patients comprising three ethnicity/language strata (Hispanic/Spanish 23.4%, Hispanic/English 27.2%, non-Hispanic/English 49.3%) and five recruitment center strata. Adjusted for study strata, the mean post-intervention knowledge score was significantly higher in the experimental group versus control. Adjusted experimental intervention exposure (B = 0.22, 95% CI [0.14, 0.30]), pre-intervention knowledge (B = 0.11, 95% CI [0.05, 0.16]), and post-intervention knowledge (B = 0.03, 95% CI [0.01, 0.05]) were independently associated with subsequent CRC screening self-efficacy (p < .001 all associations). These exploratory findings suggest tailoring knowledge acquisition may enhance self-efficacy, with potential implications for tailored intervention design, but require confirmation in studies specifically designed to examine this issue. PMID:25928315
Investigating the Role of Oysters in Altering Net N2 Fluxes Using Novel In-Situ Experimental Design
Coastal nutrient over-enrichment represents one of the most pressing environmental management issues faced worldwide. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via increasing benthic denitrification rates in coastal systems. Howe...
Avula, Haritha
2013-01-01
A good research beginning refers to formulating a well-defined research question, developing a hypothesis and choosing an appropriate study design. The first part of the review series has discussed these issues in depth and this paper intends to throw light on other issues pertaining to the implementation of research. These include the various ethical norms and standards in human experimentation, the eligibility criteria for the participants, sampling methods and sample size calculation, various outcome measures that need to be defined and the biases that can be introduced in research. PMID:24174747
Solomon design analysis of multiple-choice Rorschach animal content.
Feigenbaum, D; Costello, R M
1975-10-01
The Solomon four-group design was used to study the effects of a persuasive message on a selected multiple-choice Rorschach index--animal content. The independent variable elicited behavior in a predictable manner. Pretesting as a main effect was not significant, but as an interactional effect obviated the effect of the persuasive message. Although knowledge of test rationale can elicit behavior that conforms to experimental demand characteristics, some subjects nonetheless acted in defiance of such information. A condition for defiance in this experimental arrangement, however, was pretesting. Other possibilities regarding the study of compliance behavior and the use of pathognomonic indicators were suggested. Ethical issues were raised.
NASA Astrophysics Data System (ADS)
Vázquez-Alonso, Ángel; Aponte, Abdiel; Manassero-Mas, María-Antonia; Montesano, Marisa
2016-07-01
This study examines the effectiveness of a teaching-learning sequence (TLS) to improve the understanding of the influences and interactions between a technology (mining) and society. The aim of the study is also to show the possibility of both teaching and assessing the most innovative issues and aspects of scientific competence and their impact on the understanding of the nature of science. The methodology used a quasi-experimental, pre-post-test design with a control group, with pre-post-test differences as the empirical indicators of improved understanding. Improvements were modest, as the empirical differences (pre-post and experimental-control group) were not large, but the experimental group scored more highly than the control group. The areas that showed improvement were identified. The paper includes the TLS itself and the standardized assessment tools that are functional and transferable to other researchers and teachers.
Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter
NASA Astrophysics Data System (ADS)
Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel
2010-01-01
This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.
Statistical issues in quality control of proteomic analyses: good experimental design and planning.
Cairns, David A
2011-03-01
Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visual monitoring of autonomous life sciences experimentation
NASA Technical Reports Server (NTRS)
Blank, G. E.; Martin, W. N.
1987-01-01
The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.
Folayan, Morenike O; Haire, Bridget G; Brown, Brandon
2016-01-01
The devastation caused by the Ebola virus disease (EVD) outbreak in West Africa has brought to the fore a number of important ethical debates about how best to respond to a health crisis. These debates include issues related to prevention and containment, management of the health care workforce, clinical care, and research design, all of which are situated within the overarching moral problem of severe transnational disadvantage, which has very real and specific impacts upon the ability of citizens of EVD-affected countries to respond to a disease outbreak. Ethical issues related to prevention and containment include the appropriateness and scope of quarantine and isolation within and outside affected countries. The possibility of infection in health care workers impelled consideration of whether there is an obligation to provide health services where personal protection equipment is inadequate, alongside the issue of whether the health care workforce should have special access to experimental treatment and care interventions under development. In clinical care, ethical issues include the standards of care owed to people who comply with quarantine and isolation restrictions. Ethical issues in research include appropriate study design related to experimental vaccines and treatment interventions, and the sharing of data and biospecimens between research groups. The compassionate use of experimental drugs intersects both with research ethics and clinical care. The role of developed countries also came under scrutiny, and we concluded that developed countries have an obligation to contribute to the containment of EVD infection by contributing to the strengthening of local health care systems and infrastructure in an effort to provide fair benefits to communities engaged in research, ensuring that affected countries have ready and affordable access to any therapeutic or preventative interventions developed, and supporting affected countries on their way to recovery from the impact of EVD on their social and economic lives.
Boudreaux, Edwin D; Miller, Ivan; Goldstein, Amy B; Sullivan, Ashley F; Allen, Michael H; Manton, Anne P; Arias, Sarah A; Camargo, Carlos A
2013-09-01
Due to the concentration of individuals at-risk for suicide, an emergency department visit represents an opportune time for suicide risk screening and intervention. The Emergency Department Safety Assessment and Follow-up Evaluation (ED-SAFE) uses a quasi-experimental, interrupted time series design to evaluate whether (1) a practical approach to universally screening ED patients for suicide risk leads to improved detection of suicide risk and (2) a multi-component intervention delivered during and after the ED visit improves suicide-related outcomes. This paper summarizes the ED-SAFE's study design and methods within the context of considerations relevant to effectiveness research in suicide prevention and pertinent human participants concerns. 1440 suicidal individuals, from 8 general ED's nationally will be enrolled during three sequential phases of data collection (480 individuals/phase): (1) Treatment as Usual; (2) Universal Screening; and (3) Intervention. Data from the three phases will inform two separate evaluations: Screening Outcome (Phases 1 and 2) and Intervention (Phases 2 and 3). Individuals will be followed for 12 months. The primary study outcome is a composite reflecting completed suicide, attempted suicide, aborted or interrupted attempts, and implementation of rescue procedures during an outcome assessment. While 'classic' randomized control trials (RCT) are typically selected over quasi-experimental designs, ethical and methodological issues may make an RCT a poor fit for complex interventions in an applied setting, such as the ED. ED-SAFE represents an innovative approach to examining the complex public health issue of suicide prevention through a multi-phase, quasi-experimental design embedded in 'real world' clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonlinear Aerodynamics and the Design of Wing Tips
NASA Technical Reports Server (NTRS)
Kroo, Ilan
1991-01-01
The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David
1999-01-01
The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Duley, Jacqueline A.; Legan, Brian M.; Barmore, Bryan E.; Moses, Donald
2001-01-01
A predominant research focus in the free flight community has been on the type of information required on the flight deck to enable pilots to "autonomously" maintain separation from other aircraft. At issue are the relative utility and requirement for information exchange between aircraft regarding the current "state" and/or the "intent" of each aircraft. This paper presents the experimental design and some initial findings of an experimental research study designed to provide insight into the issue of intent information exchange in constrained en-route operations and its effect on pilot decision making and flight performance. Two operational modes for autonomous operations were compared in a piloted simulation. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective data results are presented that generally indicate pilot consensus in favor of the strategic mode.
Seeing and thinking: Foundational issues and empirical horizons.
Firestone, Chaz; Scholl, Brian J
2016-01-01
The spectacularly varied responses to our target article raised big-picture questions about the nature of seeing and thinking, nitty-gritty experimental design details, and everything in between. We grapple with these issues, including the ready falsifiability of our view, neuroscientific theories that allow everything but demand nothing, cases where seeing and thinking conflict, mental imagery, the free press, an El Greco fallacy fallacy, hallucinogenic drugs, blue bananas, subatomic particles, Boeing 787s, and the racial identities of geometric shapes.
Mechanical design of experimental apparatus for FIREX cryo-target cooling
NASA Astrophysics Data System (ADS)
Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.
2016-05-01
Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.
Design issues for evaluating seedling exposure studies.
E. Charles Peterson; A. Robert Mickler
1993-01-01
Tree seedling studies, covering a wide range of experimental conditions in pollutant treatment, species, facilities, and exposure regimes, have become commonplace in forestry research for assessing the actual and potential environmental effects of air pollutants on forest ecosystems. While assuring a wide breadth of scientific information, sufficient consideration has...
Task Validation for Studies on Fragmented Sleep and Cognitive Efficiency under Stress
1982-11-01
43 10 Interactions Between Sex and Xenoid Dispersion ........ ... 48 11 Percent Weapon Commands Issued Without Adequate Shield...42 15 Variables Showing Significant Main Effects for Sex of Subject...45 H16 Significant Interactions Between Sex and Xenoid Dispersion .. ............................................46 17 Experimental Design of the
Aeronautical Science Course of Study.
ERIC Educational Resources Information Center
Southbay Union High School District, Redondo Beach, CA.
This revision of "Aeronautical Science Course of Study for California High Schools," first issued in 1967, is designed by and for the use of teachers of high school aeronautical courses. It differs from other aeronautical instructional materials in its emphasis on inquiry, exploration, and open-ended experimentation. The eleven units may be used…
DOT National Transportation Integrated Search
2009-10-01
An important issue for future improvement and extensions of highways will be the ability of projects to sustain challenges to Environmental Impact Statements based upon forecasts of regional growth. A legal precedent for such challenges was establish...
Perceptions of Male and Female STEM Aptitude: The Moderating Effect of Benevolent and Hostile Sexism
ERIC Educational Resources Information Center
Reilly, Erin D.; Rackley, Kadie R.; Awad, Germine H.
2017-01-01
This study investigated evaluations and advice communicated to male and female technology interns experiencing work difficulties, using a 2 (workplace issue: ability or interpersonal) ×2 (intern gender: male vs. female) between-subjects experimental design. Technology professionals rated hypothetical interns on competence, qualifications,…
Issues of planning trajectory of parallel robots taking into account zones of singularity
NASA Astrophysics Data System (ADS)
Rybak, L. A.; Khalapyan, S. Y.; Gaponenko, E. V.
2018-03-01
A method for determining the design characteristics of a parallel robot necessary to provide specified parameters of its working space that satisfy the controllability requirement is developed. The experimental verification of the proposed method was carried out using an approximate planar 3-RPR mechanism.
Physical attractiveness, issue agreement, and assimilation effects in candidate appraisal.
Schubert, James N; Curran, Margaret Ann; Strungaru, Carmen
2011-01-01
This study examines the cognitive and affective factors of candidate appraisal by manipulating candidate attractiveness and levels of issue agreement with voters. Drawing upon research in evolutionary psychology and cognitive neuroscience, this analysis proposes that automatic processing of physical appearance predisposes affective disposition toward more attractive candidates, thereby influencing cognitive processing of issue information. An experimental design presented attractive and unattractive candidates who were either liberal or conservative in a mock primary election. The data show strong partial effects for appearance on vote intention, an interaction between appearance and issue agreement, and a tendency for voters to assimilate the dissimilar views of attractive candidates. We argue that physical appearance is important in primary elections when the differences in issue positions and ideology between candidates is small.
Abbott, Laurie S; Elliott, Lynn T
2017-01-01
The purpose of this systematic literature review was to synthesize the results of transdisciplinary interventions designed with a home visit component in experimental and quasi-experimental studies having representative samples of racial and ethnic minorities. The design of this systematic review was adapted to include both experimental and quasi-experimental quantitative studies. The predetermined inclusion criteria were studies (a) having an experimental or quasi-experimental quantitative design, (b) having a home visit as a research component, (c) including a prevention research intervention strategy targeting health and/or safety issues, (d) conducted in the United States, (e) having representation (at least 30% in the total sample size) of one or more racial/ethnic minority, (f) available in full text, and (g) published in a peer-reviewed journal between January, 2005 and December, 2015. Thirty-nine articles were included in the review. There were 20 primary prevention, 5 secondary prevention, and 14 tertiary prevention intervention studies. Community and home visitation interventions by nurses can provide an effective means for mitigating social determinants of health by empowering people at risk for health disparities to avoid injury, maintain health, and prevent and manage existing disease. © 2016 Wiley Periodicals, Inc.
Efficiency Considerations in Low Pressure Turbines
NASA Technical Reports Server (NTRS)
2010-01-01
Issues & Topics Discussed: a) Aviation Week reported shortfall In LPT efficiency due to the application of "high lift airfoils". b) Progress in the design technologies in LPTs during the last 20 years: 1) Application of RANS based CFD codes. 2) Integration of recent experimental data and modeling of LPT airfoil specific flows into design methods. c) Opportunities to further enhance LPT efficiency for commercial aviation and military transport application and to impact emissions, noise, weight & cost.
An experimental SMI adaptive antenna array for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Gupta, I. J.
1989-01-01
A modified sample matrix inversion (SMI) algorithm designed to increase the suppression of weak interference is implemented on an existing experimental array system. The algorithm itself is fully described as are a number of issues concerning its implementation and evaluation, such as sample scaling, snapshot formation, weight normalization, power calculation, and system calibration. Several experiments show that the steady state performance (i.e., many snapshots are used to calculate the array weights) of the experimental system compares favorably with its theoretical performance. It is demonstrated that standard SMI does not yield adequate suppression of weak interference. Modified SMI is then used to experimentally increase this suppression by as much as 13dB.
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Fry, Derek J
2014-01-01
Awareness of poor design and published concerns over study quality stimulated the development of courses on experimental design intended to improve matters. This article describes some of the thinking behind these courses and how the topics can be presented in a variety of formats. The premises are that education in experimental design should be undertaken with an awareness of educational principles, of how adults learn, and of the particular topics in the subject that need emphasis. For those using laboratory animals, it should include ethical considerations, particularly severity issues, and accommodate learners not confident with mathematics. Basic principles, explanation of fully randomized, randomized block, and factorial designs, and discussion of how to size an experiment form the minimum set of topics. A problem-solving approach can help develop the skills of deciding what are correct experimental units and suitable controls in different experimental scenarios, identifying when an experiment has not been properly randomized or blinded, and selecting the most efficient design for particular experimental situations. Content, pace, and presentation should suit the audience and time available, and variety both within a presentation and in ways of interacting with those being taught is likely to be effective. Details are given of a three-day course based on these ideas, which has been rated informative, educational, and enjoyable, and can form a postgraduate module. It has oral presentations reinforced by group exercises and discussions based on realistic problems, and computer exercises which include some analysis. Other case studies consider a half-day format and a module for animal technicians. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Faelt, Surasak; Samiphak, Sara; Pattaradilokrat, Sittiporn
2018-01-01
Argumentation skill is an essential skill needed in students, and one of the competencies in scientific literacy. Through arguing on socioscientific issues, students may gain deeper conceptual understanding. The purpose of this research is to examine the efficacy of a socioscientific issues-based instruction compared with an inquirybased instruction. This is to determine which one is better in promoting 10th grade students' argumentation ability and biology concepts of digestive system and cellular respiration. The forty 10th grade students included in this study were from two mathematics-science program classes in a medium-sized secondary school located in a suburb of Buriram province, Thailand. The research utilizes a quasi-experimental design; pre-test post-test control group design. We developed and implemented 4 lesson plans for both socioscientific issues-based instruction and inquiry-based instruction. Ten weeks were used to collect the data. A paper-based questionnaire and informal interviews were designed to test students' argumentation ability, and the two-tier multiple-choice test was designed to test their biology concepts. This research explore qualitatively and quantitatively students' argumentation abilities and biology concepts, using arithmetic mean, mean of percentage, standard deviation and t-test. Results show that there is no significant difference between the two group regarding mean scores of the argumentation ability. However, there is significant difference between the two groups regarding mean scores of the biology concepts. This suggests that socioscientific issues-based instruction could be used to improve students' biology concepts.
The Problem of Size in Robust Design
NASA Technical Reports Server (NTRS)
Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri
1997-01-01
To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.
Designing Home-Based Telemedicine Systems for the Geriatric Population: An Empirical Study.
Narasimha, Shraddhaa; Agnisarman, Sruthy; Chalil Madathil, Kapil; Gramopadhye, Anand; McElligott, James T
2018-02-01
Background and Introduction: Telemedicine, the process of providing healthcare remotely using communication devices, has the potential to be useful for the geriatric population when specifically designed for this age group. This study explored the design of four video telemedicine systems currently available and outlined issues with these systems that impact usability among the geriatric population. Based on the results, design suggestions were developed to improve telemedicine systems for this population. Using a between-subjects experimental design, the study considered four telemedicine systems used in Medical University of South Carolina. The study was conducted at a local retirement home. The participant pool consisted of 40 adults, 60 years or older. The dependent measures used were the mean times for telemedicine session initiation and video session, mean number of errors, post-test satisfaction ratings, the NASA-Task Load Index (NASA-TLX) workload measures, and the IBM-Computer Systems Usability Questionnaire measures. Statistical significance was found among the telemedicine systems' initiation times. The analysis of the qualitative data revealed several issues, including lengthy e-mail content, icon placement, and chat box design, which affect the usability of these systems for the geriatric population. Human factor-based design modifications, including short, precise e-mail content, appropriately placed icons, and the inclusion of instructions, are recommended to address the issues found in the qualitative study.
The Social Science Teacher; Vol. 4, No. 1, Summer 1974.
ERIC Educational Resources Information Center
Townley, Charles, Ed.
This new British journal is a medium of communication for those involved in teaching social science and social studies at the secondary and elementary levels. The first article in this issue, Ian Shelton's "The Sociology of Everyday Life," describes an experimental short course in secondary sociology. The course is designed to produce an…
Dutch Adolescents' Tolerance of Practices by Muslim Actors: The Effect of Issue Framing
ERIC Educational Resources Information Center
Gieling, Maike; Thijs, Jochem; Verkuyten, Maykel
2012-01-01
This research, conducted in the Netherlands, examines whether native adolescents' tolerance of practices by Muslim immigrants (e.g., the founding of Islamic schools) is affected by the type of considerations (e.g., educational freedom vs. integration of Muslims in Dutch society). Using an experimental questionnaire design (N = 970), the findings…
An Investigation of School Violence and Pre-Service Teachers
ERIC Educational Resources Information Center
McCaleb, Karen Nykorchuk; Andersen, Amy; Hueston, Harry
2008-01-01
All educators need to be aware of issues regarding school violence. Recent years have shown that violence can happen in a variety of school settings. This study conducted a one-group, pretest-posttest, pre-experimental design to explore pre-service teachers' perceptions regarding school violence. First, pre-service educators were asked to complete…
Imaginative Use of Nonbroadcast Technology Directs Social Services to Isolated Audiences.
ERIC Educational Resources Information Center
Erdman, Ann
1981-01-01
The keynote article in this issue summarizes some of the lessons learned after a decade of using satellites for public service, and after five years of experimentation with information technologies designed for specialized audiences. Community service programs in the Appalachian Mountain and Rocky Mountain regions and in the state of Alaska are…
The Effect of Podcasted Review Sessions on Accounting I Students' Performance
ERIC Educational Resources Information Center
Badowski, Robert
2009-01-01
Podcasting is a relatively new and yet unproven technology, especially when pertaining to higher education. The goal of this research was to address the issue of the educational significance of podcasting review sessions in Principles of Accounting I, by systematically conducting experimental embedded design research to build a case for its…
Considerations for Micro- and Nano-scale Space Payloads
NASA Technical Reports Server (NTRS)
Altemir, David A.
1995-01-01
This paper collects and summarizes many of the issues associated with the design, analysis, and flight of space payloads. However, highly miniaturized experimental packages are highly susceptible to the deleterious effects of induced contamination and charged particles when they are directly exposed to the space environment. These two problem areas are addressed and a general discussion of space environments, applicable design and analysis practices (with extensive references to the open literature) and programmatic considerations are presented.
New perspectives in offshore wind energy
Failla, Giuseppe; Arena, Felice
2015-01-01
The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869
Analysis and Design of Rotors at Ultra-Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Kunz, Peter J.; Strawn, Roger C.
2003-01-01
Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.
Overview of clinical research design.
Hartung, Daniel M; Touchette, Daniel
2009-02-15
Basic concepts and terminology of clinical research design are presented for new clinical investigators. Clinical research, research involving human subjects, can be described as either observational or experimental. The findings of all clinical research can be threatened by issues of bias and confounding. Biases are systematic errors in how study subjects are selected or measured, which result in false inferences. Confounding is a distortion in findings that is attributable to mixing variable effects. Uncontrolled observation research is generally more prone to bias and confounding than experimental research. Observational research includes designs such as the cohort study, case-control study, and cross-sectional study, while experimental research typically involves a randomized controlled trial (RCT). The cohort study, which includes the RCT, defines subject allocation on the basis of exposure interest (e.g., drug, disease-management program) and follows the patients to assess the outcomes. The case-control study uses the primary outcome of interest (e.g., adverse event) to define subject allocation, and different exposures are assessed in a retrospective manner. Cross-sectional research evaluates both exposure and outcome concurrently. Each of these design methods possesses different strengths and weaknesses in answering research questions, as well as underlying many study subtypes. While experimental research is the strongest method for establishing causality, it can be difficult to accomplish under many scenarios. Observational clinical research offers many design alternatives that may be appropriate if planned and executed carefully.
Cruella: developing a scalable tissue microarray data management system.
Cowan, James D; Rimm, David L; Tuck, David P
2006-06-01
Compared with DNA microarray technology, relatively little information is available concerning the special requirements, design influences, and implementation strategies of data systems for tissue microarray technology. These issues include the requirement to accommodate new and different data elements for each new project as well as the need to interact with pre-existing models for clinical, biological, and specimen-related data. To design and implement a flexible, scalable tissue microarray data storage and management system that could accommodate information regarding different disease types and different clinical investigators, and different clinical investigation questions, all of which could potentially contribute unforeseen data types that require dynamic integration with existing data. The unpredictability of the data elements combined with the novelty of automated analysis algorithms and controlled vocabulary standards in this area require flexible designs and practical decisions. Our design includes a custom Java-based persistence layer to mediate and facilitate interaction with an object-relational database model and a novel database schema. User interaction is provided through a Java Servlet-based Web interface. Cruella has become an indispensable resource and is used by dozens of researchers every day. The system stores millions of experimental values covering more than 300 biological markers and more than 30 disease types. The experimental data are merged with clinical data that has been aggregated from multiple sources and is available to the researchers for management, analysis, and export. Cruella addresses many of the special considerations for managing tissue microarray experimental data and the associated clinical information. A metadata-driven approach provides a practical solution to many of the unique issues inherent in tissue microarray research, and allows relatively straightforward interoperability with and accommodation of new data models.
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1997-01-01
Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.
The ACP Special Issue is being organized to draw together analysis of a set of cooperative modeling experiments (referred to as HTAP2). The purpose of this technical note is to provide a common description of the experimental design and set up for HTAP2 that can be referred to b...
Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics
NASA Astrophysics Data System (ADS)
Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.
2018-01-01
Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.
1996-01-01
The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.
New perspectives in offshore wind energy.
Failla, Giuseppe; Arena, Felice
2015-02-28
The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Design considerations for the use of laser-plasma accelerators for advanced space radiation studies
NASA Astrophysics Data System (ADS)
Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding
2012-08-01
We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.
2015-05-01
The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.
Human factors research problems in electronic voice warning system design
NASA Technical Reports Server (NTRS)
Simpson, C. A.; Williams, D. H.
1975-01-01
The speech messages issued by voice warning systems must be carefully designed in accordance with general principles of human decision making processes, human speech comprehension, and the conditions in which the warnings can occur. The operator's effectiveness must not be degraded by messages that are either inappropriate or difficult to comprehend. Important experimental variables include message content, linguistic redundancy, signal/noise ratio, interference with concurrent tasks, and listener expectations generated by the pragmatic or real world context in which the messages are presented.
ERIC Educational Resources Information Center
Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.
2012-01-01
Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…
Reynolds, Kimberly A
2015-01-06
In this issue of Structure, Lanouette and colleagues use a combination of computation and experiment to define a specificity motif for the lysine methyltransferase SMYD2. Using this motif, they predict and experimentally verify four new SMYD2 substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Materials thermal and thermoradiative properties/characterization technology
NASA Technical Reports Server (NTRS)
Dewitt, D. P.; Ho, C. Y.
1989-01-01
Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.
Reflections on experimental research in medical education.
Cook, David A; Beckman, Thomas J
2010-08-01
As medical education research advances, it is important that education researchers employ rigorous methods for conducting and reporting their investigations. In this article we discuss several important yet oft neglected issues in designing experimental research in education. First, randomization controls for only a subset of possible confounders. Second, the posttest-only design is inherently stronger than the pretest-posttest design, provided the study is randomized and the sample is sufficiently large. Third, demonstrating the superiority of an educational intervention in comparison to no intervention does little to advance the art and science of education. Fourth, comparisons involving multifactorial interventions are hopelessly confounded, have limited application to new settings, and do little to advance our understanding of education. Fifth, single-group pretest-posttest studies are susceptible to numerous validity threats. Finally, educational interventions (including the comparison group) must be described in detail sufficient to allow replication.
Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S
2013-04-05
This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V
2010-04-01
Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.
Preliminary Tritium Management Design Activities at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.
2016-09-01
Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritiummore » mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.« less
Leong, H M; Carter, Mark; Stephenson, Jennifer
2015-12-01
Sensory integration therapy (SIT) is a controversial intervention that is widely used for people with disabilities. Systematic analysis was conducted on the outcomes of 17 single case design studies on sensory integration therapy for people with, or at-risk of, a developmental or learning disability, disorder or delay. An assessment of the quality of methodology of the studies found most used weak designs and poor methodology, with a tendency for higher quality studies to produce negative results. Based on limited comparative evidence, functional analysis-based interventions for challenging behavior were more effective that SIT. Overall the studies do not provide convincing evidence for the efficacy of sensory integration therapy. Given the findings of the present review and other recent analyses it is advised that the use of SIT be limited to experimental contexts. Issues with the studies and possible improvements for future research are discussed including the need to employ designs that allow for adequate demonstration of experimental control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lavis, John N; Bärnighausen, Till; El-Jardali, Fadi
2017-09-01
To describe the infrastructure available to support the production of policy-relevant health systems research syntheses, particularly those incorporating quasi-experimental evidence, and the tools available to support the use of these syntheses. Literature review. The general challenges associated with the available infrastructure include their sporadic nature or limited coverage of issues and countries, whereas the specific ones related to policy-relevant syntheses of quasi-experimental evidence include the lack of mechanism to register synthesis titles and scoping review protocols, the limited number of groups preparing user-friendly summaries, and the difficulty of finding quasi-experimental studies for inclusion in rapid syntheses and research syntheses more generally. Although some new tools have emerged in recent years, such as guidance workbooks and citizen briefs and panels, challenges related to using available tools to support the use of policy-relevant syntheses of quasi-experimental evidence arise from such studies potentially being harder for policymakers and stakeholders to commission and understand. Policymakers, stakeholders, and researchers need to expand the coverage and institutionalize the use of the available infrastructure and tools to support the use of health system research syntheses containing quasi-experimental evidence. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Davidson, John B.
1998-01-01
A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.
Design requirements for plasma facing materials in ITER
NASA Astrophysics Data System (ADS)
Matera, R.; Federici, G.; ITER Joint Central Team
1996-10-01
After the official approval of the Interim Design Report, the ITER project enters the final phase of the EDA. With the definition of the design requirements of the high heat flux components, the structural and armor materials' working domain is better specified, allowing to focus the R & D program on the most critical issues and to orient the design of divertor and first wall components towards those concepts which potentially have a better chance to withstand normal and off-normal operating conditions. Among the latter, slow, high-power, high recycling transient are at present driving the design of high heat flux components. Examples of possible design solution under experimental validation in the R & D program are presented and discussed in this paper.
Optimal designs for copula models
Perrone, E.; Müller, W.G.
2016-01-01
Copula modelling has in the past decade become a standard tool in many areas of applied statistics. However, a largely neglected aspect concerns the design of related experiments. Particularly the issue of whether the estimation of copula parameters can be enhanced by optimizing experimental conditions and how robust all the parameter estimates for the model are with respect to the type of copula employed. In this paper an equivalence theorem for (bivariate) copula models is provided that allows formulation of efficient design algorithms and quick checks of whether designs are optimal or at least efficient. Some examples illustrate that in practical situations considerable gains in design efficiency can be achieved. A natural comparison between different copula models with respect to design efficiency is provided as well. PMID:27453616
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.
1993-01-01
This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.
NASA Astrophysics Data System (ADS)
Nagatomo, M.; Kaya, N.; Matsumoto, H.
1984-10-01
One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.
NASA Astrophysics Data System (ADS)
Fedorczak-Cisak, Malgorzata; Kwasnowski, Pawel; Furtak, Marcin; Hayduk, Grzegorz
2017-10-01
Experimental buildings for “in situ” research are a very important tool for collecting data on energy efficiency of the energy-saving technologies. One of the most advanced building of this type in Poland is the Maloposkie Laboratory of Energy-saving Buildings at Cracow University of Technology. The building itself is used by scientists as a research object and research tool to test energy-saving technologies. It is equipped with a specialized measuring system consisting of approx. 3 000 different sensors distributed in technical installations and structural elements of the building (walls, ceilings, cornices) and the ground. The authors of the paper will present the innovative design and technology of this specialized instrumentation. They will discuss issues arising during the implementation and use of the building.
NASA Astrophysics Data System (ADS)
Witter, A. E.; Klinger, D. M.; Fan, X.; Lam, M.; Mathers, D. T.; Mabury, S. A.
2002-10-01
The forensic analysis of cocaine on currencies was optimized using a fractional, two-level experimental design that compared methanol and HCl extraction, SPE versus heptane pre-concentration, and extracted versus total ion chromatography. Subsequent student-initiated questions about levels of cocaine on U.S. and world currencies helped make connections to societal issues while teaching method optimization and chromatography. A significant correlation was found between the levels of cocaine and the age of the bills. Levels of cocaine on various world currencies followed expected drug-trafficking patterns with the highest levels found in the most developed countries.
UAS Integration in the NAS Project: DAA-TCAS Interoperability "mini" HITL Primary Results
NASA Technical Reports Server (NTRS)
Rorie, Conrad; Fern, Lisa; Shively, Jay; Santiago, Confesor
2016-01-01
At the May 2015 SC-228 meeting, requirements for TCAS II interoperability became elevated in priority. A TCAS interoperability workgroup was formed to identify and address key issues/questions. The TCAS workgroup came up with an initial list of questions and a plan to address those questions. As part of that plan, NASA proposed to run a mini HITL to address display, alerting and guidance issues. A TCAS Interoperability Workshop was held to determine potential display/alerting/guidance issues that could be explored in future NASA mini HITLS. Consensus on main functionality of DAA guidance when TCAS II RA occurs. Prioritized list of independent variables for experimental design. Set of use cases to stress TCAS Interoperability.
NASA Astrophysics Data System (ADS)
Yenni, Rita; Hernani, Widodo, Ari
2017-05-01
The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.
NASA Astrophysics Data System (ADS)
Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping
2016-05-01
The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f
How Is My Child Doing?: Preparing Pre-Service Teachers to Engage Parents through Assessment
ERIC Educational Resources Information Center
Mehlig, Lisa M.; Shumow, Lee
2013-01-01
The aim of this study was to help pre-service teachers develop basic knowledge and skill for partnering with families on assessment-related issues. An assessment class for teacher educators (experimental group) participated in role-playing activities designed to expand their understanding and skill in a way that would help them learn how to…
ERIC Educational Resources Information Center
Bozdogan, Aykut Emre
2011-01-01
This study aimed to identify the erroneous knowledge and misconceptions of preservice elementary teachers about global warming and examine the effects of instruction with visual materials on rectifying these misconceptions and fostering a positive attitude towards the issue of global warming. Having a quasi-experimental design, the study made use…
The Public Safety Impact of Community Notification Laws: Rearrest of Convicted Sex Offenders
ERIC Educational Resources Information Center
Freeman, Naomi J.
2012-01-01
Sex offender management is one of the highest-profile issues in public safety today. Although states have enacted community notification laws as a means to protect communities from sexual offending, limited research has been conducted to examine the impact of these laws on public safety. As such, this study used a quasi-experimental design to…
If You Had To Tell an Alien What Math Is...: Construct of Mathematics and SQUARE ONE TV.
ERIC Educational Resources Information Center
Debold, Elizabeth
The ideas of the nature, purpose, and scope of mathematics held by students is an issue of interest to the mathematics education community. Movement from a mathematics as discrete operations perspective to a mathematics as problem-solving perspective is a desired change in mathematics education reform. A pretest/posttest experimental design study…
ERIC Educational Resources Information Center
Olowokere, A. E.; Okanlawon, F. A.
2014-01-01
Responding to the psychosocial health needs of the vulnerable population has been considered as a significant public health issue that must be addressed through access to public health professionals. The study adopted a quasi-experimental design to evaluate the impact of a training program on nurses and teachers' knowledge of psychosocial health…
ERIC Educational Resources Information Center
Koutalidi, Sophia; Psallidas, Vassilis; Scoullos, Michael
2016-01-01
In searching for effective ways to combine science/chemical education with EE/ESD, new didactic materials were designed and produced focussing on biogeochemical cycles and their connection to sustainable development. The materials were experimentally applied in 16 Greek schools under the newly introduced compulsory "school project" which…
ERIC Educational Resources Information Center
Ponsatí, Imma; Miranda, Joaquim; Amador, Miquel; Godall, Pere
2016-01-01
The aim of the study was to measure the performance reached by students (N = 138) when aurally identifying musical harmonic intervals (from m2 to P8) after having experienced a teaching innovation proposal for the Music Conservatories of Catalonia (Spain) based on observational methodology. Its design took into account several issues, which had…
Animal Experimentation: Bringing Ethical Issues into Biology Teaching.
ERIC Educational Resources Information Center
Van Rooy, Wilhelmina
2000-01-01
There are many possibilities for the use of controversial issues such as animal experimentation in biology classrooms. Outlines a series of three lessons that asked senior biology students to consider the issue of animal experimentation from three perspectives. (Author/LM)
[Ethical issue in animal experimentation].
Parodi, André-Laurent
2009-11-01
In the 1970s, under pressure from certain sections of society and thanks to initiatives by several scientific research teams, committees charged with improving the conditions of laboratory animals started to be created, first in the United States and subsequently in Europe. This led to the development of an ethical approach to animal experimentation, taking into account new scientific advances. In addition to the legislation designed to provide a legal framework for animal experimentation and to avoid abuses, this ethical approach, based on the concept that animals are sentient beings, encourages greater respect of laboratory animals and the implementation of measures designed to reduce their suffering. Now, all animal experiments must first receive ethical approval--from in-house committees in the private sector and from regional committees for public institutions. Very recently, under the impetus of the French ministries of research and agriculture, the National committee for ethical animal experimentation published a national ethical charter on animal experimentation, setting the basis for responsible use of animals for scientific research and providing guidelines for the composition and functioning of ethics committees. Inspired by the scientific community itself this ethical standardization should help to assuage--but not eliminate--the reticence and hostility expressed by several sections of society.
Jones, Hendrée E.; Fischer, Gabriele; Heil, Sarah H.; Kaltenbach, Karol; Martin, Peter R.; Coyle, Mara G.; Selby, Peter; Stine, Susan M.; O’Grady, Kevin E.; Arria, Amelia M.
2015-01-01
Aims The Maternal Opioid Treatment: Human Experimental Research (MOTHER) project, an eight-site randomized, double-blind, double-dummy, flexible-dosing, parallel-group clinical trial is described. This study is the most current – and single most comprehensive – research effort to investigate the safety and efficacy of maternal and prenatal exposure to methadone and buprenorphine. Methods The MOTHER study design is outlined, and its basic features are presented. Conclusions At least seven important lessons have been learned from the MOTHER study: (1) an interdisciplinary focus improves the design and methods of a randomized clinical trial; (2) multiple sites in a clinical trial present continuing challenges to the investigative team due to variations in recruitment goals, patient populations, and hospital practices that in turn differentially impact recruitment rates, treatment compliance, and attrition; (3) study design and protocols must be flexible in order to meet the unforeseen demands of both research and clinical management; (4) staff turnover needs to be addressed with a proactive focus on both hiring and training; (5) the implementation of a protocol for the treatment of a particular disorder may identify important ancillary clinical issues worthy of investigation; (6) timely tracking of data in a multi-site trial is both demanding and unforgiving; and, (7) complex multi-site trials pose unanticipated challenges that complicate the choice of statistical methods, thereby placing added demands on investigators to effectively communicate their results. PMID:23106924
Smith, M M; Clarke, E C; Little, C B
2017-03-01
To review the factors in experimental design that contribute to poor translation of pre-clinical research to therapies for patients with osteoarthritis (OA) and how this might be improved. Narrative review of the literature, and evaluation of the different stages of design conduct and analysis of studies using animal models of OA to define specific issues that might reduce quality of evidence and how this can be minimised. Preventing bias and improving experimental rigour and reporting are important modifiable factors to improve translation from pre-clinical animal models to successful clinical trials of therapeutic agents. Despite publication and adoption by many journals of guidelines such as Animals in Research: Reporting In Vivo Experiments (ARRIVE), experimental animal studies published in leading rheumatology journals are still deficient in their reporting. In part, this may be caused by researchers first consulting these guidelines after the completion of experiments, at the time of publication. This review discusses factors that can (1) bias the outcome of experimental studies using animal models of osteoarthritis or (2) alter the quality of evidence for translation. We propose a checklist to consult prior to starting experiments; in the Design and Execution of Protocols for Animal Research and Treatment (DEPART). Following DEPART during the design phase will enable completion of the ARRIVE checklist at the time of publication, and thus improve the quality of evidence for inclusion of experimental animal research in meta-analyses and systematic reviews: "DEPART well-prepared and ARRIVE safely". Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Issues in designing transport layer multicast facilities
NASA Technical Reports Server (NTRS)
Dempsey, Bert J.; Weaver, Alfred C.
1990-01-01
Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined.
Design and evaluation of an onboard computer-based information system for aircraft
NASA Technical Reports Server (NTRS)
Rouse, S. H.; Rouse, W. B.; Hammer, J. M.
1982-01-01
Information seeking by human operators of technical systems is considered. Types of information and forms of presentation are discussed and important issues reviewed. This broad discussion provides a framework within which flight management is considered. The design of an onboard computer-based information system for aircraft is discussed. The aiding possibilities of a computer-based system are emphasized. Results of an experimental evaluation of a prototype system are presented. It is concluded that a computer-based information system can substantially lessen the frequency of human errors.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
Challenges for Preclinical Investigations of Human Biofield Modalities
Gronowicz, Gloria; Bengston, William
2015-01-01
Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042
Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro
2017-04-04
The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
The philosophy of scientific experimentation: a review
2009-01-01
Practicing and studying automated experimentation may benefit from philosophical reflection on experimental science in general. This paper reviews the relevant literature and discusses central issues in the philosophy of scientific experimentation. The first two sections present brief accounts of the rise of experimental science and of its philosophical study. The next sections discuss three central issues of scientific experimentation: the scientific and philosophical significance of intervention and production, the relationship between experimental science and technology, and the interactions between experimental and theoretical work. The concluding section identifies three issues for further research: the role of computing and, more specifically, automating, in experimental research, the nature of experimentation in the social and human sciences, and the significance of normative, including ethical, problems in experimental science. PMID:20098589
Yeap, Kong Seng; Mohd Yaacob, Naziaty; Rao, Sreenivasaiah Purushothama; Hashim, Nor Rasidah
2012-12-01
This article presents lessons learned from a design project that explored the possibility of incorporating waste into the design of a school prototype. The authors worked with professional architects, a waste artist, environmental scientists and local waste operators to uncover new uses and applications for discarded items. As a result, bottles, aluminium cans, reclaimed doors, crushed concrete and second-hand bricks, etc. were identified, explored and integrated into the architectural design. This article serves as a catalyst that advocates the use of reclaimed materials in the field of design and planning. In particular, it highlights the challenges and issues that need to be addressed in carrying out design work with waste. Designers and practitioners interested in minimizing waste generation by proposing the use of reclaimed materials will find this article useful.
ERIC Educational Resources Information Center
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2018-01-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A…
ERIC Educational Resources Information Center
Ogunfowokan, Adesola A.; Fajemilehin, Reuben B.
2012-01-01
Sexual abuse has been considered a public health issue because of the various health implications resulting from it. The school nurse has a responsibility in assisting the high school girl to prevent victimization. This study adopted a quasi-experimental design in which a sexual abuse prevention education package was developed and used to educate…
Experimental confirmation of a PDE-based approach to design of feedback controls
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.
1995-01-01
Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.
Experimentation with human subjects: a critique of the views of Hans Jonas.
Schafer, A
1983-01-01
The ethics of experimentation on human subjects has become the subject of much debate among medical scientists and philosophers. Ethical problems and conflicts of interest become especially serious when research subjects are recruited from the class of patients. Are patients who are ill and suffering in a position to give voluntary and informed consent? Are there inevitable conflicts of interest and moral obligation when a personal physician recruits his own patients for an experiment designed partly to advance scientific knowledge and only partly as therapy for those patients? The views of the eminent American ethicist Hans Jonas on these issues are briefly summarised and criticised, and some moral guidelines are then proposed to regulate experimentation on human subjects. PMID:6876101
Direction and Integration of Experimental Ground Test Capabilities and Computational Methods
NASA Technical Reports Server (NTRS)
Dunn, Steven C.
2016-01-01
This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.
Condron, Robin; Farrokh, Choreh; Jordan, Kieran; McClure, Peter; Ross, Tom; Cerf, Olivier
2015-01-02
Studies on the heat resistance of dairy pathogens are a vital part of assessing the safety of dairy products. However, harmonized methodology for the study of heat resistance of food pathogens is lacking, even though there is a need for such harmonized experimental design protocols and for harmonized validation procedures for heat treatment studies. Such an approach is of particular importance to allow international agreement on appropriate risk management of emerging potential hazards for human and animal health. This paper is working toward establishment of a harmonized protocol for the study of the heat resistance of pathogens, identifying critical issues for establishment of internationally agreed protocols, including a harmonized framework for reporting and interpretation of heat inactivation studies of potentially pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
On the relation between trust and fairness in environmental risk management.
Earle, Timothy C; Siegrist, Michael
2008-10-01
In this study, we empirically examine the relations between trust, fairness, and cooperation within two environmental risk management contexts, one in which the focal issue is of high personal moral importance and the other in which the focal issue is of low moral importance. Using an experimental design embedded in two parallel survey questionnaires, one mailed to residents of Washington State, the other to German-speaking residents of Switzerland, we either manipulated or constructed three factors, issue importance (high/low), procedural fairness (fair/unfair), and policy outcome (risk averse/risk accepting). This design enabled us to compare the predictions of the standard account of procedural fairness, that trust and cooperation are determined by judgments of fairness, with the predictions of an alternative account, that trust and cooperation will be determined by judgments of procedural fairness only when the issue involved is not morally important. Results for the American case showed that under conditions of high issue importance, policy outcome affected judged fairness, trust, and cooperation. Under conditions of low issue importance, policy outcome had no effect on judged fairness or trust but did have a moderate impact on cooperation. Analyses also showed that when issue importance was high, procedural fairness had no effects. When issue importance was low, procedural fairness had moderate effects on judged fairness and trust. Results for the Swiss case replicated the main findings for the American case. Together, these results support the alternative model of the relation between trust and fairness, suggesting that the efficacy of fair procedures is strictly limited.
Choe, Myoung Ae; Kim, Nam Cho; Kim, Kyung Mi; Kim, Sung Jae; Park, Kyung Sook; Byeon, Young Soon; Shin, Sung Rae; Yang, Soo; Lee, Kyung Sook; Lee, Eun Hyun; Lee, In Sook; Lee, Tae Wha; Cho, Myung Ok; Kim, Jin Hak
2014-10-01
The purpose of this study was to identify trends for studies published in the Journal of Korean Academy of Nursing and journals published by member societies from inaugural issues to 2010. A total of 6890 studies were analyzed using descriptive statistics. Quantitative studies accounted for 83.6% while qualitative studies accounted for 14.4%. Most frequently used research designs were quasi-experimental (91.1%) for experimental research and survey (85.2%) for non-experimental research. Most frequent study participants were healthy people (35.8%), most frequent nursing interventions, nursing skills (53.5%), and 39.8% used knowledge, attitude and behavior outcomes for dependent variables. Most frequently used keyword was elderly. Survey studies decreased from 1991 to 2010 by approximately 50%, while qualitative studies increased by about 20%. True experimental research (1.2%) showed no significant changes. Studies focusing on healthy populations increased from 2001-2005 (37.5%) to 2006-2010 (41.0%). From 1970 to 2010, studies using questionnaire accounted for over 50% whereas physiological measurement, approximately 5% only. Experimental studies using nursing skill interventions increased from 1970-1980 (30.4%) to 2006-2010 (64.0%). No significant changes were noted in studies using knowledge, attitude and behavior (39.9%) as dependent variables. The results suggest that further expansion of true experimental, qualitative studies and physiological measurements are needed.
Leshner, Alan I
2002-08-01
Studies of drugs and behavior are a core component of virtually every portfolio within the broad purview of the National Institute on Drug Abuse (NIDA). Moreover, psychopharmacological research is an important vehicle for advancing understanding of how drugs of abuse produce their effects, particularly including addiction. However, as with all major public health issues, simply understanding the issue is not enough. NIDA's psychopharmacology projects, therefore, span basic, clinical, and applied (e.g., medication development) research activities. These include the establishment of a nationwide clinical trials network designed to provide an infrastructure to test both behavioral and psychopharmacological treatments in a real-life practice setting with diverse patients.
From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets
Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing
2013-01-01
As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issues, may also cause failures. In this review, state-of-the-art techniques for protein modeling (e.g. structure prediction, modeling protein flexibility, etc.), hit identification/optimization (e.g. molecular docking, focused library design, fragment-based design, molecular dynamic, etc.), and polypharmacology design will be discussed. We will explore how structure-based techniques can facilitate the drug discovery process and interplay with other experimental approaches. PMID:22316152
Design and experimental evidence of a flat graded-index photonic crystal lens
NASA Astrophysics Data System (ADS)
Gaufillet, F.; Akmansoy, É.
2013-08-01
We report on the design and the experimental evidence of a flat graded index photonic crystal lens. The gradient has been designed so that the flat slab focuses a plane wave and so that it converts the wave issued from a point source into a plane wave. This graded-index photonic crystal lens operates as a convex lens. The gradient of index results from varying the filling factor of the photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. The shape of the gradient of index has been designed by engineering the iso-frequency curves of the photonic crystal. As only a few layers were necessary and as graded photonic crystals may be fabricated by a variety of processes, this shows the ability of graded photonic crystals to efficiently apply for various photonic devices, from microwave range to the optical domain. 42.70.Qs Photonic bandgap materials, 78.67.Pt Optical properties of photonic structures, 41.20.Jb Electromagnetic wave propagation; radiowave propagation 84.40.Ba Antennas.
Path to AWAKE: Evolution of the concept
Caldwell, A.; Adli, E.; Amorim, L.; ...
2016-01-02
This study describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability – a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of themore » AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1] .« less
Methodological considerations in the design and implementation of clinical trials.
Cirrincione, Constance T; Lavoie Smith, Ellen M; Pang, Herbert
2014-02-01
To review study design issues related to clinical trials led by oncology nurses, with special attention to those conducted within the cooperative group setting; to emphasize the importance of the statistician's role in the process of clinical trials. Studies available at clinicaltrials.gov using experimental designs that have been published in peer-reviewed journals; cooperative group trials are highlighted. The clinical trial is a primary means to test intervention efficacy. A properly designed and powered study with clear and measurable objectives is as important as the intervention itself. Collaboration among the study team, including the statistician, is central in developing and conducting appropriately designed studies. For optimal results, collaboration is an ongoing process that should begin early on. Copyright © 2014 Elsevier Inc. All rights reserved.
Bunker, Alex; Magarkar, Aniket; Viitala, Tapani
2016-10-01
Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.
Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying
2014-01-01
Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902
Glenn, Beth A.; Bastani, Roshan; Maxwell, Annette E.
2013-01-01
Objective Threats to external validity including pretest sensitization and the interaction of selection and an intervention are frequently overlooked by researchers despite their potential to significantly influence study outcomes. The purpose of this investigation was to conduct secondary data analyses to assess the presence of external validity threats in the setting of a randomized trial designed to promote mammography use in a high risk sample of women. Design During the trial, recruitment and intervention implementation took place in three cohorts (with different ethnic composition), utilizing two different designs (pretest-posttest control group design; posttest only control group design). Results Results reveal that the intervention produced different outcomes across cohorts, dependent upon the research design used and the characteristics of the sample. Conclusion These results illustrate the importance of weighing the pros and cons of potential research designs before making a selection and attending more closely to issues of external validity. PMID:23289517
ERIC Educational Resources Information Center
Kynigos, Chronis; Psycharis, Giorgos
2009-01-01
The paper describes a study of the contexts of six teams, expert in research and development of digital media for learning mathematics, who cross-experimented in classrooms with the use of each other's artefacts. Contextual issues regarding the designed tasks and technologies, the socio-systemic milieu and the ways in which the researchers worked…
1990-12-01
Improvements to Research Environment ............... 6 14.3 Overview of Research ....... .......................... 7 14.3.1 An Experimental Study of...efficient inference methods. The critical issue we have studied is the effectiveness of retrieval. By this, we mean how well the system does at...locating objects that are judged relevant by the user . Designing effective retrieval strategies is difficult because in real environments the query
The use of clinical trials in comparative effectiveness research on mental health
Blanco, Carlos; Rafful, Claudia; Olfson, Mark
2013-01-01
Objectives A large body of research on comparative effectiveness research (CER) focuses on the use of observational and quasi-experimental approaches. We sought to examine the use of clinical trials as a tool for CER, particularly in mental health. Study Design and Setting Examination of three ongoing randomized clinical trials in psychiatry that address issues which would pose difficulties for non-experimental CER methods. Results Existing statistical approaches to non-experimental data appear insufficient to compensate for biases that may arise when the pattern of missing data cannot be properly modeled such as when there are no standards for treatment, when affected populations have limited access to treatment, or when there are high rates of treatment dropout. Conclusions Clinical trials should retain an important role in CER, particularly in cases of high disorder prevalence, large expected effect sizes, difficult to reach populations or when examining sequential treatments or stepped-care algorithms. Progress in CER in mental health will require careful consideration of appropriate selection between clinical trials and non-experimental designs and on allocation of research resources to optimally inform key treatment decisions for each individual patient. PMID:23849150
Holgado-Tello, Fco P; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A
2016-01-01
The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity.
Holgado-Tello, Fco. P.; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A.
2016-01-01
The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity. PMID:27378991
Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas
2015-01-01
Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID:25653655
Le, Chi Chip; Wismer, Michael K; Shi, Zhi-Cai; Zhang, Rui; Conway, Donald V; Li, Guoqing; Vachal, Petr; Davies, Ian W; MacMillan, David W C
2017-06-28
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
Home Care Nursing via Computer Networks: Justification and Design Specifications
Brennan, Patricia Flatley
1988-01-01
High-tech home care includes the use of information technologies, such as computer networks, to provide direct care to patients in the home. This paper presents the justification and design of a project using a free, public access computer network to deliver home care nursing. The intervention attempts to reduce isolation and improve problem solving among home care patients and their informal caregivers. Three modules comprise the intervention: a decision module, a communications module, and an information data base. This paper describes the experimental evaluation of the project, and discusses issues in the delivery of nursing care via computers.
NASA Astrophysics Data System (ADS)
Plankis, Brian J.
The purpose of the study was to examine the effects of technology-infused issue investigations on high school students' environmental and ocean literacies. This study explored the effects of a new educational enrichment program termed Connecting the Ocean, Reefs, Aquariums, Literacy, and Stewardship (CORALS) on high school science students. The study utilized a mixed methods approach combining a quantitative quasi-experimental pre-post test design with qualitative case studies. The CORALS program is a new educational program that combines materials based on the Investigating and Evaluating Environmental Issues and Actions (IEEIA) curriculum program with the digital storytelling process. Over an 18-week period four high school science teachers and their approximately 169 students investigated environmental issues impacting coral reefs through the IEEIA framework. An additional approximately 224 students, taught by the same teachers, were the control group exposed to standard curriculum. Students' environmental literacy was measured through the Secondary School Environmental Literacy Instrument (SSELI) and students' ocean literacy was measured through the Students' Ocean Literacy Viewpoints and Engagement (SOLVE) instrument. Two classrooms were selected as case studies and examined through classroom observations and student and teacher interviews. The results indicated the CORALS program increased the knowledge of ecological principles, knowledge of environmental problems/issues, and environmental attitudes components of environmental literacy for the experimental group students. For ocean literacy, the experimental group students' scores increased for knowledge of ocean literacy principles, ability to identify oceanic environmental problems, and attitudes concerning the ocean. The SSELI measure of Responsible Environmental Behaviors (REB) was found to be significant for the interaction of teacher and class type (experimental or control). The students for Teachers A and B reported a statistically significant increase in the self-reported REB subscales of ecomanagement and consumer/economic action. This indicates the students reported an increase in the REBs they could change within their lifestyles. This study provides baseline data in an area where few quality studies exist to date. Recommendations for practice and administration of the research study instruments are explored. Recommendations for further research include CORALS program modifications, revising the instruments utilized, and what areas of students' environmental and ocean literacies warrant further exploration.
Of taps and toilets: quasi-experimental protocol for evaluating community-demand-driven projects.
Pattanayak, Subhrendu K; Poulos, Christine; Yang, Jui-Chen; Patil, Sumeet R; Wendland, Kelly J
2009-09-01
Sustainable and equitable access to safe water and adequate sanitation are widely acknowledged as vital, yet neglected, development goals. Water supply and sanitation (WSS) policies are justified because of the usual efficiency criteria, but also major equity concerns. Yet, to date there are few scientific impact evaluations showing that WSS policies are effective in delivering social welfare outcomes. This lack of an evaluation culture is partly because WSS policies are characterized by diverse mechanisms, broad goals and the increasing importance of decentralized delivery, and partly because programme administrators are unaware of appropriate methods. We describe a protocol for a quasi-experimental evaluation of a community-demand-driven programme for water and sanitation in rural India, which addresses several evaluation challenges. After briefly reviewing policy and implementation issues in the sector, we describe key features of our protocol, including control group identification, pre-post measurement, programme theory, sample sufficiency and robust indicators. At its core, our protocol proposes to combine propensity score matching and difference-in-difference estimation. We conclude by briefly summarizing how quasi-experimental impact evaluations can address key issues in WSS policy design and when such evaluations are needed.
Arden, Sarah V; Pentimonti, Jill M; Cooray, Rochana; Jackson, Stephanie
2017-07-01
This investigation employs categorical content analysis processes as a mechanism to examine trends and issues in a sampling of highly cited (100+) literature in special education journals. The authors had two goals: (a) broadly identifying trends across publication type, content area, and methodology and (b) specifically identifying articles with disaggregated outcomes for students with learning disabilities (LD). Content analyses were conducted across highly cited (100+) articles published during a 20-year period (1992-2013) in a sample ( n = 3) of journals focused primarily on LD, and in one broad, cross-categorical journal recognized for its impact in the field. Results indicated trends in the article type (i.e., commentary and position papers), content (i.e., reading and behavior), and methodology (i.e., small proportions of experimental and quasi-experimental designs). Results also revealed stability in the proportion of intervention research studies when compared to previous analyses and a decline in the proportion of those that disaggregated data specifically for students with LD.
The effects of survey question wording on rape estimates: evidence from a quasi-experimental design.
Fisher, Bonnie S
2009-02-01
The measurement of rape is among the leading methodological issues in the violence against women field. Methodological discussion continues to focus on decreasing measurement errors and improving the accuracy of rape estimates. The current study used a quasi-experimental design to examine the effect of survey question wording on estimates of completed and attempted rape and verbal threats of rape. Specifically, the study statistically compares self-reported rape estimates from two nationally representative studies of college women's sexual victimization experiences, the National College Women Sexual Victimization study and the National Violence Against College Women study. Results show significant differences between the two sets of rape estimates, with National Violence Against College Women study rape estimates ranging from 4.4% to 10.4% lower than the National College Women Sexual Victimization study rape estimates. Implications for future methodological research are discussed.
Michielutte, R; Dignan, M B; Wells, H B; Young, L D; Jackson, D S; Sharp, P C
1989-01-01
The authors outline the development and implementation of a public health education program for cervical cancer screening among black women in Forsyth County, NC. The educational program includes distributing electronic and printed information media messages, a program of direct education for women, and providing information on current issues in cervical screening to primary-care physicians. Program development was based on social marketing principles, the PRECEDE model, and the communication-behavior change (CBC) model. Since a true experimental design was not feasible, program evaluation is based on several complementary quasi-experimental designs. Analysis of baseline data indicate that the county where the intervention is taking place, and the control county, are similar with respect to both demographic characteristics and the current level of screening activity. Preliminary results indicate that the program has been successful in raising women's level of awareness of cervical cancer and cervical screening.
Moving belt radiator development status
NASA Technical Reports Server (NTRS)
White, K. Alan
1988-01-01
Development of the Moving Belt Radiator (MBR) as an advanced space radiator concept is discussed. The ralative merits of Solid Belt (SBR), Liquid Belt (LBR), and Hybrid Belt (HBR) Radiators are described. Analytical and experimental efforts related to the dynamics of a rotating belt in microgravity are reviewed. The development of methods for transferring heat to the moving belt is discussed, and the results from several experimental investigations are summarized. Limited efforts related to the belt deployment and stowage, and to fabrication of a hybrid belt, are also discussed. Life limiting factors such as seal wear and micrometeroid resistance are identified. The results from various MBR point design studies for several power levels are compared with advanced Heat Pipe Radiator technology. MBR designs are shown to compare favorable at both 300 and 1000 K temperature levels. However, additional effort will be required to resolve critical technology issues and to demonstrate the advantage of MBR systems.
Cell separation: Terminology and practical considerations
Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer
2013-01-01
Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031
Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.
Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y
2018-03-08
Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessment of computational issues associated with analysis of high-lift systems
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.
1992-01-01
Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.
Robust decentralized control laws for the ACES structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.
Glenn, Beth A; Bastani, Roshan; Maxwell, Annette E
2013-01-01
Threats to external validity, including pretest sensitisation and the interaction of selection and an intervention, are frequently overlooked by researchers despite their potential to significantly influence study outcomes. The purpose of this investigation was to conduct secondary data analyses to assess the presence of external validity threats in the setting of a randomised trial designed to promote mammography use in a high-risk sample of women. During the trial, recruitment and intervention, implementation took place in three cohorts (with different ethnic composition), utilising two different designs (pretest-posttest control group design and posttest only control group design). Results reveal that the intervention produced different outcomes across cohorts, dependent upon the research design used and the characteristics of the sample. These results illustrate the importance of weighing the pros and cons of potential research designs before making a selection and attending more closely to issues of external validity.
A new pooling strategy for high-throughput screening: the Shifted Transversal Design
Thierry-Mieg, Nicolas
2006-01-01
Background In binary high-throughput screening projects where the goal is the identification of low-frequency events, beyond the obvious issue of efficiency, false positives and false negatives are a major concern. Pooling constitutes a natural solution: it reduces the number of tests, while providing critical duplication of the individual experiments, thereby correcting for experimental noise. The main difficulty consists in designing the pools in a manner that is both efficient and robust: few pools should be necessary to correct the errors and identify the positives, yet the experiment should not be too vulnerable to biological shakiness. For example, some information should still be obtained even if there are slightly more positives or errors than expected. This is known as the group testing problem, or pooling problem. Results In this paper, we present a new non-adaptive combinatorial pooling design: the "shifted transversal design" (STD). It relies on arithmetics, and rests on two intuitive ideas: minimizing the co-occurrence of objects, and constructing pools of constant-sized intersections. We prove that it allows unambiguous decoding of noisy experimental observations. This design is highly flexible, and can be tailored to function robustly in a wide range of experimental settings (i.e., numbers of objects, fractions of positives, and expected error-rates). Furthermore, we show that our design compares favorably, in terms of efficiency, to the previously described non-adaptive combinatorial pooling designs. Conclusion This method is currently being validated by field-testing in the context of yeast-two-hybrid interactome mapping, in collaboration with Marc Vidal's lab at the Dana Farber Cancer Institute. Many similar projects could benefit from using the Shifted Transversal Design. PMID:16423300
Experimental validation of a direct simulation by Monte Carlo molecular gas flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shufflebotham, P.K.; Bartel, T.J.; Berney, B.
1995-07-01
The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites
NASA Astrophysics Data System (ADS)
Sathiyanathan, Kartheephan
This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.
Becker, Betsy Jane; Aloe, Ariel M; Duvendack, Maren; Stanley, T D; Valentine, Jeffrey C; Fretheim, Atle; Tugwell, Peter
2017-09-01
To outline issues of importance to analytic approaches to the synthesis of quasi-experiments (QEs) and to provide a statistical model for use in analysis. We drew on studies of statistics, epidemiology, and social-science methodology to outline methods for synthesis of QE studies. The design and conduct of QEs, effect sizes from QEs, and moderator variables for the analysis of those effect sizes were discussed. Biases, confounding, design complexities, and comparisons across designs offer serious challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, including the aspects of QE study design to be coded and analyzed. Of utmost importance are the design and statistical controls implemented in the QEs. Such controls and any potential sources of bias and confounding must be modeled in analyses, along with aspects of the interventions and populations studied. Because of such controls, effect sizes from QEs are more complex than those from randomized experiments. A statistical meta-regression model that incorporates important features of the QEs under review was presented. Meta-analyses of QEs provide particular challenges, but thorough coding of intervention characteristics and study methods, along with careful analysis, should allow for sound inferences. Copyright © 2017 Elsevier Inc. All rights reserved.
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Towards a characterization of information automation systems on the flight deck
NASA Astrophysics Data System (ADS)
Dudley, Rachel Feddersen
This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.
Scrivani, Peter V; Erb, Hollis N
2013-01-01
High quality clinical research is essential for advancing knowledge in the areas of veterinary radiology and radiation oncology. Types of clinical research studies may include experimental studies, method-comparison studies, and patient-based studies. Experimental studies explore issues relative to pathophysiology, patient safety, and treatment efficacy. Method-comparison studies evaluate agreement between techniques or between observers. Patient-based studies investigate naturally acquired disease and focus on questions asked in clinical practice that relate to individuals or populations (e.g., risk, accuracy, or prognosis). Careful preplanning and study design are essential in order to achieve valid results. A key point to planning studies is ensuring that the design is tailored to the study objectives. Good design includes a comprehensive literature review, asking suitable questions, selecting the proper sample population, collecting the appropriate data, performing the correct statistical analyses, and drawing conclusions supported by the available evidence. Most study designs are classified by whether they are experimental or observational, longitudinal or cross-sectional, and prospective or retrospective. Additional features (e.g., controlled, randomized, or blinded) may be described that address bias. Two related challenging aspects of study design are defining an important research question and selecting an appropriate sample population. The sample population should represent the target population as much as possible. Furthermore, when comparing groups, it is important that the groups are as alike to each other as possible except for the variables of interest. Medical images are well suited for clinical research because imaging signs are categorical or numerical variables that might be predictors or outcomes of diseases or treatments. © 2013 Veterinary Radiology & Ultrasound.
Human-In-The-Loop Experimental Research for Detect and Avoid
NASA Technical Reports Server (NTRS)
Consiglio, Maria; Munoz, Cesar; Hagen, George; Narkawicz, Anthony; Upchurch, Jason; Comstock, James; Ghatas, Rania; Vincent, Michael; Chamberlain, James
2015-01-01
This paper describes a Detect and Avoid (DAA) concept for integration of UAS into the NAS developed by the National Aeronautics and Space Administration (NASA) and provides results from recent human-in-the-loop experiments performed to investigate interoperability and acceptability issues associated with these vehicles and operations. The series of experiments was designed to incrementally assess critical elements of the new concept and the enabling technologies that will be required.
Clean and Secure Energy from Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Philip; Davies, Lincoln; Kelly, Kerry
2014-08-31
The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO 2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.
Development, Validation, and Application of OSSEs at NASA/GMAO
NASA Technical Reports Server (NTRS)
Errico, Ronald; Prive, Nikki
2015-01-01
During the past several years, NASA Goddard's Global Modeling and Assimilation Office (GMAO) has been developing a framework for conducting Observing System Simulation Experiments (OSSEs). The motivation and design of that framework will be described and a sample of validation results presented. Fundamentals issues will be highlighted, particularly the critical importance of appropriately simulating system errors. Some problems that have just arisen in the newest experimental system will also be mentioned.
Defense AT and L, Volume 45, Number 6, November-December 2016
2016-11-01
one you can just replicate and field in large numbers—it wasn’t designed for that. Sometimes we have liked the key features of experimental prototypes...clients on a variety of supply chain management issues. Cotteleer is the deputy director of U.S. eminence and director of research at Deloitte...Services LP, in Milwaukee, Wisconsin—affiliated with the Deloitte Center for Integrated Research . His research primarily focuses on the application of ad
Supersonic Retro-Propulsion Experimental Design for Computational Fluid Dynamics Model Validation
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Laws, Christopher T.; Kleb, W. L.; Rhode, Matthew N.; Spells, Courtney; McCrea, Andrew C.; Truble, Kerry A.; Schauerhamer, Daniel G.; Oberkampf, William L.
2011-01-01
The development of supersonic retro-propulsion, an enabling technology for heavy payload exploration missions to Mars, is the primary focus for the present paper. A new experimental model, intended to provide computational fluid dynamics model validation data, was recently designed for the Langley Research Center Unitary Plan Wind Tunnel Test Section 2. Pre-test computations were instrumental for sizing and refining the model, over the Mach number range of 2.4 to 4.6, such that tunnel blockage and internal flow separation issues would be minimized. A 5-in diameter 70-deg sphere-cone forebody, which accommodates up to four 4:1 area ratio nozzles, followed by a 10-in long cylindrical aftbody was developed for this study based on the computational results. The model was designed to allow for a large number of surface pressure measurements on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Some preliminary results and observations from the test are presented, although detailed analyses of the data and uncertainties are still on going.
Optimizing Associative Experimental Design for Protein Crystallization Screening
Dinç, Imren; Pusey, Marc L.; Aygün, Ramazan S.
2016-01-01
The goal of protein crystallization screening is the determination of the main factors of importance to crystallizing the protein under investigation. One of the major issues about determining these factors is that screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for maximizing the chances of a successful (crystalline) outcome. In this paper, we propose an experimental design method called “Associative Experimental Design (AED)” and an optimization method includes eliminating prohibited combinations and prioritizing reagents based on AED analysis of results from protein crystallization experiments. AED generates candidate cocktails based on these initial screening results. These results are analyzed to determine those screening factors in chemical space that are most likely to lead to higher scoring outcomes, crystals. We have tested AED on three proteins derived from the hyperthermophile Thermococcus thioreducens, and we applied an optimization method to these proteins. Our AED method generated novel cocktails (count provided in parentheses) leading to crystals for three proteins as follows: Nucleoside diphosphate kinase (4), HAD superfamily hydrolase (2), Nucleoside kinase (1). After getting promising results, we have tested our optimization method on four different proteins. The AED method with optimization yielded 4, 3, and 20 crystalline conditions for holo Human Transferrin, archaeal exosome protein, and Nucleoside diphosphate kinase, respectively. PMID:26955046
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
NASA Astrophysics Data System (ADS)
Jamshidinia, Mahdi
The ability of additive manufacturing (AM) processes to produce complex geometries is resulting in their rapid acceptance by a number of industries. This unique capability could be used for the optimization of the design of functional components that could find an application in different industries such as aerospace, automotive, energy, medical, and implants. However, there are still some challenges confronting this technology such as surface finish, residual stress, dimensional tolerance, processing speed, and anisotropy in microstructure and mechanical properties. Any of the mentioned issues could be influenced by the thermal history of a 3D printed component during the layer-by-layer manufacturing. Therefore, an understanding of the thermal cycling during the AM process is essential. In recent years, significant advances have been achieved in the design, manufacturing, and materials used for dental implants. However, there are still some differences between the natural tooth and a dental implant that might decrease patient satisfaction. One of the differences between the natural tooth and a dental implant is in its modulus of elasticity, which could result in an issue known as bone atrophy. The second important difference between a dental implant and a natural tooth is the fact that a natural tooth is surrounded by a periodontal ligament that allows the tooth to move in three directions. However, the periodontal ligament is destroyed during the extraction of a natural tooth. In the absence of the periodontal ligament, the biting force is directly transferred to the jawbone, resulting in discomfort for the patient. Also, the implant cannot be incorporated with the surrounding natural tooth and form a bridge. In this study, the application of a lattice structure for the manufacturing of a biocompatible dental implant is investigated. Three different lattice structures with different unit cell sizes were experimentally and numerically analyzed. The mechanical properties of lattice abutments in response to a static compression load were analyzed. However, the mechanical behavior of a structure could be considerably different under cyclic loads where fatigue failure could occur at stresses far below the static failure stress. Therefore, experimental and numerical analyses were performed in order to investigate the fatigue properties of the lattice dental abutment. Beside the design of a structure, some numerical models were developed to investigate the effects of Electron Beam MeltingRTM (EBM) process parameters on the heat distribution and the mentioned issues such as surface roughness and residual stress. A moving electron beam heat source and the temperature dependent properties of Ti-6Al- 4V were used in order to provide a 3D thermal-fluid flow model of EBMRTM, where the influence of process parameters as well as fluid convection on heat distribution were studied. Also, a coupled Computational Fluid Dynamic (CFD) - Finite Element Method (FEM) model was developed for studying the heat and thermal stress distribution in EBMRTM. The coupled CFD-FEM model combines the ability of CFD in considering the effects of fluid convection with the ability of FEM in calculating the thermal stress. The influences of the spacing distance between the Ti-6Al-4V plates produced by EBMRTM on the heat accumulation and the resultant surface roughness were investigated numerically and experimentally. An equation was derived from experimental data to predict the values of surface roughness as a function of the spacing distance. Finally, the influence of a novel design of heat sinks on the minimization of anisotropy was investigated, where the heat sinks were built in-situ during the EBMRTM process. Three sets of coupons with different numbers of heat sinks were designed and produced by EBMRTM. Another set of coupons was produced without a heat sink for comparison purposes. The results of the study could be used as the supportive experimental information required for the optimization of the support generation software in the powder-bed AM processes, such as the MagicsRTM used in EBMRTM .
In-vessel tritium retention and removal in ITER
NASA Astrophysics Data System (ADS)
Federici, G.; Anderl, R. A.; Andrew, P.; Brooks, J. N.; Causey, R. A.; Coad, J. P.; Cowgill, D.; Doerner, R. P.; Haasz, A. A.; Janeschitz, G.; Jacob, W.; Longhurst, G. R.; Nygren, R.; Peacock, A.; Pick, M. A.; Philipps, V.; Roth, J.; Skinner, C. H.; Wampler, W. R.
Tritium retention inside the vacuum vessel has emerged as a potentially serious constraint in the operation of the International Thermonuclear Experimental Reactor (ITER). In this paper we review recent tokamak and laboratory data on hydrogen, deuterium and tritium retention for materials and conditions which are of direct relevance to the design of ITER. These data, together with significant advances in understanding the underlying physics, provide the basis for modelling predictions of the tritium inventory in ITER. We present the derivation, and discuss the results, of current predictions both in terms of implantation and codeposition rates, and critically discuss their uncertainties and sensitivity to important design and operation parameters such as the plasma edge conditions, the surface temperature, the presence of mixed-materials, etc. These analyses are consistent with recent tokamak findings and show that codeposition of tritium occurs on the divertor surfaces primarily with carbon eroded from a limited area of the divertor near the strike zones. This issue remains an area of serious concern for ITER. The calculated codeposition rates for ITER are relatively high and the in-vessel tritium inventory limit could be reached, under worst assumptions, in approximately a week of continuous operation. We discuss the implications of these estimates on the design, operation and safety of ITER and present a strategy for resolving the issues. We conclude that as long as carbon is used in ITER - and more generically in any other next-step experimental fusion facility fuelled with tritium - the efficient control and removal of the codeposited tritium is essential. There is a critical need to develop and test in situ cleaning techniques and procedures that are beyond the current experience of present-day tokamaks. We review some of the principal methods that are being investigated and tested, in conjunction with the R&D work still required to extrapolate their applicability to ITER. Finally, unresolved issues are identified and recommendations are made on potential R&D avenues for their resolution.
Kendall-Taylor, Nathaniel; Stanley, Kate
2018-01-19
Human beings think in metaphor and reason through analogy. The metaphors through which we think influence how we understand and feel about social issues as well as the actions that we see as appropriate and important. Metaphors can be used to increase understanding of how issues work and increase the salience of a given issue, build support for programs and policies necessary to address the issue, and instigate demand for change and civic action. In this paper, we use a mixed methods research design, including brief qualitative interviews, experimental surveys, and focus groups, to test the ability of different metaphors to influence public understanding of the social determinants of child abuse and neglect in the UK. We find one metaphor in particular that improves people's understanding of the social causes of child maltreatment and increases support for structural solutions. This metaphor can be used to build support for preventative public health solutions.
Kendall-Taylor, Nathaniel; Stanley, Kate
2018-01-01
Human beings think in metaphor and reason through analogy. The metaphors through which we think influence how we understand and feel about social issues as well as the actions that we see as appropriate and important. Metaphors can be used to increase understanding of how issues work and increase the salience of a given issue, build support for programs and policies necessary to address the issue, and instigate demand for change and civic action. In this paper, we use a mixed methods research design, including brief qualitative interviews, experimental surveys, and focus groups, to test the ability of different metaphors to influence public understanding of the social determinants of child abuse and neglect in the UK. We find one metaphor in particular that improves people’s understanding of the social causes of child maltreatment and increases support for structural solutions. This metaphor can be used to build support for preventative public health solutions. PMID:29351195
Code qualification of structural materials for AFCI advanced recycling reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Li, M.; Majumdar, S.
2012-05-31
This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.« less
NASA Astrophysics Data System (ADS)
Wiesenmayer, Randall L.; Rubba, Peter A.
1999-06-01
The purpose of this study was to determine the effects of employing an STS instructional model that addresses each of the four goal levels of STS education versus an instructional model containing only life science content, on seventh grade students' participation in citizenship action on STS issues. A modified version of the non-equivalent control group quasi-experimental research design was used with seventeen intact seventh grade life science classes, ten of which received STS instruction ( N = 264) and seven of which received life science instruction ( N = 136) over 20 school days. The STS instruction sequentially addressed each of the four goal levels for STS education. Data were collected using the Actions Taken on Public Issues instrument to measure citizenship behaviors. ANOVA and repeated measures ANOVA were employed to analyze data. It was concluded from the findings that employment of an STS issue investigation with an action instructional model that addressed the four goal levels of STS education significantly increased seventh grade students' participation in citizenship actions on STS issues. Implications and recommendations are provided.
Space Station Engineering Design Issues
NASA Technical Reports Server (NTRS)
Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.
1989-01-01
Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.
Interventions for family members caring for an elder with dementia.
Acton, Gayle J; Winter, Mary A
2002-01-01
This chapter reviews 73 published and unpublished research reports of interventions for family members caring for an elder with dementia by nurse researchers and researchers from other disciplines. Reports were identified through searches of MEDLINE, CINAHL, Social Science Index, PsycINFO, ERIC, Social Work Abstracts, American Association of Retired Persons database, CRISP index of the National Institutes of Health, Cochrane Center database, and Dissertation Abstracts using the following search terms: caregiver, caregiving, dementia, Alzheimer's, intervention study, evaluation study, experimental, and quasi-experimental design. Additional keywords were used to narrow or expand the search as necessary. All nursing research was included in the review and nonnursing research was included if published between 1991 and 2001. Studies were included if they used a design that included a treatment and control group or a one-group, pretest-posttest design (ex post facto designs were included if they used a comparison group). Key findings show that approximately 32% of the study outcomes (e.g., burden, depression, knowledge) were changed after intervention in the desired direction. In addition, several problematic issues were identified including small, diverse samples; lack of intervention specificity; diversity in the length, duration, and intensity of the intervention strategies; and problematic outcome measures.
Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO 2
Romanov, Vyacheslav N.; Lynn, Ronald J.; Warzinski, Robert P.
2017-07-03
This research was aimed at testing a hypothesis, that at elevated CO 2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO 2 into deep coal seams. Here, we have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of CO 2 as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coalmore » softening temperature was observed in this study.« less
Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Vyacheslav N.; Lynn, Ronald J.; Warzinski, Robert P.
This research was aimed at testing a hypothesis, that at elevated CO 2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO 2 into deep coal seams. Here, we have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of CO 2 as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coalmore » softening temperature was observed in this study.« less
Quantum-dot cellular automata: Review and recent experiments (invited)
NASA Astrophysics Data System (ADS)
Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.
1999-04-01
An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.
Laser ion source for heavy ion inertial fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, Masahiro
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
NASA Astrophysics Data System (ADS)
Sullivan, W. N.
The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.
Laser ion source for heavy ion inertial fusion
Okamura, Masahiro
2018-01-10
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
Helmet-Mounted Display Design Guide
NASA Technical Reports Server (NTRS)
Newman, Richard L.; Greeley, Kevin W.
1997-01-01
Helmet Mounted Displays (HMDs) present flight, navigation, and weapon information in the pilot's line of sight. The HMD was developed to allow the pilot to retain aircraft and weapon information while looking off boresight. This document reviews current state of the art in HMDs and presents a design guide for the HMD engineer in identifying several critical HMD issues: symbol stabilization, inadequate definitions, undefined symbol drive laws, helmet considerations, and Field Of View (FOV) vs. resolution tradeoff requirements. In particular, display latency is a key issue for HMDs. In addition to requiring further experimental studies, it impacts the definition and control law issues. Symbol stabilization is also critical. In the case of the Apache helicopter, the lack of compensation for pilot head motion creates excessive workload during hovering and Nap Of the Earth (NOE) flight. This translates into excessive training requirements. There is no agreed upon set of definitions or descriptions for how HMD symbols are driven to compensate for pilot head motion. A set of definitions is proposed to address this. There are several specific areas where simulation and flight experiments are needed: development of hover and NOE symbologies which compensate for pilot head movement; display latency and sampling, and the tradeoff between FOV, sensor resolution and symbology.
Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.
Huynh, Linh; Tagkopoulos, Ilias
2015-08-21
In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.
What do we mean by Human-Centered Design of Life-Critical Systems?
Boy, Guy A
2012-01-01
Human-centered design is not a new approach to design. Aerospace is a good example of a life-critical systems domain where participatory design was fully integrated, involving experimental test pilots and design engineers as well as many other actors of the aerospace engineering community. This paper provides six topics that are currently part of the requirements of the Ph.D. Program in Human-Centered Design of the Florida Institute of Technology (FIT.) This Human-Centered Design program offers principles, methods and tools that support human-centered sustainable products such as mission or process control environments, cockpits and hospital operating rooms. It supports education and training of design thinkers who are natural leaders, and understand complex relationships among technology, organizations and people. We all need to understand what we want to do with technology, how we should organize ourselves to a better life and finally find out whom we are and have become. Human-centered design is being developed for all these reasons and issues.
Experimental Charging Behavior of Orion UltraFlex Array Designs
NASA Technical Reports Server (NTRS)
Golofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.
2010-01-01
The present ground based investigations give the first definitive look describing the charging behavior of Orion UltraFlex arrays in both the Low Earth Orbital (LEO) and geosynchronous (GEO) environments. Note the LEO charging environment also applies to the International Space Station (ISS). The GEO charging environment includes the bounding case for all lunar mission environments. The UltraFlex photovoltaic array technology is targeted to become the sole power system for life support and on-orbit power for the manned Orion Crew Exploration Vehicle (CEV). The purpose of the experimental tests is to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues to ascertain if a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Stage 1 LEO plasma testing revealed that all four arrays successfully passed arc threshold bias tests down to -240 V. Stage 2 GEO electron gun charging tests revealed that only the front side area of indium tin oxide coated array designs successfully passed the arc frequency tests
NASA Astrophysics Data System (ADS)
Martin, E. H.; Caughman, J. B. O.; Shannon, S. C.; Klepper, C. C.; Isler, R. C.
2013-10-01
A major challenge facing magnetic fusion devices and the success of ITER is the design and implementation of reliable ICRH systems. The primary issue facing ICRH is the parasitic near-field which leads to an increased heat flux, sputtering, and arcing of the antenna/faraday screen. In order to aid the theoretical development of near-field physics and thus propel the design process experimental measurements are highly desired. In this work we have developed a diagnostic based on passive emission spectroscopy capable of measuring time periodic electric fields utilizing a generalized dynamic Stark effect model and a novel spectral line profile fitting package. The diagnostic was implemented on a small scale laboratory experiment designed to simulate the edge environment associated with ICRF antenna/faraday screen. The spatially and temporally resolved electric field associated with magnetized RF sheaths will be presented for two field configurations: magnetic field parallel to electric field and magnetic field perpendicular to electric field, both hydrogen and helium discharges where investigated. ORNL is managed by UT-Battelle, LCC, for the US DOE under Contract No. DE-AC05-00OR22725.
An integrated ball projection technology for the study of dynamic interceptive actions.
Stone, J A; Panchuk, D; Davids, K; North, J S; Fairweather, I; Maynard, I W
2014-12-01
Dynamic interceptive actions, such as catching or hitting a ball, are important task vehicles for investigating the complex relationship between cognition, perception, and action in performance environments. Representative experimental designs have become more important recently, highlighting the need for research methods to ensure that the coupling of information and movement is faithfully maintained. However, retaining representative design while ensuring systematic control of experimental variables is challenging, due to the traditional tendency to employ methods that typically involve use of reductionist motor responses such as buttonpressing or micromovements. Here, we outline the methodology behind a custom-built, integrated ball projection technology that allows images of advanced visual information to be synchronized with ball projection. This integrated technology supports the controlled presentation of visual information to participants while they perform dynamic interceptive actions. We discuss theoretical ideas behind the integration of hardware and software, along with practical issues resolved in technological design, and emphasize how the system can be integrated with emerging developments such as mixed reality environments. We conclude by considering future developments and applications of the integrated projection technology for research in human movement behaviors.
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
NASA Astrophysics Data System (ADS)
Siambis, John G.; True, Richard B.; Symons, R. S.
1994-05-01
Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.
Experimental evaluation of candidate graphical microburst alert displays
NASA Technical Reports Server (NTRS)
Wanke, Craig R.; Hansman, R. John
1992-01-01
A piloted flight simulator experiment was conducted to evaluate issues related to the display of microburst alerts on electronic cockpit instrumentation. Issues addressed include display clarity, usefulness of multilevel microburst intensity information, and whether information from multiple sensors should be presented separately or 'fused' into combined alerts. Nine active airline pilots of 'glass cockpit' aircraft participated in the study. Microburst alerts presented on a moving map display were found to be visually clear and useful to pilots. Also, multilevel intensity information coded by colors or patterns was found to be important for decision making purposes. Pilot opinion was mixed on whether to 'fuse' data from multiple sensors, and some resulting design tradeoffs were identified. The positional information included in the graphical alert presentation was found useful by the pilots for planning lateral missed approach maneuvers, but may result in deviations which could interfere with normal airport operations. A number of flight crew training issues were also identified.
NASA Astrophysics Data System (ADS)
Saxena, Hemant; Singh, Alka; Rai, J. N.
2018-07-01
This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.
Design and proof of concept of an innovative very high temperature ceramic solar absorber
NASA Astrophysics Data System (ADS)
Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc
2017-06-01
Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.
Main Chamber and Preburner Injector Technology
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Merkle, Charles L.
1999-01-01
This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.
From atomistic interfaces to dendritic patterns
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Alexandrov, D. V.
2018-01-01
Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Virtual fragment preparation for computational fragment-based drug design.
Ludington, Jennifer L
2015-01-01
Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.
Animal Experimentation: Issues for the 1980s.
ERIC Educational Resources Information Center
Zola, Judith C.; And Others
1984-01-01
Examines the extent to which issues related to animal experimentation are in conflict and proposes choices that might least comprise them. These issues include animal well-being, human well-being, self-interest of science, scientific validity and responsibility, progress in biomedical and behavioral science, and the future quality of medical care.…
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Hernandez, Wilmar
2007-01-01
In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.
Human Health Effects of Biphenyl: Key Findings and Scientific Issues.
Li, Zheng; Hogan, Karen A; Cai, Christine; Rieth, Susan
2016-06-01
In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. We review key findings and scientific issues regarding expected human health effects of biphenyl. Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703-712; http://dx.doi.org/10.1289/ehp.1509730.
Predicting the effectiveness of road safety campaigns through alternative research designs.
Adamos, Giannis; Nathanail, Eftihia
2016-12-01
A large number of road safety communication campaigns have been designed and implemented in the recent years; however their explicit impact on driving behavior and road accident rates has been estimated in a rather low proportion. Based on the findings of the evaluation of three road safety communication campaigns addressing the issues of drinking and driving, seat belt usage, and driving fatigue, this paper applies different types of research designs (i.e., experimental, quasi-experimental, and non-experimental designs), when estimating the effectiveness of road safety campaigns, implements a cross-design assessment, and conducts a cross-campaign evaluation. An integrated evaluation plan was developed, taking into account the structure of evaluation questions, the definition of measurable variables, the separation of the target audience into intervention (exposed to the campaign) and control (not exposed to the campaign) groups, the selection of alternative research designs, and the appropriate data collection methods and techniques. Evaluating the implementation of different research designs in estimating the effectiveness of road safety campaigns, results showed that the separate pre-post samples design demonstrated better predictability than other designs, especially in data obtained from the intervention group after the realization of the campaign. The more constructs that were added to the independent variables, the higher the values of the predictability were. The construct that most affects behavior is intention, whereas the rest of the constructs have a lower impact on behavior. This is particularly significant in the Health Belief Model (HBM). On the other hand, behavioral beliefs, normative beliefs, and descriptive norms, are significant parameters for predicting intention according to the Theory of Planned Behavior (TPB). The theoretical and applied implications of alternative research designs and their applicability in the evaluation of road safety campaigns are provided by this study. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Langley's CSI evolutionary model: Phase 2
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.
1995-01-01
Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, Conrad; Shively, Jay
2016-01-01
At the May 2015 SC-228 meeting, requirements for TCAS II interoperability became elevated in priority. A TCAS interoperability work group was formed to identify and address key issuesquestions. The TCAS work group came up with an initial list of questions and a plan to address those questions. As part of that plan, NASA proposed to run a mini HITL to address display, alerting and guidance issues. A TCAS Interoperability Workshop was held to determine potential displayalertingguidance issues that could be explored in future NASA mini HITLS. Consensus on main functionality of DAA guidance when TCAS II RA occurs. Prioritized list of independent variables for experimental design. Set of use cases to stress TCAS Interoperability.
Use of Nanostructures in Fabrication of Large Scale Electrochemical Film
NASA Astrophysics Data System (ADS)
Chen, Chien Chon; Chen, Shih Hsun; Shyu, Sheang Wen; Hsieh, Sheng Jen
Control of electrochemical parameters when preparing small-scale samples for academic research is not difficult. In mass production environments, however, maintenance of constant current density and temperature become a critical issue. This article describes the design of several molds for large work pieces. These molds were designed to maintain constant current density and to facilitate the occurrence of electrochemical reactions in designated areas. Large-area thin films with fine nanostructure were successfully prepared using the designed electrochemical molds and containers. In addition, current density and temperature could be controlled well. This electrochemical system has been verified in many experimental operations, including etching of Al surfaces; electro-polishing of Al, Ti and stainless steel; and fabrication of anodic alumina oxide (AAO), Ti-TiO2 interference membrane, TiO2 nanotubes, AAO-TiO2 nanotubes, Ni nanowires and porous tungsten
NASA Astrophysics Data System (ADS)
Quan, Lulin; Yang, Zhixin
2010-05-01
To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.
Social Experiments in the Mesoscale: Humans Playing a Spatial Prisoner's Dilemma
Grujić, Jelena; Fosco, Constanza; Araujo, Lourdes; Cuesta, José A.; Sánchez, Angel
2010-01-01
Background The evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner's Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues. Methods and Findings We have designed an experiment to test the emergence of cooperation when humans play Prisoner's Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players' behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations. Conclusions In our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a “moody” conditional cooperation strategy, in which the probability of cooperating also depends on the player's previous action, are required to understand the outcome of the experiment. These results could impact the way game theory on graphs is used to model human interactions in structured groups. PMID:21103058
NASA Technical Reports Server (NTRS)
Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.
2012-01-01
NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.
Membrane-spanning α-helical barrels as tractable protein-design targets.
Niitsu, Ai; Heal, Jack W; Fauland, Kerstin; Thomson, Andrew R; Woolfson, Derek N
2017-08-05
The rational ( de novo ) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).
Lee, Virginia; Robin Cohen, S; Edgar, Linda; Laizner, Andrea M; Gagnon, Anita J
2006-06-01
Existential issues often accompany a diagnosis of cancer and remain one aspect of psychosocial oncology care for which there is a need for focused, empirically tested interventions. This study examined the efficacy of a novel psychological intervention specifically designed to address existential issues through the use of meaning-making coping strategies on psychological adjustment to cancer. Eighty-two breast or colorectal cancer patients were randomly chosen to receive routine care (control group) or up to four sessions that explored the meaning of the emotional responses and cognitive appraisals of each individual's cancer experience within the context of past life events and future goals (experimental group). This paper reports the results from 74 patients who completed and returned pre- and post-test measures for self-esteem, optimism, and self-efficacy. After controlling for baseline scores, the experimental group participants demonstrated significantly higher levels of self-esteem, optimism, and self-efficacy compared to the control group. The results are discussed in light of the theoretical and clinical implications of meaning-making coping in the context of stress and illness.
Modeling and experimental result analysis for high-power VECSELs
NASA Astrophysics Data System (ADS)
Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner
2003-06-01
We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
NASA Astrophysics Data System (ADS)
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731
Note: design and development of improved indirectly heated cathode based strip electron gun.
Maiti, Namita; Bade, Abhijeet; Tembhare, G U; Patil, D S; Dasgupta, K
2015-02-01
An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.
Note: Design and development of improved indirectly heated cathode based strip electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, Namita; Patil, D. S.; Dasgupta, K.
An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor themore » non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.« less
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang
2018-04-01
Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.
2017-06-09
28. 16 Ibid., 37. 17 Ibid., 136. 12 unsuccessful due to wind and tide issues which enabled two British ships to elude the slow vessel.18...question of air supply was at one time one of the most difficult problems to solve on paper with which early experimenters with submarines had to contend...recently introduced the constant pressure engine. This engine was the basis for the gas turbine , and his design of constant pressure is now referred to
HSCT noise reduction technology development at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Majjigi, Rudramuni K.
1992-01-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
HSCT noise reduction technology development at GE Aircraft Engines
NASA Astrophysics Data System (ADS)
Majjigi, Rudramuni K.
1992-04-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
2013-09-01
Result Analysis In this phase, users and analysts check all the results per objective- question. Then, they consolidate all these results to form...the CRUD technique. By using both the CRUD and the user goal techniques, we identified all the use cases the iFRE system must perform. Table 3...corresponding Focus Area or Critical Operation Issue to simplify the user tasks, and exempts the user from remembering the identifying codes/numbers of
2015-01-05
in a research position that will apply her skills at granular experiment and modeling to important issues related to pharmaceutical processing...MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211...decision, unless so designated by other documentation. 14. ABSTRACT This project, j oint with Antoinette Tordesillas ofUniversity of Melbomn e
Dynamic Loading and Characterization of Fiber-Reinforced Composites
NASA Astrophysics Data System (ADS)
Sierakowski, Robert L.; Chaturvedi, Shive K.
1997-02-01
Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.
NASA Technical Reports Server (NTRS)
Young, M.; Koslovsky, M.; Schaefer, Caroline M.; Feiveson, A. H.
2017-01-01
Back by popular demand, the JSC Biostatistics Laboratory and LSAH statisticians are offering an opportunity to discuss your statistical challenges and needs. Take the opportunity to meet the individuals offering expert statistical support to the JSC community. Join us for an informal conversation about any questions you may have encountered with issues of experimental design, analysis, or data visualization. Get answers to common questions about sample size, repeated measures, statistical assumptions, missing data, multiple testing, time-to-event data, and when to trust the results of your analyses.
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.
2014-02-01
The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.
Anisotropy of Photopolymer Parts Made by Digital Light Processing
Monzón, Mario; Ortega, Zaida; Hernández, Alba; Paz, Rubén; Ortega, Fernando
2017-01-01
Digital light processing (DLP) is an accurate additive manufacturing (AM) technology suitable for producing micro-parts by photopolymerization. As most AM technologies, anisotropy of parts made by DLP is a key issue to deal with, taking into account that several operational factors modify this characteristic. Design for this technology and photopolymers becomes a challenge because the manufacturing process and post-processing strongly influence the mechanical properties of the part. This paper shows experimental work to demonstrate the particular behavior of parts made using DLP. Being different to any other AM technology, rules for design need to be adapted. Influence of build direction and post-curing process on final mechanical properties and anisotropy are reported and justified based on experimental data and theoretical simulation of bi-material parts formed by fully-cured resin and partially-cured resin. Three photopolymers were tested under different working conditions, concluding that post-curing can, in some cases, correct the anisotropy, mainly depending on the nature of photopolymer. PMID:28772426
Small optical inter-satellite communication system for small and micro satellites
NASA Astrophysics Data System (ADS)
Iwamoto, Kyohei; Nakao, Takashi; Ito, Taiji; Sano, Takeshi; Ishii, Tamotsu; Shibata, Keiichi; Ueno, Mitsuhiro; Ohta, Shinji; Komatsu, Hiromitsu; Araki, Tomohiro; Kobayashi, Yuta; Sawada, Hirotaka
2017-02-01
Small optical inter-satellite communication system to be installed into small and micro satellites flying on LEO are designed and experimentally verified of its fundamental functions. Small, light weighted, power efficient as well as usable data transmission rate optical inter-satellite communication system is one of promising approach to provide realtime data handling and operation capabilities for micro and small satellite constellations which have limited conditions of payload. Proposed system is designed to connect satellites with 4500 (km) long maximum to be able to talk with ground station continuously by relaying LEO satellites even when they are in their own maneuvers. Connecting satellites with 4500 (km) long with keeping steady data rate, accurate pointing and tracking method will be one of a crucial issue. In this paper, we propose a precious pointing and tracking method and system with a miniature optics and experimentally verified almost 10 (μrad) of pointing accuracy with more than 500 (mrad) of angular coverage.
Single-Case Experimental Designs to Evaluate Novel Technology-Based Health Interventions
Cassidy, Rachel N; Raiff, Bethany R
2013-01-01
Technology-based interventions to promote health are expanding rapidly. Assessing the preliminary efficacy of these interventions can be achieved by employing single-case experiments (sometimes referred to as n-of-1 studies). Although single-case experiments are often misunderstood, they offer excellent solutions to address the challenges associated with testing new technology-based interventions. This paper provides an introduction to single-case techniques and highlights advances in developing and evaluating single-case experiments, which help ensure that treatment outcomes are reliable, replicable, and generalizable. These advances include quality control standards, heuristics to guide visual analysis of time-series data, effect size calculations, and statistical analyses. They also include experimental designs to isolate the active elements in a treatment package and to assess the mechanisms of behavior change. The paper concludes with a discussion of issues related to the generality of findings derived from single-case research and how generality can be established through replication and through analysis of behavioral mechanisms. PMID:23399668
Aerothermal Testing for Project Orion Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Lillard, Randolph P.; Kirk, Benjamin S.; Fischer-Cassady, Amy
2009-01-01
The Project Orion Crew Exploration Vehicle aerothermodynamic experimentation strategy, as it relates to flight database development, is reviewed. Experimental data has been obtained to both validate the computational predictions utilized as part of the database and support the development of engineering models for issues not adequately addressed with computations. An outline is provided of the working groups formed to address the key deficiencies in data and knowledge for blunt reentry vehicles. The facilities utilized to address these deficiencies are reviewed, along with some of the important results obtained thus far. For smooth wall comparisons of computational convective heating predictions against experimental data from several facilities, confidence was gained with the use of algebraic turbulence model solutions as part of the database. For cavities and protuberances, experimental data is being used for screening various designs, plus providing support to the development of engineering models. With the reaction-control system testing, experimental data were acquired on the surface in combination with off-body flow visualization of the jet plumes and interactions. These results are being compared against predictions for improved understanding of aftbody thermal environments and uncertainties.
Design of a resistojet for Space Station Freedom
NASA Technical Reports Server (NTRS)
Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony
1993-01-01
In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.
Issues, concerns, and initial implementation results for space based telerobotic control
NASA Technical Reports Server (NTRS)
Lawrence, D. A.; Chapel, J. D.; Depkovich, T. M.
1987-01-01
Telerobotic control for space based assembly and servicing tasks presents many problems in system design. Traditional force reflection teleoperation schemes are not well suited to this application, and the approaches to compliance control via computer algorithms have yet to see significant testing and comparison. These observations are discussed in detail, as well as the concerns they raise for imminent design and testing of space robotic systems. As an example of the detailed technical work yet to be done before such systems can be specified, a particular approach to providing manipulator compliance is examined experimentally and through modeling and analysis. This yields some initial insight into the limitations and design trade-offs for this class of manipulator control schemes. Implications of this investigation for space based telerobots are discussed in detail.
Sensitivity Challenge of Steep Transistors
NASA Astrophysics Data System (ADS)
Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Chen, ChinYi; Klimeck, Gerhard; Rahman, Rajib
2018-04-01
Steep transistors are crucial in lowering power consumption of the integrated circuits. However, the difficulties in achieving steepness beyond the Boltzmann limit experimentally have hindered the fundamental challenges in application of these devices in integrated circuits. From a sensitivity perspective, an ideal switch should have a high sensitivity to the gate voltage and lower sensitivity to the device design parameters like oxide and body thicknesses. In this work, conventional tunnel-FET (TFET) and negative capacitance FET are shown to suffer from high sensitivity to device design parameters using full-band atomistic quantum transport simulations and analytical analysis. Although Dielectric Engineered (DE-) TFETs based on 2D materials show smaller sensitivity compared with the conventional TFETs, they have leakage issue. To mitigate this challenge, a novel DE-TFET design has been proposed and studied.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
NASA Astrophysics Data System (ADS)
Leneman, David
2001-10-01
We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.
Snapshot retinal imaging Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael
2015-09-01
Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe Nellie; Sentz, Kari; Swanson, Meili Claire
Recent advances in information technology have led to an expansion of crowdsourcing activities that utilize the “power of the people” harnessed via online games, communities of interest, and other platforms to collect, analyze, verify, and provide technological solutions for challenges from a multitude of domains. To related this surge in popularity, the research team developed a taxonomy of crowdsourcing activities as they relate to international nuclear safeguards, evaluated the potential legal and ethical issues surrounding the use of crowdsourcing to support safeguards, and proposed experimental designs to test the capabilities and prospect for the use of crowdsourcing to support nuclearmore » safeguards verification.« less
Wan, W. C.; Malamud, Guy; Shimony, A.; ...
2016-12-07
Here, we discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4 x 10 13 W/cm 2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 µm to 500 µm. We present data demonstrating the performancemore » of the platform.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, W. C.; Malamud, Guy; Shimony, A.
Here, we discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4 x 10 13 W/cm 2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 µm to 500 µm. We present data demonstrating the performancemore » of the platform.« less
Quasi-experimental study designs series-paper 1: introduction: two historical lineages.
Bärnighausen, Till; Røttingen, John-Arne; Rockers, Peter; Shemilt, Ian; Tugwell, Peter
2017-09-01
The objective of this study was to contrast the historical development of experiments and quasi-experiments and provide the motivation for a journal series on quasi-experimental designs in health research. A short historical narrative, with concrete examples, and arguments based on an understanding of the practice of health research and evidence synthesis. Health research has played a key role in developing today's gold standard for causal inference-the randomized controlled multiply blinded trial. Historically, allocation approaches developed from convenience and purposive allocation to alternate and, finally, to random allocation. This development was motivated both by concerns for manipulation in allocation as well as statistical and theoretical developments demonstrating the power of randomization in creating counterfactuals for causal inference. In contrast to the sequential development of experiments, quasi-experiments originated at very different points in time, from very different scientific perspectives, and with frequent and long interruptions in their methodological development. Health researchers have only recently started to recognize the value of quasi-experiments for generating novel insights on causal relationships. While quasi-experiments are unlikely to replace experiments in generating the efficacy and safety evidence required for clinical guidelines and regulatory approval of medical technologies, quasi-experiments can play an important role in establishing the effectiveness of health care practice, programs, and policies. The papers in this series describe and discuss a range of important issues in utilizing quasi-experimental designs for primary research and quasi-experimental results for evidence synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Dual stator winding variable speed asynchronous generator: optimal design and experiments
NASA Astrophysics Data System (ADS)
Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.
2015-06-01
In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].
Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher
2014-11-03
With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same lowmore » voltage residential distribution feeder.« less
NASA Astrophysics Data System (ADS)
Liu, Yingyi; Yuan, Haiwen; Zhang, Qingjie; Chen, Degui; Yuan, Haibin
The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.
Global Design Optimization for Fluid Machinery Applications
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Tucker, Kevin; Vaidyanathan, Raj; Griffin, Lisa
2000-01-01
Recent experiences in utilizing the global optimization methodology, based on polynomial and neural network techniques for fluid machinery design are summarized. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do not need to calculate the sensitivity of each design variable locally. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables and methods for predicting the model performance. Examples of applications selected from rocket propulsion components including a supersonic turbine and an injector element and a turbulent flow diffuser are used to illustrate the usefulness of the global optimization method.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian; VanDyke, Melissa; Majumdar, Alok; Nguyen, Dalton; Corley, Melissa; Guffee, Ray M.; Kapernick, Richard J.
2003-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at Marshall Space Flight Center. A companion paper, "Mechanical Design and Fabrication of a SAFE-100 Heat Exchanger for use in NASA s Advanced Propulsion Thermal-hydraulic Simulator", presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
Soler, Miguel A; Rodriguez, Alex; Russo, Anna; Adedeji, Abimbola Feyisara; Dongmo Foumthuim, Cedrix J; Cantarutti, Cristina; Ambrosetti, Elena; Casalis, Loredana; Corazza, Alessandra; Scoles, Giacinto; Marasco, Daniela; Laio, Alessandro; Fortuna, Sara
2017-01-25
The oriented immobilization of proteins, key for the development of novel responsive biomaterials, relies on the availability of effective probes. These are generally provided by standard approaches based on in vivo maturation and in vitro selection of antibodies and/or aptamers. These techniques can suffer technical problems when a non-immunogenic epitope needs to be targeted. Here we propose a strategy to circumvent this issue by in silico design. In our method molecular binders, in the form of cyclic peptides, are computationally evolved by stochastically exploring their sequence and structure space to identify high-affinity peptides for a chosen epitope of a target globular protein: here a solvent-exposed site of β2-microglobulin (β2m). Designed sequences were screened by explicit solvent molecular dynamics simulations (MD) followed by experimental validation. Five candidates gave dose-response surface plasmon resonance signals with dissociation constants in the micromolar range. One of them was further analyzed by means of isothermal titration calorimetry, nuclear magnetic resonance, and 250 ns of MD. Atomic-force microscopy imaging showed that this peptide is able to immobilize β2m on a gold surface. In short, we have shown by a variety of experimental techniques that it is possible to capture a protein through an epitope of choice by computational design.
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1991-01-01
Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2010-04-01
In much of the vibration-based energy harvesting literature, devices are modeled, designed, and tested for dissipating energy across a resistive load at a single base excitation frequency. This paper presents several practical scenarios germane to tracking, sensing, and wireless communication on humans and land vehicles. Measured vibrational data from these platforms are used to provide a time-varying, broadband input to the energy harvesting system. Optimal power considerations are given for several circuit topologies, including a passive rectifier circuit and active, switching methods. Under various size and mass constraints, the optimal design is presented for two scenarios: walking and idling a car. The frequency response functions are given alongside time histories of the power harvested using the experimental base accelerations recorded. The issues involved in designing an energy harvester for practical (i.e. timevarying, non-sinusoidal) applications are discussed.
Writing Stories to Enhance Scientific Literacy
NASA Astrophysics Data System (ADS)
Ritchie, Stephen M.; Tomas, Louisa; Tones, Megan
2011-03-01
In response to international concerns about scientific literacy and students' waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue (SSI) of biosecurity on the development of students' scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a sixth-grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi-experimental design with two classes of Australian middle school students (i.e., sixth grade, 11 years of age, n = 55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about SSI in a way that integrates scientific information into narrative storylines. Extending the practice to older students and exploring additional issues related to writing about SSI are recommended for further research.
Social Issues: Making Them Relevant and Appropriate to Undergraduate Student Designers
ERIC Educational Resources Information Center
Lofthouse, Vicky
2013-01-01
Sustainable design education is now considered a core issue for industrial/product design courses, however research has shown that the predominant focus tends to be on environmental issues, as social issues are much harder to tackle. Similarly, social issues are rarely considered in industrial practice. If student designers are to become…
Protein folding: the optically induced electronic excitations model
NASA Astrophysics Data System (ADS)
Jeknić-Dugić, J.
2009-07-01
The large-molecules conformational transitions problem (the 'protein folding problem') is an open issue of vivid current science research work of fundamental importance for a number of modern science disciplines as well as for nanotechnology. Here, we elaborate the recently proposed quantum-decoherence-based approach to the issue. First, we emphasize a need for detecting the elementary quantum mechanical processes (whose combinations may give a proper description of the realistic experimental situations) and then we design such a model. As distinct from the standard approach that deals with the conformation system, we investigate the optically induced transitions in the molecule electrons system that, in effect, may give rise to a conformation change in the molecule. Our conclusion is that such a model may describe the comparatively slow conformational transitions.
Vapor core propulsion reactors
NASA Technical Reports Server (NTRS)
Diaz, Nils J.
1991-01-01
Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.
Microgravity science experiment integration - When the PI and the PED differ
NASA Technical Reports Server (NTRS)
Baer-Peckham, M. S.; Mccarley, K. S.
1991-01-01
This paper addresses issues related to the integration of principal investigators (PIs) and payload-element developers (PEDs) for conducting effective microgravity experiments. The Crystal Growth Furnace (CGF) is used as an example to demonstrate the key issues related to the integration of a PI's sample into a facility run by a different organization. Attention is given to the typical preflight timeline, documentation required for experimental implementation, and hardware deliverables. A flow chart delineates the payload-integration process flow, and PI inputs required for an experiment include equipment and procedure definitions, detailed design and fabrication of the experiment-specific equipment, and specifications of the contract-end item. The present analysis is of interest to the coordination of effective microgravity experiments on the Space Station Freedom that incorporate PIs and PEDs from different organizations.
Geometric Model of Induction Heating Process of Iron-Based Sintered Materials
NASA Astrophysics Data System (ADS)
Semagina, Yu V.; Egorova, M. A.
2018-03-01
The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.
NASA Astrophysics Data System (ADS)
Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal
2017-01-01
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal
2017-01-28
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4 s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Erzar, Benjamin
2017-01-01
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504
NASA Astrophysics Data System (ADS)
1990-09-01
The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.
Bastiaenen, Caroline HG; de Bie, Rob A; Wolters, Pieter MJC; Vlaeyen, Johan WS; Bastiaanssen, Janneke M; Klabbers, Aldegonda BA; Heuts, Annie; van den Brandt, Piet A; Essed, Gerard GM
2004-01-01
Background Pregnancy-related pelvic girdle and/or low back pain is a controversial syndrome because insight in etiology and prognosis is lacking. The controversy relates to factors eliciting pain and some prognostic factors such as the interpretation of pain at the symphysis. Recent research about treatment strategies also reflects those various opinions, in fact suggesting there is professional uncertainty about the optimal approach. Currently, physiotherapists often prescribe a pain-contingent treatment regime of relative rest and avoiding several day-to-day activities. Additionally, treatment more often includes an exercise program to guide rectification of the muscle imbalance and alignment of the pelvic girdle. Effectiveness of those interventions is not proven and the majority of the studies are methodologically flawed. Investigators draw particular attention to biomedical factors but there is growing evidence that important prognostic issues such as biopsychosocial factors appear to be even more important as point of action in a treatment program. Methods/design This pragmatic randomized controlled trial is designed to evaluate the effectiveness of a tailor-made treatment program with respect to biopsychosocial factors in primary care. The effect of the experimental intervention and usual care are evaluated as they are applied in primary health care. The trial is embedded in a cohort study that is designed as a longitudinal, prospective study, which studies prevalence, etiology, severity and prognosis during pregnancy until one year after delivery. The present paper focuses on choices regarding recruitment procedures, in-/exclusion criteria and the development of a well-timed intervention. Discussion This section briefly discusses the actions taken to minimize bias in the design, the proper time-window for the experimental intervention and the contrast between the experimental intervention and usual care. PMID:15619331
Vaidyanathan, Uma; Vrieze, Scott I; Iacono, William G
While the past few decades have seen much work in psychopathology research that has yielded provocative insights, relatively little progress has been made in understanding the etiology of mental disorders. We contend that this is due to an overreliance on statistics and technology with insufficient attention to adequacy of experimental design, a lack of integration of data across various domains of research, and testing of theoretical models using relatively weak study designs. We provide a conceptual discussion of these issues and follow with a concrete demonstration of our proposed solution. Using two different disorders - depression and substance use - as examples, we illustrate how we can evaluate competing theories regarding their etiology by integrating information from various domains including latent variable models, neurobiology, and quasi-experimental data such as twin and adoption studies, rather than relying on any single methodology alone. More broadly, we discuss the extent to which such integrative thinking allows for inferences about the etiology of mental disorders, rather than focusing on descriptive correlates alone. Greater scientific insight will require stringent tests of competing theories and a deeper conceptual understanding of the advantages and pitfalls of methodologies and criteria we use in our studies.
Plans for an ERL Test Facility at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik; Bruning, O S; Calaga, Buchi Rama Rao
2014-12-01
The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and theirmore » tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.« less
Mode transition coordinated control for a compound power-split hybrid car
NASA Astrophysics Data System (ADS)
Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna
2017-03-01
With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.
Seven common mistakes in population genetics and how to avoid them.
Meirmans, Patrick G
2015-07-01
As the data resulting from modern genotyping tools are astoundingly complex, genotyping studies require great care in the sampling design, genotyping, data analysis and interpretation. Such care is necessary because, with data sets containing thousands of loci, small biases can easily become strongly significant patterns. Such biases may already be present in routine tasks that are present in almost every genotyping study. Here, I discuss seven common mistakes that can be frequently encountered in the genotyping literature: (i) giving more attention to genotyping than to sampling, (ii) failing to perform or report experimental randomization in the laboratory, (iii) equating geopolitical borders with biological borders, (iv) testing significance of clustering output, (v) misinterpreting Mantel's r statistic, (vi) only interpreting a single value of k and (vii) forgetting that only a small portion of the genome will be associated with climate. For every of those issues, I give some suggestions how to avoid the mistake. Overall, I argue that genotyping studies would benefit from establishing a more rigorous experimental design, involving proper sampling design, randomization and better distinction of a priori hypotheses and exploratory analyses. © 2015 John Wiley & Sons Ltd.
[Survey of what is published on Italian nursing journals].
Bongiorno, Elena; Colleoni, Pasqualina; Casati, Monica
2005-01-01
Nursing research is an important activity for nurses; the main aim is to improve the quality of nursing. Several national and european laws have been issued about it. To develop knowledge about nursing, nurses have to understand the results of researches, implement them in the different situation and sometimes carry out researches. The results can be published in nursing journals which a lot of nurses use to share information. This study reviewed the characteristics of research articles published in italian nursing journals from 1998 to 2003. Phenomena of interest are: areas of enquiry, investigators, methods, research design, sampling and means to gather data. 122 articles have been reviewed: 78% focus on clinical aspects, 55% were carry out by nurses, 92% adopt the quantitative approach, 90% used non experimental design, 89% used convenience selection sampling method and 58% answer ways. The characteristics of this study are similar to other studies about italian nursing publication. There are some limits in this type of literature: lower generalization because of lower representativeness of sample, convenience selection sampling method, and higher risk of interference due to frequent use of non experimental design. However the number of italian nurses that carry out researches is increasing and nursing is the most studied area.
Human Health Effects of Biphenyl: Key Findings and Scientific Issues
Li, Zheng; Hogan, Karen A.; Cai, Christine; Rieth, Susan
2015-01-01
Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. Objectives: We review key findings and scientific issues regarding expected human health effects of biphenyl. Methods: Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Discussion: Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. Conclusions: The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Citation: Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703–712; http://dx.doi.org/10.1289/ehp.1509730 PMID:26529796
NASA Astrophysics Data System (ADS)
Noormohammadi, Nima; Reynolds, Paul
2013-04-01
Current sport stadia designs focus mainly on maximizing audience capacity and providing a clear view for all spectators. Hence, incorporation of one or more cantilevered tiers is typical in these designs. However, employing such cantilevered tiers, usually with relatively low damping and natural frequencies, can make grandstands more susceptible to excitation by human activities. This is caused by the coincidence between the activity frequencies (and their lowest three harmonics) and the structural natural frequencies hence raising the possibility of resonant vibration. This can be both a vibration serviceability and a safety issue. Past solutions to deal with observed or anticipated vibration serviceability problems have been mainly passive methods, such as tuned mass dampers (TMDs). These techniques have exhibited problems such as lack of performance and offtuning caused by human-structure interaction. To address this issue, research is currently underway to investigate the possible application of hybrid TMDs (HTMDs), which are a combination of active and passive control, to improve the vibration serviceability of such structures under human excitation. The work presented here shows a comparative experimental investigation of a passive TMD and a prototype HTMD applied on a slab strip structure. The most effective control algorithm to enhance the performance of the HTMD and also deal with the off-tuning problem is investigated. The laboratory structure used here is an in-situ cast simply-supported post-tensioned slab strip excited by forces from a range of human activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattrick Calderoni
2010-09-01
Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactormore » that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.« less
Sovány, Tamás; Tislér, Zsófia; Kristó, Katalin; Kelemen, András; Regdon, Géza
2016-09-01
The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical developments. In the past decade a lot of knowledge was collected about the practical realization of the concept, but there are still a lot of unanswered questions. The key requirement of the concept is the mathematical description of the effect of the critical factors and their interactions on the critical quality attributes (CQAs) of the product. The process design space (PDS) is usually determined by the use of design of experiment (DoE) based response surface methodologies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation of the real trends and changes making the calculations uncertain, especially in the edge regions of the PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial, Central Composite, Box-Behnken, 3 level fractional and 3 level full factorial design) on the model predictability and to compare model sensitivities according to the organization of the experimental data set. It was revealed that the size of the design space could differ more than 40% calculated with different polynomial models, which was associated with a considerable shift in its position when higher level layouts were applied. The shift was more considerable when the calculation was based on RSM. The model predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit considerable sensitivity to the organization of the experimental data set, and the use of design layouts is recommended, where the extreme values factors are more represented. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun
2012-01-01
How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process.
Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun
2012-01-01
How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process. PMID:23258961
Designing a biomechanics investigation: choosing the right model.
Olson, Steven A; Marsh, J Lawrence; Anderson, Donald D; Latta Pe, Loren L
2012-12-01
Physical testing is commonly performed to answer important biomechanical questions in the treatment of patients with fractures and other orthopaedic conditions. However, a variety of mistakes that are made in performing such investigations can severely limit their impact. The goal of this article is to discuss important aspects of study design to consider when planning for biomechanical investigations so that the studies can provide maximal benefit to the field. The best mechanical investigations begin with a good research question, one that comes out of patient care experience, is clearly defined, and can be stated concisely. The first practical issue to be considered is often choosing the type of physical specimens to be tested to address the research question. A related issue involves determining how many specimens will be needed to answer the posed mechanical question. Cadavers are generally still the closest to the actual clinical situation, but they are limited by interspecimen variability, which often requires a matched pair design that can address only one question. Simulated bone specimens limit variability and can replicate normal and osteoporotic bone. In planning the physical testing, the critical mechanical variables involved in answering the research question must be identified and due consideration given to deciding how best to measure them. Another important issue that arises relates to whether or not single static loadings will suffice in the testing (eg, to study construct stiffness) or whether cyclic dynamic testing is necessary (eg, to study late failure likely attributable to fatigue). To summarize, experimental design should be carefully planned before initiating mechanical testing. Sample size calculations should be performed to ensure adequate power and that clinically relevant differences can be detected. This pregame analysis can save significant time and cost and greatly increase the likelihood that the results will advance knowledge.
Technical challenges for the future of high energy lasers
NASA Astrophysics Data System (ADS)
LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.
2007-02-01
The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.
Teaching controversial issues in the secondary school science classroom
NASA Astrophysics Data System (ADS)
van Rooy, Wilhelmina
1993-12-01
A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.
The space station assembly phase: System design trade-offs for the flight telerobotic servicer
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.
Electrospun Nanofibers: Solving Global Issues
NASA Astrophysics Data System (ADS)
Si, Yang; Tang, Xiaomin; Yu, Jianyong; Ding, Bin
Energy and environment will head the list of top global issues facing society for the next 50 years. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibers optimized for energy and environmental applications. The route toward these nano-objects is based primarily on electrospinning: a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. The mechanism responsible for the fiber formation mainly includes the Taylor Cone theory and flight-instability theory, which can be predicted theoretically and controlled experimentally. Moreover, the electrospinning has been applied to natural polymers, synthetic polymers, ceramics, and carbon. Fibers with complex architectures, such as ribbon fiber, porous fiber, core-shell fiber, or hollow fiber, can be produced by special electrospinning methods. It is also possible to produce nanofibrous membranes with designed aggregate structure including alignment, patterning, and two-dimensional nanonets. Finally, the brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.
Lee, Seung Yeob; Yang, Sung
2018-04-25
Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.
A novel environmental chamber for neuronal network multisite recordings.
Biffi, E; Regalia, G; Ghezzi, D; De Ceglia, R; Menegon, A; Ferrigno, G; Fiore, G B; Pedrocchi, A
2012-10-01
Environmental stability is a critical issue for neuronal networks in vitro. Hence, the ability to control the physical and chemical environment of cell cultures during electrophysiological measurements is an important requirement in the experimental design. In this work, we describe the development and the experimental verification of a closed chamber for multisite electrophysiology and optical monitoring. The chamber provides stable temperature, pH and humidity and guarantees cell viability comparable to standard incubators. Besides, it integrates the electronics for long-term neuronal activity recording. The system is portable and adaptable for multiple network housings, which allows performing parallel experiments in the same environment. Our results show that this device can be a solution for long-term electrophysiology, for dual network experiments and for coupled optical and electrical measurements. Copyright © 2012 Wiley Periodicals, Inc.
Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.; Wang, John T.
2003-01-01
Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.
Takeda, Hiroshi; Matsumura, Yasushi; Kuwata, Shigeki; Nakano, Hirohiko; Shanmai, Ji; Qiyan, Zhang; Yufen, Chen; Kusuoka, Hideo; Matsuoka, Masaki
2004-03-31
To enhance medical cooperation between the hospitals and clinics around Osaka local area, the healthcare network system, named Osaka Community Healthcare Information System (OCHIS), was established with support of a supplementary budget from the Japanese government in fiscal year 2002. Although the system has been based on healthcare public key infrastructure (PKI), there remain security issues to be solved technically and operationally. An experimental study was conducted to elucidate the central and the local function in terms of a registration authority and a time stamp authority in contract with the Japanese Medical Information Systems Organization (MEDIS) in 2003. This paper describes the experimental design and the results of the study concerning message security.
Machine learning strategy for accelerated design of polymer dielectrics
Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; ...
2016-02-15
The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less
Design and testing of a novel multi-stroke micropositioning system with variable resolutions.
Xu, Qingsong
2014-02-01
Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.
An experimental investigation of the effects of alarm processing and display on operator performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Hara, J.; Brown, W.; Hallbert, B.
1998-03-01
This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluatemore » the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance, operator task performance, situation awareness, and workload were obtained. In addition, operator opinions and evaluations of the alarm processing and display conditions were collected. No deficient performance was observed in any of the experimental conditions, providing confirmatory support for many design review guidelines. The operators identified numerous strengths and weaknesses associated with individual alarm design characteristics.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... States. (4) An experimental certificate for research and development, showing compliance with regulations, crew training, or market surveys is effective for 1 year after the date of issue or renewal unless the FAA prescribes a shorter period. The duration of an experimental certificate issued for operating...
Code of Federal Regulations, 2014 CFR
2014-01-01
... States. (4) An experimental certificate for research and development, showing compliance with regulations, crew training, or market surveys is effective for 1 year after the date of issue or renewal unless the FAA prescribes a shorter period. The duration of an experimental certificate issued for operating...
Code of Federal Regulations, 2012 CFR
2012-01-01
... States. (4) An experimental certificate for research and development, showing compliance with regulations, crew training, or market surveys is effective for 1 year after the date of issue or renewal unless the FAA prescribes a shorter period. The duration of an experimental certificate issued for operating...
Code of Federal Regulations, 2013 CFR
2013-01-01
... States. (4) An experimental certificate for research and development, showing compliance with regulations, crew training, or market surveys is effective for 1 year after the date of issue or renewal unless the FAA prescribes a shorter period. The duration of an experimental certificate issued for operating...
Code of Federal Regulations, 2011 CFR
2011-01-01
... States. (4) An experimental certificate for research and development, showing compliance with regulations, crew training, or market surveys is effective for 1 year after the date of issue or renewal unless the FAA prescribes a shorter period. The duration of an experimental certificate issued for operating...
75 FR 20874 - Agency Information Collection Activity Seeking OMB Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... to issue Experimental Permits for reusable suborbital rockets to authorize launches for the purpose... Suborbital Rockets. Type of Request: Extension without change of a currently approved collection. OMB Control... FAA's new authority to issue Experimental Permits for reusable [[Page 20875
Analytical investigation of critical phenomena in MHD power generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-07-31
Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less
Experimental Physical Sciences Vistas: MaRIE (draft)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack
To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less
HIV prevention trial design in an era of effective pre-exposure prophylaxis.
Cutrell, Amy; Donnell, Deborah; Dunn, David T; Glidden, David V; Grobler, Anneke; Hanscom, Brett; Stancil, Britt S; Meyer, R Daniel; Wang, Ronnie; Cuffe, Robert L
2017-01-01
Pre-exposure prophylaxis (PrEP) has demonstrated remarkable effectiveness protecting at-risk individuals from HIV-1 infection. Despite this record of effectiveness, concerns persist about the diminished protective effect observed in women compared with men and the influence of adherence and risk behaviors on effectiveness in targeted subpopulations. Furthermore, the high prophylactic efficacy of the first PrEP agent, tenofovir disoproxil fumarate/emtricitabine (TDF/FTC), presents challenges for demonstrating the efficacy of new candidates. Trials of new agents would typically require use of non-inferiority (NI) designs in which acceptable efficacy for an experimental agent is determined using pre-defined margins based on the efficacy of the proven active comparator (i.e. TDF/FTC) in placebo-controlled trials. Setting NI margins is a critical step in designing registrational studies. Under- or over-estimation of the margin can call into question the utility of the study in the registration package. The dependence on previous placebo-controlled trials introduces the same issues as external/historical controls. These issues will need to be addressed using trial design features such as re-estimated NI margins, enrichment strategies, run-in periods, crossover between study arms, and adaptive re-estimation of sample sizes. These measures and other innovations can help to ensure that new PrEP agents are made available to the public using stringent standards of evidence.
Design of freeze-drying processes for pharmaceuticals: practical advice.
Tang, Xiaolin; Pikal, Michael J
2004-02-01
Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.
Klein, Marguerite A.; Nahin, Richard L.; Messina, Mark J.; Rader, Jeanne I.; Thompson, Lilian U.; Badger, Thomas M.; Dwyer, Johanna T.; Kim, Young S.; Pontzer, Carol H.; Starke-Reed, Pamela E.; Weaver, Connie M.
2010-01-01
The NIH sponsored a scientific workshop, “Soy Protein/Isoflavone Research: Challenges in Designing and Evaluating Intervention Studies,” July 28–29, 2009. The workshop goal was to provide guidance for the next generation of soy protein/isoflavone human research. Session topics included population exposure to soy; the variability of the human response to soy; product composition; methods, tools, and resources available to estimate exposure and protocol adherence; and analytical methods to assess soy in foods and supplements and analytes in biologic fluids and other tissues. The intent of the workshop was to address the quality of soy studies, not the efficacy or safety of soy. Prior NIH workshops and an evidence-based review questioned the quality of data from human soy studies. If clinical studies are pursued, investigators need to ensure that the experimental designs are optimal and the studies properly executed. The workshop participants identified methodological issues that may confound study results and interpretation. Scientifically sound and useful options for dealing with these issues were discussed. The resulting guidance is presented in this document with a brief rationale. The guidance is specific to soy clinical research and does not address nonsoy-related factors that should also be considered in designing and reporting clinical studies. This guidance may be used by investigators, journal editors, study sponsors, and protocol reviewers for a variety of purposes, including designing and implementing trials, reporting results, and interpreting published epidemiological and clinical studies. PMID:20392880
Design and analysis issues for economic analysis alongside clinical trials.
Marshall, Deborah A; Hux, Margaret
2009-07-01
Clinical trials can offer a valuable and efficient opportunity to collect the health resource use and outcomes data for economic evaluation. However, economic and clinical studies differ fundamentally in the question they seek to answer. The design and analysis of trial-based cost-effectiveness studies require special consideration, which are reviewed in this article. Traditional randomized controlled trials, using an experimental design with a controlled protocol, are designed to measure safety and efficacy for product registration. Cost-effectiveness analysis seeks to measure effectiveness in the context of routine clinical practice, and requires collection of health care resources to allow estimation of cost over an equal timeframe for each treatment alternative. In assessing suitability of a trial for economic data collection, the comparator treatment and other protocol factors need to reflect current clinical practice and the trial follow-up must be sufficiently long to capture important costs and effects. The broadest available population and a measure of effectiveness reflecting important benefits for patients are preferred for economic analyses. Special analytical issues include dealing with missing and censored cost data, assessing uncertainty of the incremental cost-effectiveness ratio, and accounting for the underlying heterogeneity in patient subgroups. Careful consideration also needs to be given to data from multinational studies since practice patterns can differ across countries. Although clinical trials can be an efficient opportunity to collect data for economic evaluation, careful consideration of the suitability of the study design, and appropriate analytical methods must be applied to obtain rigorous results.
Harris, Alex H S; Reeder, Rachelle; Hyun, Jenny K
2009-10-01
Journal editors and statistical reviewers are often in the difficult position of catching serious problems in submitted manuscripts after the research is conducted and data have been analyzed. We sought to learn from editors and reviewers of major psychiatry journals what common statistical and design problems they most often find in submitted manuscripts and what they wished to communicate to authors regarding these issues. Our primary goal was to facilitate communication between journal editors/reviewers and researchers/authors and thereby improve the scientific and statistical quality of research and submitted manuscripts. Editors and statistical reviewers of 54 high-impact psychiatry journals were surveyed to learn what statistical or design problems they encounter most often in submitted manuscripts. Respondents completed the survey online. The authors analyzed survey text responses using content analysis procedures to identify major themes related to commonly encountered statistical or research design problems. Editors and reviewers (n=15) who handle manuscripts from 39 different high-impact psychiatry journals responded to the survey. The most commonly cited problems regarded failure to map statistical models onto research questions, improper handling of missing data, not controlling for multiple comparisons, not understanding the difference between equivalence and difference trials, and poor controls in quasi-experimental designs. The scientific quality of psychiatry research and submitted reports could be greatly improved if researchers became sensitive to, or sought consultation on frequently encountered methodological and analytic issues.
Yang, Chuanping; Wei, Hairong
2015-02-01
Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) to generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental conditions; (2) to build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discusses the major issues that researchers commonly face when embarking on microarray or RNA-seq experiments and summarizes important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but with more interaction to facilitate novel biological discoveries in modern plant genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji
2015-01-01
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035
Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron
NASA Astrophysics Data System (ADS)
Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.
2006-01-01
Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).
Workshop on the Thermophysical Properties of Molten Materials
NASA Technical Reports Server (NTRS)
1993-01-01
The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.
Ring-array processor distribution topology for optical interconnects
NASA Technical Reports Server (NTRS)
Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.
1992-01-01
The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.
NASA Technical Reports Server (NTRS)
Bacon, Barton J.; Ostroff, Aaron J.
2000-01-01
This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.
Editorial: Special Issue on Experimental Vibration Analysis
NASA Astrophysics Data System (ADS)
Serra, Roger
2018-04-01
The vibratory analyses are particularly present today in the various fields of industry, from aeronautics to manufacturing, from machining and maintenance to civil engineering, to mention a few areas, which have made this special issue a true need. The International Journal of Mechanics & Industry compiles a Special Issue on Experimental Vibration Analysis. More than thirty manuscripts were received by the international scientific committee on the 6th congress AVE2016 and only eight papers have been selected after completing a careful and rigorous peer-review process for the Special Issue, which are briefly summarized below.
Osebor, Isibor
2017-01-01
In an emergency, a prompt response can save the lives of victims. This statement generates an imperative issue in emergency medical services (EMS). Designing a system that brings simplicity in locating emergency scenes is a step towards improving response time. This paper therefore implemented and evaluated the performance of an SMS-based emergency geolocation notification system with emphasis on its SMS delivery time and the system's geolocation and dispatch time. Using the RAS metrics recommended by IEEE for evaluation, the designed system was found to be efficient and effective as its reliability stood within 62.7% to 70.0% while its availability stood at 99% with a downtime of 3.65 days/year. PMID:29065643
Chiou, Chei-Chang; Wang, Yu-Min; Lee, Li-Tze
2014-08-01
Statistical knowledge is widely used in academia; however, statistics teachers struggle with the issue of how to reduce students' statistics anxiety and enhance students' statistics learning. This study assesses the effectiveness of a "one-minute paper strategy" in reducing students' statistics-related anxiety and in improving students' statistics-related achievement. Participants were 77 undergraduates from two classes enrolled in applied statistics courses. An experiment was implemented according to a pretest/posttest comparison group design. The quasi-experimental design showed that the one-minute paper strategy significantly reduced students' statistics anxiety and improved students' statistics learning achievement. The strategy was a better instructional tool than the textbook exercise for reducing students' statistics anxiety and improving students' statistics achievement.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
Shlyonsky, Vadim; Dupuis, Freddy; Gall, David
2014-01-01
Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.
The OpenPicoAmp: An Open-Source Planar Lipid Bilayer Amplifier for Hands-On Learning of Neuroscience
Shlyonsky, Vadim; Dupuis, Freddy; Gall, David
2014-01-01
Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics. PMID:25251830
2013-01-01
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743
Leyden, Kevin M; Reger-Nash, Bill; Bauman, Adrian; Bias, Tom
2008-01-01
To pilot test whether West Virginia Walks changed local policy makers' awareness of walking-related issues. A quasi-experimental design with preintervention and postintervention mail surveys. Morgantown, WV (intervention community), and Huntington, WV (comparison community). One hundred thirty-three and 134 public officials in Morgantown and 120 and 116 public officials in Huntington at baseline and at follow-up, respectively. An 8-week mass media social ecological campaign designed to encourage moderate-intensity walking among insufficiently active persons aged 40 to 65 years. Policy makers listed three problems they believed needed to be addressed in their community. They then rated the severity of several problems that many communities face using a Likert scale, with 1 representing "not a problem" and 5 representing "an extremely important problem." Independent sample t-tests were used to examine differences in mean responses at baseline and at follow-up. Statistically significant increases in the perceived importance of walking-related issues were observed among policy makers in Morgantown but not in the comparison community. Integrated communitywide health promotion campaigns designed to influence the public can also affect the perceptions of policy makers. Future research should examine this linkage and determine whether resource allocation and policy changes follow such interventions.
YARNsim: Simulating Hadoop YARN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Yang, Xi; Sun, Xian-He
Despite the popularity of the Apache Hadoop system, its success has been limited by issues such as single points of failure, centralized job/task management, and lack of support for programming models other than MapReduce. The next generation of Hadoop, Apache Hadoop YARN, is designed to address these issues. In this paper, we propose YARNsim, a simulation system for Hadoop YARN. YARNsim is based on parallel discrete event simulation and provides protocol-level accuracy in simulating key components of YARN. YARNsim provides a virtual platform on which system architects can evaluate the design and implementation of Hadoop YARN systems. Also, application developersmore » can tune job performance and understand the tradeoffs between different configurations, and Hadoop YARN system vendors can evaluate system efficiency under limited budgets. To demonstrate the validity of YARNsim, we use it to model two real systems and compare the experimental results from YARNsim and the real systems. The experiments include standard Hadoop benchmarks, synthetic workloads, and a bioinformatics application. The results show that the error rate is within 10% for the majority of test cases. The experiments prove that YARNsim can provide what-if analysis for system designers in a timely manner and at minimal cost compared with testing and evaluating on a real system.« less
True and Quasi-Experimental Designs. ERIC/AE Digest.
ERIC Educational Resources Information Center
Gribbons, Barry; Herman, Joan
Among the different types of experimental design are two general categories: true experimental designs and quasi- experimental designs. True experimental designs include more than one purposively created group, common measured outcomes, and random assignment. Quasi-experimental designs are commonly used when random assignment is not practical or…
Themes and methods of research presented at European General Practice Research Network conferences.
Kruschinski, Carsten; Lange, Maaike; Lionis, Christos; van Weel, Chris; Hummers-Pradier, Eva
2010-08-01
The World Organization of Family Doctors (Wonca) defined core characteristics of general practice and general practitioners' competencies. It is unclear to which extent research has addressed these issues so far. To determine themes and research methods of general practice research as reflected by presentations at the European General Practice Research Network (EGPRN) meetings. Descriptive and retrospective study. All abstracts presented at each of the 14 EGPRN conferences between June 2001 and October 2007 were analysed for content and study design/methodology. Categories for content were developed inductively; a predefined hierarchical scheme was used for study designs. A total of N=614 abstracts were classified. The main research topics were related to GP/health service issues (n=232), clinical (n=148) and patient-related themes (n=118). Original data (n=558) were mainly derived from cross-sectional designs (38.7%). Intervention studies (11.0%), longitudinal designs including case-control and cohort studies (13.3%) as well as instrumental research (2.2%) were less common. More than one-fourth of all original studies were qualitative studies (27.6%). Stratified analysis revealed that cross-sectional designs were less frequent in the second half of conferences. Analysis by country showed that, in contrast to different quantitative designs, the proportion of qualitative studies was comparable. To test effectiveness of diagnostic and therapeutic interventions under primary care conditions, a higher proportion of experimental studies would be preferable. This could increase the acceptance of general practitioners' specific approaches and provide clear guidance on approaches and procedures, especially in health care systems not predominantly based on primary care.
Changing personnel behavior to promote quality care practices in an intensive care unit
Cooper, Dominic; Farmery, Keith; Johnson, Martin; Harper, Christine; Clarke, Fiona L; Holton, Phillip; Wilson, Susan; Rayson, Paul; Bence, Hugh
2005-01-01
The delivery of safe high quality patient care is a major issue in clinical settings. However, the implementation of evidence-based practice and educational interventions are not always effective at improving performance. A staff-led behavioral management process was implemented in a large single-site acute (secondary and tertiary) hospital in the North of England for 26 weeks. A quasi-experimental, repeated-measures, within-groups design was used. Measurement focused on quality care behaviors (ie, documentation, charting, hand washing). The results demonstrate the efficacy of a staff-led behavioral management approach for improving quality-care practices. Significant behavioral change (F [6, 19] = 5.37, p < 0.01) was observed. Correspondingly, statistically significant (t-test [t] = 3.49, df = 25, p < 0.01) reductions in methicillin-resistant Staphylococcus aureus (MRSA) were obtained. Discussion focuses on implementation issues. PMID:18360574
Brush Seal Performance and Durability Issues Based on T-700 Engine Test Results
NASA Technical Reports Server (NTRS)
Hendricks, R. C.
1994-01-01
The integrity and performance of brush seals have been established. Severe bench and engine tests have shown high initial wear or run-in rates, material smearing at the interface, and bristle and rub-runner wear, but the brush seals did not fail. Short-duration (46 hr) experimental T-700 engine testing of the compressor discharge seal established over 1-percent engine performance gain (brush versus labyrinth). Long-term gains were established only as leakage comparisons, with the brush at least 20 percent better at controlling leakage. Long-term materials issues, such as wear and ultimately seal life, remain to be resolved. Future needs are cited for materials and analysis tools that account for heat generation, thermomechanical behavior, and tribological pairing to enable original equipment manufacturers to design high-temperature, high-surface-speed seals with confidence.
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven High Flux Beam Reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated and reflected by heavy water and uses MTR-ETR type fuel elements containing enriched uranium. The reactor power when operation began in 19965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time safety questions have been raised which resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper will discuss the principle safety issues, plans for theirmore » resolution and return to 60 MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its affect on the life of the facility will be briefly discussed.« less
Current and prospective safety issues at the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.R.
The Brookhaven high-flux beam reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated, and reflected by heavy water and uses materials test reactor and engineering test reactor type of fuel elements containing enriched uranium. The reactor power when operation began in 1965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time, safety questions have been raised that resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper discusses the principalmore » safety issues and plans for their resolution and return to 60-MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its effect on the life of the facility are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Matlock, Richard S.; Feig, Jason R.; Dickey, Michael R.
A program called the Electric Insertion Transfer Experiment or ELITE for demonstrating the use of solar-electric propulsion is proposed and described. The ELITE concept is based on the use of solar propulsion for the orbit-raising mode of an electric orbital-transfer vehicle (EOTV) and examines issues associated with electric thrusters. Experimental subsystems are compared including arcjet, ion, and magnetoplasmadynamic thrusters, and the design and performance impacts on EOTVs are listed. The ELITE experiment is shown to be capable of studying such issues as the plume-to-plume interaction of multiple thrusters, the contamination of spacecraft components, potential interferences from radio-frequency transmissions, and the charging of spacecraft surfaces. Solar propulsion can be studied within the context of the ELITE program to demonstrate its potential as both enhancing and enabling technology.
Is animal experimentation fundamental?
d'Acampora, Armando José; Rossi, Lucas Félix; Ely, Jorge Bins; de Vasconcellos, Zulmar Acciolli
2009-01-01
The understanding about the utilization of experimental animals in scientific research and in teaching is many times a complex issue. Special attention needs to be paid to attain the understanding by the general public of the importance of animal experimentation in experimental research and in undergraduate medical teaching. Experimental teaching and research based on the availability of animals for experimentation is important and necessary for the personal and scientific development of the physician-to-be. The technological arsenal which intends to mimic experimentation animals and thus fully replace their use many times does not prove to be compatible with the reality of the living animal. The purpose of this paper is to discuss aspects concerning this topic, bringing up an issue which is complex and likely to arouse in-depth reflections.
Low energy nuclear recoils study in noble liquids for low-mass WIMPs
NASA Astrophysics Data System (ADS)
Wang, Lu; Mei, Dongming
2014-03-01
Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.
PACS—Realization of an adaptive concept using pressure actuated cellular structures
NASA Astrophysics Data System (ADS)
Gramüller, B.; Boblenz, J.; Hühne, C.
2014-10-01
A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
1999-01-01
Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.
Rice, Harry B; Bernasconi, Aldo; Maki, Kevin C; Harris, William S; von Schacky, Clemens; Calder, Philip C
2016-04-01
In contrast to earlier long-chain (LC) omega-3 (i.e. EPA and DHA) investigations, some recent studies have not demonstrated significant effects of EPA and DHA on cardiovascular disease (CVD) outcomes. The neutral findings may have been due to experimental design issues, such as: maintenance on aggressive cardiovascular drug treatment overshadowing the benefits of LC omega-3s, high background LC omega-3 intake, too few subjects in the study, treatment duration too short, insufficient LC omega-3 dosage, increase in omega-6 fatty acid intake during the study, failure to assess the LC omega-3 status of the subjects prior to and during treatment and lack of clarity concerning which mechanisms were expected to produce benefits. At the 11th ISSFAL Congress, a workshop was held on conducting LC omega-3 clinical trials with cardiovascular outcomes, with the goal of gaining a better understanding concerning aspects of experimental design that should be considered when planning clinical studies related to EPA and DHA and potential cardiovascular benefits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Misalignment in Gas Foil Journal Bearings: An Experimental Study
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2008-01-01
As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.
The role of privacy protection in healthcare information systems adoption.
Hsu, Chien-Lung; Lee, Ming-Ren; Su, Chien-Hui
2013-10-01
Privacy protection is an important issue and challenge in healthcare information systems (HISs). Recently, some privacy-enhanced HISs are proposed. Users' privacy perception, intention, and attitude might affect the adoption of such systems. This paper aims to propose a privacy-enhanced HIS framework and investigate the role of privacy protection in HISs adoption. In the proposed framework, privacy protection, access control, and secure transmission modules are designed to enhance the privacy protection of a HIS. An experimental privacy-enhanced HIS is also implemented. Furthermore, we proposed a research model extending the unified theory of acceptance and use of technology by considering perceived security and information security literacy and then investigate user adoption of a privacy-enhanced HIS. The experimental results and analyses showed that user adoption of a privacy-enhanced HIS is directly affected by social influence, performance expectancy, facilitating conditions, and perceived security. Perceived security has a mediating effect between information security literacy and user adoption. This study proposes several implications for research and practice to improve designing, development, and promotion of a good healthcare information system with privacy protection.
NASA Astrophysics Data System (ADS)
D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.
2017-11-01
We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.
NASA Astrophysics Data System (ADS)
Parekh, Bhaumik Kamlesh
Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.
Huang, Bo; Kuan, Pei Fen
2014-11-01
Delayed dose limiting toxicities (i.e. beyond first cycle of treatment) is a challenge for phase I trials. The time-to-event continual reassessment method (TITE-CRM) is a Bayesian dose-finding design to address the issue of long observation time and early patient drop-out. It uses a weighted binomial likelihood with weights assigned to observations by the unknown time-to-toxicity distribution, and is open to accrual continually. To avoid dosing at overly toxic levels while retaining accuracy and efficiency for DLT evaluation that involves multiple cycles, we propose an adaptive weight function by incorporating cyclical data of the experimental treatment with parameters updated continually. This provides a reasonable estimate for the time-to-toxicity distribution by accounting for inter-cycle variability and maintains the statistical properties of consistency and coherence. A case study of a First-in-Human trial in cancer for an experimental biologic is presented using the proposed design. Design calibrations for the clinical and statistical parameters are conducted to ensure good operating characteristics. Simulation results show that the proposed TITE-CRM design with adaptive weight function yields significantly shorter trial duration, does not expose patients to additional risk, is competitive against the existing weighting methods, and possesses some desirable properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choe, Kwisoon; Park, Sunghee; Yoo, So Yeon
2014-05-01
In order to help nurses advocate for the patient's human rights and ensure respect for life in clinical situations, it is of utmost importance to improve nursing students' capacity to make ethical decisions. This study compares the effects of two constructivist teaching strategies (action learning and cross-examination debate) on nursing students' recognition of bioethical issues, experience of bioethical issues, and attainment of ethical competence. This study used a quasi-experimental (two-group pretest-posttest) design. A nursing college in South Korea. A total of 93 Korean nursing students participated in the study (46 in the action learning group and 47 in the cross-examination debate group). Participants took a bioethics class employing one or the other of the strategies mentioned, 2h a week for 15 weeks. All participants responded twice to a set of questionnaires, at the beginning of the first session and at the end of the last session. After their bioethics education, the students' recognition of bioethical issues improved for both classes; however, the knowledge of students who had participated in action learning improved more than that of the students in the debate-based class. Students in both groups reported more experience of bioethics and exposure to better-quality instruction in bioethics after their classes than previously. Students in both groups also reported improved ethical competency after this education. Positive effects of action learning and cross-examination debate implemented as teaching strategies on nursing students' understanding of bioethical issues and their ethical competency were identified; these findings will be important in the essential task of teaching bioethics to nursing students in order to foster more ethical decision-making and other ethical behavior. © 2013.
Explicit and implicit issues in the developmental cognitive neuroscience of social inequality
D'Angiulli, Amedeo; Lipina, Sebastian J.; Olesinska, Alice
2012-01-01
The appearance of developmental cognitive neuroscience (DCN) in the socioeconomic status (SES) research arena is hugely transformative, but challenging. We review challenges rooted in the implicit and explicit assumptions informing this newborn field. We provide balanced theoretical alternatives on how hypothesized psychological processes map onto the brain (e.g., problem of localization) and how experimental phenomena at multiple levels of analysis (e.g., behavior, cognition and the brain) could be related. We therefore examine unclear issues regarding the existing perspectives on poverty and their relationships with low SES, the evidence of low-SES adaptive functioning, historical precedents of the “alternate pathways” (neuroplasticity) interpretation of learning disabilities related to low-SES and the notion of deficit, issues of “normativity” and validity in findings of neurocognitive differences between children from different SES, and finally alternative interpretations of the complex relationship between IQ and SES. Particularly, we examine the extent to which the available laboratory results may be interpreted as showing that cognitive performance in low-SES children reflects cognitive and behavioral deficits as a result of growing up in specific environmental or cultural contexts, and how the experimental findings should be interpreted for the design of different types of interventions—particularly those related to educational practices—or translated to the public—especially the media. Although a cautionary tone permeates many studies, still, a potential deficit attribution—i.e., low-SES is associated with cognitive and behavioral developmental deficits—seems almost an inevitable implicit issue with ethical implications. Finally, we sketch the agenda for an ecological DCN, suggesting recommendations to advance the field, specifically, to minimize equivocal divulgation and maximize ethically responsible translation. PMID:22973216
Selective perceptions of hydraulic fracturing.
Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R
2015-01-01
Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.
Design of a Blended Learning Environment: Considerations and Implementation Issues
ERIC Educational Resources Information Center
Gedik, Nuray; Kiraz, Ercan; Ozden, M. Yasar
2013-01-01
This study identified critical issues in the design of a blended learning environment by examining basic design considerations and implementation issues. Following a design-based research approach with the phenomenological tradition of qualitative research, the study investigated instructor experiences relating to the design, development, and…
Introduction to December 2013 issue.
Rogers, Wendy A
2013-12-01
In this introduction to the December 2013 issue of the Journal of Experimental Psychology: Applied, the editor discusses her goals to get the Journal back on track. She gives thanks for the research that continues to advance both science and practice in experimental psychology. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Recombination rate plasticity: revealing mechanisms by design
Sefick, Stephen; Rushton, Chase
2017-01-01
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222
Using a Low Cost Flight Simulation Environment for Interdisciplinary Education
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; ALi, Syed F.
2004-01-01
A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.
Cadman, D; Goldsmith, C
1986-01-01
Global indices, which aggregate multiple health or function attributes into a single summary indicator, are useful measures in health research. Two key issues must be addressed in the initial stages of index construction from the universe of possible health and function attributes, which ones should be included in a new index? and how simple can the statistical model be to combine attributes into a single numeric index value? Factorial experimental designs were used in the initial stages of developing a function index for evaluating a program for the care of young handicapped children. Beginning with eight attributes judged important to the goals of the program by clinicians, social preference values for different function states were obtained from 32 parents of handicapped children and 32 members of the community. Using category rating methods each rater scored 16 written multi-attribute case descriptions which contained information about a child's status for all eight attributes. Either a good or poor level of each function attribute and age 3 or 5 years were described in each case. Thus, 2(8) = 256 different cases were rated. Two factorial design plans were selected and used to allocate case descriptions to raters. Analysis of variance determined that seven of the eight clinician selected attributes were required in a social value based index for handicapped children. Most importantly, the subsequent steps of index construction could be greatly simplified by the finding that a simple additive statistical model without complex attribute interaction terms was adequate for the index. We conclude that factorial experimental designs are an efficient, feasible and powerful tool for the initial stages of constructing a multi-attribute health index.
Design of simulated moving bed for separation of fumaric acid with a little fronting phenomenon.
Choi, Jae-Hwan; Kang, Mun-Seok; Lee, Chung-Gi; Wang, Nien-Hwa Linda; Mun, Sungyong
2017-03-31
The production of fumaric acid through a biotechnological pathway has grown in importance because of its potential value in related industries. This has sparked an interest in developing an economically-efficient process for separation of fumaric acid (product of interest) from acetic acid (by-product). This study aimed to develop a simulated moving bed (SMB) chromatographic process for such separation in a systematic way. As a first step for this work, commercially available adsorbents were screened for their applicability to the considered separation, which revealed that an Amberchrom-CG71C resin had a sufficient potential to become an adsorbent of the targeted SMB. Using this adsorbent, the intrinsic parameters of fumaric and acetic acids were determined and then applied to optimizing the SMB process under consideration. The optimized SMB process was tested experimentally, from which the yield of fumaric-acid product was found to become lower than expected in the design. An investigation about the reason for such problem revealed that it was attributed to a fronting phenomenon occurring in the solute band of fumaric acid. To resolve this issue, the extent of the fronting was evaluated quantitatively using an experimental axial dispersion coefficient for fumaric acid, which was then considered in the design of the SMB of interest. The SMB experimental results showed that the SMB design based on the consideration of the fumaric-acid fronting could guarantee the attainment of both high purity (>99%) and high yield (>99%) for fumaric-acid product under the desorbent consumption of 2.6 and the throughput of 0.36L/L/h. Copyright © 2017 Elsevier B.V. All rights reserved.
ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation
Leem, Jinwoo; Dunbar, James; Georges, Guy; Shi, Jiye; Deane, Charlotte M.
2016-01-01
ABSTRACT Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root–mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub–Angstrom predictions for the ‘canonical’ CDR loops. Its ability to model nanobodies, and rapidly generate models (∼30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder. PMID:27392298
NASA Astrophysics Data System (ADS)
Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den
2016-08-01
Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.
The impact of pharmacophore modeling in drug design.
Guner, Osman F
2005-07-01
With the reliable use of computer simulations in scientific research, it is possible to achieve significant increases in productivity as well as a reduction in research costs compared with experimental approaches. For example, computer-simulation can substantially enchance productivity by focusing the scientist to better, more informed choices, while also driving the 'fail-early' concept to result in a significant reduction in cost. Pharmacophore modeling is a reliable computer-aided design tool used in the discovery of new classes of compounds for a given therapeutic category. This commentary will briefly review the benefits and applications of this technology in drug discovery and design, and will also highlight its historical evolution. The two most commonly used approaches for pharmacophore model development will be discussed, and several examples of how this technology was successfully applied to identify new potent leads will be provided. The article concludes with a brief outline of the controversial issue of patentability of pharmacophore models.
Ship detection in optical remote sensing images based on deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen
2017-10-01
Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.
Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)
NASA Technical Reports Server (NTRS)
Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.
1991-01-01
An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.
Sparén, Anders; Hartman, Madeleine; Fransson, Magnus; Johansson, Jonas; Svensson, Olof
2015-05-01
Raman spectroscopy can be an alternative to near-infrared spectroscopy (NIR) for nondestructive quantitative analysis of solid pharmaceutical formulations. Compared with NIR spectra, Raman spectra have much better selectivity, but subsampling was always an issue for quantitative assessment. Raman spectroscopy in transmission mode has reduced this issue, since a large volume of the sample is measured in transmission mode. The sample matrix, such as particle size of the drug substance in a tablet, may affect the Raman signal. In this work, matrix effects in transmission NIR and Raman spectroscopy were systematically investigated for a solid pharmaceutical formulation. Tablets were manufactured according to an experimental design, varying the factors particle size of the drug substance (DS), particle size of the filler, compression force, and content of drug substance. All factors were varied at two levels plus a center point, except the drug substance content, which was varied at five levels. Six tablets from each experimental point were measured with transmission NIR and Raman spectroscopy, and their concentration of DS was determined for a third of those tablets. Principal component analysis of NIR and Raman spectra showed that the drug substance content and particle size, the particle size of the filler, and the compression force affected both NIR and Raman spectra. For quantitative assessment, orthogonal partial least squares regression was applied. All factors varied in the experimental design influenced the prediction of the DS content to some extent, both for NIR and Raman spectroscopy, the particle size of the filler having the largest effect. When all matrix variations were included in the multivariate calibrations, however, good predictions of all types of tablets were obtained, both for NIR and Raman spectroscopy. The prediction error using transmission Raman spectroscopy was about 30% lower than that obtained with transmission NIR spectroscopy.
Recent advances in automated protein design and its future challenges.
Setiawan, Dani; Brender, Jeffrey; Zhang, Yang
2018-04-25
Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Experiments in Neural-Network Control of a Free-Flying Space Robot
NASA Technical Reports Server (NTRS)
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Long, W. Russ
1987-01-01
The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.
Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak
NASA Astrophysics Data System (ADS)
Labate, C.; Di Gironimo, G.; Renno, F.
2015-09-01
Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.
Characterization of Metalorganic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Jesser, W. A.
1998-01-01
A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.
Autonomous support for microorganism research in space
NASA Technical Reports Server (NTRS)
Fleet, Mary L.; Miller, Mark S.; Shipley, Derek, E.; Smith, Jeff D.
1992-01-01
A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. An understanding of gravity and its effects on cells is crucial for space exploration as well as for terrestrial applications. The payload is designed to be compatible with the Commercial Experiment Transporter (COMET) launch vehicle, an orbiter middeck locker interface, and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional experimental data acquisition includes optical density measurement, microscopy, video, and film photography. On-board full data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, representative experiments were developed to ensure scientific objectives remained compatible with hardware capabilities. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.
NASA Technical Reports Server (NTRS)
Menon, Suresh
1992-01-01
An advanced gas turbine engine to power supersonic transport aircraft is currently under study. In addition to high combustion efficiency requirements, environmental concerns have placed stringent restrictions on the pollutant emissions from these engines. A combustor design with the potential for minimizing pollutants such as NO(x) emissions is undergoing experimental evaluation. A major technical issue in the design of this combustor is how to rapidly mix the hot, fuel-rich primary zone product with the secondary diluent air to obtain a fuel-lean mixture for combustion in the second stage. Numerical predictions using steady-state methods cannot account for the unsteady phenomena in the mixing region. Therefore, to evaluate the effect of unsteady mixing and combustion processes, a novel unsteady mixing model is demonstrated here. This model has been used to study multispecies mixing as well as propane-air and hydrogen-air jet nonpremixed flames, and has been used to predict NO(x) production in the mixing region. Comparison with available experimental data show good agreement, thereby providing validation of the mixing model. With this demonstration, this mixing model is ready to be implemented in conjunction with steady-state prediction methods and provide an improved engineering design analysis tool.
Photonic Aharonov–Bohm effect in photon–phonon interactions
Li, Enbang; Eggleton, Benjamin J.; Fang, Kejie; Fan, Shanhui
2014-01-01
The Aharonov–Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov–Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov–Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon–phonon interactions to demonstrate that photonic Aharonov–Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon–phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov–Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential. PMID:24476790
Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C
2013-12-06
An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15) W/cm2, or short pulses with intensities up to 5×10(16) W/cm2 as well as with 2D particle-in-cell simulations.
Centralized and distributed control architectures under Foundation Fieldbus network.
Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves
2013-01-01
This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
The Information Architecture of E-Commerce: An Experimental Study on User Performance and Preference
NASA Astrophysics Data System (ADS)
Wan Mohd, Wan Abdul Rahim; Md Noor, Nor Laila; Mehad, Shafie
Too often, designers of e-commerce web sites use models, concepts, guidelines, and designs that focus on the artifacts while ignoring the context in which the artifacts will be used. Furthermore, the link between culture and usability in web site IA phenomenon is still considered as uncharted area, as it lacks much theoretical consideration. In an effort toward addressing the aforementioned issues, our study provides a theoretical and empirical link between cultural and usability through the application of ‘Venustas' (Delight) drawn from the architectural field and Hofstede's cultural dimensions. We use Islamic culture as the case study and report on the experiment to investigate the effect of the IA designs based on the cultural dimensions on e-commerce web sites. The result provides partial empirical support to the theorized link between culture and usability based on the usability measurement on user performance and preference. In addition, practical web site IA cultural design prescriptions are also provided.
Hollins, Mark; Walters, Sloan
2016-06-01
Patients with chronic pain conditions such as fibromyalgia often demonstrate hypervigilance-undue alertness for unpleasant or threatening bodily sensations-as well as enhancement of these sensations. The generalized hypervigilance hypothesis (GHH) of Rollman and colleagues asserts that hypervigilance leads to this perceptual amplification. However, cause-and-effect relationships are difficult to establish in studies using a quasi-experimental design. In the present study, we sought to address this issue by attempting to induce hypervigilance experimentally, in one of two groups to which young, healthy adults had been randomly assigned. Those in the experimental group wrote about the flu and practiced counting their own blinks, breaths, and heartbeats; those in the control group wrote about a neutral topic and counted innocuous lights and sounds. Next, both groups rated the intensity and unpleasantness of pressure sensations (ranging from mild to painful) caused by a series of applications of a weighted rod to the forearm. The intensity/unpleasantness ratio of these ratings was significantly greater in the experimental group, suggesting that induced hypervigilance had caused perceptual amplification that generalized to pressure sensations, which had not been part of the experimental manipulation. Psychometric measures of anxiety and catastrophizing were equivalent in the two groups, indicating that the experimental manipulation operated via attentional rather than emotional changes. The results support the GHH.
Starting Over: Current Issues in Online Catalog User Interface Design.
ERIC Educational Resources Information Center
Crawford, Walt
1992-01-01
Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…
Informed consent in human experimentation before the Nuremberg code.
Vollmann, J; Winau, R
1996-12-07
The issue of ethics with respect to medical experimentation in Germany during the 1930s and 1940s was crucial at the Nuremberg trials and related trials of doctors and public health officials. Those involved in horrible crimes attempted to excuse themselves by arguing that there were no explicit rules governing medical research on human beings in Germany during the period and that research practices in Germany were not different from those in allied countries. In this context the Nuremberg code of 1947 is generally regarded as the first document to set out ethical regulations in human experimentation based on informed consent. New research, however, indicates that ethical issues of informed consent in guidelines for human experimentation were recognised as early as the nineteenth century. These guidelines shed light on the still contentious issue of when the concepts of autonomy, informed consent, and therapeutic and non-therapeutic research first emerged. This issue assumes renewed importance in the context of current attempts to assess liability and responsibility for the abuse of people in various experiments conducted since the second world war in the United States, Canada, Russia, and other nations.
Spacelab payload accommodation handbook. Preliminary issue
NASA Technical Reports Server (NTRS)
1976-01-01
The main characteristics of the Spacelab system are described. Sufficient information on Spacelab capabilities is provided to enable individual experimenters or payload planning groups to determine how their payload equipment can be accomodated by Spacelab topics discussed include major spacelab/experiment interfaces; Spacelab payload support systems and requirements the experiments must comply with to allow experiment design; and development and integration up to a level where a group of individual experiments are integrated into a complete Spacelab payload using Spacelab racks/floors and pallet segments. Integration of a complete Spacelab payload with Spacelab subsystems, primary module structure etc., integration of Spacelab with the Orbiter and basic operational aspects are also covered in this preliminary edition of the handbook which reflects the current Spacelab baseline design and is for information only.
Recrystallization and damage of ice in winter sports.
Seymour-Pierce, Alexandra; Lishman, Ben; Sammonds, Peter
2017-02-13
Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40-50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
FIREX mission requirements document for renewable resources
NASA Technical Reports Server (NTRS)
Carsey, F.; Dixon, T.
1982-01-01
The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, G.; Erickson, D.C.
1999-07-01
The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.
2004-01-01
The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.
Learning in Plants: Lessons from Mimosa pudica
Abramson, Charles I.; Chicas-Mosier, Ana M.
2016-01-01
This article provides an overview of the early Mimosa pudica literature; much of which is in journals not easily accessible to the reader. In contrast to the contemporary plant learning literature which is conducted primarily by plant biologists, this early literature was conducted by comparative psychologists whose goal was to search for the generality of learning phenomena such as habituation, and classical conditioning using experimental designs based on animal conditioning studies. In addition to reviewing the early literature, we hope to encourage collaborations between plant biologists and comparative psychologists by familiarizing the reader with issues in the study of learning faced by those working with animals. These issues include no consistent definition of learning phenomena and an overreliance on the use of cognition. We suggested that greater collaborative efforts be made between plant biologists and comparative psychologists if the study of plant learning is to be fully intergraded into the mainstream behavior theory. PMID:27065905
Final case for a stainless steel diagnostic first wall on ITER
NASA Astrophysics Data System (ADS)
Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.
2015-08-01
In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.
The no-observed-adverse-effect-level in drug safety evaluations: use, issues, and definition(s).
Dorato, Michael A; Engelhardt, Jeffery A
2005-08-01
The no-observed-adverse-effect-level (NOAEL) is an important part of the non-clinical risk assessment. It is a professional opinion based on the design of the study, indication of the drug, expected pharmacology, and spectrum of off-target effects. There is no consistent standard definition of NOAEL. This is based, in part, on the varied definitions of what constitutes an adverse effect. Toxicologists, either investigating or reviewing, have not been consistent in defining an effect as either adverse or acceptable. The common definition of NOAEL, "the highest experimental point that is without adverse effect," serves us well in general discussions. It does not, however, address the interpretation of risk based on toxicologically relevant effects, nor does it consider the progression of effect with respect to duration and/or dose. This paper will discuss the issues and application of a functional definition of the NOAEL in toxicology evaluations.
Substance abuse prevention intervention research with Hispanic populations.
Castro, Felipe González; Barrera, Manuel; Pantin, Hilda; Martinez, Charles; Felix-Ortiz, Maria; Rios, Rebeca; Lopez, Vera A; Lopez, Cristy
2006-09-01
Selected studies with specific relevance to substance abuse prevention interventions with Hispanic youth and families were examined to identify prior findings and emerging issues that may guide the design of future substance abuse prevention intervention research and its implementation with Hispanic populations. The origins of prevention research and role of risk and protective factors are examined, including culturally-specific risk and protective factors for Hispanic populations. Correlational studies, non-experimental interventions, and randomized controlled trials were examined for the period of 1974-2003. The literature search yielded 15 articles selected for this review that exhibited adequate methodological rigor. An added search for more recent studies identified three additional articles, for a total of 18 prevention intervention articles that were reviewed. Theoretical and methodological issues and recommendations are presented for future research aimed at improving the efficacy and effectiveness of future prevention intervention studies and their cultural relevance for Hispanic populations.
Using the tritium plasma experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
1993-06-01
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.
The status of beryllium technology for fusion
NASA Astrophysics Data System (ADS)
Scaffidi-Argentina, F.; Longhurst, G. R.; Shestakov, V.; Kawamura, H.
2000-12-01
Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented.
Cell culture medium improvement by rigorous shuffling of components using media blending.
Jordan, Martin; Voisard, Damien; Berthoud, Antoine; Tercier, Laetitia; Kleuser, Beate; Baer, Gianni; Broly, Hervé
2013-01-01
A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.
Electrochemical removal of carbamazepine in water with Ti/PbO2 cylindrical mesh anode.
García-Espinoza, J D; Gortáres-Moroyoqui, P; Orta-Ledesma, M T; Drogui, P; Mijaylova-Nacheva, P
2016-01-01
Carbamazepine (CBZ) is one of the most frequently detected organic compounds in the aquatic environment. Due to its bio-persistence and toxicity for humans and the environment its removal has become an important issue. The performance of the electrochemical oxidation process and in situ production of reactive oxygen species (ROS), such as O3 and H2O2, for CBZ removal have been studied using Ti/PbO2 cylindrical mesh anode in the presence of Na2SO4 as supporting electrolyte in a batch electrochemical reactor. In this integrated process, direct oxidation at anode and indirect oxidation by in situ electrogenerated ROS can occur simultaneously. The effect of several factors such as electrolysis time, current intensity, initial pH and oxygen flux was investigated by means of an experimental design methodology, using a 2(4) factorial matrix. CBZ removal of 83.93% was obtained and the most influential parameters turned out to be electrolysis time, current intensity and oxygen flux. Later, the optimal experimental values for CBZ degradation were obtained by means of a central composite design. The best operating conditions, analyzed by Design Expert(®) software, are the following: 110 min of electrolysis at 3.0 A, pH = 7.05 and 2.8 L O2/min. Under these optimal conditions, the model prediction (82.44%) fits very well with the experimental response (83.90 ± 0.8%). Furthermore, chemical oxygen demand decrease was quantified. Our results illustrated significant removal efficiency for the CBZ in optimized condition with second order kinetic reaction.
Development of an Integrated Nozzle for a Symmetric, RBCC Launch Vehicle Configuration
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Canabal, Francisco, III; Rice, Tharen; Blaha, Bernard
2000-01-01
The development of rocket based combined cycle (RBCC) engines is highly dependent upon integrating several different modes of operation into a single system. One of the key components to develop acceptable performance levels through each mode of operation is the nozzle. It must be highly integrated to serve the expansion processes of both rocket and air-breathing modes without undue weight, drag, or complexity. The NASA GTX configuration requires a fixed geometry, altitude-compensating nozzle configuration. The initial configuration, used mainly to estimate weight and cooling requirements was a 1 So half-angle cone, which cuts a concave surface from a point within the flowpath to the vehicle trailing edge. Results of 3-D CFD calculations on this geometry are presented. To address the critical issues associated with integrated, fixed geometry, multimode nozzle development, the GTX team has initiated a series of tasks to evolve the nozzle design, and validate performance levels. An overview of these tasks is given. The first element is a design activity to develop tools for integration of efficient expansion surfaces With the existing flowpath and vehicle aft-body, and to develop a second-generation nozzle design. A preliminary result using a "streamline-tracing" technique is presented. As the nozzle design evolves, a combination of 3-D CFD analysis and experimental evaluation will be used to validate the design procedure and determine the installed performance for propulsion cycle modeling. The initial experimental effort will consist of cold-flow experiments designed to validate the general trends of the streamline-tracing methodology and anchor the CFD analysis. Experiments will also be conducted to simulate nozzle performance during each mode of operation. As the design matures, hot-fire tests will be conducted to refine performance estimates and anchor more sophisticated reacting-flow analysis.
Physical and molecular bases of protein thermal stability and cold adaptation.
Pucci, Fabrizio; Rooman, Marianne
2017-02-01
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of Electromagnetic and Marangoni Forces on Thin Coatings during Rapid Heating Process
NASA Astrophysics Data System (ADS)
Steinberg, T.; Opitz, T.; Rybakov, A.; Baake, E.
2018-05-01
The present paper is dedicated to the investigation of Marangoni and Lorentz forces in a rapid heating process. During the melting of aluminum-silicon (AlSi) layer on the bor-manganese steel 22MnB5, the liquid AlSi is shifting from the middle to the side and leaves dry spots on the steel due to a combination of both forces. In order to solve this process design issue, the impact of each force in the process will be evaluated. Evaluation is carried out using experimental data and numerical simulation.
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Mocellin, Simone
2012-01-01
Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.
Graphical Models for Quasi-Experimental Designs
ERIC Educational Resources Information Center
Kim, Yongnam; Steiner, Peter M.; Hall, Courtney E.; Su, Dan
2016-01-01
Experimental and quasi-experimental designs play a central role in estimating cause-effect relationships in education, psychology, and many other fields of the social and behavioral sciences. This paper presents and discusses the causal graphs of experimental and quasi-experimental designs. For quasi-experimental designs the authors demonstrate…
Hubert, C; Lebrun, P; Houari, S; Ziemons, E; Rozet, E; Hubert, Ph
2014-01-01
The understanding of the method is a major concern when developing a stability-indicating method and even more so when dealing with impurity assays from complex matrices. In the presented case study, a Quality-by-Design approach was applied in order to optimize a routinely used method. An analytical issue occurring at the last stage of a long-term stability study involving unexpected impurities perturbing the monitoring of characterized impurities needed to be resolved. A compliant Quality-by-Design (QbD) methodology based on a Design of Experiments (DoE) approach was evaluated within the framework of a Liquid Chromatography (LC) method. This approach allows the investigation of Critical Process Parameters (CPPs), which have an impact on Critical Quality Attributes (CQAs) and, consequently, on LC selectivity. Using polynomial regression response modeling as well as Monte Carlo simulations for error propagation, Design Space (DS) was computed in order to determine robust working conditions for the developed stability-indicating method. This QbD compliant development was conducted in two phases allowing the use of the Design Space knowledge acquired during the first phase to define the experimental domain of the second phase, which constitutes a learning process. The selected working condition was then fully validated using accuracy profiles based on statistical tolerance intervals in order to evaluate the reliability of the results generated by this LC/ESI-MS stability-indicating method. A comparison was made between the traditional Quality-by-Testing (QbT) approach and the QbD strategy, highlighting the benefit of this QbD strategy in the case of an unexpected impurities issue. On this basis, the advantages of a systematic use of the QbD methodology were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Experimental design and statistical analysis for three-drug combination studies.
Fang, Hong-Bin; Chen, Xuerong; Pei, Xin-Yan; Grant, Steven; Tan, Ming
2017-06-01
Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose-response shapes of individual constituent drugs. Thus, different classes of drugs of different dose-response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose-response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose-response surface formed by dose ranges of three drugs.
The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices.
Ogrodnik, P J; Moorcroft, C I; Wardle, P
2013-01-01
This paper examines the question;" does permanent laser marking affect the mechanical performance of a metallic medical component?" The literature review revealed the surprising fact that very little has been presented or studied even though intuition suggests that its effect could be detrimental to a component's fatigue life. A brief investigation of laser marking suggests that defects greater than 25 μm are possible. A theoretical investigation further suggests that this is unlikely to cause issues with relation to fast fracture but is highly likely to cause fatigue life issues. An experimental investigation confirmed that laser marking reduced the fatigue life of a component. This combination of lines of evidence suggests, strongly, that positioning of laser marking is highly critical and should not be left to chance. It is further suggested that medical device designers, especially those related to orthopaedic implants, should consider the position of laser marking in the design process. They should ensure that it is in an area of low stress amplitude. They should also ensure that they investigate worst-case scenarios when considering the stress environment; this, however, may not be straightforward.
The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices
Ogrodnik, P. J.; Moorcroft, C. I.; Wardle, P.
2013-01-01
This paper examines the question;“ does permanent laser marking affect the mechanical performance of a metallic medical component?” The literature review revealed the surprising fact that very little has been presented or studied even though intuition suggests that its effect could be detrimental to a component's fatigue life. A brief investigation of laser marking suggests that defects greater than 25 μm are possible. A theoretical investigation further suggests that this is unlikely to cause issues with relation to fast fracture but is highly likely to cause fatigue life issues. An experimental investigation confirmed that laser marking reduced the fatigue life of a component. This combination of lines of evidence suggests, strongly, that positioning of laser marking is highly critical and should not be left to chance. It is further suggested that medical device designers, especially those related to orthopaedic implants, should consider the position of laser marking in the design process. They should ensure that it is in an area of low stress amplitude. They should also ensure that they investigate worst-case scenarios when considering the stress environment; this, however, may not be straightforward. PMID:27006919
Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir
2015-11-01
Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Optimal Reward Functions in Distributed Reinforcement Learning
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan
2000-01-01
We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.
Kougoulos, Eleftherios; Smales, Ian; Verrier, Hugh M
2011-03-01
A novel experimental approach describing the integration of drug substance and drug production design using particle engineering techniques such as sonocrystallization, high shear wet milling (HSWM) and dry impact (hammer) milling were used to manufacture samples of an active pharmaceutical ingredient (API) with diverse particle size and size distributions. The API instability was addressed using particle engineering and through judicious selection of excipients to reduce degradation reactions. API produced using a conventional batch cooling crystallization process resulted in content uniformity issues. Hammer milling increased fine particle formation resulting in reduced content uniformity and increased degradation compared to sonocrystallized and HSWM API in the formulation. To ensure at least a 2-year shelf life based on predictions using an Accelerated Stability Assessment Program, this API should have a D [v, 0.1] of 55 μm and a D [v, 0.5] of 140 μm. The particle size of the chief excipient in the drug product formulation needed to be close to that of the API to avoid content uniformity and stability issues but large enough to reduce lactam formation. The novel methodology described here has potential for application to other APIs. © 2011 American Association of Pharmaceutical Scientists
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
14 CFR 21.621 - Issue of letters of TSO design approval: Import articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Issue of letters of TSO design approval: Import articles. 21.621 Section 21.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Approvals § 21.621 Issue of letters of TSO design approval: Import articles. (a) The FAA may issue a letter...
14 CFR 21.621 - Issue of letters of TSO design approval: Import articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Issue of letters of TSO design approval: Import articles. 21.621 Section 21.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Approvals § 21.621 Issue of letters of TSO design approval: Import articles. (a) The FAA may issue a letter...
14 CFR 21.621 - Issue of letters of TSO design approval: Import articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Issue of letters of TSO design approval: Import articles. 21.621 Section 21.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Approvals § 21.621 Issue of letters of TSO design approval: Import articles. (a) The FAA may issue a letter...
Chan, Shu-Ya; Chen, Kuei-Min
2017-07-01
To test the effectiveness of a six-month senior elastic band exercise programme on the self-perceived health status and sleep quality of older adults living in community settings. Health issues common among older adults living in community settings include poor physical and mental health conditions and sleep quality. Engagement in appropriate exercise programmes facilitates alleviating these health issues among older adults. A quasi-experimental design was applied. A convenience sample of older adults was drawn from six senior-citizen activity centres in southern Taiwan. Participants were assigned to either an experimental group (three centres, n = 97) or a control group (three centres, n = 102) based on the senior-citizen activity centres they attended. The participants in the experimental group carried out the Senior Elastic Band exercise programme for six months (three times per week and 40 minutes per session) in addition to their daily activities. The participants in the control group maintained their daily activities. The participants' self-perceived health status and sleep quality were examined at the baseline, three-month interval and six-month interval. In total, 169 participants completed the six-month study: 84 constituted the experimental group and 85 constituted the control group. At the three-month interval, the participants in the experimental group had greater improvements in self-perceived physical health, overall sleep quality, sleep latency and sleep duration compared with those in the control group; these significant changes continued throughout the six-month study. The Senior Elastic Band exercise programme showed promising effects in improving the self-perceived physical health and sleep quality of older adults living in community settings. Healthcare professionals can incorporate the Senior Elastic Band exercise programme as one of the health promotion activities for older adults living in community settings. © 2016 John Wiley & Sons Ltd.
Chen, Hsiao-Mei; Tsai, Li-Jane; Chao, Shu-Yuan; Clark, Mary Jo
2016-12-01
The increasing number of elderly people affected by dementia in Taiwan has made dementia care a crucial issue of concern. This issue is particularly important in terms of the proper management of behavioral symptoms and improvement of the cognitive functions of those affected by this disease. This study examined the effects of individualized learning therapy on cognition and neuropsychiatric symptoms among elderly people with dementia. A quasi-experimental, pretest-posttest research design was adopted. We recruited elderly people with dementia at the only two institutions for elderly patients with dementia in Central Taiwan. These institutions were assigned randomly as the experimental or control group, with totals of 23 and 21 participants, respectively. The participants in the experimental group received individualized learning therapy for 30 minutes twice weekly for 3 months. The comparison group received usual care only. The cognitive function and neuropsychiatric symptoms of all participants were measured using the Mini-Mental Status Examination (MMSE) before the start of and immediately after the 12-week intervention and the Chinese version of the Neuropsychiatric Inventory (CNPI), which was administered once per week during the intervention. Independent t tests (or Mann-Whitney U tests), chi-square tests (or Fisher's exact tests), paired t test, and generalized estimating equations were used for data analysis. Participants in the experimental group had significantly higher MMSE scores (p < .01) and lower CNPI scores (p < .01) than their comparison group peers after the intervention. Furthermore, the neuropsychiatric symptoms in the experimental group such as hallucinations, bizarre behavior, depression, apathetic expression, irritability, and sleep disorder had significantly improved by the seventh week. Individualized learning therapy may be an effective approach to improve cognitive function and reduce neuropsychiatric symptoms among older people with dementia. Therefore, future clinical application is warranted.
A Computational and Experimental Investigation of Shear Coaxial Jet Atomization
NASA Technical Reports Server (NTRS)
Ibrahim, Essam A.; Kenny, R. Jeremy; Walker, Nathan B.
2006-01-01
The instability and subsequent atomization of a viscous liquid jet emanated into a high-pressure gaseous surrounding is studied both computationally and experimentally. Liquid water issued into nitrogen gas at elevated pressures is used to simulate the flow conditions in a coaxial shear injector element relevant to liquid propellant rocket engines. The theoretical analysis is based on a simplified mathematical formulation of the continuity and momentum equations in their conservative form. Numerical solutions of the governing equations subject to appropriate initial and boundary conditions are obtained via a robust finite difference scheme. The computations yield real-time evolution and subsequent breakup characteristics of the liquid jet. The experimental investigation utilizes a digital imaging technique to measure resultant drop sizes. Data were collected for liquid Reynolds number between 2,500 and 25,000, aerodynamic Weber number range of 50-500 and ambient gas pressures from 150 to 1200 psia. Comparison of the model predictions and experimental data for drop sizes at gas pressures of 150 and 300 psia reveal satisfactory agreement particularly for lower values of investigated Weber number. The present model is intended as a component of a practical tool to facilitate design and optimization of coaxial shear atomizers.
Fruit Flies Help Human Sleep Research
Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough ...
Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelson, G. S.
1993-01-01
A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.
Fuel injector: Air swirl characterization aerothermal modeling, phase 2, volume 1
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.
1993-01-01
A well integrated experimental/analytical investigation was conducted to provide benchmark quality relevant to a prefilming type airblast fuel nozzle and its interaction with the combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM), and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.
Experiences of Vulnerable Residential Customer Subpopulations with Critical Peak Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappers, Peter; Spurlock, C. Anna; Todd, Annika
DOE decided to co-fund ten utilities to undertake eleven experimentally-designed Consumer Behavior Studies (CBS) that proposed to examine a wide range of the topics of interest to the electric utility industry. Each chosen utility was to design, implement and evaluate their own study in order to address questions of interest both to itself and to its applicable regulatory authority, whose approval was generally necessary for the study to proceed. The DOE Office of Energy Delivery and Electricity Reliability (OE), however, did set guidelines, both in the FOA and subsequently during the contracting period, for what would constitute an acceptable studymore » under the Grant. To assist in ensuring these guidelines were adhered to, OE requested that LBNL act as project manager for these Consumer Behavior Studies to achieve consistency of experimental design and adherence to data collection and reporting protocols across the ten utilities. As part of its role, LBNL formed technical advisory groups (TAG) to separately assist each of the utilities by providing technical assistance in all aspects of the design, implementation and evaluation of their studies. LBNL was also given a unique opportunity to perform a comprehensive, cross-study analysis that uses the customer-level interval meter and demographic data made available by these utilities due to SGIG-imposed reporting requirements, in order to analyze critical policy issues associated with AMI-enabled rates and control/information technology. LBNL will publish the results of these analyses in a series of research reports, of which this is one, that attempt to address critical policy issues relating to a variety of topics including customer acceptance, retention and load response to time-based rates and various forms of enabling control and information technologies. This report extends the existing empirical literature on the experiences of low-income customers exposed to critical peak pricing, and provides the first glimpses into the experiences of the elderly and those who reported being chronically ill. Specifically, we analyzed two of the time-based rate consumer behavior studies, which were co-funded by the Department of Energy as part of the Smart Grid Investment Grant program.« less
Cooke, Steven J; Birnie-Gauvin, Kim; Lennox, Robert J; Taylor, Jessica J; Rytwinski, Trina; Rummer, Jodie L; Franklin, Craig E; Bennett, Joseph R; Haddaway, Neal R
2017-01-01
Policy development and management decisions should be based upon the best available evidence. In recent years, approaches to evidence synthesis, originating in the medical realm (such as systematic reviews), have been applied to conservation to promote evidence-based conservation and environmental management. Systematic reviews involve a critical appraisal of evidence, but studies that lack the necessary rigour (e.g. experimental, technical and analytical aspects) to justify their conclusions are typically excluded from systematic reviews or down-weighted in terms of their influence. One of the strengths of conservation physiology is the reliance on experimental approaches that help to more clearly establish cause-and-effect relationships. Indeed, experimental biology and ecology have much to offer in terms of building the evidence base that is needed to inform policy and management options related to pressing issues such as enacting endangered species recovery plans or evaluating the effectiveness of conservation interventions. Here, we identify a number of pitfalls that can prevent experimental findings from being relevant to conservation or would lead to their exclusion or down-weighting during critical appraisal in a systematic review. We conclude that conservation physiology is well positioned to support evidence-based conservation, provided that experimental designs are robust and that conservation physiologists understand the nuances associated with informing decision-making processes so that they can be more relevant.
Birnie-Gauvin, Kim; Lennox, Robert J.; Taylor, Jessica J.; Rytwinski, Trina; Rummer, Jodie L.; Franklin, Craig E.; Bennett, Joseph R.; Haddaway, Neal R.
2017-01-01
Abstract Policy development and management decisions should be based upon the best available evidence. In recent years, approaches to evidence synthesis, originating in the medical realm (such as systematic reviews), have been applied to conservation to promote evidence-based conservation and environmental management. Systematic reviews involve a critical appraisal of evidence, but studies that lack the necessary rigour (e.g. experimental, technical and analytical aspects) to justify their conclusions are typically excluded from systematic reviews or down-weighted in terms of their influence. One of the strengths of conservation physiology is the reliance on experimental approaches that help to more clearly establish cause-and-effect relationships. Indeed, experimental biology and ecology have much to offer in terms of building the evidence base that is needed to inform policy and management options related to pressing issues such as enacting endangered species recovery plans or evaluating the effectiveness of conservation interventions. Here, we identify a number of pitfalls that can prevent experimental findings from being relevant to conservation or would lead to their exclusion or down-weighting during critical appraisal in a systematic review. We conclude that conservation physiology is well positioned to support evidence-based conservation, provided that experimental designs are robust and that conservation physiologists understand the nuances associated with informing decision-making processes so that they can be more relevant. PMID:28835842
First-principles modeling of biological systems and structure-based drug-design.
Sgrignani, Jacopo; Magistrato, Alessandra
2013-03-01
Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.
New Issues for New Methods: Ethical and Editorial Challenges for an Experimental Philosophy.
Polonioli, Andrea
2017-08-01
This paper examines a constellation of ethical and editorial issues that have arisen since philosophers started to conduct, submit and publish empirical research. These issues encompass concerns over responsible authorship, fair treatment of human subjects, ethicality of experimental procedures, availability of data, unselective reporting and publishability of research findings. This study aims to assess whether the philosophical community has as yet successfully addressed such issues. To do so, the instructions for authors, submission process and published research papers of 29 main journals in philosophy have been considered and analyzed. In light of the evidence reported here, it is argued that the philosophical community has as yet failed to properly tackle such issues. The paper also delivers some recommendations for authors, reviewers and editors in the field.
Thea, Donald M; Vwalika, Cheswa; Kasonde, Prisca; Kankasa, Chipepo; Sinkala, Moses; Semrau, Katherine; Shutes, Erin; Ayash, Christine; Tsai, Wei-Yann; Aldrovandi, Grace; Kuhn, Louise
2004-08-01
We present the rationale and design of the Zambian Exclusive Breast-feeding Study (ZEBS), a randomized trial evaluating the efficacy of short-duration exclusive breast-feeding (EBF) as a strategy to reduce postnatal human immunodeficiency virus (HIV) transmission while preserving the other health benefits of this important mode of infant feeding. One thousand two hundred HIV-positive pregnant women were recruited in Lusaka, Zambia, and followed with their infants for 24 months. In addition to Nevirapine (NVP), all women received intensive and frequent clinic- and home-based counseling to support exclusive breast-feeding. When the infant was 1 week of age, half of the women were randomly assigned to a group encouraged to abruptly (<24 h) cease all breast-feeding at 4 months. The primary outcome of the experimental (randomized) comparison is HIV-free survival at 24 months. The design is also observational and will compare HIV transmission rates between those who do and do not adhere to the counseling intervention promoting exclusive breast-feeding. Our study aims to quantify the benefit-risk ratio of early cessation of exclusive breast-feeding to interrupt mother-to-child transmission of HIV with an intensive behavioral intervention and has both observational and experimental analytic approaches. Our study design assesses efficacy and also has a prominent applied component that if the intervention is effective, it will permit rapid and sustainable adoption within low-resource communities.
Takeda, Hiroshi; Matsumura, Yasushi; Nakagawa, Katsuhiko; Teratani, Tadamasa; Qiyan, Zhang; Kusuoka, Hideo; Matsuoka, Masami
2004-01-01
To share healthcare information and to promote cooperation among healthcare providers and customers (patients) under computerized network environment, a non-profit organization (NPO), named as OCHIS, was established at Osaka, Japan in 2003. Since security and confidentiality issues on the Internet have been major concerns in the OCHIS, the system has been based on healthcare public key infrastructure (HPKI), and found that there remained problems to be solved technically and operationally. An experimental study was conducted to elucidate the central and the local function in terms of a registration authority and a time stamp authority by contracting with the Ministry of Economics and Trading Industries in 2003. This paper describes the experimental design with NPO and the results of the study concerning message security and HPKI. The developed system has been operated practically in Osaka urban area.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-08-30
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-01-01
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748
Liang, Geng
2015-01-01
In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Intervention strategies for spatial orientation disorders in dementia: a selective review.
Caffò, Alessandro O; Hoogeveen, Frans; Groenendaal, Mari; Perilli, Anna Viviana; Picucci, Luciana; Lancioni, Giulio E; Bosco, Andrea
2014-06-01
This article provides a brief overview of the intervention strategies aimed at reducing spatial orientation disorders in elderly people with dementia. Eight experimental studies using spatial cues, assistive technology programs, reality orientation training, errorless learning technique, and backward chaining programs are described. They can be classified into two main approaches: restorative and compensatory, depending on whether they rely or not on residual learning ability, respectively. A review of the efficacy of these intervention strategies is proposed. Results suggest that both compensatory and restorative approaches may be valuable in enhancing correct way-finding behavior, with various degrees of effectiveness. Some issues concerning (a) variability in participants' characteristics and experimental designs and (b) practicality of intervention strategies do not permit to draw a definite conclusion. Future research should be aimed at a direct comparison between these two strategies, and should incorporate an extensive neuropsychological assessment of spatial domain.
Antitumor Efficacy Testing in Rodents
2008-01-01
The preclinical research and human clinical trials necessary for developing anticancer therapeutics are costly. One contributor to these costs is preclinical rodent efficacy studies, which, in addition to the costs associated with conducting them, often guide the selection of agents for clinical development. If inappropriate or inaccurate recommendations are made on the basis of these preclinical studies, then additional costs are incurred. In this commentary, I discuss the issues associated with preclinical rodent efficacy studies. These include the identification of proper preclinical efficacy models, the selection of appropriate experimental endpoints, and the correct statistical evaluation of the resulting data. I also describe important experimental design considerations, such as selecting the drug vehicle, optimizing the therapeutic treatment plan, properly powering the experiment by defining appropriate numbers of replicates in each treatment arm, and proper randomization. Improved preclinical selection criteria can aid in reducing unnecessary human studies, thus reducing the overall costs of anticancer drug development. PMID:18957675
Basic and applied studies of the ram accelerator as a hypervelocity projectile launcher
NASA Astrophysics Data System (ADS)
Bruckner, Adam P.; Knowlen, Carl
1993-12-01
The potential of using ram accelerator technology for an impulsive launcher of autonomously guided interceptors, such as the LEAP, has been studied during this contract period. In addition, fundamental investigations on some of the engineering issues which must be addressed for enabling ram accelerator propulsive modes to operate at 4 km/sec have been undertaken. An experimental investigation of the gas dynamic limits of ram accelerator operation has demonstrated the existence of two distinct limiting mechanisms that must be accounted for when designing projectiles for these launchers. Other experiments were conducted to make detailed pressure measurements of the flow fields at the tube walls to study the effects of projectile canting. Results from this LEAP launcher study and the experimental investigations indicate that the ram accelerator technology is well suited for applications as a transportable launcher capable of meeting the needs of theater ballistic missile defense missions.
Friche, Amélia Augusta de Lima; Dias, Maria Angélica de Salles; Reis, Priscila Brandão Dos; Dias, Cláudia Silva; Caiaffa, Waleska Teixeira
2015-11-01
There is little scientific evidence that urban upgrading helps improve health or reduce inequities. This article presents the design for the BH-Viva Project, a "quasi-experimental", multiphase, mixed-methods study with quantitative and qualitative components, proposing an analytical model for monitoring the effects that interventions in the urban environment can have on residents' health in slums in Belo Horizonte, Minas Gerais State, Brazil. A preliminary analysis revealed intra-urban differences in age-specific mortality when comparing areas with and without interventions; the mortality rate from 2002 to 2012 was stable in the "formal city", increased in slums without interventions, and decreased in slums with interventions. BH-Viva represents an effort at advancing methodological issues, providing learning and theoretical backing for urban health research and research methods, allowing their application and extension to other urban contexts.
Problems associated with the utilization of algae in bioregenerative life support systems
NASA Technical Reports Server (NTRS)
Averner, M. M.; Karel, M.; Radmer, R.
1984-01-01
A workshop was conducted to identify the potential problems associated with the use of microalgae in biorregenerative life support systems, and to identify algae rlated research issues that must be addressed through space flight experimentation. Major questions to be resolved relate to the choice of algal species for inclusion in a bioregenerative life support system, their long term behavior in the space environment, and the nature of the techniques required for the continuous growth of algae on the scale required. Consideration was given to the problems associated with the conversion of algal biomass into edible components. Specific concerns were addressed and alternative transformation processes identified and compared. The workshop identified the following major areas to be addressed by space flight experimentation: (1) long term culture stability, (2) optimal design of algal growth reactors, and (3) post growth harvesting and processing in the space environment.
Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics
Harr, Nora; Eichler, Andreas; Renkl, Alexander
2014-01-01
In teacher education at universities, general pedagogical and psychological principles are often treated separately from subject matter knowledge and therefore run the risk of not being applied in the teaching subject. In an experimental study (N = 60 mathematics student teachers) we investigated the effects of providing aspects of general pedagogical/psychological knowledge (PPK) and pedagogical content knowledge (PCK) in an integrated or separated way. In both conditions (“integrated” vs. “separated”), participants individually worked on computer-based learning environments addressing the same topic: use and handling of multiple external representations, a central issue in mathematics. We experimentally varied whether PPK aspects and PCK aspects were treated integrated or apart from one another. As expected, the integrated condition led to greater application of pedagogical/psychological aspects and an increase in applying both knowledge types simultaneously compared to the separated condition. Overall, our findings indicate beneficial effects of an integrated design in teacher education. PMID:25191300
Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics.
Harr, Nora; Eichler, Andreas; Renkl, Alexander
2014-01-01
In teacher education at universities, general pedagogical and psychological principles are often treated separately from subject matter knowledge and therefore run the risk of not being applied in the teaching subject. In an experimental study (N = 60 mathematics student teachers) we investigated the effects of providing aspects of general pedagogical/psychological knowledge (PPK) and pedagogical content knowledge (PCK) in an integrated or separated way. In both conditions ("integrated" vs. "separated"), participants individually worked on computer-based learning environments addressing the same topic: use and handling of multiple external representations, a central issue in mathematics. We experimentally varied whether PPK aspects and PCK aspects were treated integrated or apart from one another. As expected, the integrated condition led to greater application of pedagogical/psychological aspects and an increase in applying both knowledge types simultaneously compared to the separated condition. Overall, our findings indicate beneficial effects of an integrated design in teacher education.
Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies.
Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun
2016-03-17
Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems.
Characterization of a rotary hybrid multimodal energy harvester
NASA Astrophysics Data System (ADS)
Larkin, Miles R.; Tadesse, Yonas
2014-04-01
In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.
How do we make models that are useful in understanding partial epilepsies?
Prince, David A
2014-01-01
The goals of constructing epilepsy models are (1) to develop approaches to prophylaxis of epileptogenesis following cortical injury; (2) to devise selective treatments for established epilepsies based on underlying pathophysiological mechanisms; and (3) use of a disease (epilepsy) model to explore brain molecular, cellular and circuit properties. Modeling a particular epilepsy syndrome requires detailed knowledge of key clinical phenomenology and results of human experiments that can be addressed in critically designed laboratory protocols. Contributions to understanding mechanisms and treatment of neurological disorders has often come from research not focused on a specific disease-relevant issue. Much of the foundation for current research in epilepsy falls into this category. Too strict a definition of the relevance of an experimental model to progress in preventing or curing epilepsy may, in the long run, slow progress. Inadequate exploration of the experimental target and basic laboratory results in a given model can lead to a failed effort and false negative or positive results. Models should be chosen based on the specific issues to be addressed rather than on convenience of use. Multiple variables including maturational age, species and strain, lesion type, severity and location, latency from injury to experiment and genetic background will affect results. A number of key issues in clinical and basic research in partial epilepsies remain to be addressed including the mechanisms active during the latent period following injury, susceptibility factors that predispose to epileptogenesis, injury - induced adaptive versus maladaptive changes, mechanisms of pharmaco-resistance and strategies to deal with multiple pathophysiological processes occurring in parallel.
14 CFR 437.9 - Issuance of an experimental permit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...
14 CFR 437.5 - Eligibility for an experimental permit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...
14 CFR 437.5 - Eligibility for an experimental permit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...
14 CFR 437.5 - Eligibility for an experimental permit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...
14 CFR 437.9 - Issuance of an experimental permit.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...
14 CFR 437.5 - Eligibility for an experimental permit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...
14 CFR 437.9 - Issuance of an experimental permit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...
14 CFR 437.9 - Issuance of an experimental permit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...
14 CFR 437.5 - Eligibility for an experimental permit.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...
14 CFR 437.9 - Issuance of an experimental permit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...
Critical Issues in Research Design in Action Research in an SME Development Context
ERIC Educational Resources Information Center
McGrath, Helen; O'Toole, Thomas
2012-01-01
Purpose: The main aim of this paper is to develop guidelines on the critical issues to consider in research design in an action research (AR) environment for SME network capability development. Design/methodology/approach: The issues in research design for AR studies are developed from the authors' experience in running learning sets but, in…
Alaghemandan, Hamed; Yarmohammadian, Mohammad H; Khorasani, Elahe; Rezaee, Sobhan
2014-02-01
In Isfahan, the second metropolitan in Iran, there are 1448 dentistry treatment centers that most of them are inefficient. Today, efficiency is the most important issue in health care centers as well as dentistry clinics. The goal of this research is to investigate the affordability and efficiency of dentistry clinics in Isfahan province, Iran. The current work is a quantitative research, designed in three methodological steps, including two surveys and experimental studies, for understanding current deficiencies of Iranian dentistry clinics. First, we ran a survey. Then, we analyzed the results of the questionnaires which guided us to find a particular intervening package to improve the efficiency of the clinics. At the second step, we chose an inefficient clinic named Mohtasham (Iran, Isfahan) to evaluate our intervening package. Based on what the interviewees answered, we mention the most important issues to be considered for improving the efficiency of dental clinics in Isfahan. By considering mentioned problematic issues, an intervening package was designed. This intervening package was applied in Mohtasham clinic, since June 2010. It improved the clinic's income from 16328 US$ with 4125 clients in 2010, to 420,000 US$ with 14784 patients in 2012. The proposed intervening package changed this clinic to an efficient and economic one. Its income increased 5.08 times and its patient's numbers grew 4.01 times simultaneously. In other words, Mohtasham's experience demonstrates the reliability of the package and its potentiality to be applied in macro level to improve other dentistry clinics.
Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienands, U.; /SLAC; Funakoshi, Y.
2012-04-20
The facilities reported on are all in a fairly mature state of operation, as evidenced by the very detailed studies and correction schemes that all groups are working on. First- and higher-order aberrations are diagnosed and planned to be corrected. Very detailed beam measurements are done to get a global picture of the beam dynamics. More than other facilities the high-luminosity colliders are struggling with experimental background issues, mitigation of which is a permanent challenge. The working group dealt with a very wide rage of practical issues which limit performance of the machines and compared their techniques of operations andmore » their performance. We anticipate this to be a first attempt. In a future workshop in this series, we propose to attempt more fundamental comparisons of each machine, including design parameters. For example, DAPHNE and KEKB employ a finite crossing angle. The minimum value of {beta}*{sub y} attainable at KEKB seems to relate to this scheme. Effectiveness of compensation solenoids and turn-by-turn BPMs etc. should be examined in more detail. In the near future, CESR-C and VEPP-2000 will start their operation. We expect to hear important new experiences from these machines; in particular VEPP-2000 will be the first machine to have adopted round beams. At SLAC and KEK, next generation B Factories are being considered. It will be worthwhile to discuss the design issues of these machines based on the experiences of the existing factory machines.« less
Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.
Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin
2017-01-01
Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.
Snyder, Drew D; Bennett, Teale K; Oller, Jeremy C; Ge, Weiqing
2017-01-01
The recently passed legislation and proposed policy changes governing the healthcare system have been met with extensive debate and controversy. The primary objective of the study was to determine the attitudes of Doctor of Physical Therapy (DPT) students towards some of these controversial issues. The secondary objective was to determine the demographic factors, including number of years in a physical therapy program, that contribute to their attitude formation. The research design was a cross-sectional non-experimental survey. Purposive sampling was used to recruit subjects in a public university. Subjects took the survey including nine Likert scale questions/statements on controversial issues inspired from legislative efforts and news media sources and one open-ended question. Of the 111 recruited, 106 students agreed to participate as subjects and completed the survey. Only 18.9% agreed or strongly agreed that the Patient Protection and Affordable Care Act is a positive solution for the healthcare system in America. Political affiliation, class level, and developmental environment were associated with a few questions/statements. DPT students in the sample had very diverse attitudes towards controversial issues in healthcare policy. Some of these attitudes revealed very different paradigms from the results found among medical students and the general public.
ERIC Educational Resources Information Center
Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju
2014-01-01
The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
14 CFR 21.275 - Experimental certificates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Experimental certificates. 21.275 Section... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Delegation Option Authorization Procedures § 21.275 Experimental certificates. (a) The manufacturer shall, before issuing an experimental certificate, obtain from the...
14 CFR 21.275 - Experimental certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Experimental certificates. 21.275 Section... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Delegation Option Authorization Procedures § 21.275 Experimental certificates. (a) The manufacturer shall, before issuing an experimental certificate, obtain from the...
Mason, Ann M; Borgert, Christopher J; Bus, James S; Moiz Mumtaz, M; Simmons, Jane Ellen; Sipes, I Glenn
2007-09-01
Risk assessments are enhanced when policy and other decision-makers have access to experimental science designed to specifically inform key policy questions. Currently, our scientific understanding and science policy for environmental mixtures are based largely on extrapolating from and combining data in the observable range of single chemical toxicity to lower environmental concentrations and composition, i.e., using higher dose data to extrapolate and predict lower dose toxicity. There is a growing consensus that the default assumptions underlying those mixtures risk assessments that are conducted in the absence of actual mixtures data rest on an inadequate scientific database. Future scientific research should both build upon the current science and advance toxicology into largely uncharted territory. More precise approaches to better characterize toxicity of mixtures are needed. The Society of Toxicology (SOT) sponsored a series of panels, seminars, and workshops to help catalyze and improve the design and conduct of experimental toxicological research to better inform risk assessors and decision makers. This paper summarizes the activities of the SOT Mixtures Program and serves as the introductory paper to a series of articles in this issue, which hope to inspire innovative research and challenge the status quo.
Heuristic Evaluation on Mobile Interfaces: A New Checklist
Yáñez Gómez, Rosa; Cascado Caballero, Daniel; Sevillano, José-Luis
2014-01-01
The rapid evolution and adoption of mobile devices raise new usability challenges, given their limitations (in screen size, battery life, etc.) as well as the specific requirements of this new interaction. Traditional evaluation techniques need to be adapted in order for these requirements to be met. Heuristic evaluation (HE), an Inspection Method based on evaluation conducted by experts over a real system or prototype, is based on checklists which are desktop-centred and do not adequately detect mobile-specific usability issues. In this paper, we propose a compilation of heuristic evaluation checklists taken from the existing bibliography but readapted to new mobile interfaces. Selecting and rearranging these heuristic guidelines offer a tool which works well not just for evaluation but also as a best-practices checklist. The result is a comprehensive checklist which is experimentally evaluated as a design tool. This experimental evaluation involved two software engineers without any specific knowledge about usability, a group of ten users who compared the usability of a first prototype designed without our heuristics, and a second one after applying the proposed checklist. The results of this experiment show the usefulness of the proposed checklist for avoiding usability gaps even with nontrained developers. PMID:25295300
Effect of Counterflow Jet on a Supersonic Reentry Capsule
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary C.
2006-01-01
Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.