Sample records for experimental device designed

  1. Computer-aided design and experimental investigation of a hydrodynamic device: the microwire electrode

    PubMed

    Fulian; Gooch; Fisher; Stevens; Compton

    2000-08-01

    The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.

  2. Joint Services Electronics Program.

    DTIC Science & Technology

    1983-09-30

    environment. The research is under three interrelated heads: (1) algebraic Methodologies for Control Systems design , both linear and non -linear, (2) robust...properties of the device. After study of these experimental results, we plan to design a millimeter- wave version of the Gunn device. This will...appropriate dose discretization level for an adju- stable width beam. 2) Experimental Device Fabrication In a collaborative effort with the IC design group

  3. 3D Printed Composites for Topology Transforming Multifunctional Devices

    DTIC Science & Technology

    2017-01-26

    approach to find non -trivial designs. The comparison against experimental measurements motivates future research on improving the accuracy of the...new methodology for the fabrication and the design of new multifunctional composites and devices using 3D printing. The main accomplishments of this...design; 6) developing a finite element framework for the optimum design of PACS by topology optimization; 7) optimizing and experimentally

  4. Large - scale Rectangular Ruler Automated Verification Device

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie

    2018-03-01

    This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.

  5. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2016-02-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.

  6. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... physical form and maximum quantity of strontium-90 in the device; (2) Details of construction and design of... handling and installation of the device; (8) Any additional information, including experimental studies and... ordinary circumstances of use; (3) The device is so designed that it cannot be easily disassembled; (4) The...

  7. The Captive Helicopter as a Training Device: Experimental Evaluation of a Concept. Technical Report 68-9.

    ERIC Educational Resources Information Center

    Caro, Paul W., Jr.; And Others

    As part of the Army's effort to use synthetic devices to improve training, researchers evaluated a captive helicopter attached to a ground effects machine. Experimental groups received varying amounts of pre-flight practice tasks designed to develop flight skills, while control groups received no device training. Student flight performance during…

  8. Automated design of genetic toggle switches with predetermined bistability.

    PubMed

    Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi

    2012-07-20

    Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.

  9. Numerical and experimental evaluation of microfluidic sorting devices.

    PubMed

    Taylor, Jay K; Ren, Carolyn L; Stubley, G D

    2008-01-01

    The development of lab-on-a-chip devices calls for the isolation or separation of specific bioparticles or cells. The design of a miniaturized cell-sorting device for handheld operation must follow the strict parameters associated with lab-on-a-chip technology. The limitations include applied voltage, high efficiency of cell-separation, reliability, size, flow control, and cost, among others. Currently used designs have achieved successful levels of cell isolation; however, further improvements in the microfluidic chip design are important to incorporate into larger systems. This study evaluates specific design modifications that contribute to the reduction of required applied potential aiming for developing portable devices, improved operation reliability by minimizing induced pressure disturbance when electrokinetic pumping is employed, and improved flow control by incorporating directing streams achieving dynamic sorting and counting. The chip designs fabricated in glass and polymeric materials include asymmetric channel widths for sample focusing, nonuniform channel depth for minimizing induced pressure disturbance, directing streams to assist particle flow control, and online filters for reducing channel blockage. Fluorescence-based visualization experimental results of electrokinetic focusing, flow field phenomena, and dynamic sorting demonstrate the advantages of the chip design. Numerical simulations in COMSOL are validated by the experimental data and used to investigate the effects of channel geometry and fluid properties on the flow field.

  10. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  11. Design and development of integral heat pipe/thermal energy storage devices

    NASA Astrophysics Data System (ADS)

    Mahefkey, E. T.; Richter, R.

    1981-06-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  12. Development for equipment of the milk macromolecules content detection

    NASA Astrophysics Data System (ADS)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  13. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  14. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... information, including experimental studies and tests, required by the Commission to facilitate a... direct physical contact by any person with it; (3) The device is so designed that it cannot easily be...

  15. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... information, including experimental studies and tests, required by the Commission to facilitate a... direct physical contact by any person with it; (3) The device is so designed that it cannot easily be...

  16. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  17. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  18. Three-dimensional broadband omnidirectional acoustic ground cloak

    NASA Astrophysics Data System (ADS)

    Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-04-01

    The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.

  19. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...

  20. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...

  1. 10 CFR 32.53 - Luminous safety devices for use in aircraft: Requirements for license to manufacture, assemble...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...

  2. Design and fabrication of an energy-harvesting device using vibration absorber

    NASA Astrophysics Data System (ADS)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  3. Suppression of combustion oscillations with mechanical damping devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Nonarray absorbing devices were investigated for use in rocket thrust chambers as instability suppressors. A theory for designing absorbing devices suitable for rocket application is derived, and a nonarray computer program is developed. The experimental program used to verify the theory is discussed. It is concluded that individual acoustical devices can be designed for maximum energy absorption, and it is recommended that single resonators be designed so that the ratio of the aperture diameter to the product of the quarter-wave length and cavity backing depth is less than one.

  4. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  5. Factors that influence the tribocharging of pulverulent materials in compressed-air devices

    NASA Astrophysics Data System (ADS)

    Das, S.; Medles, K.; Mihalcioiu, A.; Beleca, R.; Dragan, C.; Dascalescu, L.

    2008-12-01

    Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.

  6. Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

    NASA Astrophysics Data System (ADS)

    Gardner, William Geoffrey

    2011-12-01

    Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.

  7. Design, construction and testing of annular diffusers for high speed civil transportation combustor applications

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1995-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers is being carried out in order to establish the most pertinent design parameters for such devices and the implications of their application in the design of engine components in the aerospace industries. This investigation consists of solving numerically the full Navier Stokes and Continuity equations for the time-mean flow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuser geometry and the subsequent downloading of such data to a CNC machine at Central State University. The results of the investigations are expected to indicate that more cost effective component design of such devices as effective component design of such devices as diffusers which normally contain complex flows can still be achieved. In this regard a review paper was accepted and presented at the First International Conference on High Speed Civil Transportation Research held at North Carolina A&T in December of 1994.

  8. Sharing Data between Mobile Devices, Connected Vehicles and Infrastructure Task 4 / Task 10 : System Architecture and Design Document (SA/DD).

    DOT National Transportation Integrated Search

    2017-10-27

    This report describes the system architecture and design of the Experimental Prototype System (EPS) for the demonstration of the use of mobile devices in a connected vehicle environment. Specifically, it defines the system structure and behavior, the...

  9. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  10. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    NASA Astrophysics Data System (ADS)

    Li, Er Qiang; Zhang, Jia Ming; Thoroddsen, Sigurdur T.

    2014-01-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions.

  11. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  12. Comparing Single Case Design Overlap-Based Effect Size Metrics from Studies Examining Speech Generating Device Interventions

    ERIC Educational Resources Information Center

    Chen, Mo; Hyppa-Martin, Jolene K.; Reichle, Joe E.; Symons, Frank J.

    2016-01-01

    Meaningfully synthesizing single case experimental data from intervention studies comprised of individuals with low incidence conditions and generating effect size estimates remains challenging. Seven effect size metrics were compared for single case design (SCD) data focused on teaching speech generating device use to individuals with…

  13. Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery

    NASA Astrophysics Data System (ADS)

    E Munson, C., IV; Gaimard, Q.; Merghem, K.; Sundaram, S.; Rogers, D. J.; de Sanoit, J.; Voss, P. L.; Ramdane, A.; Salvestrini, J. P.; Ougazzaden, A.

    2018-01-01

    GaN is a durable, radiation hard and wide-bandgap semiconductor material, making it ideal for usage with betavoltaic batteries. This paper describes the design, fabrication and experimental testing of 1 cm2 GaN-based betavoltaic batteries (that achieve an output power of 2.23 nW) along with a full model that accurately simulates the device performance which is the highest to date (to the best of our knowledge) for GaN-based devices with a 63Ni source.

  14. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  15. An Experimental Device for Generating High Frequency Perturbations in Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Ibrahim, Mounir B.

    1996-01-01

    This paper describes the analytical study of a device that has been proposed as a mechanism for generating gust-like perturbations in supersonic wind tunnels. The device is envisioned as a means to experimentally validate dynamic models and control systems designed for high-speed inlets. The proposed gust generator is composed of two flat trapezoidal plates that modify the properties of the flow ingested by the inlet. One plate may be oscillated to generate small perturbations in the flow. The other plate is held stationary to maintain a constant angle-of-attack. Using an idealized approach, design equations and performance maps for the new device were developed from the compressible flow relations. A two-dimensional CFD code was used to confirm the correctness of these results. The idealized approach was then used to design and evaluate a new gust generator for a 3.05-meter by 3.05-meter (10-foot by 10-foot) supersonic wind tunnel.

  16. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  17. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue.

    PubMed

    Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F

    2011-05-20

    Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.

  18. Evaluation Plan for ORBIS

    DOT National Transportation Integrated Search

    1974-03-01

    This report contains the evaluation plan and experimental design for determining the effectiveness and usability of ORBIS, a proprietary device for automatically detecting and recording speeding motorists. The experimental evaluation will be conducte...

  19. Experimental Investigation of a Morphing Nacelle Ducted Fan

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne A.; Moore, Mark

    2005-01-01

    The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.

  20. Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

  1. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  2. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices

    NASA Astrophysics Data System (ADS)

    Uzun, Yunus

    2016-08-01

    Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.

  3. 10 CFR 51.14 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... isotope 235, except laboratory scale facilities designed or used for experimental or analytical purposes only; or (2) Any equipment or device, or important component part especially designed for such...

  4. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  5. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    1988-02-23

    calculations or design examples are cited in this purely theoretical treatment, it is noted that experimental data from an on-board microprocessor controlled ...The requirements placed on the design of the semiconductor devices used in such systems can be divided into two groups : 1) Assure the requisite...describes a computer-aided approach to the design of resonant arrays that results in equal losses in the on and off states of such control devices. An

  6. Scanning and Measuring Device for Diagnostic of Barrel Bore

    NASA Astrophysics Data System (ADS)

    Marvan, Ales; Hajek, Josef; Vana, Jan; Dvorak, Radim; Drahansky, Martin; Jankovych, Robert; Skvarek, Jozef

    The article discusses the design, mechanical design, electronics and software for robot diagnosis of barrels with caliber of 120 mm to 155 mm. This diagnostic device is intended primarily for experimental research and verification of appropriate methods and technologies for the diagnosis of the main bore guns. Article also discusses the design of sensors and software, the issue of data processing and image reconstruction obtained by scanning of the surface of the bore.

  7. Adoption of Mobile Devices in Teaching: Changes in Teacher Beliefs, Attitudes and Anxiety

    ERIC Educational Resources Information Center

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Beliefs, attitudes and anxiety levels of schoolteachers are important factors influencing the acceptance, adoption and integration of mobile devices in teaching. To understand how to sustain device use, we need to understand what influences teachers and how such factors can change. We adopted a quasi-experimental design using pre- and…

  8. Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Chitarin, G.; Agostinetti, P.; Gallo, A.; Marconato, N.; Nakano, H.; Serianni, G.; Takeiri, Y.; Tsumori, K.

    2011-09-01

    For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.

  9. Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitarin, G.; University of Padova, Dept. of Management and Engineering, strad. S. Nicola, 36100 Vicenza; Agostinetti, P.

    2011-09-26

    For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of themore » BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.« less

  10. Engineering at SLAC: Designing and constructing experimental devices for the Stanford Synchrotron Radiation Lightsource - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djang, Austin

    2015-08-22

    Thanks to the versatility of the beam lines at SSRL, research there is varied and benefits multiple fields. Each experiment requires a particular set of experiment equipment, which in turns requires its own particular assembly. As such, new engineering challenges arise from each new experiment. My role as an engineering intern has been to help solve these challenges, by designing and assembling experimental devices. My first project was to design a heated sample holder, which will be used to investigate the effect of temperature on a sample's x-ray diffraction pattern. My second project was to help set up an imagingmore » test, which involved designing a cooled grating holder and assembling multiple positioning stages. My third project was designing a 3D-printed pencil holder for the SSRL workstations.« less

  11. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    DTIC Science & Technology

    2016-09-01

    1  II.  MODEL DESIGN ...Figure 10.  Experimental Optical Layout for the Boston DM Characterization ..........13  Figure 11.  Side View Showing the Curved Surface on a DM...of different methods for deposition, patterning, and etching until the desired design of the device is achieved. While a large number of devices

  12. Screen Time: Alumni Magazines Have Their Designs on Mobile Devices

    ERIC Educational Resources Information Center

    Walker, Theresa

    2011-01-01

    Alumni magazines have their designs on mobile devices. The efforts are tied together, no matter the platform, by a desire for the magazine to be where its readers are and a spirit of experimentation that is akin to what is happening with social media. None of the magazine editors went into this process with any numerical expectations for…

  13. A Designer Fluid For Aluminum Phase Change Devices. Performance Enhancement in Copper Heat Pipes Performance Enhancement in Copper Heat Pipes. Volume 3

    DTIC Science & Technology

    2016-11-17

    out dynamics of a designer fluid were investigated experimentally in a flat grooved heat pipe. Generated coatings were observed during heat pipe... experimental temperature distributions matched well. Uncertainties in the closure properties were the major source of error. 15. SUBJECT TERMS...72  Results and Discussion ( Experimental Results for IAS 2 in Grooved Wick #1

  14. Design, characterization, and experimental use of the second generation MEMS acoustic emission device

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2005-05-01

    We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic emission events. The average individual transducer area in the 2004 device was increased to 6.97 mm2 as compared to 2.51 mm2 in the 2002 device. In this paper, we report the new experimental results on the characterization of the 2004 device and compare them with analytical results. We show improvements in sensitivity as measured by capacitance and as measured by pencil lead break experiments. Improvement in damping is also evaluated by admittance measurement in atmosphere. Pencil lead break experiments also show that transducers can operate in atmospheric pressure. Finally, we apply the device to acoustic emission experiments on crack propagation in a steel beam specimen, precracked in fatigue, in a four-point bending test.

  15. 47 CFR 5.402 - Eligibility and usage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...

  16. 47 CFR 5.402 - Eligibility and usage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... health care facilities as defined in § 95.1103(b) of this chapter. (b) Medical testing experimental radio... limited to testing equipment designed to comply with the rules in part 15, Radio Frequency Devices; part...

  17. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    PubMed

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  18. An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor

    NASA Astrophysics Data System (ADS)

    Dunn, K. E.; Leake, M. C.; Wollman, A. J. M.; Trefzer, M. A.; Johnson, S.; Tyrrell, A. M.

    2017-03-01

    DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.

  19. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Seth, Ajay; Pouya, Soha; Dembia, Christopher L.; Hicks, Jennifer L.; Delp, Scott L.

    2016-01-01

    Tools have been used for millions of years to augment the capabilities of the human body, allowing us to accomplish tasks that would otherwise be difficult or impossible. Powered exoskeletons and other assistive devices are sophisticated modern tools that have restored bipedal locomotion in individuals with paraplegia and have endowed unimpaired individuals with superhuman strength. Despite these successes, designing assistive devices that reduce energy consumption during running remains a substantial challenge, in part because these devices disrupt the dynamics of a complex, finely tuned biological system. Furthermore, designers have hitherto relied primarily on experiments, which cannot report muscle-level energy consumption and are fraught with practical challenges. In this study, we use OpenSim to generate muscle-driven simulations of 10 human subjects running at 2 and 5 m/s. We then add ideal, massless assistive devices to our simulations and examine the predicted changes in muscle recruitment patterns and metabolic power consumption. Our simulations suggest that an assistive device should not necessarily apply the net joint moment generated by muscles during unassisted running, and an assistive device can reduce the activity of muscles that do not cross the assisted joint. Our results corroborate and suggest biomechanical explanations for similar effects observed by experimentalists, and can be used to form hypotheses for future experimental studies. The models, simulations, and software used in this study are freely available at simtk.org and can provide insight into assistive device design that complements experimental approaches. PMID:27656901

  20. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  1. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  2. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  3. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  4. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  5. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1982-01-01

    A theoretical and experimental investigation determined that current accessed self structured bubble memory devices have the potential of meeting projected data density and speed requirements. Device concepts analyzed include multilayer ferrimagnetic devices where the top layer contains a domain structure which defines the data location and the second contains the data. Current aperture and permalloy assisted current propagation devices were evaluated. Based on the result of this work more detailed device research was initiated. Detailed theoretical and experimental studies indicate that the difference in strip and threshold between a single bubble in the control layer and a double bubble which would exist in both the control layer and data layer is adequate to allow for detection of data. Detailed detector designs were investigated.

  6. A Ratiometric Wavelength Measurement Based on a Silicon-on-Insulator Directional Coupler Integrated Device

    PubMed Central

    Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668

  7. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  8. The Impact of User-Input Devices on Virtual Desktop Trainers

    DTIC Science & Technology

    2010-09-01

    playing the game more enjoyable. Some of these changes include the design of controllers, the controller interface, and ergonomic changes made to...within subjects experimental design to evaluate young active duty Soldier’s ability to move and shoot in a virtual environment using different input...sufficient gaming proficiency, resulting in more time dedicated to training military skills. We employed a within subjects experimental design to

  9. Experimental results in evolutionary fault-recovery for field programmable analog devices

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.; Keymeulen, Didier; Duong, Vu; Guo, Xin; Ferguson, M. I.; Stoica, Adrian

    2003-01-01

    This paper presents experimental results of fast intrinsic evolutionary design and evolutionary fault recovery of a 4-bit Digital to Analog Converter (DAC) using the JPL stand-alone board-level evolvable system (SABLES).

  10. The Effectiveness of Interacting with Scientific Animations in Chemistry Using Mobile Devices on Grade 12 Students' Spatial Ability and Scientific Reasoning Skills

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.

    2017-01-01

    The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The…

  11. Design and development of a novel strain gauge automatic pasting device for mini split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; He, Junfeng; Jiang, Jichang

    2018-03-01

    In a split Hopkinson pressure bar (SHPB) experiment, the pasting quality of strain gauges will directly affect the accuracy of the measurement results. The traditional method of pasting the strain gauges is done manually by the experimenter. In the process of pasting, it is easy to shift or twist the strain gauge, and the experimental results are greatly affected by human factors. In this paper, a novel type automatic pasting device for strain gauges is designed and developed, which can be used to accurately and rapidly paste the strain gauges. The paste quality is reliable, and it can guarantee the consistency of SHPB experimental measurement. We found that a clamping force of 74 N achieved a success rate of 97%, whilst ensuring good adhesion.

  12. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    PubMed Central

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  13. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  14. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage

    NASA Astrophysics Data System (ADS)

    Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang

    2016-09-01

    Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.

  15. Experimental demonstration of the anti-maser

    NASA Astrophysics Data System (ADS)

    Mazzocco, Anthony; Aviles, Michael; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael

    2012-10-01

    We denote by ``anti-maser'' a coherent perfect absorption (CPA) process in the radio frequency domain. We demonstrate several experimental realizations of the anti-maser suitable for an advanced undergraduate laboratory. Students designed, assembled and tested these devices, as well as the inexpensive laboratory setup and experimental protocol for displaying various CPA phenomenon.

  16. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue

    PubMed Central

    2011-01-01

    Background Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. Results The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. Conclusions The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance. PMID:21599963

  17. A cranial nail for fetal shunting.

    PubMed

    Saunders, R L; Simmons, G M; Edwards, W H; Crow, H C

    1985-01-01

    A small number of human fetal hydrocephalics have been treated by ventriculoamniotic shunts of silastic tubing. The Colorado device appears to be the one most commonly used. The original experimental device tested on a primate model resembled a hollow shingle nail. This was designed by Michedja and Hodgen, contained a spring valve, measured approximately 32 X 4 mm and was placed by hysterotomy. An attractive feature of this design was its fixation by impaction in the skull, preventing displacement by fetal activity, a reported disadvantage with the silastic devices. To our knowledge, no one has used this nail-like design and tailored it to transuterine percutaneous placement in a human case.

  18. Design, analysis, and testing of a flexure-based vibration-assisted polishing device

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan

    2018-05-01

    A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.

  19. Electro-mechanical probe positioning system for large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  20. Textbooks on tap: using electronic books housed in handheld devices in nursing clinical courses.

    PubMed

    Williams, Margaret G; Dittmer, Arlis

    2009-01-01

    Changing technology is creating new ways to approach nursing education and practice. Beginning in 2003, using a quasi-experimental design, this project introduced personal digital assistants (PDAs) as a clinical tool to five experimental and control groups of students and faculty. The handheld device, or PDA, was loaded with e-books for clinical practice. Differences in learning styles and preferences emerged during the different phases of the study. Students were quickly able to master the technology and use the device effectively, reporting that they liked the concise nature of the information obtained. No students expressed dissatisfaction or regret at being in the experimental group. Results and implications for clinical practice, education, and library resources are discussed.

  1. Design and Implementation of Pointer-Type Multi Meters Intelligent Recognition Device Based on ARM Platform

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu

    2018-01-01

    This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.

  2. Design optimization of beta- and photovoltaic conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.; Blum, A.; Fischer-Colbrie, E.

    1976-01-08

    This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less

  3. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    PubMed

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  4. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    PubMed Central

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu

    2018-01-01

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014

  5. Design and verification of a hybrid nonlinear MRE vibration absorber for controllable broadband performance

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.

    2017-09-01

    In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.

  6. An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Rizzo, R.

    2017-01-01

    In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.

  7. A magnetorheological fluid locking device

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan; Liu, Yanming

    2011-04-01

    A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.

  8. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations †

    PubMed Central

    Pidaparti, Ramana M.; Cartin, Charles; Su, Guoguang

    2017-01-01

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications. PMID:28952516

  9. Multilevel Resistance Programming in Conductive Bridge Resistive Memory

    NASA Astrophysics Data System (ADS)

    Mahalanabis, Debayan

    This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing.

  10. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  11. Simulations of DNA stretching by flow field in microchannels with complex geometry.

    PubMed

    Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen

    2014-01-01

    Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.

  12. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.

    PubMed

    Carswell, Dave; Hilton, Andy; Chan, Chris; McBride, Diane; Croft, Nick; Slone, Avril; Cross, Mark; Foster, Graham

    2013-08-01

    The objective of this study was to demonstrate the potential of Computational Fluid Dynamics (CFD) simulations in predicting the levels of haemolysis in ventricular assist devices (VADs). Three different prototypes of a radial flow VAD have been examined experimentally and computationally using CFD modelling to assess device haemolysis. Numerical computations of the flow field were computed using a CFD model developed with the use of the commercial software Ansys CFX 13 and a set of custom haemolysis analysis tools. Experimental values for the Normalised Index of Haemolysis (NIH) have been calculated as 0.020 g/100 L, 0.014 g/100 L and 0.0042 g/100 L for the three designs. Numerical analysis predicts an NIH of 0.021 g/100 L, 0.017 g/100 L and 0.0057 g/100 L, respectively. The actual differences between experimental and numerical results vary between 0.0012 and 0.003 g/100 L, with a variation of 5% for Pump 1 and slightly larger percentage differences for the other pumps. The work detailed herein demonstrates how CFD simulation and, more importantly, the numerical prediction of haemolysis may be used as an effective tool in order to help the designers of VADs manage the flow paths within pumps resulting in a less haemolytic device. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Flexible energy harvesting from hard piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  14. Modeling Self-Heating Effects in Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.

    2017-08-01

    Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.

  15. Abstractions for DNA circuit design.

    PubMed

    Lakin, Matthew R; Youssef, Simon; Cardelli, Luca; Phillips, Andrew

    2012-03-07

    DNA strand displacement techniques have been used to implement a broad range of information processing devices, from logic gates, to chemical reaction networks, to architectures for universal computation. Strand displacement techniques enable computational devices to be implemented in DNA without the need for additional components, allowing computation to be programmed solely in terms of nucleotide sequences. A major challenge in the design of strand displacement devices has been to enable rapid analysis of high-level designs while also supporting detailed simulations that include known forms of interference. Another challenge has been to design devices capable of sustaining precise reaction kinetics over long periods, without relying on complex experimental equipment to continually replenish depleted species over time. In this paper, we present a programming language for designing DNA strand displacement devices, which supports progressively increasing levels of molecular detail. The language allows device designs to be programmed using a common syntax and then analysed at varying levels of detail, with or without interference, without needing to modify the program. This allows a trade-off to be made between the level of molecular detail and the computational cost of analysis. We use the language to design a buffered architecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially unbounded period. We test the effectiveness of buffered gates to support long-running computation by designing a DNA strand displacement system capable of sustained oscillations.

  16. A delivery device for presentation of tactile stimuli during functional magnetic resonance imaging.

    PubMed

    Dykes, Robert W; Miqueé, Aline; Xerri, Christian; Zennou-Azogui, Yoh'i; Rainville, Constant; Dumoulin, André; Marineau, Daniel

    2007-01-30

    We describe a novel stimulus delivery system designed to present tactile stimuli to a subject in the tunnel of a magnetic resonance imaging (MRI) system. Using energy from an air-driven piston to turn a wheel, the device advances a conveyor belt with a pre-determined sequence of stimuli that differ in their spatial features into the tunnel of the MRI. The positioning of one or several stimulus objects in a window near the subject's hand is controlled by a photoelectric device that detects periodic openings in the conveyor belt. Using this electric signal to position each presentation avoids cumulative positioning errors and provides a signal related to the progression of the experiment. We used a series of shapes that differed in their spatial features but the device could carry stimuli with a diversity of shapes and textures. This flexibility allows the experimenter to design a wide variety of psychophysical experiments in the haptic world and possibly to compare and contrast these stimuli with the cognitive treatment of similar stimuli delivered to the other senses. Appropriate experimental design allows separation of motor, sensory and memory storage phases of mental processes.

  17. Propellant injection systems and processes

    NASA Technical Reports Server (NTRS)

    Ito, Jackson I.

    1995-01-01

    The previous 'Art of Injector Design' is maturing and merging with the more systematic 'Science of Combustion Device Analysis.' This technology can be based upon observation, correlation, experimentation and ultimately analytical modeling based upon basic engineering principles. This methodology is more systematic and far superior to the historical injector design process of 'Trial and Error' or blindly 'Copying Past Successes.' The benefit of such an approach is to be able to rank candidate design concepts for relative probability of success or technical risk in all the important combustion device design requirements and combustion process development risk categories before committing to an engine development program. Even if a single analytical design concept cannot be developed to predict satisfying all requirements simultaneously, a series of risk mitigation key enabling technologies can be identified for early resolution. Lower cost subscale or laboratory experimentation to demonstrate proof of principle, critical instrumentation requirements, and design discriminating test plans can be developed based on the physical insight provided by these analyses.

  18. Analysis and optimization of Love wave liquid sensors.

    PubMed

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  19. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    PubMed

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  20. Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device

    NASA Astrophysics Data System (ADS)

    Chin, Byung Doo; Duan, Lian; Kim, Moo-Hyun; Lee, Seong Taek; Chung, Ho Kyoon

    2004-11-01

    The interface between layered conjugated polymer and electrode is a most important factor to improve the performance and lifetime of polymeric light-emitting devices (PLEDs). In this work, a blue PLED with improved stability was achieved by the combination of optimized cathode structure as well as thermal treatment of light-emitting polymer (LEP). Experimental evidence of the initial luminance "settling in" stage was found to be dependent upon the cathode structure, while the long-term slope of luminance as a function of elapsed time is governed by the annealing conditions. Our study revealed the importance of extrinsic design of device for the improvement of PLED stability. Experimental data shows that a blue PLED annealed at 170°C and 6nm LiF at LiF /Ca/Al cathode retained the best lifetime, which can be explained by the improved polymer-metal interface and LEP's charge mobility.

  1. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  2. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  3. Computational Silicon Nanophotonic Design

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Photonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 x 3 mum2, an integrated polarization beamsplitter with footprint 2.4 x 2.4 mum2, and a waveguide bend with effective bend radius as small as 0.65 mum. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as lambda/2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm.

  4. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.

  5. Experimental and Numerical Study on Supersonic Ejectors Working with R-1234ze(E)

    NASA Astrophysics Data System (ADS)

    Kracik, Jan; Dvorak, Vaclav; Nguyen Van, Vu; Smierciew, Kamil

    2018-06-01

    These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.

  6. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. 47 CFR 5.403 - Frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Frequencies. 5.403 Section 5.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... in § 15.205(a) of this chapter if the device under test is designed to comply with all applicable...

  8. 47 CFR 5.403 - Frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Frequencies. 5.403 Section 5.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Medical Testing Experimental... in § 15.205(a) of this chapter if the device under test is designed to comply with all applicable...

  9. 2011 Nanoelectronic Devices for Defense & Security (NANO-DDS) Conference Held in Brooklyn, New York on August 29-September 1, 2011. Technical Program and Abstract Digest

    DTIC Science & Technology

    2011-08-01

    challenges in new design methodologies . Particular examples involve an in-circuit functional timing testing of systems with millions of cores. I...TECHNIQUES Chair: Dwight Woolard, U.S. Army Research Office (ARO) 8:40-9:05 EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY...Detection Based Techniques EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY E. R. Brown, M.L. Norton, M. Rahman, W. Zhang Wright

  10. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    DTIC Science & Technology

    2017-06-01

    design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. The redistributed electric field along the channel length direction can... design can result in more uniform electron density and electron velocity distributions compared to a homojunction device. This uniform electron... design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. 14 Approved for public release, distribution is unlimited. 0 5 10 15 20

  11. Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR.

    PubMed

    Kreutz, Jason E; Munson, Todd; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F

    2011-11-01

    This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR. MV digital PCR minimizes the total number of wells required for "digital" (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12,000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1,000,000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA.

  12. A computational workflow for designing silicon donor qubits

    DOE PAGES

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less

  13. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  14. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.

    PubMed

    Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-10-01

    For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.

  15. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-01-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2–3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells. PMID:27539213

  16. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes.

    PubMed

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P; Khan, M Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-19

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  17. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    NASA Astrophysics Data System (ADS)

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  18. Consideration of velocity saturation in the design of GaAs varactor diodes

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Peatman, William C. B.; Zimmermann, Ruediger; Zimmermann, Ralph

    1993-01-01

    The design of GaAs Schottky barrier varactor diodes is reconsidered in light of the recent discovery of velocity saturation effects in these devices. Experimental data is presented which confirms that improved multiplier performance can be achieved.

  19. A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications

    NASA Astrophysics Data System (ADS)

    Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.

    2009-03-01

    Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.

  20. Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak

    NASA Astrophysics Data System (ADS)

    Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun

    2018-05-01

    We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.

  1. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  2. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers

    PubMed Central

    Ansari, M H; Karami, M Amin

    2018-01-01

    This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm3 EH with18.4 gr tip mass generates more than16 μW of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate. PMID:29674807

  3. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.

    PubMed

    Ansari, M H; Karami, M Amin

    2017-06-01

    This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm 3 EH with18.4 gr tip mass generates more than16 μ W of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.

  4. 47 CFR 5.602 - Market trials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Product Development and..., experimental radio licenses granted for the purpose of market trials pursuant to § 5.3(k) are subject to the... authorized under this rule section, including those devices that are designed to operate under parts 15, 18...

  5. 47 CFR 5.602 - Market trials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Product Development and..., experimental radio licenses granted for the purpose of market trials pursuant to § 5.3(k) are subject to the... authorized under this rule section, including those devices that are designed to operate under parts 15, 18...

  6. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    PubMed Central

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  7. Evidence of type-II band alignment in III-nitride semiconductors: experimental and theoretical investigation for In 0.17 Al 0.83 N/GaN heterostructures.

    PubMed

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-10-06

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In 0.17 Al 0.83 N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with E(AlInN(VBM) being above E(GaN)(VBM)). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering.

  8. A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level.

    PubMed

    Lee, Seung Yeob; Yang, Sung

    2018-04-25

    Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.

  9. Design rules for quantum imaging devices: experimental progress using CMOS single-photon detectors

    NASA Astrophysics Data System (ADS)

    Charbon, Edoardo; Gunther, Neil J.; Boiko, Dmitri L.; Beretta, Giordano B.

    2006-08-01

    We continue our previous program1 where we introduced a set of quantum-based design rules directed at quantum engineers who design single-photon quantum communications and quantum imaging devices. Here, we report on experimental progress using SPAD (single photon avalanche diode) arrays of our design and fabricated in CMOS (complementary metal oxide semiconductor) technology. Emerging high-resolution imaging techniques based on SPAD arrays have proven useful in a variety of disciplines including bio-fluorescence microscopy and 3D vision systems. They have also been particularly successful for intra-chip optical communications implemented entirely in CMOS technology. More importantly for our purposes, a very low dark count allows SPADs to detect rare photon events with a high dynamic range and high signal-to-noise ratio. Our CMOS SPADs support multi-channel detection of photon arrivals with picosecond accuracy, several million times per second, due to a very short detection cycle. The tiny chip area means they are suitable for highly miniaturized quantum imaging devices and that is how we employ them in this paper. Our quantum path integral analysis of the Young-Afshar-Wheeler interferometer showed that Bohr's complementarity principle was not violated due the previously overlooked effect of photon bifurcation within the lens--a phenomenon consistent with our quantum design rules--which accounts for the loss of which-path information in the presence of interference. In this paper, we report on our progress toward the construction of quantitative design rules as well as some proposed tests for quantum imaging devices using entangled photon sources with our SPAD imager.

  10. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    NASA Astrophysics Data System (ADS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  11. Fracture Probability of MEMS Optical Devices for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon

    1999-01-01

    A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.

  12. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must...) Design inadequacies; or (vi) Procedural deficiencies. (2) Determine the likelihood of occurrence and... include one or more of the following: (i) Designing for minimum risk, (ii) Incorporating safety devices...

  13. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must...) Design inadequacies; or (vi) Procedural deficiencies. (2) Determine the likelihood of occurrence and... include one or more of the following: (i) Designing for minimum risk, (ii) Incorporating safety devices...

  14. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must...) Design inadequacies; or (vi) Procedural deficiencies. (2) Determine the likelihood of occurrence and... include one or more of the following: (i) Designing for minimum risk, (ii) Incorporating safety devices...

  15. Hand controller study of force and control mode

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1992-01-01

    The objectives are to compare and evaluate the utility and effectiveness of various input control devices, e.g., hand controllers, with respect to the relative importance of force and operation control mode (rate or position) for Space Station Freedom (SSF) related tasks. The topics are presented in viewgraph form and include the: Intelligent Research Systems Lab (ISRL) experimental design; Telerobotic Systems Research Laboratory (TSRL) final experimental design; and factor analysis summary of results.

  16. Design and demonstration of an acoustic right-angle bend.

    PubMed

    Lu, Wenjia; Jia, Han; Bi, Yafeng; Yang, Yuzhen; Yang, Jun

    2017-07-01

    In this paper, a broadband acoustic right-angle bend device in air is designed, fabricated and experimentally characterized. Perforated panels with various hole-sizes are used to construct the bend structure. Both the simulated and experimental results verify that the acoustic beam can be rotated effectively through the acoustic bend in a wide frequency range. This model may have potential applications in some areas such as sound absorption and acoustic detection in elbow pipes.

  17. Experimental device for measuring the dynamic properties of diaphragm motors

    NASA Astrophysics Data System (ADS)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  18. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  19. Modeling of defect-tolerant thin multi-junction solar cells for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2012-02-01

    Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.

  20. 47 CFR 2.805 - Operation of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of performance and determination of customer acceptability, during developmental, design, or pre... performance and determination of customer acceptability, during developmental, design, or pre-production... authority of an experimental radio service authorization issued under part 5 of this chapter. (c) Operation...

  1. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed. This cellular system implements entirely distributed control, and achieves performance levels unattainable with an equivalent single converter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  2. Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin

    2016-12-01

    We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantummore » efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.« less

  3. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    NASA Astrophysics Data System (ADS)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  4. Genetically Engineered Microelectronic Infrared Filters

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Klimeck, Gerhard

    1998-01-01

    A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.

  5. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.

    PubMed

    Tucker, Michael R; Shirota, Camila; Lambercy, Olivier; Sulzer, James S; Gassert, Roger

    2017-10-01

    An improved understanding of mechanical impedance modulation in human joints would provide insights about the neuromechanics underlying functional movements. Experimental estimation of impedance requires specialized tools with highly reproducible perturbation dynamics and reliable measurement capabilities. This paper presents the design and mechanical characterization of the ETH Knee Perturbator: an actuated exoskeleton for perturbing the knee during gait. A novel wearable perturbation device was developed based on specific experimental objectives. Bench-top tests validated the device's torque limiting capability and characterized the time delays of the on-board clutch. Further tests demonstrated the device's ability to perform system identification on passive loads with static initial conditions. Finally, the ability of the device to consistently perturb human gait was evaluated through a pilot study on three unimpaired subjects. The ETH Knee Perturbator is capable of identifying mass-spring systems within 15% accuracy, accounting for over 95% of the variance in the observed torque in 10 out of 16 cases. Five-degree extension and flexion perturbations were executed on human subjects with an onset timing precision of 2.52% of swing phase duration and a rise time of 36.5 ms. The ETH Knee Perturbator can deliver safe, precisely timed, and controlled perturbations, which is a prerequisite for the estimation of knee joint impedance during gait. Tools such as this can enhance models of neuromuscular control, which may improve rehabilitative outcomes following impairments affecting gait and advance the design and control of assistive devices.

  6. An MRF-based device for the torque stiffness control of all movable vertical tails

    NASA Astrophysics Data System (ADS)

    Ameduri, Salvatore; Concilio, Antonio; Gianvito, Antonio; Lemme, Manuel

    2005-05-01

    Aerodynamic control surfaces efficiency is among the major parameters defining the performance of generic aircraft and is strongly affected by geometric and stiffness characteristics. A target of the '3AS' European Project is to estimate the eventual benefits coming from the adaptive control of the torque rigidity of the vertical tail of the EuRAM wind tunnel model. The specific role of CIRA inside the Project is the design of a device based on the "Smart Structures and Materials" concept, able to produce required stiffness variations. Numerical and experimental investigations pointed out that wide excursions of the tail torque rigidity may assure higher efficiency, for several flight regimes. Stiffness variations may be obtained through both classical mechanic-hydraulic and smart systems. In this case, the attainable weight and reliability level may be the significant parameters to drive the choice. For this reason, CIRA focused its efforts also on the design of devices without heavy mechanical parts. The device described in this work is schematically constituted by linear springs linked in a suitably way to the tail shaft. Required stiffness variations are achieved by selectively locking one or more springs, through a hydraulic system, MRF-based. An optimisation process was performed to find the spring features maximising the achievable stiffness range. Then, the hydraulic MRF design was dealt with. Finally, basing on numerical predictions, a prototype was manufactured and an experimental campaign was performed to estimate the device static and dynamic behaviour.

  7. Optimized optical devices for edge-coupling-enabled silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Png, Ching Eng; Ang, Thomas Y. L.; Ong, Jun Rong; Lim, Soon Thor; Sahin, Ezgi; Chen, G. F. R.; Tan, D. T. H.; Guo, Tina X.; Wang, Hong

    2018-02-01

    We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (>= 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio <= 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80+/-0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of <= 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.

  8. Design and Experimental Study on Spinning Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Xue, Heng; Jiang, Chunlan; Wang, Zaicheng

    The study on spinning solid rocket motor (SRM) which used as power plant of twice throwing structure of aerial submunition was introduced. This kind of SRM which with the structure of tangential multi-nozzle consists of a combustion chamber, propellant charge, 4 tangential nozzles, ignition device, etc. Grain design, structure design and prediction of interior ballistic performance were described, and problem which need mainly considered in design were analyzed comprehensively. Finally, in order to research working performance of the SRM, measure pressure-time curve and its speed, static test and dynamic test were conducted respectively. And then calculated values and experimental data were compared and analyzed. The results indicate that the designed motor operates normally, and the stable performance of interior ballistic meet demands. And experimental results have the guidance meaning for the pre-research design of SRM.

  9. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    NASA Astrophysics Data System (ADS)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  10. Establishment of a new pull-out strength testing method to quantify early osseointegration-An experimental pilot study.

    PubMed

    Nonhoff, J; Moest, T; Schmitt, Christian Martin; Weisel, T; Bauer, S; Schlegel, K A

    2015-12-01

    The animal study aims to evaluate a new experimental model for measuring sole the influence of the surface characteristics independent from implant macro-design on the level of osseointegration by registering the pull-out strength needed for removal of experimental devices with different surfaces from artificial defects. Seventy-two test bodies (36 with the FRIADENT(®) plus surface, 36 with the P15/HAp biofunctionalized surface) were inserted in six adult domestic pigs with artificial calvarial defects. The experimental devices were designed to fit in the defects leaving a gap between the test body and the local bone. After 21 days of healing, the animals were sacrificed and the test bodies were pulled out with a standardised reproducible pull-out device measuring the pull-out strength. The pull-out strength for both groups was compared. Twenty-one days after insertion a mean force of 412 ± 142 N for the P15/HAp group and 183 ± 105 N for the FRIADENT(®) plus group was measured for the removal of the specimens from the calvarial bone. The difference between the groups was statistically significant (p < 0.0001). The experimental set-up seems to be a suitable method when measuring the impact of implant surfaces on the early stage of osseointegration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Design of a fully compliant bistable micromechanism for switching devices

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-An; Tsay, Jinni; Sung, Cheng-Kuo

    2001-11-01

    This paper proposes a design of a bistable micromechanism for the application of switching devices. The topology of a fully compliant four-bar mechanism is adopted herein. The central mass of the mechanism is employed as a carriage to carry switching components, such as mirror, electrical contact, etc. The equations that predict the existence of bistable states, the extreme positions of the motion range and the maximum stress states of members were derived. MUMPs provided by Cronos Integrated Microsystems fabricated the proposed micromechanisms for the purpose of verifying the theoretical predictions. Finally, an experimental rig was established. The bistable mechanisms were switched either by the probe or actuators to push the central mass. The experimental results demonstrated that the motions observed approximately met the predicted values.

  12. Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators

    ERIC Educational Resources Information Center

    Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres

    2018-01-01

    In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…

  13. Material and Phonon Engineering for Next Generation Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra-wide bandwidth (˜10%) was achieved by implementing slanted finger transducers (SFIT) in thin film AIN. The impulse response and coupling of modes (COM) models commonly used for surface acoustic wave (SAW) devices were developed to design the operating frequency and bandwidth of the LWTs. These techniques enabled access to fast frequency solutions (impulse response method) and good pass-band ripple estimation (COM) for any piezoelectric Lamb-wave based device. The conventional and IABG unit cell designs were explored for the making of cavity resonators. A PnC cavity made with conventional design exhibits a Q of 675 at 665 MHz. Despite the low Q, its value is very high when the volume of the cavity is taken into account ( Q per unit volume of 3.1017/m3). In order to understand the limited value of Q a detailed finite element analysis is performed to unveil its dependence on the specific design of the transducer. The capabilities of the X-shaped PnCs were harvested for synthesizing a method to suppress the sidelobe response of an AIN Lamb wave (SFIT) delay line. 10 dB of sidelobe magnitude reduction was attained while leaving the pass-band unaltered. Although at a very preliminary stage, the theoretical and experimental work on AIN PnC has demonstrated that new acoustic capabilities are enabled by these metamaterials. Future electroacoustic devices that perform frequency control functions in a compact and low loss fashion can now be envisioned.

  14. Design of memristive interface between electronic neurons

    NASA Astrophysics Data System (ADS)

    Gerasimova, S. A.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Guseinov, D. V.; Lebedeva, A. V.; Gorshkov, O. N.; Kazantsev, V. B.

    2018-05-01

    Nonlinear dynamics of two electronic oscillators coupled via a memristive device has been investigated. Such model mimics the interaction between synaptically coupled brain neurons with the memristive device imitating neuron axon. The synaptic connection is provided by the adaptive behavior of memristive device that changes its resistance under the action of spike-like activity. Mathematical model of such a memristive interface has been developed to describe and predict the experimentally observed regularities of forced synchronization of neuron-like oscillators.

  15. Summary Report of the Summer Conference of the DARPA-Materials Research Council Held in La Jolla, California on 6-30 July 1987

    DTIC Science & Technology

    1987-07-01

    that any array detector have very broad dynamic range. iv.) Analytical methods used in extracting structural data from experimental observations from...important influence on magnet design and on specialized magnetic devices ( SQUID devices) and forms the basis for promising electronic devices ’Josephson...printable inks using 123 powders. (2) Control of interfacial reactions between the superconductors and the dielectric. (3) Development of suitable

  16. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  17. Optimization of a high-pressure pore water extraction device.

    PubMed

    Cyr, Martin; Daidié, Alain

    2007-02-01

    High-pressure squeezing is a technique used for the extraction of the pore water of porous materials such as sediments, soils, rocks, and concrete. The efficiency of extraction depends on the maximum pressures on the materials. This article presents the design of a high-pressure device reaching an axial pressure of 1000 MPa which has been developed to improve the efficiency of extraction. The increase in squeezing pressure implies high stresses inside the chamber, so specialized expertise was required to design a safe, functional device that could withstand pressures significantly higher than common laboratory equipment. The design includes finite element calculations, selection of appropriate materials, and descriptive construction details for the apparatus. It also includes an experimental study of the performance of the apparatus in terms of extraction efficiency.

  18. Sensitivity Challenge of Steep Transistors

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Chen, ChinYi; Klimeck, Gerhard; Rahman, Rajib

    2018-04-01

    Steep transistors are crucial in lowering power consumption of the integrated circuits. However, the difficulties in achieving steepness beyond the Boltzmann limit experimentally have hindered the fundamental challenges in application of these devices in integrated circuits. From a sensitivity perspective, an ideal switch should have a high sensitivity to the gate voltage and lower sensitivity to the device design parameters like oxide and body thicknesses. In this work, conventional tunnel-FET (TFET) and negative capacitance FET are shown to suffer from high sensitivity to device design parameters using full-band atomistic quantum transport simulations and analytical analysis. Although Dielectric Engineered (DE-) TFETs based on 2D materials show smaller sensitivity compared with the conventional TFETs, they have leakage issue. To mitigate this challenge, a novel DE-TFET design has been proposed and studied.

  19. A comparative analysis of speed profile models for wrist pointing movements.

    PubMed

    Vaisman, Lev; Dipietro, Laura; Krebs, Hermano Igo

    2013-09-01

    Following two decades of design and clinical research on robot-mediated therapy for the shoulder and elbow, therapeutic robotic devices for other joints are being proposed: several research groups including ours have designed robots for the wrist, either to be used as stand-alone devices or in conjunction with shoulder and elbow devices. However, in contrast with robots for the shoulder and elbow which were able to take advantage of descriptive kinematic models developed in neuroscience for the past 30 years, design of wrist robots controllers cannot rely on similar prior art: wrist movement kinematics has been largely unexplored. This study aimed at examining speed profiles of fast, visually evoked, visually guided, target-directed human wrist pointing movements. One thousand three-hundred ninety-eight (1398) trials were recorded from seven unimpaired subjects who performed center-out flexion/extension and abduction/adduction wrist movements and fitted with 19 models previously proposed for describing reaching speed profiles. A nonlinear, least squares optimization procedure extracted parameters' sets that minimized error between experimental and reconstructed data. Models' performances were compared based on their ability to reconstruct experimental data. Results suggest that the support-bounded lognormal is the best model for speed profiles of fast, wrist pointing movements. Applications include design of control algorithms for therapeutic wrist robots and quantitative metrics of motor recovery.

  20. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.

    PubMed

    Consolo, Filippo; Fiore, Gianfranco B; Pelosi, Alessandra; Reggiani, Stefano; Redaelli, Alberto

    2015-06-01

    We developed a numerical model, based on multi-physics computational fluid dynamics (CFD) simulations, to assist the design process of a plastic hollow-fiber bundle blood heat exchanger (BHE) integrated within the INSPIRE(TM), a blood oxygenator (OXY) for cardiopulmonary by-pass procedures, recently released by Sorin Group Italia. In a comparative study, we analyzed five different geometrical design solutions of the BHE module. Quantitative geometrical-dependent parameters providing a comprehensive evaluation of both the hemo- and thermo-dynamics performance of the device were extracted to identify the best-performing prototypical solution. A convenient design configuration was identified, characterized by (i) a uniform blood flow pattern within the fiber bundle, preventing blood flow shunting and the onset of stagnation/recirculation areas and/or high velocity pathways, (ii) an enhanced blood heating efficiency, and (iii) a reduced blood pressure drop. The selected design configuration was then prototyped and tested to experimentally characterize the device performance. Experimental results confirmed numerical predictions, proving the effectiveness of CFD modeling as a reliable tool for in silico identification of suitable working conditions of blood handling medical devices. Notably, the numerical approach limited the need for extensive prototyping, thus reducing the corresponding machinery costs and time-to-market. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-12-01

    There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

  2. Temperature Effects in Varactors and Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Mehdi, Imran

    2001-01-01

    Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.

  3. The cesiator - A device for cesium vapor control and impurity purge

    NASA Astrophysics Data System (ADS)

    Rasor, N. S.; Desplat, J.-L.

    A new type of liquid cesium reservoir that maintains a temperature-independent cesium pressure, continuously recirculates cesium vapor through the TFE (thermionic fuel element), and purges it of impurities is discussed. This device, the cesiator, is based on well-established gas-buffered heat pipe principles. The cesiator offers new TFE design options for fission product/impurity handling that eliminate the need for an intercell insulator seal and associated failure modes. Cesiator performance requirements are estimated based on data for expected release of fission products and their effect on TFE performance. The effect of design parameters on cesiator performance is described. Experimentation with an ethanol-metal mock-up revealed an unexpected but desirable mode of operation that autoregulates the pressure drop and flow of vapor in the external circuit and that has been incorporated in the reference design for phase II development. Experimental techniques for measuring the local temperature, pressure, and composition in a condensing vapor were successfully developed. A reference design for a TFE cesiator was defined for prototype design, development, and test.

  4. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons.

    PubMed

    Baron, Alexandre; Devaux, Eloïse; Rodier, Jean-Claude; Hugonin, Jean-Paul; Rousseau, Emmanuel; Genet, Cyriaque; Ebbesen, Thomas W; Lalanne, Philippe

    2011-10-12

    Controlling the launching efficiencies and the directionality of surface plasmon polaritons (SPPs) and their decoupling to freely propagating light is a major goal for the development of plasmonic devices and systems. Here, we report on the design and experimental observation of a highly efficient unidirectional surface plasmon launcher composed of eleven subwavelength grooves, each with a distinct depth and width. Our observations show that, under normal illumination by a focused Gaussian beam, unidirectional SPP launching with an efficiency of at least 52% is achieved experimentally with a compact device of total length smaller than 8 μm. Reciprocally, we report that the same device can efficiently convert SPPs into a highly directive light beam emanating perpendicularly to the sample.

  5. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  6. Energy harvesting: an integrated view of materials, devices and applications.

    PubMed

    Radousky, H B; Liang, H

    2012-12-21

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  7. Energy harvesting: an integrated view of materials, devices and applications

    NASA Astrophysics Data System (ADS)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  8. Inverse design engineering of all-silicon polarization beam splitters

    NASA Astrophysics Data System (ADS)

    Frandsen, Lars H.; Sigmund, Ole

    2016-03-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.

  9. Reliable Location-Based Services from Radio Navigation Systems

    PubMed Central

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  10. Reliable location-based services from radio navigation systems.

    PubMed

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C's high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag--with a sensitivity of about 20 meters--that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim.

  11. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  12. Transformational Optics

    DTIC Science & Technology

    2016-12-19

    32λ (angular divergence of 1.8°) which is quasi -monochromatic with a full width at half maximum of 70 nm. These experimental results show good...devices; plasmonic TO structures; and tapered waveguide analog TO devices. Of particular relevance is the development of quasi - conformal (QC...the development of quasi -conformal (QC) optimization techniques that lead to more realizable TO designs, appropriate for the shorter wavelengths of

  13. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  14. Design optimization of a brush turbine with a cleaner/water based solution

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1994-01-01

    Recently, a fluid turbine which has a brush attached to it has been designed and tested with water as fluid. The purpose of the turbine-brush is to clean up fouling in a tube. The Montreal Protocol prohibits the use of CFC products from refrigeration industry or from industry in general as a cleanser in 1996. Alternatives for the cleansers, devices or a combination of alternative devices with a cleanser should be found. One of the methods is to develop a device which cleans fouling with a cleaning medium. In this paper, we describe a turbine connected with a brush. However, the turbine with the brush should be simple and easy to install. This device is a combined small liquid turbine with a brush. The turbine is activated by the liquid flowing through the tube. Then the turbine turns the brush cleaning fouling along the tube. Based on the energy conservation and the Bernoulli equation along with an empirical relationship of drag force obtained from an experimental apparatus, a relationship of the rotational speed, the number of blades, and geometric variables of the turbine-brush was obtained. The predicted rotational speeds were compared with the experimental observations. Further work was recommended for improvements.

  15. Computational simulation of biomolecules transport with multi-physics near microchannel surface for development of biomolecules-detection devices.

    PubMed

    Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming

    2017-01-01

    The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.

  16. A micromachined device describing over a hundred orders of parametric resonance

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.

    2018-04-01

    Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.

  17. Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

    PubMed Central

    Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.

    2017-01-01

    Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949

  18. On a Self-Tuning Impact Vibration Damper for Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Bagley, Ronald L.; Mehmed, Oral; Choi, Ben (Technical Monitor)

    2000-01-01

    A self-tuning impact damper is investigated analytically and experimentally as a device to inhibit vibration and increase the fatigue life of rotating components in turbomachinery. High centrifugal loads in rotors can inactivate traditional impact dampers because of friction or misalignment of the damper in the g-field. Giving an impact damper characteristics of an acceleration tuned-mass damper enables the resulting device to maintain damper mass motion and effectiveness during high-g loading. Experimental results presented here verify that this self-tuning impact damper can be designed to follow an engine order line. damping rotor component resonance crossings.

  19. New directions in photonics simulation: Lanczos recursion and finite-difference time-domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.

    1992-06-01

    Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - inmore » real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.« less

  20. Experimental evaluation of a miniature MR device for a wide range of human perceivable haptic sensations

    NASA Astrophysics Data System (ADS)

    Yang, Tae-Heon; Koo, Jeong-Hoi

    2017-12-01

    Humans can experience a realistic and vivid haptic sensations by the sense of touch. In order to have a fully immersive haptic experience, both kinaesthetic and vibrotactile information must be presented to human users. Currently, little haptic research has been performed on small haptic actuators that can covey both vibrotactile feedback based on the frequency of vibrations up to the human-perceivable limit and multiple levels of kinaesthetic feedback rapidly. Therefore, this study intends to design a miniature haptic device based on MR fluid and experimentally evaluate its ability to convey vibrotactile feedback up to 300 Hz along with kinaesthetic feedback. After constructing a prototype device, a series of testing was performed to evaluate its performance of the prototype using an experimental setup, consisting of a precision dynamic mechanical analyzer and an accelerometer. The kinaesthetic testing results show that the prototype device can provide the force rate up to 89% at 5 V (360 mA), which can be discretized into multiple levels of ‘just noticeable difference’ force rate, indicating that the device can convey a wide range of kinaesthetic sensations. To evaluate the high frequency vibrotactile feedback performance of the device, its acceleration responses were measured and processed using the FFT analysis. The results indicate that the device can convey high frequency vibrotactile sensations up to 300 Hz with the sufficiently large intensity of accelerations that human can feel.

  1. A mechanical rotator for neutron scattering measurements

    DOE PAGES

    Thaler, A.; Northen, E.; Aczel, A. A.; ...

    2016-12-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses andmore » future extension possibilities.« less

  2. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Efthymiou, L.; Longobardi, G.; Camuso, G.; Chien, T.; Chen, M.; Udrea, F.

    2017-03-01

    In this study, an investigation is undertaken to determine the effect of gate design parameters on the on-state characteristics (threshold voltage and gate turn-on voltage) of pGaN/AlGaN/GaN high electron mobility transistors (HEMTs). Design parameters considered are pGaN doping and gate metal work function. The analysis considers the effects of variations on these parameters using a TCAD model matched with experimental results. A better understanding of the underlying physics governing the operation of these devices is achieved with a view to enable better optimization of such gate designs.

  3. Micromachined modulator arrays for use in free-space optical communication systems

    NASA Astrophysics Data System (ADS)

    Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.

    2004-12-01

    A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.

  4. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola

    2016-05-01

    Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

  5. SHORT COMMUNICATION: Time measurement device with four femtosecond stability

    NASA Astrophysics Data System (ADS)

    Panek, Petr; Prochazka, Ivan; Kodet, Jan

    2010-10-01

    We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.

  6. Survey of hydrogen monitoring devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, W.

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less

  7. Characterization of a rotary hybrid multimodal energy harvester

    NASA Astrophysics Data System (ADS)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  8. Modeling and Implementation of HfO2-based Ferroelectric Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Pringle, Spencer Allen

    HfO2-based ferroelectric tunnel junctions (FTJs) represent a unique opportunity as both a next-generation digital non-volatile memory and as synapse devices in braininspired logic systems, owing to their higher reliability compared to filamentary resistive random-access memory (ReRAM) and higher speed and lower power consumption compared to competing devices, including phase-change memory (PCM) and state-of-the-art FTJ. Ferroelectrics are often easier to deposit and have simpler material structure than films for magnetic tunnel junctions (MTJs). Ferroelectric HfO2 also enables complementary metal-oxide-semiconductor (CMOS) compatibility, since lead zirconate titanate (PZT) and BaTiO3-based FTJs often are not. No other groups have yet demonstrated a HfO2-based FTJ (to best of the author's knowledge) or applied it to a suitable system. For such devices to be useful, system designers require models based on both theoretical physical analysis and experimental results of fabricated devices in order to confidently design control systems. Both the CMOS circuitry and FTJs must then be designed in layout and fabricated on the same die. This work includes modeling of proposed device structures using a custom python script, which calculates theoretical potential barrier heights as a function of material properties and corresponding current densities (ranging from 8x103 to 3x10-2 A/cm 2 with RHRS/RLRS ranging from 5x105 to 6, depending on ferroelectric thickness). These equations were then combined with polynomial fits of experimental timing data and implemented in a Verilog-A behavioral analog model in Cadence Virtuoso. The author proposes tristate CMOS control systems, and circuits, for implementation of FTJ devices as digital memory and presents simulated performance. Finally, a process flow for fabrication of FTJ devices with CMOS is presented. This work has therefore enabled the fabrication of FTJ devices at RIT and the continued investigation of them as applied to any appropriate systems.

  9. Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Fathololoumi, S.; Dupont, E.; Wasilewski, Z. R.; Chan, C. W. I.; Razavipour, S. G.; Laframboise, S. R.; Huang, Shengxi; Hu, Q.; Ban, D.; Liu, H. C.

    2013-03-01

    We experimentally investigated the effect of oscillator strength (radiative transition diagonality) on the performance of resonant phonon-based terahertz quantum cascade lasers that have been optimized using a simplified density matrix formalism. Our results show that the maximum lasing temperature (Tmax) is roughly independent of laser transition diagonality within the lasing frequency range of the devices under test (3.2-3.7 THz) when cavity loss is kept low. Furthermore, the threshold current can be lowered by employing more diagonal transition designs, which can effectively suppress parasitic leakage caused by intermediate resonance between the injection and the downstream extraction levels. Nevertheless, the current carrying capacity through the designed lasing channel in more diagonal designs may sacrifice even more, leading to electrical instability and, potentially, complete inhibition of the device's lasing operation. We propose a hypothesis based on electric-field domain formation and competition/switching of different current-carrying channels to explain observed electrical instability in devices with lower oscillator strengths. The study indicates that not only should designers maximize Tmax during device optimization but also they should always consider the risk of electrical instability in device operation.

  10. Nano Peltier cooling device from geometric effects using a single graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Yao, Dao-Xin; Carlson, Erica

    2012-02-01

    Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted cooling device. Using theoretical calculations and experimental inputs, we predict that the cooling power of such a device can approach 1kW/cm^2, on par with the best known techniques using standard lithography methods. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

  11. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibrationmore » characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.« less

  12. 30 cm Engineering Model thruster design and qualification tests

    NASA Technical Reports Server (NTRS)

    Schnelker, D. E.; Collett, C. R.

    1975-01-01

    Development of a 30-cm mercury electron bombardment Engineering Model ion thruster has successfully brought the thruster from the status of a laboratory experimental device to a point approaching flight readiness. This paper describes the development progress of the Engineering Model (EM) thruster in four areas: (1) design features and fabrication approaches, (2) performance verification and thruster to thruster variations, (3) structural integrity, and (4) interface definition. The design of major subassemblies, including the cathode-isolator-vaporizer (CIV), main isolator-vaporizer (MIV), neutralizer isolator-vaporizer (NIV), ion optical system, and discharge chamber/outer housing is discussed along with experimental results.

  13. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.

    PubMed

    Bharadwaj, Kartik; Sugar, Thomas G; Koeneman, James B; Koeneman, Edward J

    2005-11-01

    Repetitive task training is an effective form of rehabilitation for people suffering from debilitating injuries of stroke. We present the design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait. Structurally based on a tripod mechanism, the device is a parallel robot that incorporates two pneumatically powered, double-acting, compliant, spring over muscle actuators as actuation links which move the ankle in dorsiflex ion/plantarflexion and inversion/eversion. A unique feature in the tripod design is that the human anatomy is part of the robot, the first fixed link being the patient's leg. The kinematics and workspace of the tripod device have been analyzed determining its range of motion. Experimental gait data from an able-bodied person wearing the working RGT prototype are presented.

  14. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    NASA Astrophysics Data System (ADS)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  16. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  17. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less

  18. Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W

    NASA Astrophysics Data System (ADS)

    Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team

    2017-10-01

    Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.

  19. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    NASA Astrophysics Data System (ADS)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  20. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  1. Feature Selection and Classifier Development for Radio Frequency Device Identification

    DTIC Science & Technology

    2015-12-01

    adds important background knowledge for this research . 41 Four leading RF-based device identification methods have been proposed: Radio...appropriate level of dimensionality. Both qualitative and quantitative DRA dimensionality assessment methods are possible. Prior RF-DNA DRA research , e.g...Employing experimental designs to find optimal algorithm settings has been seen in hyperspectral anomaly detection research , c.f. [513–520], but not

  2. CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.

  3. Multi-wavelength lenses for terahertz surface wave.

    PubMed

    Wei, Minggui; Yang, Quanlong; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-10-16

    Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.

  4. The effects of DRIE operational parameters on vertically aligned micropillar arrays

    NASA Astrophysics Data System (ADS)

    Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An

    2013-03-01

    Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.

  5. A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Eshghinejad, A.; Azadegan, R.; Cooper, C.; Elahinia, M.

    2013-09-01

    Smart materials have gained a great deal of attention in recent years because of their unique actuation properties. Actuators are needed in the medical field where space is limited. Presented within this work is an organ positioner used to position the esophagus away from the left atrium to avoid the development of an esophageal fistula during atrial fibrillation (afib) ablation procedures. Within this work, a subroutine was implemented into the finite element framework to predict the midspan load capacity of a near equiatomic NiTi specimen in both the super elastic and shape memory regimes. The purpose of the simulations and experimental results was to develop a design envelope for the organ positioning device. The transverse loading experiments were conducted at several different temperatures leading to the ability to design a variable stiffness actuator. This is essential because the actuator must not be too stiff to injure the organ it is positioning. Extended further, geometric perturbations were applied in the virtual model and the entire design envelope was developed. Further, nitinol was tested for safety in the radio-frequency environment (to ensure that local heating will not occur in the ablation environment). With the safety of the device confirmed, a primitive prototype was manufactured and successfully tested in a cadaver. The design of the final device is also presented. The contribution of this work is the presentation of a new type of positoning device for medical purposes (NiTiBOP). In the process a comprehensive model for transverse actuation of an SMA actuator was developed and experimentally verified.

  6. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  7. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  8. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  9. 33 CFR Appendix B to Part 154 - Standard Specification for Tank Vent Flame Arresters

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1.1This standard provides the minimum requirements for design, construction, performance and testing... with a maximum experimental safe gap (MESG) below 0.9 millimeters. Flame arresters protecting such... Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers. 3.3...

  10. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... results of the application of safety design principles as noted in Appendix C to this part. The MTTHE is... fault/failure analysis must be based on the assessment of the design and implementation of all safety... associated device drivers, as well as historical performance data, analytical methods and experimental safety...

  11. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... results of the application of safety design principles as noted in Appendix C to this part. The MTTHE is... fault/failure analysis must be based on the assessment of the design and implementation of all safety... associated device drivers, as well as historical performance data, analytical methods and experimental safety...

  12. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    PubMed

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Wear-screening and joint simulation studies vs. materials selection and prosthesis design.

    PubMed

    Clarke, I C

    1982-01-01

    Satisfactory friction and wear performance of orthomedic biomaterials is an essential criterion for both hemiarthroplasty and total joint replacements. This report will chart the clinical historical experience of candidate biomaterials with their wear resistance and compare/contrast these data to experimental test predictions. The latter review will encompass publications dealing with both joint simulators and the more basic friction and wear screening devices. Special consideration will be given to the adequacy of the test protocol, the design of the experimental machines, and the accuracy of the measurement techniques. The discussion will then center on clinical reality vs. experimental adequacy and summarize current developments.

  14. Piezoelectric energy harvesting from heartbeat vibrations for leadless pacemakers

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2015-12-01

    This paper studies energy harvesting from heartbeat vibrations using fan-folded piezoelectric beams. The generated energy from the heartbeat can be used to power a leadless pacemaker. In order to utilize the available 3 dimensional space to the energy harvester, we chose the fan-folded design. The proposed device consists of several piezoelectric beams stacked on top of each other. The size for this energy harvester is 2 cm by 0.5 cm by 1 cm, which makes the natural frequency very high. High natural frequency is one major concern about the micro-scaled energy harvesters. By utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, this natural frequency is reduced to the desired range. This fan-folded design makes it possible to generate more than 10 μW of power. The proposed device does not incorporate magnets and is thus Magnetic resonance imaging (MRI) compatible. Although our device is a linear energy harvester, it is shown that the device is relatively insensitive to the heartrate. The natural frequencies and the mode shapes of the device are calculated. An analytical solution is presented and the method is verified by experimental investigation. We use a closed loop shaker controller and a shaker to simulate the heartbeat vibrations. The developed analytical model is verified through comparison of theoretical and experimental tip displacement and acceleration frequency response functions.

  15. Laser pulse coded signal frequency measuring device based on DSP and CPLD

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-bo; Cao, Li-hua; Geng, Ai-hui; Li, Yan; Guo, Ru-hai; Wang, Ting-feng

    2011-06-01

    Laser pulse code is an anti-jamming measures used in semi-active laser guided weapons. On account of the laser-guided signals adopting pulse coding mode and the weak signal processing, it need complex calculations in the frequency measurement process according to the laser pulse code signal time correlation to meet the request in optoelectronic countermeasures in semi-active laser guided weapons. To ensure accurately completing frequency measurement in a short time, it needed to carry out self-related process with the pulse arrival time series composed of pulse arrival time, calculate the signal repetition period, and then identify the letter type to achieve signal decoding from determining the time value, number and rank number in a signal cycle by Using CPLD and DSP for signal processing chip, designing a laser-guided signal frequency measurement in the pulse frequency measurement device, improving the signal processing capability through the appropriate software algorithms. In this article, we introduced the principle of frequency measurement of the device, described the hardware components of the device, the system works and software, analyzed the impact of some system factors on the accuracy of the measurement. The experimental results indicated that this system improve the accuracy of the measurement under the premise of volume, real-time, anti-interference, low power of the laser pulse frequency measuring device. The practicality of the design, reliability has been demonstrated from the experimental point of view.

  16. Microfluidics for Synthetic Biology: From Design to Execution

    PubMed Central

    Ferry, M. S.; Razinkov, I. A.; Hasty, J.

    2016-01-01

    With the expanding interest in cellular responses to dynamic environments, microfluidic devices have become important experimental platforms for biological research. Microfluidic “microchemostat” devices enable precise environmental control while capturing high quality, single-cell gene expression data. For studies of population heterogeneity and gene expression noise, these abilities are crucial. Here, we describe the necessary steps for experimental microfluidics using devices created in our lab as examples. First, we discuss the rational design of microchemostats and the tools available to predict their performance. We carefully analyze the critical parts of an example device, focusing on the most important part of any microchemostat: the cell trap. Next, we present a method for generating on-chip dynamic environments using an integrated fluidic junction coupled to linear actuators. Our system relies on the simple modulation of hydrostatic pressure to alter the mixing ratio between two source reservoirs and we detail the software and hardware behind it. To expand the throughput of microchemostat experiments, we describe how to build larger, parallel versions of simpler devices. To analyze the large amounts of data, we discuss methods for automated cell tracking, focusing on the special problems presented by Saccharomyces cerevisiae cells. The manufacturing of microchemostats is described in complete detail: from the photolithographic processing of the wafer to the final bonding of the PDMS chip to glass coverslip. Finally, the procedures for conducting Escherichia coli and S. cerevisiae microchemostat experiments are addressed. PMID:21601093

  17. Gas transfer model to design a ventilator for neonatal total liquid ventilation.

    PubMed

    Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola

    2015-12-01

    The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGES

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  19. Ti film deposition process of a plasma focus: Study by an experimental design

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.

    2017-10-01

    The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.

  20. Design and characterization of a mapping device optimized to collect XRD patterns from highly inhomogeneous and low density powder samples

    NASA Astrophysics Data System (ADS)

    D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.

    2017-11-01

    We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.

  1. Hollow-Fiber Cartridges: Model Systems for Virus Removal from Blood

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Menon, Jeevan

    2005-11-01

    Aethlon Medical is developing a hollow-fiber hemodialysis device designed to remove viruses and toxins from blood. Possible target viruses include HIV and pox-viruses. The filter could reduce virus and viral toxin concentration in the patient's blood, delaying illness so the patient's immune system can fight off the virus. In order to optimize the design of such a filter, the fluid mechanics of the device is both modeled analytically and investigated experimentally. The flow configuration of the proposed device is that of Starling flow. Polysulfone hollow-fiber dialysis cartridges were used. The cartridges are charged with water as a model fluid for blood and fluorescent latex beads are used in the experiments as a model for viruses. In the experiments, properties of the flow through the cartridge are determined through pressure and volume flow rate measurements of water. The removal of latex beads, which are captured in the porous walls of the fibers, was measured spectrophotometrically. Experimentally derived coefficients derived from these experiments are used in the analytical model of the flow and removal predictions from the model are compared to those obtained from the experiments.

  2. Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier

    NASA Astrophysics Data System (ADS)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad

    2017-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  3. Qualification of heavy water based irradiation device in the JSI TRIGA reactor for irradiations of FT-TIMS samples for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Kolšek, Aljaž; Fauré, Anne-Laure; Pottin, Anne-Claire; Pointurier, Fabien; Snoj, Luka

    2018-03-01

    The Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS) method is considered as the reference method for particle analysis in the field of nuclear Safeguards for measurements of isotopic compositions (fissile material enrichment levels) in micrometer-sized uranium particles collected in nuclear facilities. An integral phase in the method is the irradiation of samples in a very well thermalized neutron spectrum. A bilateral collaboration project was carried out between the Jožef Stefan Institute (JSI, Slovenia) and the Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA, France) to determine whether the JSI TRIGA reactor could be used for irradiations of samples for the FT-TIMS method. This paper describes Monte Carlo simulations, experimental activation measurements and test irradiations performed in the JSI TRIGA reactor, firstly to determine the feasibility, and secondly to design and qualify a purpose-built heavy water based irradiation device for FT-TIMS samples. The final device design has been shown experimentally to meet all the required performance specifications.

  4. Design, Construction and Testing of Annular Diffusers for High Speed Civil Transportation Combustor Applications

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1996-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers has been initiated under this award in order to establish the most pertinent design parameters and hence performance characteristics for such devices, an the implications of their application in the design of engine components in the aerospace industries. The diffusers under this study are expected to contain appreciable regions of stall and the effects of swirl on their performance are being studied. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuse geometry and the subsequent downloading of such data to a CNC machine at Central State University (CSU). Two experimental run segments have been completed so far during FY-95 involving flow visualization and diffuser performance evaluation based on Kinetic Energy Dissipation. The method of calculation of the performance of diffusers based on pressure recovery coefficient has been shown to have some shortcomings and so the kinetic energy dissipation approach has been introduced in the run segment two with some success. The application of the discretized, full Navier Stokes and Continuity equations to the numerical study of the problem described above for the time-mean flow is expected to follow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The result of the investigations are expected to indicate that more cost effective component design of such devices as diffusers which normally contain complex flows can still be achieved.

  5. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo

    2017-11-01

    Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.

  6. Conception et realisation d'un echantillonneur de grande vitesse en technologie HIGFET (transistor a effet de champ avec heterostructure et grille isolee)

    NASA Astrophysics Data System (ADS)

    Tazlauanu, Mihai

    The research work reported in this thesis details a new fabrication technology for high speed integrated circuits in the broadest sense, including original contributions to device modeling, circuit simulation, integrated circuit design, wafer fabrication, micro-physical and electrical characterization, process flow and final device testing as part of an electrical system. The primary building block of this technology is the heterostructure insulated gate field effect transistor, HIGFET. We used an InP/InGaAs epitaxial heterostructure to ensure a high charge carrier mobility and hence obtain a higher operating frequency than that currently possible for silicon devices. We designed and built integrated circuits with two system architectures. The first architecture integrates the clock signal generator with the sample and hold circuitry on the InP die, while the second is a hybrid architecture of an InP sample and hold assembled with an external clock signal generator made with ECL circuits on GaAs. To generate the clock signals on the same die with the sample and hold circuits, we developed a digital circuit family based on an original inverter, appropriate for depletion mode NMOS technology. We used this circuit to design buffer amplifiers and ring oscillators. Four mask sets produced in a Cadence environment, have permitted the fabrication of test and working devices. Each new mask generation has reflected the previous achievements and has implemented new structures and circuit techniques. The fabrication technology has undergone successive modifications and refinements to optimize device manufacturing. Particular attention has been paid to the technological robustness. The plasma enhanced etching process (RIE) had been used for an exhaustive study for the statistical simulation of the technological steps. Electrical measurements, performed on the experimental samples, have permitted the modeling of the devices, technological processing to be adjusted and circuit design improved. Electrical measurements performed on dedicated test structures, during the fabrication cycle, allowed the identification and correction of some technological problems (ohmic contacts, current leakage, interconnection integrity, and thermal instabilities). Feedback corrections were validated by dedicated experiments with the experimental effort optimized by statistical techniques (factorial fractional design). (Abstract shortened by UMI.)

  7. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE PAGES

    Bacelli, Giorgio; Coe, Ryan; Patterson, David; ...

    2017-04-01

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  8. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacelli, Giorgio; Coe, Ryan; Patterson, David

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  9. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  10. A simplified design of the staggered herringbone micromixer for practical applications

    PubMed Central

    Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong

    2010-01-01

    We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584

  11. A simplified design of the staggered herringbone micromixer for practical applications.

    PubMed

    Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong

    2010-05-07

    We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.

  12. All-spin logic operations: Memory device and reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2018-02-01

    Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.

  13. Final report for the DOE Early Career Award #DE-SC0003912

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Arthi

    This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less

  14. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  15. Video Games: A Human Factors Guide to Visual Display Design and Instructional System Design

    DTIC Science & Technology

    1984-04-01

    Electronic video games have many of the same technological and psychological characteristics that are found in military computer-based systems. For...both of which employ video games as experimental stimuli, are presented here. The first research program seeks to identify and exploit the...characteristics of video games in the design of game-based training devices. The second program is designed to explore the effects of electronic video display

  16. A new method of radio frequency links by coplanar coils for implantable medical devices.

    PubMed

    Xue, L; Hao, H W; Li, L; Ma, B Z

    2005-01-01

    A new method based on coplanar coils for the design of radio frequency links has been developed, to realize the communication between the programming wand and the implantable medical devices with shielding container simply and reliably. With the analysis of electronic and magnetic field theory, the communication model has been established and simulated, and the circuit has been designed and tested. The experimental results are consistent with the simulation fairly well. The voltage transfer ratio of the typical circuit with present parameters can reach as high as 0.02, which can fulfill the requirements of communication.

  17. Design and characterization of Ge passive waveguide components on Ge-on-insulator wafer for mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Takagi, Shinichi; Takenaka, Mitsuru

    2018-04-01

    We present the design methodology for Ge passive components including single-mode waveguide, grating couplers, multimode interferometer (MMI) couplers, and micro-ring resonators on the Ge-on-insulator wafer at a 1.95 µm wavelength. Characterizations of the fabricated Ge passive devices reveal a good consistence between the experimental and simulation results. By using the Ge micro-ring device, we also reveal that the thermo-optic coefficient in the Ge strip waveguide is 5.74 × 10-4/°C, which is much greater than that in Si.

  18. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  19. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Yao, Dao-Xin; Carlson, E. W.

    2014-08-01

    Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

  20. E-Pad: a comfortable electrocutaneous-based tactile feedback display

    NASA Astrophysics Data System (ADS)

    Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi

    2018-01-01

    The devices with touchscreen are becoming more popular recently; however, most of them suffer from the crucial drawbacks of lacking accurate tactile feedback. A novel electrocutaneous-based tactile device with the name of E-pad is proposed to provide a dynamic and static low-voltage feedback for touchscreen. We optimize the key parameters of the output voltage and design custom-made hardwares to guarantee a comfortable user experience. Users could move their fingers freely across the touchscreen of the proposed device to really feel virtual objects. Two preliminary experiments are conducted to evaluate the interactive performance of the proposed device and the experimental results show that the proposed device can provide a comfortable and distinct tactile feedback.

  1. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  2. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  3. Determination of excitation profile and dielectric function spatial nonuniformity in porous silicon by using WKB approach.

    PubMed

    He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey

    2014-11-03

    We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

  4. Effect of transient liquid flow on retention characteristics of screen acquisition systems. [design of Space Shuttle feed system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1977-01-01

    A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.

  5. Analysis of detection performance of multi band laser beam analyzer

    NASA Astrophysics Data System (ADS)

    Du, Baolin; Chen, Xiaomei; Hu, Leili

    2017-10-01

    Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.

  6. Development of Energy-Saving Devices for a 20,000DWT River-Sea Bulk Carrier

    NASA Astrophysics Data System (ADS)

    Chen, Kunpeng; Gao, Yuling; Huang, Zhenping; Dong, Guoxiang

    2018-05-01

    A reduction of fuel consumption and an increase in efficiency are currently required for river-sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river-sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river-sea bulk carrier. We validated the role of Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river-sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.

  7. Experimental Research of a New Wave Energy Conversion Device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  8. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  9. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    NASA Astrophysics Data System (ADS)

    Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.

    2017-01-01

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.

  10. ICRF Development for the Variable Specific Impulse Magnetoplasma Rocket

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Baity, F. W.; Barber, G. C.; Carter, M. D.; Hoffman, D. J.; Jaeger, E. F.; Taylor, D. J.; Chang-Diaz, F. R.; Squire, J. P.; McCaskill, G.

    1997-11-01

    The feasibility of using magnetically vectored and rf-heated plasmas for space propulsion (F. R. Chang-Diaz, et al., Bull. Am. Phys. Soc., 41, 1541 (1996)) is being investigated experimentally on an asymmetric magnetic mirror device at the Advanced Space Propulsion Laboratory (ASPL), Johnson Space Center, NASA. Analysis of the antenna interaction with and the wave propagation through the dense plasma propulsion system is being studied at ORNL(Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.), using antenna design codes developed for ICH systems and mirror codes developed for the EBT experiment at ORNL. The present modeling effort is directed toward the ASPL experimental device. Antenna optimization and performance, as well as the design considerations for space-qualified rf components and systems (minimizing weight while maximizing reliability) will be presented.

  11. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Voice synthesis application

    NASA Astrophysics Data System (ADS)

    Lightstone, P. C.; Davidson, W. M.

    1982-04-01

    The military detection assessment laboratory houses an experimental field system which assesses different alarm indicators such as fence disturbance sensors, MILES cables, and microwave Racons. A speech synthesis board which could be interfaced, by means of a computer, to an alarm logger making verbal acknowledgement of alarms possible was purchased. Different products and different types of voice synthesis were analyzed before a linear predictive code device produced by Telesensory Speech Systems of Palo Alto, California was chosen. This device is called the Speech 1000 Board and has a dedicated 8085 processor. A multiplexer card was designed and the Sp 1000 interfaced through the card into a TMS 990/100M Texas Instrument microcomputer. It was also necessary to design the software with the capability of recognizing and flagging an alarm on any 1 of 32 possible lines. The experimental field system was then packaged with a dc power supply, LED indicators, speakers, and switches, and deployed in the field performing reliably.

  13. Optimization of Microelectronic Devices for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Klimeck, Gerhard

    2000-01-01

    The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.

  14. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 6. Experimental Design for Comparative Evaluation of Warning-Advisory and Regulatory Traffic Control Devices

    DOT National Transportation Integrated Search

    2006-04-14

    This report presents the results of the national evaluation of the South Lake Tahoe coordinated Transit System (CTS) Project. The CTS Project involved combining transit services offered by private and public sector stakeholders in South Lake Tahoe in...

  15. Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.

  16. Radiation effects in advanced microelectronics technologies

    NASA Astrophysics Data System (ADS)

    Johnston, A. H.

    1998-06-01

    The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.

  17. Design and preliminary testing of a handheld antagonistic SMA actuator for cancellation of human tremor

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan

    2009-03-01

    Essential Tremor is a debilitating disorder that in the US alone is estimated to affect up to ten million people. Unfortunately current treatments (i.e. drug therapy and surgical procedures), are limited in effectiveness and often pose a risk of adverse side-effects. In response to this problem, this paper describes an active cancellation device based on a hand-held Shape Memory Alloy (SMA) actuated stabilization platform. The assistive device is designed to hold and stabilize various objects (e.g. eating utensils, tools, pointing implements, etc.) by sensing the user's tremor and moving the object in an opposite direction using SMA actuators configured in biologically inspired antagonistic pairs. To aid in the design, performance prediction and control of the device, a device model is described that accounts for the device kinematics, SMA thermo-mechanics, and the heat transfer resulting from electrical heating and convective cooling. The system of differential equations in this device model coupled with the controller gain can be utilized to design the operation given a frequency range and power requirement. To demonstrate this, a prototype was built and experimentally tested under external disturbances in the range of 1-5 Hz, resulting in amplitude reduction of up to 80%. The extent of cancellation measured for both single-frequencies and actual human tremor disturbances demonstrate the promise of this approach as a broadly used assistive device for the multitudes afflicted by tremor.

  18. [The modeling of the ricochet shot fired from a light weapon].

    PubMed

    Gusentsov, A O; Chuchko, V A; Kil'dyushev, E M; Tumanov, E V

    The objective of the present study was to choose the optimal method for the modeling of the glance of a bullet after hitting a target under conditions of the laboratory experiment. The study required the designing and construction of an original device for the modeling of the rebound effect of a light-firearm shot under experimental conditions. The device was tested under conditions of the laboratory experiment. The trials have demonstrated the possibility of using barriers of different weight and dimensions in the above device, their positioning and fixation depending on the purpose of the experiment, dynamic alteration of its conditions with due regard for the safety and security arrangements to protect the health and life of the experimenters without compromising the statistical significance and scientific validity of the results of the experiments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less

  20. Experimental investigation of low aspect ratio, large amplitude, aeroelastic energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew

    2017-04-01

    Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.

  1. Impact of the telephone assistive device (TAD) on stuttering severity while speaking on the telephone.

    PubMed

    Chambers, Nola

    2009-01-01

    There is extensive experimental evidence that altered auditory feedback (AAF) can have a clinically significant effect on the severity of speech symptoms in people who stutter. However, there is less evidence regarding whether these experimental effects can be observed in naturalistic everyday settings particularly when using the telephone. This study aimed to investigate the effectiveness of the Telephone Assistive Device (TAD), which is designed to provide AAF on the telephone to people who stutter, on reducing stuttering severity. Nine adults participated in a quasi-experimental study. Stuttering severity was measured first without and then with the device in participants' naturalistic settings while making and receiving telephone calls (immediate benefit). Participants were then allowed a week of repeated use of the device following which all measurements were repeated (delayed benefit). Overall, results revealed significant immediate benefits from the TAD in all call conditions. Delayed benefits in received and total calls were also significant. There was substantial individual variability in response to the TAD but none of the demographic or speech-related factors measured in the study were found to significantly impact the benefit (immediate or delayed) derived from the TAD. Results have implications for clinical decision making for adults who stutter.

  2. Predicting the performance of a power amplifier using large-signal circuit simulations of an AlGaN/GaN HFET model

    NASA Astrophysics Data System (ADS)

    Bilbro, Griff L.; Hou, Danqiong; Yin, Hong; Trew, Robert J.

    2009-02-01

    We have quantitatively modeled the conduction current and charge storage of an HFET in terms its physical dimensions and material properties. For DC or small-signal RF operation, no adjustable parameters are necessary to predict the terminal characteristics of the device. Linear performance measures such as small-signal gain and input admittance can be predicted directly from the geometric structure and material properties assumed for the device design. We have validated our model at low-frequency against experimental I-V measurements and against two-dimensional device simulations. We discuss our recent extension of our model to include a larger class of electron velocity-field curves. We also discuss the recent reformulation of our model to facilitate its implementation in commercial large-signal high-frequency circuit simulators. Large signal RF operation is more complex. First, the highest CW microwave power is fundamentally bounded by a brief, reversible channel breakdown in each RF cycle. Second, the highest experimental measurements of efficiency, power, or linearity always require harmonic load pull and possibly also harmonic source pull. Presently, our model accounts for these facts with an adjustable breakdown voltage and with adjustable load impedances and source impedances for the fundamental frequency and its harmonics. This has allowed us to validate our model for large signal RF conditions by simultaneously fitting experimental measurements of output power, gain, and power added efficiency of real devices. We show that the resulting model can be used to compare alternative device designs in terms of their large signal performance, such as their output power at 1dB gain compression or their third order intercept points. In addition, the model provides insight into new device physics features enabled by the unprecedented current and voltage levels of AlGaN/GaN HFETs, including non-ohmic resistance in the source access regions and partial depletion of the 2DEG in the drain access region.

  3. Graphene electrodes for lithium-niobate electro-optic devices.

    PubMed

    Chang, Zeshan; Jin, Wei; Chiang, Kin Seng

    2018-04-15

    We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.

  4. Passive athermalization of multimode interference devices for wavelength-locking applications.

    PubMed

    Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R

    2017-03-06

    In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

  5. Versatile fluid-mixing device for cell and tissue microgravity research applications.

    PubMed

    Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H

    1996-01-01

    Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.

  6. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber.

    PubMed

    Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea

    2018-01-31

    This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.

  7. Monolayer Transition Metal Dichalcogenides as Light Sources.

    PubMed

    Pu, Jiang; Takenobu, Taishi

    2018-06-13

    Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley-coupled systems. This progress report provides an overview of recent advances in TMDC-based light-emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light-emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light-emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high-performance light-emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

  9. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good agreement with the numerical simulations. The mechanically tunable plasmonic nanostructure could serve as a platform for dynamically tunable nanophotonic devices such as sensors and tunable filters.

  10. A stab in the dark: Design and construction of a novel device for conducting incised knife trauma investigations and its initial test.

    PubMed

    Humphrey, Caitlin; Kumaratilake, Jaliya; Henneberg, Maciej

    2016-05-01

    Knife attacks are commonly seen in Australia and other countries. During forensic investigations the force with which a wound was inflicted is often questioned. The ability to examine resultant trauma and particular weapons at different forces with an experimental device may lead to better interpretations of knife wounds. The objective of this study is to design, construct and test a device to analyse the characteristics and forces involved in knife attacks, particularly incised wounds. The mechanical variables (e.g. force, angle, knife geometry) involved in knife attacks have been considered to design and construct a suitable device which allows these variables to be systematically controlled and varied. A device was designed and constructed from mild steel. This included a pivoting arm and instrumented knife holder. The arm has adjustable angle and weight so that knives can be operated at different calculated forces. A device was successfully constructed and the repeatability of incised knife trauma and its characteristics in skeletal tissues were investigated. A device which allows reproducible and controlled experiments with knife wounds will be advantageous to forensic investigations. In particular, in determining forces and types of weapons associated with particular wounds, identifying or eliminating suspected weapons and more accurately answering the common question: How much force would be required to cause that particular wound. This could help to characterise the perpetrator. The device can be altered to be used in the future to investigate trauma caused by other weapons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices

    PubMed Central

    Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret

    2015-01-01

    Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081

  12. Parametric pendulum based wave energy converter

    NASA Astrophysics Data System (ADS)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  13. Broadband non-reciprocal transmission of sound with invariant frequency

    PubMed Central

    Gu, Zhong-ming; Hu, Jie; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2016-01-01

    We design and experimentally demonstrate a broadband yet compact acoustic diode (AD) by using an acoustic nonlinear material and a pair of gain and lossy materials. Due to the capabilities of maintaining the original frequency and high forward transmission while blocking backscattered wave, our design is closer to the desired features of a perfect AD and is promising to play the essential diode-like role in realistic acoustic systems, such as ultrasound imaging, noise control and nondestructive testing. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices, and inspire the research of non-reciprocal wave manipulation in other fields. PMID:26805712

  14. The energy-efficient implementation of an adaptive-filtering-based QRS complex detection method for wearable devices

    NASA Astrophysics Data System (ADS)

    Tian, Shudong; Han, Jun; Yang, Jianwei; Zeng, Xiaoyang

    2017-10-01

    Electrocardiogram (ECG) can be used as a valid way for diagnosing heart disease. To fulfill ECG processing in wearable devices by reducing computation complexity and hardware cost, two kinds of adaptive filters are designed to perform QRS complex detection and motion artifacts removal, respectively. The proposed design achieves a sensitivity of 99.49% and a positive predictivity of 99.72%, tested under the MIT-BIH ECG database. The proposed design is synthesized under the SMIC 65-nm CMOS technology and verified by post-synthesis simulation. Experimental results show that the power consumption and area cost of this design are of 160 μW and 1.09 × 10 5 μm2, respectively. Project supported by the National Natural Science Foundation of China (Nos. 61574040, 61234002, 61525401).

  15. Collaborative designing and job satisfaction of airplane manufacturing engineers: A case study

    NASA Astrophysics Data System (ADS)

    Johnson, Michael David, Sr.

    The group III-nitride system of materials has had considerable commercial success in recent years in the solid state lighting (SSL) and power electronics markets. The need for high efficient general lighting applications has driven research into InGaN based blue light emitting diodes (LEDs), and demand for more efficient power electronics for telecommunications has driven research into AlGaN based high electron mobility transistors (HEMTs). However, the group III-nitrides material properties make them attractive for several other applications that have not received as much attention. This work focuses on developing group III-nitride based devices for novel applications. GaN is a robust, chemically inert, piezoelectric material, making it an ideal candidate for surface acoustic wave (SAW) devices designed for high temperature and/or harsh environment sensors. In this work, SAW devices based on GaN are developed for use in high temperature gas or chemical sensor applications. To increase device sensitivity, while maintaining a simple one-step photolithography fabrication process, devices were designed to operate at high harmonic frequencies. This allows for GHz regime operation without sub-micron fabrication. One potential market for this technology is continuous emissions monitoring of combustion gas vehicles. In addition to SAW devices, high electron mobility transistors (HEMTs) were developed. The epitaxial structure was characterized and the 2-D electron gas concentrations were simulated and compared to experimental results. Device fabrication processes were developed and are outlined. Fabricated devices were electrically measured and device performance is discussed.

  16. Wearable Learning Tools.

    ERIC Educational Resources Information Center

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  17. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  18. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    NASA Astrophysics Data System (ADS)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  19. Design and experimental verification of a water-like pentamode material

    NASA Astrophysics Data System (ADS)

    Zhao, Aiguo; Zhao, Zhigao; Zhang, Xiangdong; Cai, Xuan; Wang, Lei; Wu, Tao; Chen, Hong

    2017-01-01

    Pentamode materials approximate tailorable artificial liquids. Recently, microscopic versions of these intricate structures have been fabricated, and the static mechanical experiments reveal that the ratio of bulk modulus to shear modulus as large as 1000 can be obtained. However, no direct acoustic experimental characterizations have been reported yet. In this paper, a water-like two-dimensional pentamode material sample is designed and fabricated with a single metallic material, which is a hollow metallic foam-like structure at centimeter scale. Acoustic simulation and experimental testing results indicate that the designed pentamode material mimics water in acoustic properties over a wide frequency range, i.e., it exhibits transparency when surrounded by water. This work contributes to the development of microstructural design of materials with specific modulus and density distribution, thus paving the way for the physical realization of special acoustic devices such as metamaterial lenses and vibration isolation.

  20. PsyGlass: Capitalizing on Google Glass for naturalistic data collection.

    PubMed

    Paxton, Alexandra; Rodriguez, Kevin; Dale, Rick

    2015-09-01

    As commercial technology moves further into wearable technologies, cognitive and psychological scientists can capitalize on these devices to facilitate naturalistic research designs while still maintaining strong experimental control. One such wearable technology is Google Glass (Google, Inc.: www.google.com/glass), which can present wearers with audio and visual stimuli while tracking a host of multimodal data. In this article, we introduce PsyGlass, a framework for incorporating Google Glass into experimental work that is freely available for download and community improvement over time (www.github.com/a-paxton/PsyGlass). As a proof of concept, we use this framework to investigate dual-task pressures on naturalistic interaction. The preliminary study demonstrates how designs from classic experimental psychology may be integrated in naturalistic interactive designs with emerging technologies. We close with a series of recommendations for using PsyGlass and a discussion of how wearable technology more broadly may contribute to new or adapted naturalistic research designs.

  1. Theoretical insights into multiscale electronic processes in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  2. Double-injection, deep-impurity switch development

    NASA Technical Reports Server (NTRS)

    Selim, F. A.; Whitson, D. W.

    1983-01-01

    The overall objective of this program is the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI)(2) silicon switch that operates in the 1-10 kV range with conduction current of 10 and 1A, respectively. Other major specifications include a holding voltage of 0 to 5 volts at 1 A anode current, 10 microsecond switching time, and power dissipation of 50 W at 75 C. This report describes work that shows how the results obtained at the University of Cincinnati under NASA Grant NSG-3022 have been applied to larger area and higher voltage devices. The investigations include theoretical, analytical, and experimental studies of device design and processing. Methods to introduce deep levels, such as Au diffusion and electron irradiation, have been carried out to "pin down' the Fermi level and control device-switching characteristics. Different anode, cathode, and gate configurations are presented. Techniques to control the surface electric field of planar structures used for (DI)(2) switches are examined. Various sections of this report describe the device design, wafer-processing techniques, and various measurements which include ac and dc characteristics, 4-point probe, and spreading resistance.

  3. Recent Developments in Home Sleep-Monitoring Devices

    PubMed Central

    Kelly, Jessica M.; Strecker, Robert E.; Bianchi, Matt T.

    2012-01-01

    Improving our understanding of sleep physiology and pathophysiology is an important goal for both medical and general wellness reasons. Although the gold standard for assessing sleep remains the laboratory polysomnogram, there is an increasing interest in portable monitoring devices that provide the opportunity for assessing sleep in real-world environments such as the home. Portable devices allow repeated measurements, evaluation of temporal patterns, and self-experimentation. We review recent developments in devices designed to monitor sleep-wake activity, as well as monitors designed for other purposes that could in principle be applied in the field of sleep (such as cardiac or respiratory sensing). As the body of supporting validation data grows, these devices hold promise for a variety of health and wellness goals. From a clinical and research standpoint, the capacity to obtain longitudinal sleep-wake data may improve disease phenotyping, individualized treatment decisions, and individualized health optimization. From a wellness standpoint, commercially available devices may allow individuals to track their own sleep with the goal of finding patterns and correlations with modifiable behaviors such as exercise, diet, and sleep aids. PMID:23097718

  4. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  5. Development and fabrication of improved power transistor switches

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1979-01-01

    A new class of high-voltage power transistors was achieved by adapting present interdigitated thyristor processing techniques to the fabrication of npn Si transistors. Present devices are 2.3 cm in diameter and have V sub CEO (sus) in the range of 400 to 600V. V sub CEO (sus) = 450V devices were made with an (h sub FE)(I sub C) product of 900A at V sub CE = 2.5V. The electrical performance obtained was consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The device design, wafer processing, and assembly techniques are described. Experimental measurements of the dc characteristics, forward SOA, and switching times are included. A new method of characterizing the switching performance of power transistors is proposed.

  6. An Analytical and Experimental Analysis of Factors Affecting Exhaust System Performance in Sea Level Static Jet Engine Test Facilities.

    DTIC Science & Technology

    1972-12-01

    include filtering devices, venturi scrubbers , and electrostatic precipitators. These have been evaluated as unsatisfactory from considerations of...Early studies of pollution abatement systems have resulted in the selection and development of a nucleation scrubber [Ref. 47]. Other devices analyzed...the venturi system is its inability to operate efficiently over greater than a 10 percent interval away from its design point, which is an

  7. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    NASA Astrophysics Data System (ADS)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  8. [Study on an Exoskeleton Hand Function Training Device].

    PubMed

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  9. Microfluidics for synthetic biology: from design to execution.

    PubMed

    Ferry, M S; Razinkov, I A; Hasty, J

    2011-01-01

    With the expanding interest in cellular responses to dynamic environments, microfluidic devices have become important experimental platforms for biological research. Microfluidic "microchemostat" devices enable precise environmental control while capturing high quality, single-cell gene expression data. For studies of population heterogeneity and gene expression noise, these abilities are crucial. Here, we describe the necessary steps for experimental microfluidics using devices created in our lab as examples. First, we discuss the rational design of microchemostats and the tools available to predict their performance. We carefully analyze the critical parts of an example device, focusing on the most important part of any microchemostat: the cell trap. Next, we present a method for generating on-chip dynamic environments using an integrated fluidic junction coupled to linear actuators. Our system relies on the simple modulation of hydrostatic pressure to alter the mixing ratio between two source reservoirs and we detail the software and hardware behind it. To expand the throughput of microchemostat experiments, we describe how to build larger, parallel versions of simpler devices. To analyze the large amounts of data, we discuss methods for automated cell tracking, focusing on the special problems presented by Saccharomyces cerevisiae cells. The manufacturing of microchemostats is described in complete detail: from the photolithographic processing of the wafer to the final bonding of the PDMS chip to glass coverslip. Finally, the procedures for conducting Escherichia coli and S. cerevisiae microchemostat experiments are addressed. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure

    NASA Astrophysics Data System (ADS)

    Yu, Qingmin; Chen, Furong; Li, Ming; Cheng, Huanyu

    2017-09-01

    A wavy configuration is a simple yet powerful structural design strategy, which has been widely used in flexible and stretchable electronics. A buckled structure created from a prestretch-contact-release process represents an early effort. Substrates with engineered surface relief structures (e.g., rectangular islands or tripod structure) have enabled stretchability to the devices without sacrificing their electric performance (e.g., high areal coverage for LEDs/photovoltaics/batteries/supercapacitors). In particular, the substrate with a tripod surface relief structure allows wrinkled devices to be suspended on a soft tripod substrate. This minimizes the contact area between devices and the deformed substrate, which contributes to a significantly reduced interfacial stress/strain. To uncover the underlying mechanism of such a design, we exploit the energy method to analytically investigate the buckling and postbuckling behaviors of stiff films suspended on a stretchable polymeric substrate with a tripod surface relief structure. Validated by finite element analysis, the predications from such an analytical study elucidate the deformed profile and maximum strain in the buckled and postbuckled stiff thin device films, providing a useful toolkit for future experimental designs.

  11. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas.

    PubMed

    López-Marzo, Adaris M; Merkoçi, Arben

    2016-08-16

    This review shows the recent advances and state of the art in paper-based analytical devices (PADs) through the analysis of their integration with microfluidics and LOC micro- and nanotechnologies, electrochemical/optical detection and electronic devices as the convergence of various knowledge areas. The important role of the paper design/architecture in the improvement of the performance of sensor devices is discussed. The discussion is fundamentally based on μPADs as the new generation of paper-based (bio)sensors. Data about the scientific publication ranking of PADs, illustrating their increase as an experimental research topic in the past years, are supplied. In addition, an analysis of the simultaneous evolution of PADs in academic lab research and industrial commercialization highlighting the parallelism of the technological transfer from academia to industry is displayed. A general overview of the market behaviour, the leading industries in the sector and their commercialized devices is given. Finally, personal opinions of the authors about future perspectives and tendencies in the design and fabrication technology of PADs are disclosed.

  12. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  13. Characteristics and reliability of metal-oxide-semiconductor transistors with various depths of plasma-induced Si recess structure

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Tsai, Yen-Lin; Chen, Chun-Yen; Hsu, Hao-Tang; Kao, Chia-Yu; Hwang, Hann-Ping

    2018-04-01

    Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.

  14. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  15. Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage

    NASA Astrophysics Data System (ADS)

    Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.

    2017-07-01

    We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.

  16. Optical fabrication of large area photonic microstructures by spliced lens

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  17. Quantum-dot cellular automata: Review and recent experiments (invited)

    NASA Astrophysics Data System (ADS)

    Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.

    1999-04-01

    An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.

  18. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  19. Efficiency limits of laser power converters for optical power transfer applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  20. Tests of an experimental slash ignition unit

    Treesearch

    James L. Murphy; Harry E. Schimke

    1965-01-01

    A prototype ignition package containing an incendiary powder and designed for slash and brush burning jobs showed some promise, but the unit tested was not superior to such conventional devices as fusees, diesel backpack type flamethrowers, Very pistols, and drip torches.

  1. Design, Fabrication, and In Vitro Testing of an Anti-biofouling Glaucoma Micro-shunt.

    PubMed

    Harake, Ryan S; Ding, Yuzhe; Brown, J David; Pan, Tingrui

    2015-10-01

    Glaucoma, one of the leading causes of irreversible blindness, is a progressive neurodegenerative disease. Chronic elevated intraocular pressure (IOP), a prime risk factor for glaucoma, can be treated by aqueous shunts, implantable devices, which reduce IOP in glaucoma patients by providing alternative aqueous outflow pathways. Although initially effective at delaying glaucoma progression, contemporary aqueous shunts often lead to numerous complications and only 50% of implanted devices remain functional after 5 years. In this work, we introduce a novel micro-device which provides an innovative platform for IOP reduction in glaucoma patients. The device design features an array of parallel micro-channels to provide precision aqueous outflow resistance control. Additionally, the device's microfluidic channels are composed of a unique combination of polyethylene glycol materials in order to provide enhanced biocompatibility and resistance to problematic channel clogging from biofouling of aqueous proteins. The microfabrication process employed to produce the devices results in additional advantages such as enhanced device uniformity and increased manufacturing throughput. Surface characterization experimental results show the device's surfaces exhibit significantly less non-specific protein adsorption compared to traditional implant materials. Results of in vitro flow experiments verify the device's ability to provide aqueous resistance control, continuous long-term stability through 10-day protein flow testing, and safety from risk of infection due to bacterial ingression.

  2. An Acoustic Charge Transport Imager for High Definition Television Applications: Low-Voltage SAW Amplifiers on Multilayer GaAs/ZnO Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Cameron, Thomas P.

    1996-01-01

    This thesis addresses the acoustoelectric issues concerning the amplification of surface acoustic waves (SAWs) and the reflection of SAWs from slanted reflector gratings on GaAs, with application to a novel acoustic charge transport (ACT) device architecture. First a simple model of the SAWAMP was developed, which was subsequently used to define the epitaxially grown material structure necessary to provide simultaneously high resistance and high electron mobility. In addition, a segmented SAWAMP structure was explored with line widths on the order of an acoustic wavelength. This resulted in the demonstration of SAWAMPS with an order of magnitude less voltage and power requirements than previously reported devices. A two-dimensional model was developed to explain the performance of devices with charge confinement layers less then 0.5 mm, which was experimentally verified. This model was extended to predict a greatly increased gain from the addition of a ZnO overlay. These overlays were experimentally attempted, but no working devices were reported due to process incompatibilities. In addition to the SAWAMP research, the reflection of SAWs from slanted gratings on GaAs was also studied and experimentally determined reflection coefficients for both 45 deg grooves and Al stripes on GaAs have been reported for the first time. The SAWAMp and reflector gratings were combined to investigate the integrated ring oscillator for application to the proposed ACT device and design parameters for this device have been provided.

  3. An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology.

    PubMed

    Goñi-Moreno, Angel; Carcajona, Marta; Kim, Juhyun; Martínez-García, Esteban; Amos, Martyn; de Lorenzo, Víctor

    2016-10-21

    As synthetic biology moves away from trial and error and embraces more formal processes, workflows have emerged that cover the roadmap from conceptualization of a genetic device to its construction and measurement. This latter aspect (i.e., characterization and measurement of synthetic genetic constructs) has received relatively little attention to date, but it is crucial for their outcome. An end-to-end use case for engineering a simple synthetic device is presented, which is supported by information standards and computational methods and focuses on such characterization/measurement. This workflow captures the main stages of genetic device design and description and offers standardized tools for both population-based measurement and single-cell analysis. To this end, three separate aspects are addressed. First, the specific vector features are discussed. Although device/circuit design has been successfully automated, important structural information is usually overlooked, as in the case of plasmid vectors. The use of the Standard European Vector Architecture (SEVA) is advocated for selecting the optimal carrier of a design and its thorough description in order to unequivocally correlate digital definitions and molecular devices. A digital version of this plasmid format was developed with the Synthetic Biology Open Language (SBOL) along with a software tool that allows users to embed genetic parts in vector cargoes. This enables annotation of a mathematical model of the device's kinetic reactions formatted with the Systems Biology Markup Language (SBML). From that point onward, the experimental results and their in silico counterparts proceed alongside, with constant feedback to preserve consistency between them. A second aspect involves a framework for the calibration of fluorescence-based measurements. One of the most challenging endeavors in standardization, metrology, is tackled by reinterpreting the experimental output in light of simulation results, allowing us to turn arbitrary fluorescence units into relative measurements. Finally, integration of single-cell methods into a framework for multicellular simulation and measurement is addressed, allowing standardized inspection of the interplay between the carrier chassis and the culture conditions.

  4. The design of cathode for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  5. Optical isolation based on space-time engineered asymmetric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  6. Experimental validation of a novel stictionless magnetorheological fluid isolator

    NASA Astrophysics Data System (ADS)

    Kelso, Shawn P.; Denoyer, Keith K.; Blankinship, Ross M.; Potter, Kenneth; Lindler, Jason E.

    2003-07-01

    Magnetorheological (MR) fluid damper design typically constitutes a piston/dashpot configuration. During reciprocation, the fluid is circulated through the device with the generated pressure providing viscous damping. In addition, the damper is also intended to accommodate off-axis loading; i.e., rotation moments and lateral loads orthogonal to the axis of operation. Typically two sets of seals, one where the piston shaft enters and exits the device and one between the piston and the cylinder wall, maintain alignment of the damper and seal the fluid from leaking. With MR fluid, these seals can act as sources of non-linear friction effects (stiction) and oftentimes possess a shorter lifespan due to the abrasive nature of the ferrous particles suspended in the fluid. Intelligently controlling damping forces must also accommodate the non-linear stiction behavior, which degrades performance. A new, unique MR fluid isolator was designed, fabricated and tested that directly addresses these concerns. The goal of this research was the development of a stiction-free MR isolator whose damping force can be predicted and precisely controlled. This paper presents experimental results for a prototype device and compares those results to model predictions.

  7. Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Fernandes, Egon; Martin, Blake; Rua, Isabel; Zarabi, Sid; Debéda, Hélène; Nairn, David; Wei, Lan; Salehian, Armaghan

    2018-03-01

    This paper details a power solution for smart grid applications to replace batteries by harvesting the electromagnetic energy from a current-carrying wire. A MEMS piezoelectromagnetic energy harvester has been fabricated using PZT screen-printing technology with a centrally-supported meandering geometry. The energy harvesting device employs a symmetric geometry to increase its power output by reducing the effects of the torsional modes and the resultant overall strain nodes in the system subsequently reduce the complexities for the electrode fabrication. The unit is modelled using COMSOL to determine mode shapes and frequency response functions. A 12.7 mm by 14.7 mm unit is fabricated by screen-printing 75 μm-thick PZT on a stainless steel substrate and then experimentally tested to validate the FEA results. Experimentally, the harvester is shown to produce 9 μW from a wire carrying 7 A while operating at a distance of 6.5 mm from the wire. The design of the current work results in a greater normalized power density than other MEMS based piezoelectromagnetic devices and shows great potential relative to larger devices that use bulk or thin film piezoelectrics.

  8. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices withmore » efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.« less

  9. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  10. Collection of low-grade waste heat for enhanced energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less

  11. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    PubMed

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-04

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

  12. A merged pipe organ binary-analog correlator

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Berry, M. B.

    1982-02-01

    The design of a 96-stage, programmable binary-analog correlator is described. An array of charge coupled device (CCD) delay lines of differing lengths perform the delay and sum functions. Merging of several CCD channels is employed to reduce the active area. This device architecture allows simplified output detection while maintaining good device performance at higher speeds (5-10 MHz). Experimental results indicate a 50 dB broadband dynamic range and excellent agreement with the theoretical processing gain (19.8 dB) when operated at a 6 MHz sampling frequency as a p-n sequence matched filter.

  13. Quiet Clean Short-Haul Experimental Engine (QCSEE): Acoustic treatment development and design

    NASA Technical Reports Server (NTRS)

    Clemons, A.

    1979-01-01

    Acoustic treatment designs for the quiet clean short-haul experimental engines are defined. The procedures used in the development of each noise-source suppressor device are presented and discussed in detail. A complete description of all treatment concepts considered and the test facilities utilized in obtaining background data used in treatment development are also described. Additional supporting investigations that are complementary to the treatment development work are presented. The expected suppression results for each treatment configuration are given in terms of delta SPL versus frequency and in terms of delta PNdB.

  14. Design, Synthesis, and Characterization of Nanostructured Materials for Energy Storage Devices and Flexible Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Kang, Ning

    Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for applications in wearable sweat sensors. Moreover, printing technique was also applied in the fabrication of conductive patterns as the sensing electrodes. The results shed new lights on the understanding of the structural tuning of the nanomaterials for the ultimate applications in advanced energy storage devices and chemical sensor devices.

  15. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less

  16. Modeling and optimal designs for dislocation and radiation tolerant single and multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2011-02-01

    Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.

  17. Continuous wave power scaling in high power broad area quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  18. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.

    PubMed

    Wang, Shuodao; Huang, Yonggang; Rogers, John A

    2015-09-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems.

  19. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics

    PubMed Central

    Wang, Shuodao; Huang, Yonggang; Rogers, John A.

    2016-01-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems. PMID:27668126

  20. Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Wang, Weibiao; Liang, Jingqiu; Liang, Zhongzhu; Qin, Yuxin; Lv, Jinguang

    2015-04-01

    An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit, and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42-1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2-2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.

  1. Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chao; University of Chinese Academy of Sciences, Beijing 100049; Wang, Weibiao, E-mail: wangwbcn@163.com

    An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit,more » and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42–1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2–2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.« less

  2. Exploring Chaos: A Case Study.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tinker, Robert

    1993-01-01

    Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)

  3. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGES

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  4. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  5. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  6. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  7. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  8. Directionally Hiding Objects and Creating Illusions at Visible Wavelengths by Holography

    PubMed Central

    Cheng, Qiluan; Wu, Kedi; Shi, Yile; Wang, Hui; Wang, Guo Ping

    2013-01-01

    Invisibility devices have attracted considerable attentions in the last decade. In addition to invisibility cloaks, unidirectional invisibility systems such as carpet-like cloaks and parity-time symmetric structures are also inspiring some specific researching interests due to their relatively simplifying design. However, unidirectional invisibility systems worked generally in just one certain illumination direction. Here, based on time-reversal principle, we present the design and fabrication of a kind of all-dielectric device that could directionally cancel objects and create illusions as the illuminating light was from different directions. Our devices were experimentally realized through holographic technology and could work for macroscopic objects with any reasonable size at visible wavelengths, and hence may take directional invisibility technology a big step towards interesting applications ranging from magic camouflaging, directional detection to super-resolution biomedical imaging. PMID:23756877

  9. Design and Evolution of the Asporto Heart Preservation Device.

    PubMed

    Rivard, Andrew L

    2015-06-01

    The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.

  10. Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Varshney, R. K.; Singh, A.; Pande, K.; Pal, B. P.

    2007-03-01

    A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.

  11. Projected phase-change memory devices.

    PubMed

    Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-09-03

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

  12. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  13. Experimental characterization of an adaptive aileron: lab tests and FE correlation

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Amoroso, Francesco; Pecora, Rosario

    2016-04-01

    Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The "Adaptive Aileron" project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.

  14. New valve and bonding designs for microfluidic biochips containing proteins.

    PubMed

    Lu, Chunmeng; Xie, Yubing; Yang, Yong; Cheng, Mark M-C; Koh, Chee-Guan; Bai, Yunling; Lee, L James; Juang, Yi-Je

    2007-02-01

    Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.

  15. Plasmonic hole arrays for combined photon and electron management

    DOE PAGES

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-11-14

    Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. In this paper, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate onmore » their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Finally, prototypical photovoltaic devices constructed with perforated metal contacts convert ~18% of the incident photons, compared to <1% for identical devices having contacts without the hole array.« less

  16. An Annotated Bibliography of Abstracts on the Use of Simulators in Technical Training

    DTIC Science & Technology

    1984-10-01

    truing of a bicycle wheel. It matched the design requirements well, was easily studied and controlled in a laboratory, and was felt to be...Article: Experiment. a. Number of groups: 2 b. Description of Groups: (1) Subjects: 27 newly designated first-tour naval aviators (2) Controls : 16 same...experimental group received six sessions in the 2F87F simulator, in accordance with a new syllabus designed for that device, whereas the control group

  17. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    NASA Astrophysics Data System (ADS)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  18. Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples.

    PubMed

    Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Hayashida, Makiko; Jinno, Kiyokatsu

    2007-05-09

    Miniaturized needle extraction device has been developed as a versatile sample preparation device designed for the rapid and simple analysis of smoking-related compounds in smokers' hair samples and environmental tobacco smoke. Packed with polymeric particle, the resulting particle-packed needle was employed as a miniaturized sample preparation device for the analysis of typical volatile organic compounds in tobacco smoke. Introducing a bundle of polymer-coated filaments as the extraction medium, the needle was further applied as a novel sample preparation device containing simultaneous derivatization/extraction process of volatile aldehydes. Formaldehyde (FA) and acetaldehyde (AA) in smoker's breath during the smoking were successfully derivatized with two derivatization reagents in the polymer-coated fiber-packed needle device followed by the separation and determination in gas chromatography (GC). Smokers' hair samples were also packed into the needle, allowing the direct extraction of nicotine from the hair sample in a conventional GC injector. Optimizing the main experimental parameters for each technique, successful determination of several smoking-related compounds with these needle extraction methods has been demonstrated.

  19. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors

    PubMed Central

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-01-01

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089

  20. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    PubMed

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.

  1. Aperiodic Volume Optics

    NASA Astrophysics Data System (ADS)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within periodic and quasi-periodic systems for the manipulation of light in the IR regime. The general thesis of this document is that aperiodic three-dimensional structures provide additional degrees of freedom that can be utilized to improve on the performance of periodic volume devices. The results we will discuss suggest that, under certain circumstances, a departure from the Bragg paradigm provides enhanced volume diffraction properties.

  2. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  3. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  4. Effect of glenoid implant design on glenohumeral stability: an experimental study.

    PubMed

    Sins, Lauranne; Tétreault, Patrice; Petit, Yvan; Nuño, Natalia; Billuart, Fabien; Hagemeister, Nicola

    2012-10-01

    Though several glenoid implants were developed over the past years, a high rate of glenoid loosening remains. This complication is linked to the glenohumeral stability, defined as humeral head translation. In an intact shoulder, this concept is ensured by all active and passive elements, particularly the labrum. Two features of a glenoid implant can be adjusted to improve the stability, or, in other words, to decrease the translations: the first is the mismatch, defined as the difference of curvature between the prosthetic head and glenoid; the second is the shape of the glenoid component. Therefore, the objective of this study was to compare the performance of 2 glenoid components (Ceraver, Roissy, France): (1) a standard design and (2) a design named "labrum design" with a superior part simulating the anatomic labrum. An experimental device was developed to evaluate forces and kinematics. The device simulated active, dynamic and continuous abduction of an entire arm. It reproduced the Scapulo-Humeral Rhythm. The labrum design was installed first. To evaluate the effect of mismatch on the glenohumeral stability, 3 humeral heads were tested, corresponding to the ones recommended by the company. The experiment was repeated for the standard design. The results obtained show a general decrease of the prosthetic head translation with the labrum design compared to the standard design. No noticeable effect of mismatch was found. A proof of concept of the interest of the artificial labrum was provided since it improved the glenohumeral stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Water Capture Device Signal Integration Board

    NASA Technical Reports Server (NTRS)

    Chamberlin, Kathryn J.; Hartnett, Andrew J.

    2018-01-01

    I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.

  6. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides.

    PubMed

    Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-10-30

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.

  7. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    PubMed Central

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  8. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-01

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (<λ0/2.5). Our experiments show a transmission efficiency >-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.

  9. The Role of Proximity Effects in Transition-Edge Sensor Design and Performance

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2012-01-01

    Transition-edge sensor (TES) microcalorimeters and bolometers are under development by numerous groups worldwide for a variety of applications involving the measurement of particle and photon radiation. Recent experimental and theoretical progress has led to the realization that the fundamental physics of some TES systems involves the longitudinal proximity effect between the electrical bias contacts and the TES. As such, these devices are described as SS'S (or SN'S) weak-links exhibiting Fraunhofer-like magnetic field dependence, and exponential temperature dependence, of the critical current. These discoveries, for the first time, provide a realistic theoretical framework for predicting the resistive transition as a function of temperature, current and magnetic field. In this contribution, we review the latest theoretical and experimental results and investigate how proximity effects play an important role in determining the resistive transition characteristics, which ultimately determines the dynamic range and energy resolution of TES detectors. We investigate how these effects could be utilized in device design to engineer desired transition characteristics for a given application.

  10. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  11. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  12. Simulation and Optimization of an Astrophotonic Reformatter

    NASA Astrophysics Data System (ADS)

    Anagnos, Th; Harris, R. J.; Corrigan, M. K.; Reeves, A. P.; Townson, M. J.; MacLachlan, D. G.; Thomson, R. R.; Morris, T. J.; Schwab, C.; Quirrenbach, A.

    2018-05-01

    Image slicing is a powerful technique in astronomy. It allows the instrument designer to reduce the slit width of the spectrograph, increasing spectral resolving power whilst retaining throughput. Conventionally this is done using bulk optics, such as mirrors and prisms, however more recently astrophotonic components known as PLs and photonic reformatters have also been used. These devices reformat the MM input light from a telescope into SM outputs, which can then be re-arranged to suit the spectrograph. The PD is one such device, designed to reduce the dependence of spectrograph size on telescope aperture and eliminate modal noise. We simulate the PD, by optimising the throughput and geometrical design using Soapy and BeamProp. The simulated device shows a transmission between 8 and 20 %, depending upon the type of AO correction applied, matching the experimental results well. We also investigate our idealised model of the PD and show that the barycentre of the slit varies only slightly with time, meaning that the modal noise contribution is very low when compared to conventional fibre systems. We further optimise our model device for both higher throughput and reduced modal noise. This device improves throughput by 6.4 % and reduces the movement of the slit output by 50%, further improving stability. This shows the importance of properly simulating such devices, including atmospheric effects. Our work complements recent work in the field and is essential for optimising future photonic reformatters.

  13. Use of loading-unloading compression curves in medical device design

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.

  14. Selecting optimal structure of burners for tubular cylindrical furnaces by the mathematical experiment planning method

    NASA Astrophysics Data System (ADS)

    Katin, Viktor; Kosygin, Vladimir; Akhtiamov, Midkhat

    2017-10-01

    This paper substantiates the method of mathematical planning for experimental research in the process of selecting the most efficient types of burning devices for tubular refinery furnaces of vertical-cylindrical design. This paper provides detailed consideration of an experimental plan of a 4×4 Latin square type when studying the impact of three factors with four levels of variance. On the basis of the experimental research we have developed practical recommendations on the employment of optimal burners for two-step fuel combustion.

  15. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  16. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  17. A magnetorheological haptic cue accelerator for manual transmission vehicles

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Noh, Kyung-Wook; Lee, Yang-Sub; Choi, Seung-Bok

    2010-07-01

    This paper proposes a new haptic cue function for manual transmission vehicles to achieve optimal gear shifting. This function is implemented on the accelerator pedal by utilizing a magnetorheological (MR) brake mechanism. By combining the haptic cue function with the accelerator pedal, the proposed haptic cue device can transmit the optimal moment of gear shifting for manual transmission to a driver without requiring the driver's visual attention. As a first step to achieve this goal, a MR fluid-based haptic device is devised to enable rotary motion of the accelerator pedal. Taking into account spatial limitations, the design parameters are optimally determined using finite element analysis to maximize the relative control torque. The proposed haptic cue device is then manufactured and its field-dependent torque and time response are experimentally evaluated. Then the manufactured MR haptic cue device is integrated with the accelerator pedal. A simple virtual vehicle emulating the operation of the engine of a passenger vehicle is constructed and put into communication with the haptic cue device. A feed-forward torque control algorithm for the haptic cue is formulated and control performances are experimentally evaluated and presented in the time domain.

  18. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks

    PubMed Central

    Koo, Hyung-Jun

    2017-01-01

    Hydrogel could serve as a matrix material of new classes of solar cells and photoreactors with embedded microfluidic networks. These devices mimic the structure and function of plant leaves, which are a natural soft matter based microfluidic system. These unusual microfluidic-hydrogel devices with fluid-penetrable medium operate on the basis of convective-diffusive mechanism, where the liquid is transported between the non-connected channels via molecular permeation through the hydrogel. We define three key designs of such hydrogel devices, having linear, T-shaped, and branched channels and report results of numerical simulation of the process of their infusion with solute carried by the incoming fluid. The computational procedure takes into account both pressure-driven convection and concentration gradient-driven diffusion in the permeable gel matrix. We define the criteria for evaluation of the fluid infusion rate, uniformity, solute loss by outflow and overall performance. The T-shaped channel network was identified as the most efficient one and was improved further by investigating the effect of the channel-end secondary branches. Our parallel experimental data on the pattern of solute infusions are in excellent agreement with the simulation. These network designs can be applied to a broad range of novel microfluidic materials and soft matter devices with distributed microchannel networks. PMID:28396708

  19. The Influence of Learning Strategies and Performance Strategies upon Engineering Design.

    DTIC Science & Technology

    1979-09-12

    of an intruder alarm system. Subjects were provided with details of-how simple devices function, how detectors could be wired together, etc., and... experimenter , myself. I had the strong impression at that stage (some year or more ago),that many of the inn- ovations were due to the experimenter , even though...accidentally intro- duced. On listening to sample tapes (all sessions were sound recorded and many video recorded) this pessimistic impression is

  20. Testing the impact of a multimedia video CD of patient-controlled analgesia on pain knowledge and pain relief in patients receiving surgery.

    PubMed

    Chen, Hsing-Hsia; Yeh, Mei-Ling; Yang, Hui-Ju

    2005-07-01

    This study aimed to develop a multimedia video CD (VCD) of patient-controlled analgesia (PCA) and test its effects on pain knowledge and pain relief in patients receiving surgery. This multimedia VCD of PCA was created to convey fundamental knowledge to both patients and their family members and help patients properly utilize PCA devices to relieve pain and improve recovery. The content of multimedia VCD of PCA included pre-admission pain education, introduction of PCA, nursing care procedures, and questions and answers. This study used a quasi-experimental research design to test effects of the multimedia education program in the experimental group of 30 subjects compared to the control subjects of equal number (without the multimedia VCD of PCA). (1) The intervention of multimedia VCD of PCA resulted in a statistically significant difference in pain knowledge between the experimental and control groups. (2) Subjects in the experimental group obtained a better outcome of pain relief compared to control subjects. (3) Subjects in the experimental group indicated that the multimedia VCD of PCA indeed helped them effectively operate their PCA devices to relieve surgery pain. The clinical application of the multimedia VCD of PCA could help patients improve knowledge on pain, learn how to use PCA devices, achieve proper pain relief, and increase effectiveness of recovery activities.

  1. Use of mobile devices in nursing student-nurse teacher cooperation during the clinical practicum: an integrative review.

    PubMed

    Strandell-Laine, Camilla; Stolt, Minna; Leino-Kilpi, Helena; Saarikoski, Mikko

    2015-03-01

    To identify and appraise study findings on the use of mobile devices, in particular for what purposes and how, in nursing student-nurse teacher cooperation during the clinical practicum. A systematic literature search was conducted using the PubMed/Medline, CINAHL, PsycINFO and ERIC for primary empirical studies published in English. An integrative literature review was undertaken. Quality appraisal of the included studies was conducted using design-specific standardized checklists. Studies were thematically analyzed. Based on the inclusion and exclusion criteria, eleven studies were included in the review. Weaknesses in designs, samples, questionnaires and results, compromised comparison and/or generalization of the findings of the studies. Three main themes were identified: (1) features of mobile devices (2) utility of mobile devices and (3) barriers to the use of mobile devices. Problems of connectivity were the main challenges reported in the use of mobile devices. Participants used mobile devices primarily as reference tools, but less frequently as tools for reflection, assessment or cooperation during the clinical practicum. Interest in mobile device use during the clinical practicum was reported, but training and ongoing support are needed. As only a small number of eligible primary empirical studies were found, it is not possible to draw firm conclusions on the results. In the future, rigorous primary empirical studies are needed to explore the potential of mobile devices in providing a supplementary pedagogical method in nursing student-nurse teacher cooperation during the clinical practicum. Robust study designs, including experimental ones, are clearly needed to assess the effectiveness of mobile devices in nursing student-nurse teacher cooperation during the clinical practicum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Design considerations for multielectron double quantum dot qubits in silicon

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Barnes, Edwin; Kestner, Jason

    2014-03-01

    Solid state double quantum dot (DQD) spin qubits can be created by confining two electrons to a DQD potential. We present results showing the viability and potential advantages of creating a DQD spin qubit with greater than two electrons, and which suggest that silicon devices which could realize these advantages are experimentally possible. Our analysis of a six-electron DQD uses full configuration interaction methods and shows an isolated qubit space in regimes which 3D quantum device simulations indicate are accessible experimentally. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. The development of the experimental setup for measuring the cell membrane electrical potential by Sucrose-Gap Technique

    NASA Astrophysics Data System (ADS)

    Yuzhakov, AD; Nosarev, AV; Aleinik, AN

    2017-11-01

    This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.

  4. Micro-cooler enhancements by barrier interface analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, A.; Dunn, G. M.; Glover, J.

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions onmore » the nanometre scale has shown to produce significant changes in cooler performance.« less

  5. Simplified calculation procedure of a latent heat reservoir for stabilizing the temperature of electronic devices

    NASA Astrophysics Data System (ADS)

    Witzman, S.; Shitzer, A.; Zvirin, Y.

    A simple mathematical algorithm which facilitates the design of a latent heat reservoir for stabilizing the temperature of an inflight electronic device is developed, and the behavior of paraffin wax in a heat storage capacitor is experimentally studied. The results show that in the solidification stage the heat transfer coefficient h is smaller than 35 W/sq m - C and decreases with time. During the melting process, natural convection could significantly increase h on the internal side and thereby reduce the time required to melt the section compared to the conduction process alone. Values of h up to 60 W/sq m - C can be achieved. The correlation between experimental and theoretical results is good.

  6. Energy transport in cooling device by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  7. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation

    PubMed Central

    Jeffery, Nicholas D.

    2018-01-01

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039

  8. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.

    PubMed

    Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D

    2018-04-18

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.

  9. Design of magnetic Circuit Simulation for Curing Device of Anisotropic MRE

    NASA Astrophysics Data System (ADS)

    Hapipi, N.; Ubaidillah; Mazlan, S. A.; Widodo, P. J.

    2018-03-01

    The strength of magnetic field during fabrication of magnetorheological elastomer (MRE) plays a crucial role in order to form a pre-structured MRE. So far, gaussmeter were used to determine the magnetic intensity subjected to the MRE during curing. However, the magnetic flux reading through that measurement considered less accurate. Therefore, a simulation should be done to figure out the magnetic flux concentration around the sample. This paper investigates the simulation of magnetic field distribution in a curing device used during curing stage of anisotropic magnetorheological elastomer (MRE). The target in designing the magnetic circuit is to ensure a sufficient and uniform magnetic field to all the MRE surfaces during the curing process. The magnetic circuit design for the curing device was performed using Finite Element Method Magnetic (FEMM) to examine the magnetic flux density distribution in the device. The material selection was first done instantaneously during a magnetic simulation process. Then, the experimental validation of simulation was performed by measuring and comparing the actual flux generated within the specimen type and the one from the FEMM simulation. İt apparent that the data from FEMM simulation shows an agreement with the actual measurement. Furthermore, the FEMM results showed that the magnetic design is able to provide sufficient and uniform magnetic field all over the surfaces of the MRE.

  10. Image quality degradation by light-scattering processes in high-performance display devices for medical imaging

    NASA Astrophysics Data System (ADS)

    Badano, Aldo

    1999-11-01

    This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.

  11. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  12. Theoretical Study of Gilbert Damping and Spin Dynamics in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Qu, Tao

    The determination of damping mechanisms is one of the most fundamental problems of magnetism. It represents the elimination of the magnetic energy and thus has broad impact in both science and technology. The dynamic time scale in spintronic devices is controlled by the damping and the consumed power depends on the damping constant squared. In recent years, the interest in high perpendicular anisotropy materials and thin film structures have increased considerably, owing to their stability over a wide temperature range when scaling devices to nanometer length scales. However, the conventional measurement method-Ferromagnetic resonance (FMR) can not produce accurate damping results in the high magnetic crystalline anisotropy materials/structures, and the intrinsic damping reported experimentally diverges among investigators, probably due to the varying fabrication techniques. This thesis describes the application of the Kambersky torque correlation technique, within the tight binding method, to multiple materials with high perpendicular magnetic anisotropy ( 10 7 erg/cm3), in both bulk and thin film structures. The impact of the inevitable experimental defects on the energy dissipation is identified and the experimental damping divergence among investigators due to the material degree of order is explained. It is demonstrated that this corresponds to an enhanced DOS at the Fermi level, owing to the rounding of the DOS with loss of long-range order. The consistency of the predicted damping constant with experimental measurement is demonstrated and the interface contribution to the energy damping constant in potential superlattices and heterostructures for spintronic devices is explored. An optimized structure will be a tradeoff involving both anisotropy and damping. The damping related spin dynamics in spintronic devices for different applications is investigated. One device is current perpendicular to planes(CPP) spin valve. Incoherent scattering matrices are applied to calculate the angle dependent magnetoresistantce and obtain analytic expressions for the spin valve. The non-linearity of magnetoresistance can be quantitatively explained by reflected electrons using only experimental spin polarization as input. The other device is a spin-transfer-torque nano-oscillator. The Landau-Lifshitz-Gilbert equation is applied and the synchronization requirement for experimentally fabricated non-identical multi spintronic oscillators is explored. Power enhancement and noise decrease for the synchronized state is demonstrated in a temperature range. Through introducing combined electric and magnetic coupling effect, a design for an optimized feasible nanopillar structure suitable for thin-film deposition is developed.

  13. Reducing RF-related heating of cardiac pacemaker leads in MRI: implementation and experimental verification of practical design changes.

    PubMed

    Nordbeck, Peter; Fidler, Florian; Friedrich, Michael T; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Herold, Volker; Geistert, Wolfgang; Jakob, Peter M; Ertl, Georg; Ritter, Oliver; Ladd, Mark E; Bauer, Wolfgang R; Quick, Harald H

    2012-12-01

    There are serious concerns regarding safety when performing magnetic resonance imaging in patients with implanted conductive medical devices, such as cardiac pacemakers, and associated leads, as severe incidents have occurred in the past. In this study, several approaches for altering an implant's lead design were systematically developed and evaluated to enhance the safety of implanted medical devices in a magnetic resonance imaging environment. The individual impact of each design change on radiofrequency heating was then systematically investigated in functional lead prototypes at 1.5 T. Radiofrequency-induced heating could be successfully reduced by three basic changes in conventional pacemaker lead design: (1) increasing the lead tip area, (2) increasing the lead conductor resistance, and (3) increasing outer lead insulation conductivity. The findings show that radiofrequency energy pickup in magnetic resonance imaging can be reduced and, therefore, patient safety can be improved with dedicated construction changes according to a "safe by design" strategy. Incorporation of the described alterations into implantable medical devices such as pacemaker leads can be used to help achieve favorable risk-benefit-ratios when performing magnetic resonance imaging in the respective patient group. Copyright © 2012 Wiley Periodicals, Inc.

  14. Design keys for paper-based concentration gradient generators.

    PubMed

    Schaumburg, Federico; Urteaga, Raúl; Kler, Pablo A; Berli, Claudio L A

    2018-08-03

    The generation of concentration gradients is an essential operation for several analytical processes implemented on microfluidic paper-based analytical devices. The dynamic gradient formation is based on the transverse dispersion of chemical species across co-flowing streams. In paper channels, this transverse flux of molecules is dominated by mechanical dispersion, which is substantially different than molecular diffusion, which is the mechanism acting in conventional microchannels. Therefore, the design of gradient generators on paper requires strategies different from those used in traditional microfluidics. This work considers the foundations of transverse dispersion in porous substrates to investigate the optimal design of microfluidic paper-based concentration gradient generators (μPGGs) by computer simulations. A set of novel and versatile μPGGs were designed in the format of numerical prototypes, and virtual experiments were run to explore the ranges of operation and the overall performance of such devices. Then physical prototypes were fabricated and experimentally tested in our lab. Finally, some basic rules for the design of optimized μPGGs are proposed. Apart from improving the efficiency of mixers, diluters and μPGGs, the results of this investigation are relevant to attain highly controlled concentration fields on paper-based devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    PubMed Central

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  16. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  17. Phenomenological methodology for assessing the influence of flow conditions on the acoustic response of exhaust aftertreatment systems

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Arnau, F. J.; Piqueras, P.; Sanchis, E. J.; Tartoussi, H.

    2017-05-01

    The increasing limits of standards on aerosol and gaseous emissions from internal combustion engines have led to the progressive inclusion of different exhaust aftertreatment systems (EATS) as a part of the powertrain. Regulated emissions are generally abated making use of devices based on monolithic structures with different chemical functions. As a side effect, wave transmission across the device is affected and so is the boundary at the exhaust line inlet, so that the design of the latter is in turn affected. While some models are available for the prediction of these effects, the geometrical complexity of many devices makes still necessary in many cases to rely on experimental measurements, which cannot cover all the diversity of flow conditions under which these devices operate. To overcome this limitation, a phenomenological methodology is proposed in this work that allows for the sound extrapolation of experimental results to flow conditions different from those used in the measurements. The transfer matrix is obtained from tests in an impulse rig for different excitation amplitudes and mean flows. The experimental coefficients of the transmission matrix of the device are fitted to Fourier series. It allows treating the influence of the flow conditions on the acoustic response, which is manifested on changes in the characteristic periods, separately from the specific properties of every device. In order to provide predictive capabilities to the method, the Fourier series approach is coupled to a gas dynamics model able to account for the sensitivity of propagation velocity to variations in the flow conditions.

  18. A Method for Response Time Measurement of Electrosensitive Protective Devices.

    PubMed

    Dźwiarek, Marek

    1996-01-01

    A great step toward the improvement of safety at work was made when electrosensitive protective devices (ESPDs) were applied to the protection of press and robot-assisted manufacturing system operators. The way the device is mounted is crucial. The parameters of ESPD mounting that ensure safe distance from the controlled dangerous zone are response time, sensitivity, and the dimensions of the detection zone. The proposed experimental procedure of response time measurement is realized in two steps, with a test piece penetrating the detection zone twice. In the first step, low-speed penetration (at a speed v m ) enables the detection zone border to be localized. In the second step of measurement, the probe is injected at a high speed V d . The actuator rod position is measured and when it is equal to the value L registered by the earlier measurements, counting time begins as well as the monitoring of the state of the equipment under test (EUT) output relays. After the state changes, time tp is registered. The experimental procedure is realized on a special experimental stand. Because the stand has been constructed for certification purposes, the design satisfies the requirements imposed by Polski Komitet Normalizacyjny (PKN, 1995). The experimental results prove the measurement error to be smaller than ± 0.6 ms.

  19. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE PAGES

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari; ...

    2018-05-29

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  20. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  1. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.

    2009-09-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.

  2. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  3. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  4. Electrokinetic focusing injection methods on microfluidic devices.

    PubMed

    Fu, Lung-Ming; Yang, Ruey-Jen; Lee, Gwo-Bin

    2003-04-15

    This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.

  5. Experimental Study of Lightweight Tracked Vehicle Performance on Dry Granular Materials

    DTIC Science & Technology

    2013-09-12

    agricultural tractor and found that the length of the ground contact area is the most important factor affecting tractive performance, while track...authors are grateful to Ce- cilia Cantu and to Meccanotecnica Riesi SRL for collaborating on designing and manufacturing the single track device

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less

  7. Stellar figure sensor

    NASA Technical Reports Server (NTRS)

    Peters, W. N.

    1973-01-01

    A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.

  8. First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping

    PubMed Central

    Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing

    2013-01-01

    In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589

  9. Measuring the power consumption of social media applications on a mobile device

    NASA Astrophysics Data System (ADS)

    Dunia, A. I. M.; Suherman; Rambe, A. H.; Fauzi, R.

    2018-03-01

    As fully connected social media applications become popular and require all time connection, the power consumption on mobile device battery increases significantly. As power supplied by a battery is limited, social media application should be designed to be less power consuming. This paper reports the power consumption measurement of social media running on a mobile device. Experimental circuit was developed by using a microcontroller measuring an android smartphone on a 802.11 controlled network. The experiment results show that whatsapp consumes the power less than others in stand by and chat. While other states are dominated by line. The blackberry consumes the power the worst.

  10. Magnetic flux amplification by Lenz lenses.

    PubMed

    Schoenmaker, J; Pirota, K R; Teixeira, J C

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  11. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  12. Procedure de caracterisation thermophysique d'un materiau a changement de phase composite pour le stockage thermique

    NASA Astrophysics Data System (ADS)

    Le Du, Mathieu

    The use of phase change materials (PCMs) allows to store and release large amounts of energy in reduced volumes by using latent heat storage through melting and solidifying at specific temperatures. Phase change materials received a great interest for reducing energy consumption by easing the implementation of passive solar heating and cooling. They can be integrated to buildings as wallboards to improve the heat storage capacity. In this study, an original experimental device has allowed to characterize the thermophysical proprieties of a composite wallboard constituted of PCMs. Generally, PCMs are characterized by calorimetric methods which use very small quantities of material. The device used can characterize large sample's dimensions, as they could be used in real condition. Apparent thermal conductivity and specific heat have been measured for various temperatures. During phase change process, total and latent heat storage capacities have been evaluated with the peak melting and freezing temperatures. Results are compared to the manufacturer's data and data from literature. Incoherencies have been found between sources. Despite several differences with published data, overall results are similar to the latest information, which allow validate the original experimental device. Thermal disturbances due to hysteresis have been noticed and discussed. Results allow suggesting recommendations on thermal procedure and experimental device to characterize efficiently this kind of materials. Temperature's ranges and heating and freezing rates affect results and it must be considered in the characterization. Moreover, experimental devices have to be designed to allow similar heating and freezing rates in order to compare results during melting and freezing. Key words: Phase change material, latent thermal storage, thermophysical characterization.

  13. A novel framework for virtual prototyping of rehabilitation exoskeletons.

    PubMed

    Agarwal, Priyanshu; Kuo, Pei-Hsin; Neptune, Richard R; Deshpande, Ashish D

    2013-06-01

    Human-worn rehabilitation exoskeletons have the potential to make therapeutic exercises increasingly accessible to disabled individuals while reducing the cost and labor involved in rehabilitation therapy. In this work, we propose a novel human-model-in-the-loop framework for virtual prototyping (design, control and experimentation) of rehabilitation exoskeletons by merging computational musculoskeletal analysis with simulation-based design techniques. The framework allows to iteratively optimize design and control algorithm of an exoskeleton using simulation. We introduce biomechanical, morphological, and controller measures to quantify the performance of the device for optimization study. Furthermore, the framework allows one to carry out virtual experiments for testing specific "what-if" scenarios to quantify device performance and recovery progress. To illustrate the application of the framework, we present a case study wherein the design and analysis of an index-finger exoskeleton is carried out using the proposed framework.

  14. Bending induced electrical response variations in ultra-thin flexible chips and device modeling

    NASA Astrophysics Data System (ADS)

    Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder

    2017-09-01

    Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.

  15. Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler

    PubMed Central

    Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.

    2017-01-01

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639

  16. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    PubMed

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  17. Camel Gate Field Effect Transistors.

    DTIC Science & Technology

    1983-01-01

    CAMFETs can be designed to yield relatively voltage independent transconductances, large for- * ward turn-on voltages, and large gate-drain breakdown...doping. The FATFET area is 4.6 x 10- 4 cm2. I.- . - . . - , - 36 80 * Camel Gate U_-- Eperimental 60 * -Theoretical % Schottky Gate ~--Experimental CL 4...in the design of other devices. Finally, a comparative study of the reliabil- ities of CAMFETs, JFETs, and MESFETs should be attempted. 43 VII

  18. Investigation of optical/infrared sensor techniques for application satellites

    NASA Technical Reports Server (NTRS)

    Kaufman, I.

    1972-01-01

    A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.

  19. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position.

  20. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  1. Experimental research on a modular miniaturization nanoindentation device

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang

    2011-09-01

    Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.

  2. Full Scale Software Support on Mobile Lightweight Devices by Utilization of All Types of Wireless Technologies

    NASA Astrophysics Data System (ADS)

    Krejcar, Ondrej

    New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.

  3. MCTs and IGBTs - A comparison of performance in power electronic circuits

    NASA Technical Reports Server (NTRS)

    Sul, S. K.; Profumo, F.; Cho, G. H.; Lipo, T. A.

    1989-01-01

    There is a continuous demand for improvements in the quality of switching power devices, such as higher switching frequency, higher withstand voltage capability, larger current-handling capability, and lower conduction losses. However, for single-conduction-mechanism devices (SCRs, GTOs, BJTs, FETs), possessing all these features is probably unrealizable for physical reasons. An attractive solution appears to be double-mechanism devices, in which the features of both a minority carrier device (BJT or SCR) and a majority carrier device (MOSFET) are embedded. Both IGBTs (insulated-gate bipolar transistors) and MCTs (MOS-controlled thyristors) belong to this family of double-mechanism devices and promise to have a major impact on converter circuit signs. The authors deal with the major features of these two devices, pointing out those that are most critical to the design of converter topologies. In particular, the two devices have been tested both in a chopper and in two resonant link converter topologies, and the experimental results are reported.

  4. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  5. Compact high-power microwave divider and combiner.

    PubMed

    Guo, L T; Chang, C; Huang, W H; Liu, Y S; Cao, Y B; Liu, C L; Sun, J

    2016-02-01

    A novel, compact, TM01-TE10 mode power divider and a novel, compact, four-way TE10-TM01 mode power combiner were theoretically designed and experimentally tested as a proof of principle. The theoretical and experimental S parameters are consistent with each other. High-power experiments show that their power capacities are no less than 1.5 GW and 3 GW, respectively. The devices have the merits of high power capacities and low insertion losses.

  6. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.

    PubMed

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  7. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields.

    PubMed

    Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R C; Nijhuis, Christian A; van Kan, Jeroen A

    2016-11-01

    Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51  μ m, 2.47  μ m, and 2.60  μ m superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules.

  8. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields

    PubMed Central

    Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R. C.; Nijhuis, Christian A.; van Kan, Jeroen A.

    2016-01-01

    Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μm, 2.47 μm, and 2.60 μm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules. PMID:27917252

  9. Heat dissipation schemes in QCLs monitored by CCD thermoreflectance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pierscinski, Kamil; Pierścińska, Dorota; Morawiec, Magdalena; Gutowski, Piotr; Karbownik, Piotr; Serebrennikova, Olga; Bugajski, Maciej

    2017-02-01

    In this paper we present the development of the instrumentation for accurate evaluation of the thermal characteristics of quantum cascade lasers based on CCD thermoreflectance (CCD TR). This method allows rapid thermal characterization of QCLs, as the registration of high-resolution map of the whole device facet lasts only several seconds. The capabilities of the CCD TR are used to study temperature dissipation schemes in different designs of QCLs. We report on the investigation of thermal performance of QCLs developed at the Institute of Electron Technology, with an emphasis on the influence of different material system, processing technology and device designs. We investigate and compare AlInAs/InGaAs/InP QCLs (lattice matched and strain compensated) of different architectures, i.e., double trench and buried heterostructure (BH) in terms of thermal management. Experimental results are in very good agreement with numerical predictions of heat dissipation in various device constructions. Numerical model is based on FEM model solved by commercial software package. The model assumes anisotropic thermal conductivity in the AR layers as well as the temperature dependence of thermal conductivities of all materials in the project. We have observed experimentally improvement of thermal properties of devices based on InP materials, especially for buried heterostructure type. The use of buried heterostructure enhanced the lateral heat dissipation from the active region of QCLs. The BH structure and epilayer-down bonding help dissipate the heat generated from active core of the QCL.

  10. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  11. A Flexible and Configurable Architecture for Automatic Control Remote Laboratories

    ERIC Educational Resources Information Center

    Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš

    2015-01-01

    In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…

  12. Dynamic pressure measurement of cartridge operated vole captive bolt devices.

    PubMed

    Frank, M; Philipp, K P; Franke, E; Frank, N; Bockholdt, B; Grossjohann, R; Ekkernkamp, A

    2009-01-10

    Vole captive bolt devices are powder actuated spring guns that are used as a pest control mean. After having triggered the explosion of the blank cartridge by touching a metal ring around the muzzle, the vole is killed by the massive propulsion of the gas jet. Improper use and recklessness while handling these devices may cause severe injuries with the hand of the operator at particular risk. Currently, there are no experimental investigations on the ballistic background of these devices. An experimental test set-up was designed for measurement of the firing pressure and the dynamic force of the gas jet of a vole captive bolt device. Therefore, a vole captive bolt device was prepared with a pressure take-off channel and a piezoelectric transducer for measurement of the firing pressure. For measurement of the dynamic impact force of the gas jet an annular quartz force sensor was installed on a test bench. Each three simultaneous measurements of the cartridges' firing pressure and the dynamic force of the blast wave were taken at various distances between muzzle and load washer. The maximum gas pressure in the explosion chamber was up to 1100 bar. The shot development over time showed a typical gas pressure curve. Flow velocity of the gas jet was up to 2000 m/s. The maximum impact force of the gas jet at the target showed a strong inverse ratio to the muzzle's distance and was up to 11,500 N for the contact shot distance. Energy density of the gas jet for the close contact shot was far beyond the energy density required for skin penetration. The unique design features (short tube between cartridge mouth and muzzle and narrow diameter of the muzzle) of these gadgets are responsible for the high firing pressure, velocity and force of the gas jet. These findings explain the trauma mechanics of the extensive tissue damage observed in accidental shots of these devices.

  13. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  14. Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.

    2003-05-01

    The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.

  15. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  16. Nano- and micro-electromechanical switch dynamics

    NASA Astrophysics Data System (ADS)

    Pulskamp, Jeffrey S.; Proie, Robert M.; Polcawich, Ronald G.

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes.

  17. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  18. Recent progress of the Laser-driven Ion-beam Trace Probe

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.

  19. Computational design optimization for microfluidic magnetophoresis

    PubMed Central

    Plouffe, Brian D.; Lewis, Laura H.; Murthy, Shashi K.

    2011-01-01

    Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm3) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell population from a homogeneous suspension even in a low abundance. Overall, this design analysis provides a rational basis to select the operating conditions, including chamber and wire geometry, flow rates, and applied currents, for a magnetic-microfluidic cell separation device. PMID:21526007

  20. Experimental Evaluation of a Device Prototype Based on Shape Memory Alloys for the Retrofit of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Cardone, Donatello; Sofia, Salvatore

    2012-12-01

    Metallic tie-rods are currently used in many historical buildings for absorbing the out-of-plane horizontal forces of arches, vaults and roof trusses, despite they exhibit several limitations under service and seismic conditions. In this paper, a post-tensioned system based on the superelastic properties of Ni-Ti shape memory alloys is proposed for improving the structural performances of traditional metallic tie-rods. First, the thermal behavior under service conditions is investigated based on the results of numerical and experimental studies. Subsequently, the seismic performances under strong earthquakes are verified trough a number of shaking table tests on a 1:4-scale timber roof truss model. The outcomes of these studies fully confirm the achievement of the design objectives of the proposed prototype device.

  1. Piezoresistive in-line integrated force sensors for on-chip measurement and control

    NASA Astrophysics Data System (ADS)

    Teichert, Kendall; Waterfall, Tyler; Jensen, Brian; Howell, Larry; McLain, Tim

    2007-04-01

    This paper presents the design, fabrication, and testing of a force sensor for integrated use with thermomechanical in-plane microactuators. The force sensor is designed to be integrated with the actuator and fabricated in the same batch fabrication process. This sensor uses the piezoresistive property of silicon as a sensing signal by directing the actuation force through two thin legs, producing a tensile stress. This tensile load produces a resistance change in the thin legs by the piezoresistive effect. The resistance change is linearly correlated with the applied force. The device presented was designed by considering both its piezoresistive sensitivity and out-of- plane torsional stability. A design trade-off exists between these two objectives in that longer legs are more sensitive yet less stable. Fabrication of the sensor design was done using the MUMPs process. This paper presents experimental results from this device and a basic model for comparison with previously attained piezoresistive data. The results validate the concept of integral sensing using the piezoresistive property of silicon.

  2. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.

    2015-02-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.

  3. A comparison of WEC control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David G.; Bacelli, Giorgio; Coe, Ryan Geoffrey

    2016-04-01

    The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed formore » both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.« less

  4. Simulation of scalp cooling by external devices for prevention of chemotherapy-induced alopecia.

    PubMed

    Pliskow, Bradley; Mitra, Kunal; Kaya, Mehmet

    2016-02-01

    Hypothermia of the scalp tissue during chemotherapy treatment (scalp cooling) has been shown to reduce or prevent chemotherapy-induced hair loss. In this study, numerical models are developed to investigate the interaction between different types of external scalp cooling devices and the human scalp tissue. This work focuses on improving methods of modeling scalp cooling devices as it relates specifically to the prevention of chemotherapy-induced alopecia. First, the cooling power needed for any type of device to achieve therapeutic levels of scalp hypothermia is investigated. Subsequently, two types of scalp cooling devices are simulated: a pre-cooled/frozen cap design and a liquid-cooled cap design. For an average patient, simulations show that 38.5W of heat must be extracted from the scalp tissue for this therapy in order to cool the hair follicle to 22°C. In practice, the cooling power must be greater than this amount to account for thermal losses of the device. Simulations show that pre-cooled and liquid-cooled cap designs result in different tissue temperatures over the course of the procedure. However, it is the temperature of the coolant that largely determines the resulting tissue temperature. Simulations confirm that the thermal resistance of the hair/air layer has a large impact on the resulting tissue temperatures. The results should be correlated with experimental data as an effort to determine the optimal parameter choices for this model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation.

    PubMed

    Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco

    2016-10-01

    We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Numerical simulation of the deterministic vector separation of particles flowing over slanted open cavities

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric S. G.; Bernate, Jorge A.; Yang, Mengfei

    2016-12-01

    Within the past decade, the separation of particles via continuous flow through microfluidic devices has been developed largely through an Edisonian approach whereby devices have been developed based on observation and intuition. This is particularly true in the development of vector chromatography at vanishingly small Reynolds number for non-Brownian particles. Note that this latter phenomenon has its origins in the irreversible forces that are at work in the device, since Stokes flow reversibility typically prohibits their function otherwise. We present a numerical simulation of the vector separation of non-Brownian particles of different sizes and deformabilities in the Stokes flow through channels whose lower surface is composed of slanted cavities. The simulations are designed to understand the physical principles behind the separation as well as to provide design criteria for devices for separating particles in a given size and flexibility range. The numerical simulations are Stokes flow boundary element simulations using techniques defined elsewhere in the literature, but including a close-range repulsive force between the particles and the slanted cavities. We demonstrate that over a range of repulsive force that is comparable to the roughness in the experimental devices, the separation data (particularly in particle size) are predicted quantitatively and are a very weak function of the range of the force. We then vary the geometric parameters of the simulated devices to demonstrate the sensitivity of the separation efficiency to these parameters, thus making design predictions as to which devices are appropriate for separating particles in different size, shape, and deformability ranges.

  7. High throughput screening of CO2 solubility in aqueous monoamine solutions.

    PubMed

    Porcheron, Fabien; Gibert, Alexandre; Mougin, Pascal; Wender, Aurélie

    2011-03-15

    Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.

  8. Advanced Design Features of APR1400 and Realization in Shin Kori Construction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OH, S.J.; Park, K.C.; Kim, H.G.

    2006-07-01

    APR1400 adopted several advanced design features. To ensure their proper operation as a part of ShinKori 3,4 project, both experimental and analytical work are continuing. In this paper, work on the advanced design features related to enhanced safety is examined. APR1400 safety injection system consists of four independent trains which include four safety injection pump and tanks. A passive flow regulating device called fluidic device is installed in the safety injection tanks. Separate effect tests including a full scale fluidic device tests have been conducted. Integral system tests are in progress. Combination of these work with the analytical work usingmore » RELAP5/Mod3 would ensure the proper operation of the new safety injection systems. To mitigate severe accidents, hydrogen mitigation system using PARs and igniters is adopted. Also, active injection system and the streamlined insulation design are adopted to enhance the in-vessel retention capability with the external cooling of RPV strategy. Analytic work with supporting experiments is performed. We are certain that these preparatory work would help the successful adaptation of ADF in ShinKori project. (authors)« less

  9. Micromirror array nanostructures for anticounterfeiting applications

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  10. Design and testing of a novel audio transducer to train string musical instruments

    NASA Astrophysics Data System (ADS)

    Cinquemani, Simone; Giberti, Hermes

    2018-03-01

    Stringed wooden instruments, like violins or double basses, experience a decrease in performance if they are not played for a long time. For this reason, top class instruments are usually given to musicians and played every day to preserve sound quality. The paper deals with the design, construction and testing of a device to be inserted in the bridge of a stringed wooden instrument to simulate the stresses experienced by the instrument during normal playing. The device could provide a simple, fast and inexpensive way to recover the sound of an instrument that has not been played for a period of time, or even to enhance the instrument's sound. The device is based on two magnetostrictive actuators that can exert suitable forces on the body of the violin. The device has been designed and tested to exert forces as constant as possible in the range of frequency between 10 Hz and 15kHz. Experimental tests are carried out to evaluate the effect of the device on the sound produced by the violin during a 3 weeks hours training. Two hi-quality microphones have been used to measure principal harmonics and changes during the test. Results show that in the first part of the test (approximately 100 hours) amplitudes of main harmonics widely change, while in the following their values remain constant. This behavior demonstrates the violin has reached its "nominal" status.

  11. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  12. Expyriment: a Python library for cognitive and neuroscientific experiments.

    PubMed

    Krause, Florian; Lindemann, Oliver

    2014-06-01

    Expyriment is an open-source and platform-independent lightweight Python library for designing and conducting timing-critical behavioral and neuroimaging experiments. The major goal is to provide a well-structured Python library for script-based experiment development, with a high priority being the readability of the resulting program code. Expyriment has been tested extensively under Linux and Windows and is an all-in-one solution, as it handles stimulus presentation, the recording of input/output events, communication with other devices, and the collection and preprocessing of data. Furthermore, it offers a hierarchical design structure, which allows for an intuitive transition from the experimental design to a running program. It is therefore also suited for students, as well as for experimental psychologists and neuroscientists with little programming experience.

  13. Improved arrayed-waveguide-grating layout avoiding systematic phase errors.

    PubMed

    Ismail, Nur; Sun, Fei; Sengo, Gabriel; Wörhoff, Kerstin; Driessen, Alfred; de Ridder, René M; Pollnau, Markus

    2011-04-25

    We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.

  14. Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-01

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410

  15. Adding pluggable and personalized natural control capabilities to existing applications.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-28

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.

  16. Design and Experimental Verification of Chang'E-3 Moon-night Survival Device for APXS

    NASA Astrophysics Data System (ADS)

    Deng-yi, Chen; Jian, Wu; Yi-ming, Hu; Jin, Chang; Yi-zhong, Gong; Ming-sheng, Cai; Huan-yu, Wang; Jia-yu, Zhang; Xing-zhu, Cui; Jin-zhou, Wang

    2016-07-01

    The Active Particle X-ray Spectrometer (APXS) is one of the 4 scientific payloads of Chang'E-3 (CE-3) Lunar Rover, of which the scientific object is to identify the elements of lunar soil and rock samples by a carried radioactive source to trigger and detect the characteristic X-ray from them. According to the extreme temperature environment of the APXS and under the restriction of limited resources, this paper presents the design and analysis of the moon-night survival device RHU (radioisotope heating unit) for the APXS, and describes the corresponding environmental tests on its structure dynamics and moon-night survival. Finally, its reinstallation on the launch tower and the preliminary result of its on-orbit operation are introduced.

  17. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    PubMed

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  18. Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.

    2018-02-01

    In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.

  19. Experimental Determination of Demand Response Control Models and Cost of Control for Ensembles of Window-Mount Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Drew Adam; Backhaus, Scott N.

    Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner frommore » the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.« less

  20. On the Properties and Design of Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  1. A new adjustable parallel drill guide for internal fixation of femoral neck fracture: a developmental and experimental study.

    PubMed

    Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin

    2016-01-11

    Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.

  2. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.

    PubMed

    Leonardis, Daniele; Solazzi, Massimiliano; Bortone, Ilaria; Frisoli, Antonio

    2017-01-01

    A novel wearable haptic device for modulating contact forces at the fingertip is presented. Rendering of forces by skin deformation in three degrees of freedom (DoF), with contact-no contact capabilities, was implemented through rigid parallel kinematics. The novel asymmetrical three revolute-spherical-revolute (3-RSR) configuration allowed compact dimensions with minimum encumbrance of the hand workspace. The device was designed to render constant to low frequency deformation of the fingerpad in three DoF, combining light weight with relatively high output forces. A differential method for solving the non-trivial inverse kinematics is proposed and implemented in real time for controlling the device. The first experimental activity evaluated discrimination of different fingerpad stretch directions in a group of five subjects. The second experiment, enrolling 19 subjects, evaluated cutaneous feedback provided in a virtual pick-and-place manipulation task. Stiffness of the fingerpad plus device was measured and used to calibrate the physics of the virtual environment. The third experiment with 10 subjects evaluated interaction forces in a virtual lift-and-hold task. Although with different performance in the two manipulation experiments, overall results show that participants better controlled interaction forces when the cutaneous feedback was active, with significant differences between the visual and visuo-haptic experimental conditions.

  3. Design of negative refractive index metamaterial with water droplets using 3D-printing

    NASA Astrophysics Data System (ADS)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  4. Inertia in the Brazil nut problem.

    PubMed

    Nahmad-Molinari, Y; Canul-Chay, G; Ruiz-Suárez, J C

    2003-10-01

    The rise dynamics of a large particle, in a granular bed under vertical vibrations, is experimentally studied with an inductive device designed to track the particle while it climbs through the granulate under different conditions. A model based on energy considerations is presented to explain our experimental data, drawing the important conclusion that it is the inertia of the particle, assisted by Reynolds dilatancy, the driven force behind its ascension mechanism. The ascension reveals a friction profile within the column which remains unchanged for different accelerations.

  5. Inertial focusing of microparticles and its limitations

    NASA Astrophysics Data System (ADS)

    Cruz, FJ; Hooshmand Zadeh, S.; Wu, ZG; Hjort, K.

    2016-10-01

    Microfluidic devices are useful tools for healthcare, biological and chemical analysis and materials synthesis amongst fields that can benefit from the unique physics of these systems. In this paper we studied inertial focusing as a tool for hydrodynamic sorting of particles by size. Theory and experimental results are provided as a background for a discussion on how to extend the technology to submicron particles. Different geometries and dimensions of microchannels were designed and simulation data was compared to the experimental results.

  6. Design Tools for Zero-Net Mass-Flux Separation Control Devices

    DTIC Science & Technology

    2004-12-01

    experimental data. Most of the experimental studies employed either Hot Wire Anemometry (HWA), Particle Image Velocimetry (PIV) or Laser Doppler...To61 View traverse Y Z z to procdspor X * ’ probe I,it, I from laser Sbellows synthetic PMTs extender jet,,, olor i 200 mm 2 ", separator micro...measured using a laser displacement sensor Micro-Epsilon Model ILD2000-10. The sensitivity is 1 V/mm, with a full-scale range of 10 mm and a resolution of

  7. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    NASA Astrophysics Data System (ADS)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  8. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    NASA Astrophysics Data System (ADS)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  9. On-line data display

    NASA Astrophysics Data System (ADS)

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli

    1993-05-01

    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  10. Design, characterisation and evaluation of a soft robotic sock device on healthy subjects for assisted ankle rehabilitation.

    PubMed

    Low, Fan-Zhe; Lim, Jeong Hoon; Yeow, Chen-Hua

    2018-01-01

    Motor impairment is one of the common neurological conditions suffered by stroke patients, where this chronic immobility together with the absence of early limb mobilisation can lead to conditions such as joint contracture with spastic limbs. In this study, a soft robotic sock device was developed, which can provide compliant actuation to the ankle joint in the early stage of stroke recovery. The device is fitted with soft extension actuators and when the actuators are inflated, they extend and guide the foot into plantarflexion; upon deflation, the actuators will resume their initial conformations. Each actuator is linked to a pneumatic pump-valve control system that injects pressurised air into or release air from the system. In this study, the design and characterisation of the soft actuators will be presented, where the theoretical and experimental forces generated by the actuators were compared. The performance of the device was also evaluated on healthy subjects and the results had shown that the device was able to move the subjects' ankles into cycles of dorsiflexion-plantarflexion, in the absence of voluntary muscle effort. The findings suggested that the soft wearable robotic device was capable of assisting the subjects in performing repeated cycles of ankle flexion.

  11. Boundary conditioning of capacitive MEMS devices through fabrication methods and operating environments

    NASA Astrophysics Data System (ADS)

    Muthukumaran, Packirisamy; Stiharu, Ion G.; Bhat, Rama B.

    2003-10-01

    This paper presents and applies the concept of micro-boundary conditioning to the design synthesis of microsystems in order to quantify the influence of inherent limitations of the fabrication process and the operating conditions on both static and dynamic behavior of microsystems. The predicted results on the static and dynamic behavior of a capacitive MEMS device, fabricated through MUMPs process, under the influence of the fabrication limitation and operating environment are presented along with the test results. The comparison between the predicted and experimental results shows a good agreement.

  12. Prehensile control of a hand prosthesis by a microcontroller.

    PubMed

    Chappell, P H; Kyberd, P J

    1991-09-01

    The functional replacement of a natural hand and wrist is usually achieved by a split hook or an electrically powered and myoelectrically controlled artificial hand with one degree of freedom. In contrast to the commercial devices, this paper describes an experimental hand with four electric motors, nineteen sensors, and control algorithms which are written for a microcontroller. The hand significantly improves the prehension capabilities of an artificial device and leads to a design which is easily controlled by a user as it mimics the control system of the natural hand.

  13. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  14. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  15. Control of crankshaft finish by scattering technique

    NASA Astrophysics Data System (ADS)

    Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola

    2001-06-01

    The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.

  16. High-sensitivity two-terminal magnetoresistance devices using InGaAs/AlGaAs two-dimensional channel on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di-Cheng; Pan, You-Wei; Lin, Shih-Wei

    2016-04-25

    We demonstrate experimentally the two-terminal magnetic sensors exhibiting an extraordinary magneto-resistance effect by using an InGaAs quantum well channel with a metal-shunting structure. A high magneto-resistance of 17.3% and a sensitivity of 488.1 Ω/T have been obtained at 1 T and room temperature with our geometrical design. The two-contact configuration and the high-mobility electron transistor-compatible epitaxy structure make the devices promising for high-sensitivity magnetic sensing integration and applications.

  17. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking.

    PubMed

    Chanu, A; Aboussouan, E; Tamaz, S; Martel, S

    2006-01-01

    Software architecture for the navigation of a ferromagnetic untethered device in a 1D and 2D phantom environment is briefly described. Navigation is achieved using the real-time capabilities of a Siemens 1.5 T Avanto MRI system coupled with a dedicated software environment and a specially developed 3D tracking pulse sequence. Real-time control of the magnetic core is executed through the implementation of a simple PID controller. 1D and 2D experimental results are presented.

  18. Research on the attitude of small UAV based on MEMS devices

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojie; Lu, Libin; Jin, Guodong; Tan, Lining

    2017-05-01

    This paper mainly introduces the research principle and implementation method of the small UAV navigation attitude system based on MEMS devices. The Gauss - Newton method based on least squares is used to calibrate the MEMS accelerometer and gyroscope for calibration. Improve the accuracy of the attitude by using the modified complementary filtering to correct the attitude angle error. The experimental data show that the design of the attitude and attitude system in this paper to meet the requirements of small UAV attitude accuracy to achieve a small, low cost.

  19. Loading an Equidistant Ion Chain in a Ring Shaped Surface Trap and Anomalous Heating Studies with a High Optical Access Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabakov, Boyan

    2015-07-01

    Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal,more » with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.« less

  20. Design, Prototyping and Control of a Flexible Cystoscope for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sozer, Canberk; Ghorbani, Morteza; Alcan, Gokhan; Uvet, Huseyin; Unel, Mustafa; Kosar, Ali

    2017-07-01

    Kidney stone and prostate hyperplasia are very common urogenital diseases all over the world. To treat these diseases, one of the ESWL (Extracorporeal Shock Wave Lithotripsy), PCNL (Percutaneous Nephrolithotomy), cystoscopes or open surgery techniques can be used. Cystoscopes named devices are used for in-vivo intervention. A flexible or rigid cystoscope device is inserted into human body and operates on interested area. In this study, a flexible cystoscope prototype has been developed. The prototype is able to bend up to ±40°in X and Y axes, has a hydrodynamic cavitation probe for rounding sharp edges of kidney stone or resection of the filled prostate with hydrodynamic cavitation method and contains a waterproof medical camera to give visual feedback to the operator. The operator steers the flexible end-effector via joystick toward target region. This paper presents design, manufacturing, control and experimental setup of the tendon driven flexible cystoscope prototype. The prototype is 10 mm in outer diameter, 70 mm in flexible part only and 120 mm in total length with flexible part and rigid tube. The experimental results show that the prototype bending mechanism, control system, manufactured prototype parts and experimental setup function properly. A small piece of real kidney stone was broken in targeted area.

  1. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    NASA Astrophysics Data System (ADS)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  2. An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents.

    PubMed

    Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan

    2016-02-16

    Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting.

  3. An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents

    PubMed Central

    Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan

    2016-01-01

    Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting. PMID:28787913

  4. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    PubMed Central

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-01-01

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ∼λ0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (<λ0/2.5). Our experiments show a transmission efficiency >−2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics. PMID:27827391

  5. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ 0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (0/2.5). Our experiments show a transmission efficiency >–2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with bettermore » design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. In conclusion, the nanophotonic cloaks can be generally applied to all passive integrated photonics.« less

  6. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    DOE PAGES

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-09

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ 0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (0/2.5). Our experiments show a transmission efficiency >–2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with bettermore » design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. In conclusion, the nanophotonic cloaks can be generally applied to all passive integrated photonics.« less

  7. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking.

    PubMed

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-09

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ∼λ 0 /2 and designed waveguides with centre-to-centre spacing as small as 600 nm (<λ 0 /2.5). Our experiments show a transmission efficiency >-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.

  8. Performance analysis and simulation of vertical gallium nitride nanowire transistors

    NASA Astrophysics Data System (ADS)

    Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas

    2018-06-01

    Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.

  9. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  10. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  11. Piezoelectric micromachined ultrasonic transducers and micropumps: from design to optomicrofluidic applications

    NASA Astrophysics Data System (ADS)

    Khazaaleh, Shadi; Saeed, Numan; Taha, Inas; Madzik, Mateusz T.; Viegas, Jaime

    2017-02-01

    In this work, we present the experimental results of a new wafer-level production platform for aluminum nitride based piezoelectric micromachined ultrasonic transducers (PMUTs), operated by lower than 10 V peak-to-peak signals, and covering ultrasonic frequency ranges from 200 kHz up to 10 MHz, with measured axial displacements ranging from a few nanometers up to 600 nm. The fabricated devices have a low footprint of (130x130) μm2. The experimental results are in excellent agreement with finite-element method simulations. The small footprint and driving voltages of these piezo-microactuators are well suited for the development of micropump and micromixer designs for portable microfluidics applications.

  12. Micro- and nano-scale optical devices for high density photonic integrated circuits at near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rohit

    In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device fabrication and measurement techniques to demonstrate for the first time a "superlens" for the technologically important near infrared wavelength ranges with the opportunity to scale down further to visible wavelengths. The observed resolution is 0.47lambda, clearly smaller than the diffraction limit of 0.61lambda and is supported by detailed theoretical analyses and comprehensive numerical simulations. Importantly, we clearly show for the first time this subdiffraction limit imaging is due to the resonant excitation of surface slab modes, permitting amplification of evanescent waves. The demonstrated "superlens" has the largest figure of merit ever reported till date both theoretically and experimentally. The techniques and devices described in this thesis can be further applied to develop new devices with different functionalities. In Chapter 6 we describe two examples using these ideas. First, we experimentally demonstrate the use of the nanomechanical proximity perturbation technique to develop a phase retarder for on-chip all state polarization control. Next, we use the negative refraction photonic crystals described in Chapter 5 to achieve a special kind of bandgap called the zero-n¯ bandgap having unique properties.

  13. Potato respirometer experiment SO61

    NASA Technical Reports Server (NTRS)

    Taudvin, P. C.; Szpakowski, T. A.

    1971-01-01

    The design and manufacture of a respirometer for measuring the oxygen consumption rate of a respiring potato sprout in a Skylab experiment is reported. The device monitors low gravity effects on the biorhythmicity of organisms during space flight. Several experimental runs using bench mounted flight hardware units were inconclusive due to room temperature induced artifacts.

  14. DEVELOPMENT OF EXPERIMENTAL AUDIOVISUAL DEVICES AND MATERIALS FOR BEGINNING READERS.

    ERIC Educational Resources Information Center

    GIBSON, CHRISTINE M.; RICHARDS, I.A.

    THIS STUDY TESTED THE ARRANGEMENT OF AN INTERRELATED PROGRAM OF PROCEDURES THAT CAN MUTUALLY GENERATE AND NURTURE THE LEARNING PROCESS FOR BEGINNING READING. CLOSE, SYSTEMATIC OBSERVATIONS OF PEOPLE OF VARYING AGES WERE MADE. THE MATERIALS HAD BEEN DESIGNED, FIELD TESTED, AND REFINED BY A LANGUAGE RESEARCH GROUP AT THE HARVARD GRADUATE SCHOOL OF…

  15. Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance

    ERIC Educational Resources Information Center

    Orndorff, Harold N., III.

    2015-01-01

    This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…

  16. An evaluation of the following too closely monitor system on a four-lane undivided highway : interim report.

    DOT National Transportation Integrated Search

    1976-01-01

    The FOLLOWING TOO CLOSELY (FTC) MONITOR system is an experimental device designed to measure vehicle gaps at a point along the highway and to advise the motorist, by means of a flashing message on a sign, that he is following the car in front of him ...

  17. Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures

    NASA Technical Reports Server (NTRS)

    Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.

    1990-01-01

    The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.

  18. Location Based Services for Outdoor Ecological Learning System: Design and Implementation

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Lin, Chih-Cheng; Feng, Ruei-Ting; Li, Kun Jing

    2010-01-01

    This paper aimed to demonstrate how location-based services were implemented in ubiquitous outdoor ecological learning system. In an elementary school in northern Taiwan, two fifth grade classes on an ecology project were randomly selected: The experimental group could access the ecological learning system on hand-held devices while the control…

  19. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device

    PubMed Central

    Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung

    2015-01-01

    A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems. PMID:25955658

  20. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE PAGES

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    2017-11-13

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  1. Effect of Weight on the Resonant Tuning of Energy Harvesting Devices Using Giant Magnetostrictive Materials.

    PubMed

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu

    2018-04-10

    This study deals with the numerical and experimental study of the effect of weight on the resonant tuning and energy harvesting characteristics of energy harvesting devices using giant magnetostrictive materials. The energy harvesting device is made in a cantilever shape using a thin Terfenol-D layer, stainless steel (SUS) layer and a movable proof mass, among other things. In this study, two types of movable proof mass were prepared, and the device was designed to adjust its own resonant frequency automatically to match external vibration frequency in real time. Three-dimensional finite element analysis (FEA) was performed, and the resonant frequency, tip displacement, and output voltage in the devices were predicted and measured, and the simulation and experiment results were compared. The effects of the weight of the proof mass on self-tuning ability and time-varying behavior were then considered in particular.

  2. Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors due to Single Particle Displacement Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.

    As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less

  3. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  4. Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.

    2008-01-01

    Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.

  5. Low energy nuclear recoils study in noble liquids for low-mass WIMPs

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming

    2014-03-01

    Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  6. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  7. Integrating Flexible Sensor and Virtual Self-Organizing DC Grid Model With Cloud Computing for Blood Leakage Detection During Hemodialysis.

    PubMed

    Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung

    2017-08-01

    Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.

  8. Room-temperature-operation visible-emission semiconductor diode lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Kressel, H.; Nuese, C. J.

    1977-01-01

    There were two main approaches taken to develop shorter wavelength lasers. (1) Based on (AlGa)As and liquid-phase epitaxy, significant new results were obtained: Properties of these laser diodes (power output, spectra, and beam patterns), materials considerations, laser theory, and growth problems are discussed. The design of (AlGa)As layers is discussed from the vertical point of view, and various design curves are given. Horizontal structural requirements are also discussed. Experimental results from measurements done as a function of hydrostatic pressure are correlated with other results. (2) The first heterojunction laser structures using GaAs sub l-x P sub x and In sub y Ga sub l-y P at compositions, where the lattice constants are matched, were grown using vapor-phase growth technology and are described in detail, including experimental device results. Threshold current densities from 3,000 to 5,000 A per sq cm. and emission wavelengths from 6,520 A to 6,640 A were obtained at 77 K. The limiting factor in these devices is nonradiative recombination at the heterojunctions. Life tests on facet-coated (AlGa)As CW diodes are reported.

  9. Memristive device based on a depletion-type SONOS field effect transistor

    NASA Astrophysics Data System (ADS)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  10. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel M.

    2012-12-01

    It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.

  11. Fluidic Vectoring of a Planar Incompressible Jet Flow

    NASA Astrophysics Data System (ADS)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  12. Recent high-speed ballistics experiments at ORNL

    NASA Astrophysics Data System (ADS)

    Combs, S. K.; Gouge, M. J.; Baylor, L. R.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.

    Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures less than 20 K) and typically accelerated to speeds of (approximately) 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are of particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.

  13. Recent high-speed ballistics experiments at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1994-12-31

    Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures <20 K) and typically accelerated to speeds of {approximately} 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are ofmore » particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.« less

  14. Strategies for improving neural signal detection using a neural-electronic interface.

    PubMed

    Szlavik, Robert B

    2003-03-01

    There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.

  15. Modular disposable can (MODCAN) crash cushion: A concept investigation

    NASA Technical Reports Server (NTRS)

    Knoell, A.; Wilson, A.

    1976-01-01

    A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.

  16. Meeting the challenge of a 50000-hour-life-time requirement

    NASA Technical Reports Server (NTRS)

    Vest, C. E.; Studer, P. A.

    1971-01-01

    Space mission requirements for the 70's have established a 50,000-hour-lifetime challenge for the mechanisms designer. This challenge may be met by two approaches: (1) development of new materials for wear-prone elements, and (2) design innovation of new electromechanical devices that do not include mechanical wear-prone components. Present state-of-the-art materials require restricted operation regarding load, speed, and power for gears, bearings, and brush-slipring components. These restrictions are discussed, and methods of improvement are suggested. The design-innovations approach is discussed and is illustrated by the design of an experimental magnetically suspended motor.

  17. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    NASA Astrophysics Data System (ADS)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we can optimise the device design to suffer minimum impact from radiation damage effects, here using detector development for the SMILE mission to demonstrate the process.

  18. Counteracting moment device for reduction of earthquake-induced excursions of multi-level buildings.

    PubMed

    Nagaya, K; Fukushima, T; Kosugi, Y

    1999-05-01

    A vibration-control mechanism for beams and columns was presented in our previous report in which the earthquake force was transformed into a vibration-control force by using a gear train mechanism. In our previous report, however, only the principle of transforming the earthquake force into the control force was presented; the discussion for real structures and the design method were not presented. The present article provides a theoretical analysis of the column which is used in multi-layered buildings. Experimental tests were carried out for a model of multi-layered buildings in the frequency range of a principal earthquake wave. Theoretical results are compared to the experimental data. The optimal design of the control mechanism, which is of importance in the column design, is presented. Numerical calculations are carried out for the optimal design. It is shown that vibrations of the column involving the mechanism are suppressed remarkably. The optimal design method and the analytical results are applicable to the design of the column.

  19. Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Anderson, Bernhard H.

    2009-01-01

    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.

  20. X-57 Power and Command System Design

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Redifer, Matthew; Papathakis, Kurt; Samuel, Aamod; Foster, Trevor

    2017-01-01

    This paper describes the power and command system architecture of the X-57 Maxwell flight demonstrator aircraft. The X-57 is an experimental aircraft designed to demonstrate radically improved aircraft efficiency with a 3.5 times aero-propulsive efficiency gain at a "high-speed cruise" flight condition for comparable general aviation aircraft. These gains are enabled by integrating the design of a new, optimized wing and a new electric propulsion system. As a result, the X-57 vehicle takes advantage of the new capabilities afforded by electric motors as primary propulsors. Integrating new technologies into critical systems in experimental aircraft poses unique challenges that require careful design considerations across the entire vehicle system, such as qualification of new propulsors (motors, in the case of the X-57 aircraft), compatibility of existing systems with a new electric power distribution bus, and instrumentation and monitoring of newly qualified propulsion system devices.

Top