Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2
NASA Technical Reports Server (NTRS)
Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)
1998-01-01
The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.
1983-02-01
blow-off stability and fractional conversion was evaluated for design of an experimental study of these phenomena. The apparatus designed will be...the development of an array of experimental methods and test strategies designed to unravel a complex process that is very difficult to observe directly...this effort of lead field theoretic analysis as a design basis has made that possible. The experimental phase of the effort has three major
HOST turbine heat transfer subproject overview
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1986-01-01
The experimental part of the turbine heat transfer subproject consists of six large experiments, which are highlighted in this overview, and three of somewhat more modest scope. One of the initial efforts was the stator airfoil heat transfer program. The non-film cooled and the showerhead film cooled data have already been reported. The gill region film cooling effort is currently underway. The investigation of secondary flows in a 90 deg curved duct, was completed. The first phase examined flows with a relatively thin inlet boundary layer and low free stream turbulence. The second phase studied a thicker inlet boundary layer and higher free stream turbulence. A comparison of analytical and experimental cross flow velocity vectors is shown for the 60 deg plane. Two experiments were also conducted in the high pressure facility. One examined full coverage film cooled vanes, and the other, advanced instrumentation. The other three large experimental efforts were conducted in a rotation reference frame. An experiment to obtain gas path airfoil heat transfer coefficients in the large, low speed turbine was completed. Single-stage data with both high and low-inlet turbulence were taken. The second phase examined a one and one-half stage turbine and focused on the second vane row. Under phase 3 aerodynamic quantities such as interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and surface pressure distribution were measured.
Aerothermal modeling, phase 1. Volume 2: Experimental data
NASA Technical Reports Server (NTRS)
Kenworthy, M. J.; Correa, S. M.; Burrus, D. L.
1983-01-01
The experimental test effort is discussed. The test data are presented. The compilation is divided into sets representing each of the 18 experimental configurations tested. A detailed description of each configuration, and plots of the temperature difference ratio parameter or pattern factor parameter calculated from the test data are also provided.
LOCSET Phase Locking: Operation, Diagnostics, and Applications
NASA Astrophysics Data System (ADS)
Pulford, Benjamin N.
The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.
Joint research effort on vibrations of twisted plates, phase 1: Final results
NASA Technical Reports Server (NTRS)
Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.
1985-01-01
The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.
Speech effort measurement and stuttering: investigating the chorus reading effect.
Ingham, Roger J; Warner, Allison; Byrd, Anne; Cotton, John
2006-06-01
The purpose of this study was to investigate chorus reading's (CR's) effect on speech effort during oral reading by adult stuttering speakers and control participants. The effect of a speech effort measurement highlighting strategy was also investigated. Twelve persistent stuttering (PS) adults and 12 normally fluent control participants completed 1-min base rate readings (BR-nonchorus) and CRs within a BR/CR/BR/CR/BR experimental design. Participants self-rated speech effort using a 9-point scale after each reading trial. Stuttering frequency, speech rate, and speech naturalness measures were also obtained. Instructions highlighting speech effort ratings during BR and CR phases were introduced after the first CR. CR improved speech effort ratings for the PS group, but the control group showed a reverse trend. Both groups' effort ratings were not significantly different during CR phases but were significantly poorer than the control group's effort ratings during BR phases. The highlighting strategy did not significantly change effort ratings. The findings show that CR will produce not only stutter-free and natural sounding speech but also reliable reductions in speech effort. However, these reductions do not reach effort levels equivalent to those achieved by normally fluent speakers, thereby conditioning its use as a gold standard of achievable normal fluency by PS speakers.
Dynamic FLIR Target Acquisition. Phase I.
1978-08-02
The execution of the experimental plan developed and outlined in this report will make up the bulk of our second year effort. The third year will be...outlined in this report will make up the bulk of our second year effort. The third year will be devoted to further experimentation and analysis of...established. 2.1 TARGET SELECTION In an analysis of the success or failure of past air strike campaigns from WW II through the Six Day War (see Figure 2
(U) Equation of State and Compaction Modeling for CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenburg, David A.; Chisolm, Eric D.
2014-10-20
Recent efforts have focused on developing a solid-liquid and three-phase equation of state (EOS) for CeO 2, while parallel experimental efforts have focused on obtaining high-fidelity Hugoniot measurements on CeO 2 in the porous state. The current work examines the robustness of two CeO 2 SESAME equations of state, a solid-liquid EOS, 96170, and a three-phase EOS, 96171, by validating the EOS against a suite of high-pressure shock compression experiments on initially porous CeO 2. At lower pressures compaction is considered by incorporating a two-term exponential form of the P-compaction model, using three separate definitions for α(P). Simulations are executedmore » spanning the partially compacted and fully compacted EOS regimes over the pressure range 0.5 - 109 GPa. Comparison of calculated Hugoniot results with those obtained experimentally indicate good agreement for all definitions of α(P) with both the solid-liquid and three-phase EOS in the low-pressure compaction regime. At higher pressures the three-phase EOS does a better job at predicting the measured Hugoniot response, though at the highest pressures EOS 96171 predicts a less compliant response than is observed experimentally. Measured material velocity profiles of the shock-wave after it has transmitted through the powder are also compared with those simulated using with solid-liquid and three-phase EOS. Profiles lend insight into limits of the current experimental design, as well as the threshold conditions for the shock-induced phase transition in CeO 2.« less
Evaporation of binary mixtures in microgravity
NASA Technical Reports Server (NTRS)
Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin
1995-01-01
The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.
Development and Evaluation of Pretraining as an Adjunct to a Pilot Training Study.
ERIC Educational Resources Information Center
McFadden, Robert W.; And Others
The utility of the pretraining of task-relevant cognitive skills within the context of experimental research methodology was investigated in this study. A criterion referenced pretraining multi-media product was developed and applied to support the initial phase of an experimental research effort in which several instructional methods for training…
Turbine blade-tip clearance excitation forces
NASA Technical Reports Server (NTRS)
Martinez-Sanchez, M.; Greitzer, E. M.
1985-01-01
The results of an effort to assess the existing knowledge and plan the required experimentation in the area of turbine blade tip excitation forces is summarized. The work was carried out in three phases. The first was a literature search and evaluation, which served to highlight the state of the art and to expose the need for an articulated theoretical experimental effort to provide not only design data, but also a rational framework for their extrapolation to new configurations and regimes. The second phase was a start in this direction, in which several of the explicit or implicit assumptions contained in the usual formulations of the Alford force effect were removed and a rigorous linearized flow analysis of the behavior of a nonsymmetric actuator disc was carried out. In the third phase a preliminary design of a turbine test facility that would be used to measure both the excitation forces themselves and the flow patterns responsible for them were conducted and do so over a realistic range of dimensionless parameters.
Evaluating increased effort for item disposal to improve recycling at a university.
Fritz, Jennifer N; Dupuis, Danielle L; Wu, Wai-Ling; Neal, Ashley E; Rettig, Lisa A; Lastrapes, Renée E
2017-10-01
An evaluation of increased response effort to dispose of items was conducted to improve recycling at a university. Signs prompting individuals to recycle and notifying them of the location of trash and recycling receptacles were posted in each phase. During the intervention, trashcans were removed from the classrooms, and one large trashcan was available in the hallway next to the recycling receptacles. Results showed that correct recycling increased, and trash left in classrooms increased initially during the second intervention phase before returning to baseline levels. © 2017 Society for the Experimental Analysis of Behavior.
First principles materials design of novel functional oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.
2016-05-31
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less
Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation.
Mazzola, Guglielmo; Yunoki, Seiji; Sorella, Sandro
2014-03-19
The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach.
NASA Astrophysics Data System (ADS)
Miller, James Henry
This report describes the research effort that was undertaken to develop and understand processing techniques for the deposition of both low and high density SiC coatings from a non-halide precursor, in support of the Generation IV Gas-Cooled Fast Reactor (GFR) fuel development program. The research was conducted in two phases. In the first phase, the feasibility of producing both porous SiC coatings and dense SiC coatings on surrogate fuel particles by fluidized bed chemical vapor deposition (FBCVD) using gas mixtures of methylsilane and argon was demonstrated. In the second phase, a combined experimental and modeling effort was carried out in order to gain an understanding of the deposition mechanisms that result in either porous or dense SiC coatings, depending on the coating conditions. For this second phase effort, a simplified (compared to the fluid bed) single-substrate chemical vapor deposition (CVD) system was employed. Based on the experimental and modeling results, the deposition of SiC from methylsilane is controlled by the extent of gas-phase reaction, and is therefore highly sensitive to temperature. The results show that all SiC coatings are due to the surface adsorption of species that result from gas-phase reactions. The model terms these gas-borne species embryos, and while the model does not include a prediction of coating morphology, a comparison of the model and experimental results indicates that the morphology of the coatings is controlled by the nucleation and growth of the embryos. The coating that results from small embryos (embryos with only two Si-C pairs) appears relatively dense and continuous, while the coating that results from larger embryos becomes less continuous and more nodular as embryo size increases. At some point in the growth of embryos they cease to behave as molecular species and instead behave as particles that grow by either agglomeration or by incorporation of molecular species on their surface. As these particles adhere to the substrate surface and become fixed in place by surface deposition in the interstices between adjacent particles, a low density coating consisting of these particles results.
Ultra High Mode Mix in NIF NIC Implosions
NASA Astrophysics Data System (ADS)
Scott, Robbie; Garbett, Warren
2017-10-01
This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.
Wide Band Gyrotron Traveling Wave Amplifier Analysis.
1987-12-01
phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.
Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S
2016-03-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants
Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2016-01-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426
Instructional Efficiency of Tutoring in an Outreach Gene Technology Laboratory
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2013-06-01
Our research objective focused on examining the instructional efficiency of tutoring as a form of instructional change as opposed to a non-tutoring approach in an outreach laboratory. We designed our laboratory based on cognitive load (CL) theory. Altogether, 269 twelfth-graders participated in our day-long module Genetic Fingerprinting. In a quasi-experimental design, the control group ( n = 121) followed the non-tutoring approach previously used, while the treatment group ( n = 148) followed the newly developed tutoring approach. Each tutor was in charge of two student work groups and recorded the tutoring activities requested by the tutees throughout the day. We measured the students' invested mental effort (as an index of CL), cognitive achievement (in a pre-post-follow-up design), and the students' cooperation in their work groups as well as calculated the student instructional involvement (as a motivational variable). Additionally, we examined which aspects of the hands-on phases were of particular relevance to the students' invested mental effort. Unexpectedly, the combined mental effort and cognitive achievement data indicated that our implemented tutoring approach resulted in a lower instructional efficiency despite the relevance of tutoring for students' mental effort invested during the experimental phases. Most of the tutor assistance was unnecessarily requested for performing the procedural steps and using the equipment. Our results indicate an assistance dilemma and consequently underscore the necessity for effective tutor preparation in outreach laboratories.
Advanced technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Jones, R. E.
1973-01-01
The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.
Prediction of new ground-state crystal structure of T a2O5
NASA Astrophysics Data System (ADS)
Yang, Yong; Kawazoe, Yoshiyuki
2018-03-01
Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.
EXPERIMENTAL EVALUATION OF TWO SHARP FRONT MODELS FOR VADOSE ZONE NON-AQUEOUS PHASE LIQUID TRANSPORT
Recent research efforts on the transport of immiscible organic wastes in subsurface the development of numerical models of various levels of sophistication. Systems have focused on the site characterization data needed to obtain. However, in real field applications, the model p...
Current therapy for laser-induced retinal injury: overview of clinical and experimental approaches
NASA Astrophysics Data System (ADS)
Schuschereba, Steven T.; Scales, David K.
1997-05-01
Adequate treatment strategies do not exist for retinal laser injuries. To gain a better understanding of available treatments, data form a variety of human laser accident cases and relevant experimental work was evaluated. Most laser eye injury cases are not attended by an ophthalmologist for several hours to days after injury and most patients are not treated.Of the few cases receiving treatment; only the FDA approved glucocortocoids are available for use. Their use, however, is still controversial. Experimental animal work during the acute phase of injury indicates that productive efforts have targeted neuroprotection, inflammation, ischemia- reperfusion, and lipid peroxidation. Late stage issues for treatment are scarring, retinal hole persistence and expansion, and traction. In summary, treatments for acute and late phase injury are currently inadequate. Preserving existing neural elements should be the top priority in these injuries. We recommend that relevant treatments begin immediately after injury. Other approaches are necessary to target early and late phase secondary damage events that are entrenched.
Thermophotovoltaic space power system, phase 3
NASA Technical Reports Server (NTRS)
Horne, W. E.; Lancaster, C.
1987-01-01
Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.
Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2011-03-01
To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.
Development and fabrication of structural components for a scramjet engine
NASA Technical Reports Server (NTRS)
Buchmann, O. A.
1990-01-01
A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Numerical formulation for the prediction of solid/liquid change of a binary alloy
NASA Technical Reports Server (NTRS)
Schneider, G. E.; Tiwari, S. N.
1990-01-01
A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
NASA Technical Reports Server (NTRS)
Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan
2011-01-01
Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.
Continued Development and Improvement of Pneumatic Heavy Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Englar
2005-07-15
The objective of this applied research effort led by Georgia Tech Research Institute is the application of pneumatic aerodynamic technology previously developed and patented by us to the design of an appropriate Heavy Vehicle (HV) tractor-trailer configuration, and experimental confirmation of this pneumatic configuration's improved aerodynamic characteristics. In Phases I to IV of our previous DOE program (Reference 1), GTRI has developed, patented, wind-tunnel tested and road-tested blown aerodynamic devices for Pneumatic Heavy Vehicles (PHVs) and Pneumatic Sports Utility Vehicles (PSUVs). To further advance these pneumatic technologies towards HV and SUV applications, additional Phase V tasks were included in themore » first year of a continuing DOE program (Reference 2). Based on the results of the Phase IV full-scale test programs, these Phase V tasks extended the application of pneumatic aerodynamics to include: further economy and performance improvements; increased aerodynamic stability and control; and safety of operation of Pneumatic HVs. Continued development of a Pneumatic SUV was also conducted during the Phase V program. Phase V was completed in July, 2003; its positive results towards development and confirmation of this pneumatic technology are reported in References 3 and 4. The current Phase VI of this program was incrementally funded by DOE in order to continue this technology development towards a second fuel economy test on the Pneumatic Heavy Vehicle. The objectives of this current Phase VI research and development effort (Ref. 5) fall into two categories: (1) develop improved pneumatic aerodynamic technology and configurations on smaller-scale models of the advanced Pneumatic Heavy Vehicle (PHV); and based on these findings, (2) redesign, modify, and re-test the modified full-scale PHV test vehicle. This second objective includes conduct of an on-road preliminary road test of this configuration to prepare it for a second series of SAE Type-U fuel economy evaluations, as described in Ref. 5. Both objectives are based on the pneumatic technology already developed and confirmed for DOE OHVT/OAAT in Phases I-V. This new Phase VI effort was initiated by contract amendment to the Phase V effort using carryover FY02 funds. This were conducted under a new and distinct project number, GTRI Project A-6935, separate from the Phase I-IV program. However, the two programs are closely integrated, and thus Phase VI continues with the previous program and goals.« less
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
NASA Technical Reports Server (NTRS)
Schiller, David N.
1989-01-01
Science requirements are specified to guide experimental studies of transient heat transfer and fluid flow in an enclosure containing a two-layer gas-and-liquid system heated unevenly from above. Specifications are provided for experiments in three separate settings: (1) a normal gravity laboratory, (2) the NASA-LeRC Drop towers, and (3) a space-based laboratory (e.g., Shuttle, Space Station). A rationale is developed for both minimum and desired requirement levels. The principal objective of the experimental effort is to validate a computational model of the enclosed liquid fuel pool during the preignition phase and to determine via measurement the role of gravity on the behavior of the system. Preliminary results of single-phase normal gravity experiments and simulations are also presented.
Rayne, Sierra; Forest, Kaya
2016-09-18
The air-water partition coefficients (Kaw) for 86 large polycyclic aromatic hydrocarbons and their unsaturated relatives were estimated using high-level G4(MP2) gas and aqueous phase calculations with the SMD, IEFPCM-UFF, and CPCM solvation models. An extensive method validation effort was undertaken which involved confirming that, via comparisons to experimental enthalpies of formation, gas-phase energies at the G4(MP2) level for the compounds of interest were at or near thermochemical accuracy. Investigations of the three solvation models using a range of neutral and ionic compounds suggested that while no clear preferential solvation model could be chosen in advance for accurate Kaw estimates of the target compounds, the employment of increasingly higher levels of theory would result in lower Kaw errors. Subsequent calculations on the polycyclic aromatic and unsaturated hydrocarbons at the G4(MP2) level revealed excellent agreement for the IEFPCM-UFF and CPCM models against limited available experimental data. The IEFPCM-UFF-G4(MP2) and CPCM-G4(MP2) solvation energy calculation approaches are anticipated to give Kaw estimates within typical experimental ranges, each having general Kaw errors of less than 0.5 log10 units. When applied to other large organic compounds, the method should allow development of a broad and reliable Kaw database for multimedia environmental modeling efforts on various contaminants.
Microelectronic components and metallic oxide studies and applications
NASA Technical Reports Server (NTRS)
Williams, L., Jr.
1976-01-01
The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Shrivastava; Brian Williams; Ali S. Siahpush
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less
Jaskolla, Thorsten W; Karas, Michael
2011-06-01
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
NASA Astrophysics Data System (ADS)
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Steve M.; Manni, S.; Shao, Junping
BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less
BaSn 2 : A wide-gap strong topological insulator
Young, Steve M.; Manni, S.; Shao, Junping; ...
2017-02-15
BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters
NASA Technical Reports Server (NTRS)
Maisel, James E.; Nowlin, Robert W.
1992-01-01
This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report.
NASA Technical Reports Server (NTRS)
Boykin, William H., Jr.
1993-01-01
Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
NASA developments in solid state power amplifiers
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1990-01-01
Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.
Bayesian Calibration of Thermodynamic Databases and the Role of Kinetics
NASA Astrophysics Data System (ADS)
Wolf, A. S.; Ghiorso, M. S.
2017-12-01
Self-consistent thermodynamic databases of geologically relevant materials (like Berman, 1988; Holland and Powell, 1998, Stixrude & Lithgow-Bertelloni 2011) are crucial for simulating geological processes as well as interpreting rock samples from the field. These databases form the backbone of our understanding of how fluids and rocks interact at extreme planetary conditions. Considerable work is involved in their construction from experimental phase reaction data, as they must self-consistently describe the free energy surfaces (including relative offsets) of potentially hundreds of interacting phases. Standard database calibration methods typically utilize either linear programming or least squares regression. While both produce a viable model, they suffer from strong limitations on the training data (which must be filtered by hand), along with general ignorance of many of the sources of experimental uncertainty. We develop a new method for calibrating high P-T thermodynamic databases for use in geologic applications. The model is designed to handle pure solid endmember and free fluid phases and can be extended to include mixed solid solutions and melt phases. This new calibration effort utilizes Bayesian techniques to obtain optimal parameter values together with a full family of statistically acceptable models, summarized by the posterior. Unlike previous efforts, the Bayesian Logistic Uncertain Reaction (BLUR) model directly accounts for both measurement uncertainties and disequilibrium effects, by employing a kinetic reaction model whose parameters are empirically determined from the experiments themselves. Thus, along with the equilibrium free energy surfaces, we also provide rough estimates of the activation energies, entropies, and volumes for each reaction. As a first application, we demonstrate this new method on the three-phase aluminosilicate system, illustrating how it can produce superior estimates of the phase boundaries by incorporating constraints from all available data, while automatically handling variable data quality due to a combination of measurement errors and kinetic effects.
Application of real rock pore-threat statistics to a regular pore network model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakibul, M.; Sarker, H.; McIntyre, D.
2011-01-01
This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.« less
Application of real rock pore-throat statistics to a regular pore network model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, M.R.; McIntyre, D.; Ferer, M.
2011-01-01
This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction« less
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.
2008-01-01
In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835
NASA Astrophysics Data System (ADS)
1990-09-01
The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
NASA Astrophysics Data System (ADS)
Joshiand, S. V.; Srivastava, M. P.
1993-06-01
WC-Co base wear-resistant coatings deposited by plasma spraying are widely used to enhance component longevity in a variety of wear environments. During spraying of WC-Co, ideally only the cobalt phase should melt and act as a binder for the WC particles. Although it is undesirable to fully melt WC because it can cause decarburization, complete melting of the cobalt phase and its satisfactory flattening on impacting the substrate is necessary to minimize porosity and achieve good substrate/coating adhesion. In this article, the influence of the primary plasma spray variables on the melting characteristics of WC-Co powders is investigated with respect to the microstructure of these coatings. This experimental work complements an analytical study on plasma spraying of WC-Co, and thus, observations are presented to support the predictions of the modeling effort.
Elucidation of high sensitivity of δ-HMX: New insight from first principles simulations
NASA Astrophysics Data System (ADS)
Kuklja, Maija M.; Tsyshevsky, Roman V.; Sharia, Onise
2017-01-01
Understanding of a significant difference in sensitivities of β and δ phases of cyclotetramethylene-tetranitramine (HMX) has been long one of the challenges in the field of high energy density materials. Despite many experimental and theoretical efforts to explain the high sensitivity of the δ phase, convincing reasons behind the HMX behavior remained unclear. We established that the presence of a polar surface in δ-HMX has fundamental implications for stability and overall chemical behavior of the material. A comparative quantum-chemical analysis of decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a considerable difference in dominating dissociation reactions, activation barriers, and reaction rates. The polarization-induced charge transfer offered a logical explanation for different sensitivity of β-HMX and δ-HMX polymorphs to detonation initiation. Our conclusions also removed long-standing contradictions and explained a large range of experimental data on thermal decomposition of HMX.
Rapid freezing of water under dynamic compression
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Belof, Jonathan L.
2018-06-01
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Rapid freezing of water under dynamic compression.
Myint, Philip C; Belof, Jonathan L
2018-06-13
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L
2018-04-01
We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bussandri, S.; Prina, I.; Acosta, R. H.; Buljubasich, L.
2018-04-01
We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yy yy ‾ or xx xx ‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems.
2008-07-29
minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges, and Lennard-Jones interactions) be pre...and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was performed manually to obtain dihedral... critical that a reliable approach is available to guide experimental efforts and design. In addition, the automation of force field development will
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2013-02-01
This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
Winett, Richard A.; Geller, E. Scott; Mundy, Laurie L.; Moore, John F.; Wagner, Jana L.; Hite, Lee A.; Leahy, Michael; Neubauer, Tamara E.; Walberg, Janet L.; Walker, W. Bruce; Lombard, David
1991-01-01
This study reports the results of one effort to help supermarket shoppers alter food purchases to make purchases (and meals) that are lower in fat and higher in fiber. A prototype interactive information system using instructional video programs, feedback on purchases with specific goals for change, weekly programs, and the ability to track user interactions and intended purchases was evaluated. The major dependent measure was users' actual food purchases as derived from participants' highly detailed supermarket receipts. After a 5- to 7-week baseline phase, participants were randomly assigned to an experimental or control condition for the 7- to 8-week intervention phase. A follow-up phase began 5 to 8 weeks after participants completed the intervention and discontinued use of the system. The results indicated that experimental participants, when compared to control participants, decreased high fat purchases and increased high fiber purchases during intervention, with evidence for some maintenance of effect in follow-up. Plans for increasing the use and impact of the system are discussed. ImagesFigure 1 PMID:1647387
NASA Technical Reports Server (NTRS)
Schmidt, W. G.
1974-01-01
The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.
High pressure cosmochemistry applied to major planetary interiors: Experimental studies
NASA Technical Reports Server (NTRS)
Nicol, M. F.; Johnson, M.; Koumvakalis, A. S.
1984-01-01
Progress is reported on a project to determine the properties and boundaries of high pressure phases of the H2-He-H2O-NH3-CH4 system that are needed to constrain theoretical models of the interiors of the major planets. This project is one of the first attempts to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes. Adiabats of these materials are also measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Initial efforts involve the NH3-H2O binary. This system is especially relevant to models for surface reconstruction of the icy satellites of Jupiter and Saturn. Thermal analysis experiments were completed for the P-X space, p4GPa:0 or = 0.50, near room temperature. The cryostat, sample handling equipment, and optics needed to extend the optical P-T-X work below room temperature was completed.
Report of the Defense Science Board Task Force on National Aero-Space Plane (NASP) Program
NASA Technical Reports Server (NTRS)
1992-01-01
Six years ago, the Defense Science Board (DSB) initiated a review of the concept, technical basis, program content, and missions of the National Aerospace Plane (NASP) program. The report was completed in Sep. 1988, and the recommendations contributed to strengthening the technical efforts in the NASP program. Since then, substantial technological progress has been made in the technology development phase (Phase 2) of the program. Phase 2 of the program is currently scheduled to end in late Fiscal Year 1993, with a decision whether to proceed to the experimental flight vehicle phase (Phase 3) to be made at that time. This decision will be a very significant one for the Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA). In February of this year, the DSB was chartered to revisit the NASP program to assess the degree to which the many technical challenges of the program have been resolved, or are likely to be resolved by the end of Phase 2.
Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale
Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv
2015-01-01
X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner. PMID:26169570
Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale
NASA Astrophysics Data System (ADS)
Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv
2015-07-01
X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner.
Developing the Pulsed Fission-Fusion (PuFF) Engine
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey
2014-01-01
In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.
Controller Requirements for Uncoupled Aircraft Motion. Volume 2.
1984-09-01
allow efficient irplementation of the 6-DOF control capability. Thr effort was divided Into two phases. Phase I consisted of def~nInR exi.ting data on...implementation of the 6-DOF control capability. The effort was divided into two phases. Phase I consisted of defining existing data on the design of cockpit...Vehicles. The propose-] criteria are described in Volume I of this report. S The effort was divided into two phases. Phase I consisted of defining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.
A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within themore » continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.« less
The Compressed Baryonic Matter Experiment at FAIR
NASA Astrophysics Data System (ADS)
Senger, Peter
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility will be discussed.
NASA Astrophysics Data System (ADS)
Kravets, Nina; Brasselet, Etienne
2018-01-01
We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort, which may foster the development of nonlinear protocols to manipulate high-dimensional optical information both in the classical and quantum regimes.
Highly Accurate Calculations of the Phase Diagram of Cold Lithium
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Baczewski, Andrew
The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys.
Granberg, F; Nordlund, K; Ullah, Mohammad W; Jin, K; Lu, C; Bei, H; Wang, L M; Djurabekova, F; Weber, W J; Zhang, Y
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys
NASA Astrophysics Data System (ADS)
Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Jin, K.; Lu, C.; Bei, H.; Wang, L. M.; Djurabekova, F.; Weber, W. J.; Zhang, Y.
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys
Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; ...
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations (“equiatomic”), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantialmore » reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Finally and moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.« less
Surface-Accelerated Decomposition of δ-HMX.
Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M
2013-03-07
Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.
Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Freethy, Simon
2017-10-01
A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.
2002-01-01
In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, C. J.; Barr, C. M.; Price, P. M.
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...
2017-10-31
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
Initial Fire Suppression Reactions of Halons Phase 1. Development of Experimental Approach
1990-09-01
Engineering News, pp. 22-46, August 31, 1987. Mitani, T., " Flame Retardant Effects of CF 3Br and NaHCO 3 Combustion and Flame , Vol. 50, pp. 177-188, 1983...occurring when halons enter flame fronts are unclear. It is these initial reactions, however, that determine differences in halon performance, the effect of...LABORATORY FLAMES Over the past four decades, numerous tests have been performed in an effort to characterize the relative effectiveness of candidate
Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications
NASA Technical Reports Server (NTRS)
Penny, M. M.
1975-01-01
Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.
Designs and Materials for Better Coronagraph Occulting Masks
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2010-01-01
New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile
Developing a predictive model for the chemical composition of soot nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Violi, Angela; Michelsen, Hope; Hansen, Nils
In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed amore » series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.« less
NASA Astrophysics Data System (ADS)
Bertani, C.; Falcone, N.; Bersano, A.; Caramello, M.; Matsushita, T.; De Salve, M.; Panella, B.
2017-11-01
High safety and reliability of advanced nuclear reactors, Generation IV and Small Modular Reactors (SMR), have a crucial role in the acceptance of these new plants design. Among all the possible safety systems, particular efforts are dedicated to the study of passive systems because they rely on simple physical principles like natural circulation, without the need of external energy source to operate. Taking inspiration from the second Decay Heat Removal system (DHR2) of ALFRED, the European Generation IV demonstrator of the fast lead cooled reactor, an experimental facility has been built at the Energy Department of Politecnico di Torino (PROPHET facility) to study single and two-phase flow natural circulation. The facility behavior is simulated using the thermal-hydraulic system code RELAP5-3D, which is widely used in nuclear applications. In this paper, the effect of the initial water inventory on natural circulation is analyzed. The experimental time behaviors of temperatures and pressures are analyzed. The experimental matrix ranges between 69 % and 93%; the influence of the opposite effects related to the increase of the volume available for the expansion and the pressure raise due to phase change is discussed. Simulations of the experimental tests are carried out by using a 1D model at constant heat power and fixed liquid and air mass; the code predictions are compared with experimental results. Two typical responses are observed: subcooled or two phase saturated circulation. The steady state pressure is a strong function of liquid and air mass inventory. The numerical results show that, at low initial liquid mass inventory, the natural circulation is not stable but pulsated.
Swept-Wing Ice Accretion Characterization and Aerodynamics
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.
2013-01-01
NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65% scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20%, 64% and 83% semispan stations of the baseline-reference wing. Three-dimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date. 1
Swept-Wing Ice Accretion Characterization and Aerodynamics
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.
2013-01-01
NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65 percent scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20, 64 and 83 percent semispan stations of the baseline-reference wing. Threedimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.
NASA Astrophysics Data System (ADS)
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb 3 O 7 F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb 3 O 7 F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb 3 O 7 F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui
2013-04-15
Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education effortsmore » associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.« less
NASA Astrophysics Data System (ADS)
Amory, V.; Lhémery, A.
2008-02-01
Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.
Direct Broadcast Satellite: Radio Program
NASA Astrophysics Data System (ADS)
Hollansworth, James E.
1992-10-01
NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.
Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P
NASA Astrophysics Data System (ADS)
Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol
2018-05-01
Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.
Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.
2017-10-01
The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization.
O'Brien, Matthew N; Girard, Martin; Lin, Hai-Xin; Millan, Jaime A; Olvera de la Cruz, Monica; Lee, Byeongdu; Mirkin, Chad A
2016-09-20
In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.
Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
1998-11-01
The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introductionmore » of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.« less
Iacovides, S; Avidon, I; Baker, F C
2015-07-01
Monthly primary dysmenorrhoeic pain is associated with increased sensitivity to painful stimuli, particularly in deep tissue. We investigated whether women with dysmenorrhoea, compared with controls, have increased sensitivity to experimentally induced deep-tissue muscle ischaemia in a body area distant from that of referred menstrual pain. The sub-maximal effort tourniquet test was used to induce forearm ischaemia in 11 women with severe dysmenorrhoea and in nine control women both during menstruation and in the follicular phase of the menstrual cycle. Von Frey hair assessments confirmed the presence of experimental ischaemia. Women rated the intensity of menstrual and ischaemic pain on a 100-mm visual analogue scale. Women with dysmenorrhoea [mean (SD): 68 (20) mm] reported significantly greater menstrual pain compared with controls [mean (SD): 2 (6) mm; p = 0.0001] during the menstruation phase. They also rated their forearm ischaemic pain as significantly greater than the controls during the menstruation [dysmenorrhoeics vs. controls mean (SD): 58 (19) mm vs. 31 (21) mm, p < 0.01] and follicular [dysmenorrhoeics vs. controls mean (SD): 60 (18) mm vs. 40 (14) mm, p < 0.01] phases of the menstrual cycle. These data show that compared with controls, women who experience severe recurrent dysmenorrhoea have deep-tissue hyperalgesia to ischaemic pain in muscles outside of the referred area of menstrual pain both during the painful menstruation phase and pain-free follicular phase. These findings suggest the presence of long-lasting changes in muscle pain sensitivity in women with dysmenorrhoea. Our findings that dysmenorrhoeic women are hyperalgesic to a clinically relevant, deep-muscle ischaemic pain in areas outside of referred menstrual pain confirm other studies showing long-lasting changes in pain sensitivity outside of the painful period during menstruation. © 2014 European Pain Federation - EFIC®
Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies
NASA Astrophysics Data System (ADS)
Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.
2017-01-01
For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.
NASA Astrophysics Data System (ADS)
Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce
2016-05-01
The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (
Assessing the feasibility, cost, and utility of developing models of human performance in aviation
NASA Technical Reports Server (NTRS)
Stillwell, William
1990-01-01
The purpose of the effort outlined in this briefing was to determine whether models exist or can be developed that can be used to address aviation automation issues. A multidisciplinary team has been assembled to undertake this effort, including experts in human performance, team/crew, and aviation system modeling, and aviation data used as input to such models. The project consists of two phases, a requirements assessment phase that is designed to determine the feasibility and utility of alternative modeling efforts, and a model development and evaluation phase that will seek to implement the plan (if a feasible cost effective development effort is found) that results from the first phase. Viewgraphs are given.
Assessment of mental workload and academic motivation in medical students.
Atalay, Kumru Didem; Can, Gulin Feryal; Erdem, Saban Remzi; Muderrisoglu, Ibrahim Haldun
2016-05-01
To investigate the level of correlation and direction of linearity between academic motivation and subjective workload. The study was conducted at Baskent University School of Medicine, Ankara, Turkey, from December 2013 to February 2014, and comprised Phase 5 Phase 6 medical students. Subjective workload level was determined by using National Aeronautics and Space Administration Task Load Index scale that was adapted to Turkish. Academic motivation values were obtained with the help of Academic Motivation Scale university form. SPSS 17 was used for statistical analysis. Of the total 105 subjects, 65(62%) students were in Phase 5 and 40(38%) were in Phase 6. Of the Phase 5 students, 18(27.7%) were boys and 47(72.3%) were girls, while of the Phase 6 students, 16(40%) were boys and 24(60%) were girls. There were significant differences in Phase 5 and Phase 6 students for mental effort (p=0.00) and physical effort (p=0.00). The highest correlation in Phase 5 was between mental effort and intrinsic motivation (r=0.343). For Phase 6, highest correlation was between effort and amotivation (r= -0.375). Subjective workload affected academic motivation in medical students.
Eike, David M; Maginn, Edward J
2006-04-28
A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Jay D.
This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant tomore » terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.« less
NASA Technical Reports Server (NTRS)
Magee, Todd E.; Fugal, Spencer R.; Fink, Lawrence E.; Adamson, Eric E.; Shaw, Stephen G.
2015-01-01
This report describes the work conducted under NASA funding for the Boeing N+2 Supersonic Experimental Validation project to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 -to 2020 timeframe (NASA N+2 generation). The primary goal of the project was to develop a low-boom configuration optimized for minimum sonic boom signature (65 to 70 PLdB). This was a very aggressive goal that could be achieved only through integrated multidisciplinary optimization tools validated in relevant ground and, later, flight environments. The project was split into two phases. Phase I of the project covered the detailed aerodynamic design of a low boom airliner as well as the wind tunnel tests to validate that design (ref. 1). This report covers Phase II of the project, which continued the design methodology development of Phase I with a focus on the propulsion integration aspects as well as the testing involved to validate those designs. One of the major airplane configuration features of the Boeing N+2 low boom design was the overwing nacelle. The location of the nacelle allowed for a minimal effect on the boom signature, however, it added a level of difficulty to designing an inlet with acceptable performance in the overwing flow field. Using the Phase I work as the starting point, the goals of the Phase 2 project were to design and verify inlet performance while maintaining a low-boom signature. The Phase II project was successful in meeting all contract objectives. New modular nacelles were built for the larger Performance Model along with a propulsion rig with an electrically-actuated mass flow plug. Two new mounting struts were built for the smaller Boom Model, along with new nacelles. Propulsion integration testing was performed using an instrumented fan face and a mass flow plug, while boom signatures were measured using a wall-mounted pressure rail. A side study of testing in different wind tunnels was completed as a precursor to the selection of the facilities used for validation testing. As facility schedules allowed, the propulsion testing was done at the NASA Glenn Research Center (GRC) 8 x 6-Foot wind tunnel, while boom and force testing was done at the NASA Ames Research Center (ARC) 9 x 7-Foot wind tunnel. During boom testing, a live balance was used for gathering force data. This report is broken down into nine sections. The first technical section (Section 2) covers the general scope of the Phase II activities, goals, a description of the design and testing efforts, and the project plan and schedule. Section 3 covers the details of the propulsion system concepts and design evolution. A series of short tests to evaluate the suitability of different wind tunnels for boom, propulsion, and force testing was also performed under the Phase 2 effort, with the results covered in Section 4. The propulsion integration testing is covered in Section 5 and the boom and force testing in Section 6. CFD comparisons and analyses are included in Section 7. Section 8 includes the conclusions and lessons learned.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
NASA Technical Reports Server (NTRS)
Miller, James G.
1990-01-01
An ultrasonic measurement system employed in the experimental interrogation of the anisotropic properties (through the measurement of the elastic stiffness constants) of the uniaxial graphite-epoxy composites is presented. The continuing effort for the development of improved visualization techniques for physical parameters is discussed. The background is set for the understanding and visualization of the relationship between the phase and energy/group velocity for propagation in high-performance anisotropic materials by investigating the general requirements imposed by the classical wave equation. The consequences are considered when the physical parameters of the anisotropic material are inserted into the classical wave equation by a linear elastic model. The relationship is described between the phase velocity and the energy/group velocity three dimensional surfaces through graphical techniques.
Two Phase Detonation Studies Conducted in 1971
NASA Technical Reports Server (NTRS)
Nicholls, J. A.
1972-01-01
The research covered by this third annual progress report represents a continuation of our efforts devoted to the study of detonation waves in liquid-gas systems. The motivation for the work is associated with liquid propellant rocket motor combustion instability although certainly the studies are also applicable to internal combustion engines, jet propulsion engines, safety aspects of spilled liquid fuel, coal mine explosions, and weaponry. The research has been divided into 5 phases, although all of them are intimately related. For the most part these phases are briefly summarized and the reader is referred to other publications for a more complete treatment. The exception to this is where the material herein represents the only printed information available on the particular facet of the problem. Phase A has been primarily concerned with the breakup and ignition of fuel drops by shock waves. The experimental portion of this study as well as a theoretical treatment of the ignition behavior was completed in the past year. The research is now concentrating on the passage of a shock wave over a burning drop. Phase B has been devoted to the assessment of the approximate energy release pattern in two phase detonations insofar as they affect the significant overpressures observed.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, Aaron M.
A data structure based on an eXtensible Markup Language (XML) hierarchy according to experimental nuclear structure data in the Evaluated Nuclear Structure Data File (ENSDF) is presented. A Python-coded translator has been developed to interpret the standard one-card records of the ENSDF datasets, together with their associated quantities defined according to field position, and generate corresponding representative XML output. The quantities belonging to this mixed-record format are described in the ENSDF manual. Of the 16 ENSDF records in total, XML output has been successfully generated for 15 records. An XML-translation for the Comment Record is yet to be implemented; thismore » will be considered in a separate phase of the overall translation effort. Continuation records, not yet implemented, will also be treated in a future phase of this work. Several examples are presented in this document to illustrate the XML schema and methods for handling the various ENSDF data types. However, the proposed nomenclature for the XML elements and attributes need not necessarily be considered as a fixed set of constructs. Indeed, better conventions may be suggested and a consensus can be achieved amongst the various groups of people interested in this project. The main purpose here is to present an initial phase of the translation effort to demonstrate the feasibility of interpreting ENSDF datasets and creating a representative XML-structured hierarchy for data storage.« less
Lee, Wen-Li; Liu, Shu-Hsin; Chang, Shu-Min
2017-01-01
Objective: This study examines the effects of listening to meditative music on state anxiety and heart rate variability (HRV) of patients during the uptake phase before positron emission tomography (PET) scans. Methods: A two-group randomized experimental design was used. Eligible patients were randomly assigned to either the experimental or control group. All patients received baseline assessments of state anxiety using Spielberger State-Trait Anxiety Inventory (STAI-S) and HRV before receiving an intravenous injection of radiopharmaceutical fluorine-18 fludeoxyglucose in the uptake room. The experimental group (n = 35) listened individually to 30 min of meditative music, integrating Chinese “Chi” and western frequency resonation in the uptake room. The control group (n = 37) lay on bed quietly for 40 min in the uptake room without music. All patients were assessed for their anxiety level and HRV again, before receiving PET scanning as post-test. Results: The results indicated that patients in the experimental group showed a significant reduction in state anxiety and heart rate, and increase on high frequency norm of HRV (p < 0.001). There was a statistically significant reduction on anxiety level (p < 0.001), heart rate (p < 0.001) and high frequency norm (p = 0.001) in the experimental group compared with those of the control group. Conclusion: Listening to meditative music as a non-invasive and cost-effective strategy can help maximize efforts to promote comfort and relaxation for patients awaiting stressful procedures, such as PET scans. Meditative music can be effective in alleviating state anxiety of patients during the uptake phase before PET scans. Advances in knowledge: The study provides scientific evidence of the effects of listening to meditative music for reducing state anxiety in patients during the uptake phase before PET scans. It may have the potential to lower the risk of unwanted false-positive fluorine-18 fludeoxyglucose uptake in normal organs and to further improve image quality and image interpretation. Listening to meditative music is a safe and inexpensive intervention which can be incorporated into routine procedures to reduce anxiety of patients undergoing PET scans. PMID:27897034
Lee, Wen-Li; Sung, Huei-Chuan; Liu, Shu-Hsin; Chang, Shu-Min
2017-02-01
This study examines the effects of listening to meditative music on state anxiety and heart rate variability (HRV) of patients during the uptake phase before positron emission tomography (PET) scans. A two-group randomized experimental design was used. Eligible patients were randomly assigned to either the experimental or control group. All patients received baseline assessments of state anxiety using Spielberger State-Trait Anxiety Inventory (STAI-S) and HRV before receiving an intravenous injection of radiopharmaceutical fluorine-18 fludeoxyglucose in the uptake room. The experimental group (n = 35) listened individually to 30 min of meditative music, integrating Chinese "Chi" and western frequency resonation in the uptake room. The control group (n = 37) lay on bed quietly for 40 min in the uptake room without music. All patients were assessed for their anxiety level and HRV again, before receiving PET scanning as post-test. The results indicated that patients in the experimental group showed a significant reduction in state anxiety and heart rate, and increase on high frequency norm of HRV (p < 0.001). There was a statistically significant reduction on anxiety level (p < 0.001), heart rate (p < 0.001) and high frequency norm (p = 0.001) in the experimental group compared with those of the control group. Listening to meditative music as a non-invasive and cost-effective strategy can help maximize efforts to promote comfort and relaxation for patients awaiting stressful procedures, such as PET scans. Meditative music can be effective in alleviating state anxiety of patients during the uptake phase before PET scans. Advances in knowledge: The study provides scientific evidence of the effects of listening to meditative music for reducing state anxiety in patients during the uptake phase before PET scans. It may have the potential to lower the risk of unwanted false-positive fluorine-18 fludeoxyglucose uptake in normal organs and to further improve image quality and image interpretation. Listening to meditative music is a safe and inexpensive intervention which can be incorporated into routine procedures to reduce anxiety of patients undergoing PET scans.
Quantum simulations and many-body physics with light.
Noh, Changsuk; Angelakis, Dimitris G
2017-01-01
In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.
NASA Astrophysics Data System (ADS)
Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.
2017-03-01
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.
2013-01-01
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
Silicon solar cells with a total power capacity of 30 kilowatts
NASA Technical Reports Server (NTRS)
1977-01-01
The bulk of the contract effort was carried out in the following two phases: Phase 1 -- module design, Pre-production module fabrication, inspection and test. Phase 2 -- Production, test and delivery. Effort during the first two months of the contract concentrated on design of a solar module to meet specification. Basic module design resulting from this effort is as follows: (1) frame design; (2) cell pan design; (3) cell interconnection; (4) encapsulation; (5) electrical performance.
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.J.; Benson, L.V.; Yee, A.W.
1979-09-30
The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less
NASA Technical Reports Server (NTRS)
Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.;
2016-01-01
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.
Aramaki, T.; Boggs, S.; Bufalino, S.; ...
2016-01-27
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or γ-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectablemore » cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth’s geomagnetic field, and the atmosphere. Lastly, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Furthermore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.« less
K-Band Reflectarray Antenna Based on Ferroelectric Thin Films: What Have We Learned so Far
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Fred
2002-01-01
The Applied RF Technology Branch of the NASA Glenn Research Center, Cleveland, Ohio, has an on-going effort in the area of thin film ferroelectric technology for microwave applications. Particular attention has been given to developing ferroelectric phase shifters for the implementation and experimental demonstration of an electronically steerable reflectarray antenna. In the process of optimizing these material to fit the implementation requirements of the aforementioned antenna, we have accumulated a great deal of information and knowledge in areas such as the effect of the composition of the ferroelectric thin films on phase shifter performance, self assembled monolayers (SAMs) in the metallic/ferroelectric interface and their impact on phase shifter performance, correlation between microstructure and microwave properties, and the effect of selective etching on the overall performance of a thin film-ferroelectric based microwave component, amongst others. We will discuss these issues and will provide an up-dade of the current development status of the reflect-array antenna.
Holographic rugate structures for x-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.; Savant, Gajendra.; Qiao, Yong.
1988-07-01
XUV Bragg Holographic Optical Elements (HOEs), based on a single-step volume holographic recording, have been proposed by Physical Optic Corporation (POC), as an entirely new approach to x-ray optics. Their theory, as well as the first experimental proof-of-concept, have been demonstrated in Phase 1 of the DOE program. During the first year (exactly, 8-month duration) of the on-going Phase 2, the high-efficiency XUV Lippmann holographic mirrors have been fabricated and their optical, physical, and material properties have been investigated over the entire XUV region (1--100nm). The XUV Bragg HOEs, based on dichromated gelatin (DCG) and on DCG/polymer grafts, have beenmore » recorded in the visible region (using an Innova Argo laser) and reconstructed using twelve XUV wavelengths. In addition, these phase high-resolution holographic materials have been shown to be suitable to direct x-ray laser holographic recording (using Princeton's x-ray laser). The volume x-ray holographic recording will be realized within the second year of the program effort.« less
NASA Astrophysics Data System (ADS)
Sarradj, Ennes
2010-04-01
Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.
Studies on Phase Shifting Mechanism in Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Padmanabhan; Gurudath, C. S.; Srikanth, Thota; Ambirajan, A.; Basavaraj, SA; Dinesh, Kumar; Venkatarathnam, G.
2017-02-01
Pulse Tube cryocoolers (PTC) are being used extensively in spacecraft for applications such as sensor cooling due to their simple construction and long life owing to a fully passive cold head. Efforts at ISRO to develop a PTC for space use have resulted in a unit with a cooling capacity of 1W at 80K with an input of 45watts. This paper presents the results of a study with this PTC on the phase shifting characteristics of an Inertance tube in conjunction with a reservoir. The aim was to obtain an optimum phase angle between the mass flow (ṁ) and dynamic pressure (\\tilde p) at the PT cold end that results in the largest possible heat lift from this unit. Theoretical model was developed using Phasor Analysis and Transmission Line Model (TLM) for different mass flow and values of optimum frequency and phase angles were predicted. They were compared with experimental data from the PTC for different configurations of the Inertance tube/reservoir at various frequencies and charge pressures. These studies were carried out to characterise an existing cryocooler and design an optimised phase shifter with the aim of improving the performance with respect to specific power input.
Measuring the free neutron lifetime to <= 0.3s via the beam method
NASA Astrophysics Data System (ADS)
Fomin, Nadia
2017-09-01
Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. While of interest as a fundamental particle property, a precise value for the neutron lifetime is also required for consistency tests of the Standard Model as well as to calculate the primordial 4He abundance in Big Bang Nucleosynthesis models. An effort has begun to develop an in-beam measurement of the neutron lifetime with a projected <= 0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
Measuring the free neutron lifetime to <= 0.3s via the beam method
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration
2015-10-01
Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
NASA Astrophysics Data System (ADS)
Park, Yong-Lae; Tepayotl-Ramirez, Daniel; Wood, Robert J.; Majidi, Carmel
2012-11-01
Cross-sectional geometry influences the pressure-controlled conductivity of liquid-phase metal channels embedded in an elastomer film. These soft microfluidic films may function as hyperelastic electric wiring or sensors that register the intensity of surface pressure. As pressure is applied to the elastomer, the cross-section of the embedded channel deforms, and the electrical resistance of the channel increases. In an effort to improve sensitivity and reduce sensor nonlinearity and hysteresis, we compare the electrical response of 0.25 mm2 channels with different cross-sectional geometries. We demonstrate that channels with a triangular or concave cross-section exhibit the least nonlinearity and hysteresis over pressures ranging from 0 to 70 kPa. These experimental results are in reasonable agreement with predictions made by theoretical calculations that we derive from elasticity and Ohm's Law.
Supercritical fluid extraction. Principles and practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, M.A.; Krukonis, V.J.
This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less
NASA Astrophysics Data System (ADS)
Dhumale, R. B.; Lokhande, S. D.
2017-05-01
Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.
Structural and electronic properties of Ga2O3-Al2O3 alloys
NASA Astrophysics Data System (ADS)
Peelaers, Hartwin; Varley, Joel B.; Speck, James S.; Van de Walle, Chris G.
2018-06-01
Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.
Space station experiment definition: Advanced power system test bed
NASA Technical Reports Server (NTRS)
Pollard, H. E.; Neff, R. E.
1986-01-01
A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.
Aerothermal modeling program, phase 2. Element B: Flow interaction experiment
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.
1986-01-01
The design process was improved and the efficiency, life, and maintenance costs of the turbine engine hot section was enhanced. Recently, there has been much emphasis on the need for improved numerical codes for the design of efficient combustors. For the development of improved computational codes, there is a need for an experimentally obtained data base to be used at test cases for the accuracy of the computations. The purpose of Element-B is to establish a benchmark quality velocity and scalar measurements of the flow interaction of circular jets with swirling flow typical of that in the dome region of annular combustor. In addition to the detailed experimental effort, extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current and advanced turbulence and scalar transport models.
Simulating a transmon implementation of the surface code, Part I
NASA Astrophysics Data System (ADS)
Tarasinski, Brian; O'Brien, Thomas; Rol, Adriaan; Bultink, Niels; Dicarlo, Leo
Current experimental efforts aim to realize Surface-17, a distance-3 surface-code logical qubit, using transmon qubits in a circuit QED architecture. Following experimental proposals for this device, and currently achieved fidelities on physical qubits, we define a detailed error model that takes experimentally relevant error sources into account, such as amplitude and phase damping, imperfect gate pulses, and coherent errors due to low-frequency flux noise. Using the GPU-accelerated software package 'quantumsim', we simulate the density matrix evolution of the logical qubit under this error model. Combining the simulation results with a minimum-weight matching decoder, we obtain predictions for the error rate of the resulting logical qubit when used as a quantum memory, and estimate the contribution of different error sources to the logical error budget. Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.
Experimental observations of a complex, supersonic nozzle concept
NASA Astrophysics Data System (ADS)
Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team
2015-11-01
A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.
Gold fillings unravel the vacancy role in the phase transition of GeTe
NASA Astrophysics Data System (ADS)
Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui
2018-02-01
Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
Divided attention and mental effort after severe traumatic brain injury.
Azouvi, Philippe; Couillet, Josette; Leclercq, Michel; Martin, Yves; Asloun, Sybille; Rousseaux, Marc
2004-01-01
The aim of this study was to assess dual-task performance in TBI patients, under different experimental conditions, with or without explicit emphasis on one of two tasks. Results were compared with measurement of the subjective mental effort required to perform each task. Forty-three severe TBI patients at the subacute or chronic phase performed two tasks under single- and dual-task conditions: (a) random generation; (b) visual go-no go reaction time task. Three dual-task conditions were given, requiring either to consider both tasks as equally important or to focus preferentially on one of them. Patients were compared to matched controls. Subjective mental effort was rated on a visual analogic scale. TBI patients showed a disproportionate increase in reaction time in the go-no go task under the dual-task condition. However, they were just as able as controls to adapt performance to the specific instructions about the task to be emphasised. Patients reported significantly higher subjective mental effort, but the variation of mental effort according to task condition was similar to that of controls. These results suggest that the divided attention deficit of TBI patients is related to a reduction in available processing resources rather than an impairment of strategic processes responsible for attentional allocation and switching. The higher level of subjective mental effort may explain why TBI patients frequently complain of mental fatigue, although this subjective complaint seems to be relatively independent of cognitive impairment.
NASA Astrophysics Data System (ADS)
Chishty, Wajid Ali
Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.
Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin
2017-08-01
The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5 m×0.5 m×0.5 m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.
NASA Astrophysics Data System (ADS)
Aharon, Tal; Lemler, Paul M.; Vaccaro, Patrick; Caricato, Marco
2017-06-01
The Optical Rotatory Dispersion (ORD) of a chiral solute is heavily affected by solvation, but this effect does not follow the usual correlation with the solvent polarity, i.e., larger solvent polarity does not imply a larger change in the solute's property. Therefore, a great deal of experimental and theoretical effort has been directed towards correlating the solvation effect on the ORD and the solvent properties. This discovery followed from the development of cavity ring down polarimetry (CRPD), which allows measurements of gas-phase ORD. In order to investigate this phenomenon, we chose a set of five rigid molecules to limit the effect of molecular vibrations and isolate the role of solvation. The latter was investigated with the Polarizable Continuum Model (PCM), and compared to experimental results. We used Bondi radii to build the PCM cavity, and performed extensive calculations at multiple frequencies using density functional theory (DFT) with two functionals: B3LYP and CAM-B3LYP, together with the aug-cc-pVDZ basis set. We also performed coupled cluster singles and doubles (CCSD/aug-cc-pVDZ) calculations at the wavelengths where gas-phase data are available, all of which are augmented with zero point vibrational corrections. These results are compared to experimental data and seem to indicate that PCM does not entirely account for the environmental effects on the ORD.
The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.; ...
2016-04-06
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
Experimental testing of a new integrated model of the budding yeast Start transition
Adames, Neil R.; Schuck, P. Logan; Chen, Katherine C.; Murali, T. M.; Tyson, John J.; Peccoud, Jean
2015-01-01
The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1–S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1–S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model’s simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network. PMID:26310445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko
2016-04-01
Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.
Rentz, Dorene M; Parra Rodriguez, Mario A; Amariglio, Rebecca; Stern, Yaakov; Sperling, Reisa; Ferris, Steven
2013-01-01
Recently published guidelines suggest that the most opportune time to treat individuals with Alzheimer's disease is during the preclinical phase of the disease. This is a phase when individuals are defined as clinically normal but exhibit evidence of amyloidosis, neurodegeneration and subtle cognitive/behavioral decline. While our standard cognitive tests are useful for detecting cognitive decline at the stage of mild cognitive impairment, they were not designed for detecting the subtle cognitive variations associated with this biomarker stage of preclinical Alzheimer's disease. However, neuropsychologists are attempting to meet this challenge by designing newer cognitive measures and questionnaires derived from translational efforts in neuroimaging, cognitive neuroscience and clinical/experimental neuropsychology. This review is a selective summary of several novel, potentially promising, approaches that are being explored for detecting early cognitive evidence of preclinical Alzheimer's disease in presymptomatic individuals.
Development of an adaptive optics test-bed for relay mirror applications
NASA Astrophysics Data System (ADS)
Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris
2005-08-01
The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.
NASA Astrophysics Data System (ADS)
Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.
2017-12-01
Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.
Fuel-injector/air-swirl characterization
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.
1985-01-01
The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.
True logarithmic amplification of frequency clock in SS-OCT for calibration
Liu, Bin; Azimi, Ehsan; Brezinski, Mark E.
2011-01-01
With swept source optical coherence tomography (SS-OCT), imprecise signal calibration prevents optimal imaging of biological tissues such as coronary artery. This work demonstrates an approach using a true logarithmic amplifier to precondition the clock signal, with the effort to minimize the noises and phase errors for optimal calibration. This method was validated and tested with a high-speed SS-OCT. The experimental results manifest its superior ability on optimization of the calibration and improvement of the imaging performance. Particularly, this hardware-based approach is suitable for real-time calibration in a high-speed system where computation time is constrained. PMID:21698036
Recent Advances in the LEWICE Icing Model
NASA Technical Reports Server (NTRS)
Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas
2015-01-01
This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.
QUEST/Ada: Query utility environment for software testing of Ada
NASA Technical Reports Server (NTRS)
Brown, David B.
1989-01-01
Results of research and development efforts are presented for Task 1, Phase 2 of a general project entitled, The Development of a Program Analysis Environment for Ada. A prototype of the QUEST/Ada system was developed to collect data to determine the effectiveness of the rule-based testing paradigm. The prototype consists of five parts: the test data generator, the parser/scanner, the test coverage analyzer, a symbolic evaluator, and a data management facility, known as the Librarian. These components are discussed at length. Also presented is an experimental design for the evaluations, an overview of the project, and a schedule for its completion.
Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.
Thorn, Andrea
2017-01-01
This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.
Park, J-S; Oh, D-H; Hwang, N-K; Lee, J-H
2016-06-01
Neuromuscular electrical stimulation (NMES) has been used as a therapeutic intervention for dysphagia. However, the therapeutic effects of NMES lack supporting evidence. In recent years, NMES combined with traditional swallowing therapy has been used to improve functional recovery in patients with post-stroke dysphagia. This study aimed to investigate the effects of effortful swallowing combined with neuromuscular electrical stimulation on hyoid bone movement and swallowing function in stroke patients. Fifty stroke patients with mild dysphagia who were able to swallow against the resistance applied by using NMES and cooperate actively in training were included. This study was designed as a 6-week single-blind, randomised, controlled study. In the experimental group, two pairs of electrodes were placed horizontally in the infrahyoid region to depress the hyoid bone. The NMES intensity was increased gradually until the participants felt a grabbing sensation in their neck and performed an effortful swallow during the stimulation. In the placebo group, the same procedure was followed except for the intensity, which was increased gradually until the participants felt an electrical sensation. All participants underwent this intervention for 30 min per session, 5 sessions per week, for 6 weeks. Videofluoroscopic swallowing studies (VFSS) were carried out before and after the intervention and kinematics of the hyoid bone and swallowing function were analysed based on the VFSS. The experimental group revealed a significant increase in anterior and superior hyoid bone movement and the pharyngeal phase of the swallowing function. This intervention can be used as a novel remedial approach in dysphagic stroke patients. © 2016 John Wiley & Sons Ltd.
Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J. T.; Purcell, R.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even asmore » small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding availability.« less
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Development of an inter-atomic potential for the Pd-H binary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard
2007-09-01
Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason formore » this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.« less
Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.
Oliynyk, Anton O; Mar, Arthur
2018-01-16
Intermetallic compounds are bestowed by diverse compositions, complex structures, and useful properties for many materials applications. How metallic elements react to form these compounds and what structures they adopt remain challenging questions that defy predictability. Traditional approaches offer some rational strategies to prepare specific classes of intermetallics, such as targeting members within a modular homologous series, manipulating building blocks to assemble new structures, and filling interstitial sites to create stuffed variants. Because these strategies rely on precedent, they cannot foresee surprising results, by definition. Exploratory synthesis, whether through systematic phase diagram investigations or serendipity, is still essential for expanding our knowledge base. Eventually, the relationships may become too complex for the pattern recognition skills to be reliably or practically performed by humans. Complementing these traditional approaches, new machine-learning approaches may be a viable alternative for materials discovery, not only among intermetallics but also more generally to other chemical compounds. In this Account, we survey our own efforts to discover new intermetallic compounds, encompassing gallides, germanides, phosphides, arsenides, and others. We apply various machine-learning methods (such as support vector machine and random forest algorithms) to confront two significant questions in solid state chemistry. First, what crystal structures are adopted by a compound given an arbitrary composition? Initial efforts have focused on binary equiatomic phases AB, ternary equiatomic phases ABC, and full Heusler phases AB 2 C. Our analysis emphasizes the use of real experimental data and places special value on confirming predictions through experiment. Chemical descriptors are carefully chosen through a rigorous procedure called cluster resolution feature selection. Predictions for crystal structures are quantified by evaluating probabilities. Major results include the discovery of RhCd, the first new binary AB compound to be found in over 15 years, with a CsCl-type structure; the connection between "ambiguous" prediction probabilities and the phenomenon of polymorphism, as illustrated in the case of TiFeP (with TiNiSi- and ZrNiAl-type structures); and the preparation of new predicted Heusler phases MRu 2 Ga and RuM 2 Ga (M = first-row transition metal) that are not obvious candidates. Second, how can the search for materials with desired properties be accelerated? One particular application of strong current interest is thermoelectric materials, which present a particular challenge because their optimum performance depends on achieving a balance of many interrelated physical properties. Making use of a recommendation engine developed by Citrine Informatics, we have identified new candidates for thermoelectric materials, including previously unknown compounds (e.g., TiRu 2 Ga with Heusler structure; Mn(Ru 0.4 Ge 0.6 ) with CsCl-type structure) and previously reported compounds but counterintuitive candidates (e.g., Gd 12 Co 5 Bi). An important lesson in these investigations is that the machine-learning models are only as good as the experimental data used to develop them. Thus, experimental work will continue to be necessary to improve the predictions made by machine learning.
Olstad, Bjørn Harald; Vaz, João Rocha; Zinner, Christoph; Cabri, Jan M H; Kjendlie, Per-Ludvik
2017-06-01
The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.
One exhibition, many goals. Combining scientific research and risk communication
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik
2015-04-01
How effective is visual communication to increase awareness of natural hazards and risks? To answer this research question, we developed a research design that was at the same time an experimental setting and an actual communication effort. Throughout the full length of the 2-years project held in the Ubaye valley (southeastern France), we collaborated with local and regional stakeholders (politicians and technicians). During a consultation phase, the communication context was determined, the audience of the project was defined and finally the testing activity-communication effort was determined. We were offered the opportunity to design an exhibition for the local public library. In a consultation phase that corresponded to the design of the exhibition, the stakeholders contributed to its content as well as helping with the funding of the exhibition. Finally, during the experimentation phase, the stakeholders participated in advertising the activity, gathering of participants and designing the scientific survey. In order to assess the effects of the exhibition on risk awareness, several groups of children, teenagers and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. In addition, the children answered a second post-test 3 months after the visit. Close ended questions addressed the awareness indicators mentioned in the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk, and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests (paired t-test, Wilcoxon signed-rank test and bootstrapping) allowed to verify whether the exhibition had an impact on risk awareness or not. In order to deduce which variable influenced the observed changes, an ordinal regression was performed. In addition, to deduce the attractiveness of each visual tool independently, the visitors' paths were tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals could be assessed. While the process of creating an exhibition as a real communication effort and a testing activity will be discussed, the results of the experiment will be presented. In particular, we will show for which natural hazard the most awareness changes were measured and with which factors they are assessed. Moreover, the attractiveness of each visual tools will be presented.
Active subspace uncertainty quantification for a polydomain ferroelectric phase-field model
NASA Astrophysics Data System (ADS)
Leon, Lider S.; Smith, Ralph C.; Miles, Paul; Oates, William S.
2018-03-01
Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty is present in these models, given the quantum scale at which calculations take place. A necessary analysis is to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify directions in which the model response varies most dominantly, thus reducing sampling effort and computational cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using the active variables as our independent variables, we then construct a surrogate model and perform Bayesian inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can be used to reduce computational power needed to perform Bayesian inference on model parameters informed by experimental or simulated data.
Vector and scalar charmonium resonances with lattice QCD
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...
2015-09-15
We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state Χc0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scatteringmore » in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at Χc0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less
Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase
Abergel, Rebecca J.; de Jong, Wibe A.; Deblonde, Gauthier J. -P.; ...
2017-10-11
Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U 6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theorymore » (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.
Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A
2016-05-25
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; ...
2016-05-04
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structuresmore » favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Measuring the free neutron lifetime to <= 0.3s via the beam method
NASA Astrophysics Data System (ADS)
Fomin, Nadia; Mulholland, Jonathan
2015-04-01
Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.
1992-01-01
Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault density components so that the testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents an alternative approach for constructing such models that is intended to fulfill specific software engineering needs (i.e. dealing with partial/incomplete information and creating models that are easy to interpret). Our approach to classification is as follows: (1) to measure the software system to be considered; and (2) to build multivariate stochastic models for prediction. We present experimental results obtained by classifying FORTRAN components developed at the NASA/GSFC into two fault density classes: low and high. Also we evaluate the accuracy of the model and the insights it provides into the software process.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
Experimental development of processes to produce homogenized alloys of immiscible metals, phase 3
NASA Technical Reports Server (NTRS)
Reger, J. L.
1976-01-01
An experimental drop tower package was designed and built for use in a drop tower. This effort consisted of a thermal analysis, container/heater fabrication, and assembly of an expulsion device for rapid quenching of heated specimens during low gravity conditions. Six gallium bismuth specimens with compositions in the immiscibility region (50 a/o of each element) were processed in the experimental package: four during low gravity conditions and two under a one gravity environment. One of the one gravity processed specimens did not have telemetry data and was subsequently deleted for analysis since the processing conditions were not known. Metallurgical, Hall effect, resistivity, and superconductivity examinations were performed on the five specimens. Examination of the specimens showed that the gallium was dispersed in the bismuth. The low gravity processed specimens showed a relatively uniform distribution of gallium, with particle sizes of 1 micrometer or less, in contrast to the one gravity control specimen. Comparison of the cooling rates of the dropped specimens versus microstructure indicated that low cooling rates are more desirable.
Heart rate variability reflects self-regulatory strength, effort, and fatigue.
Segerstrom, Suzanne C; Nes, Lise Solberg
2007-03-01
Experimental research reliably demonstrates that self-regulatory deficits are a consequence of prior self-regulatory effort. However, in naturalistic settings, although people know that they are sometimes vulnerable to saying, eating, or doing the wrong thing, they cannot accurately gauge their capacity to self-regulate at any given time. Because self-regulation and autonomic regulation colocalize in the brain, an autonomic measure, heart rate variability (HRV), could provide an index of self-regulatory strength and activity. During an experimental manipulation of self-regulation (eating carrots or cookies), HRV was elevated during high self-regulatory effort (eat carrots, resist cookies) compared with low self-regulatory effort (eat cookies, resist carrots). The experimental manipulation and higher HRV at baseline independently predicted persistence at a subsequent anagram task. HRV appears to index self-regulatory strength and effort, making it possible to study these phenomena in the field as well as the lab.
Test and Evaluation of an Eddy Current Clutch/Brake Propulsion System
DOT National Transportation Integrated Search
1975-01-01
This report covers the Phase II effort of a program to develop and test a 15 hp eddy-current clutch propulsion system. Included in the Phase 2 effort are the test and evaluation of the eddy-current clutch propulsion system on board a test vehicle. Th...
Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass
NASA Technical Reports Server (NTRS)
Scott, John H.
2014-01-01
The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the mission analysis products originally conceived for FY13.
Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm.
Gagné, Jean-Pierre; Besser, Jana; Lemke, Ulrike
2017-01-01
Published investigations ( n = 29) in which a dual-task experimental paradigm was employed to measure listening effort during speech understanding in younger and older adults were reviewed. A summary of the main findings reported in the articles is provided with respect to the participants' age-group and hearing status. Effects of different signal characteristics, such as the test modality, on dual-task outcomes are evaluated, and associations with cognitive abilities and self-report measures of listening effort are described. Then, several procedural issues associated with the use of dual-task experiment paradigms are discussed. Finally, some issues that warrant future research are addressed. The review revealed large variability in the dual-task experimental paradigms that have been used to measure the listening effort expended during speech understanding. The differences in experimental procedures used across studies make it difficult to draw firm conclusions concerning the optimal choice of dual-task paradigm or the sensitivity of specific paradigms to different types of experimental manipulations. In general, the analysis confirmed that dual-task paradigms have been used successfully to measure differences in effort under different experimental conditions, in both younger and older adults. Several research questions that warrant further investigation in order to better understand and characterize the intricacies of dual-task paradigms were identified.
Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm
Besser, Jana; Lemke, Ulrike
2017-01-01
Published investigations (n = 29) in which a dual-task experimental paradigm was employed to measure listening effort during speech understanding in younger and older adults were reviewed. A summary of the main findings reported in the articles is provided with respect to the participants’ age-group and hearing status. Effects of different signal characteristics, such as the test modality, on dual-task outcomes are evaluated, and associations with cognitive abilities and self-report measures of listening effort are described. Then, several procedural issues associated with the use of dual-task experiment paradigms are discussed. Finally, some issues that warrant future research are addressed. The review revealed large variability in the dual-task experimental paradigms that have been used to measure the listening effort expended during speech understanding. The differences in experimental procedures used across studies make it difficult to draw firm conclusions concerning the optimal choice of dual-task paradigm or the sensitivity of specific paradigms to different types of experimental manipulations. In general, the analysis confirmed that dual-task paradigms have been used successfully to measure differences in effort under different experimental conditions, in both younger and older adults. Several research questions that warrant further investigation in order to better understand and characterize the intricacies of dual-task paradigms were identified. PMID:28091178
Continuum modeling of neuronal cell under blast loading
Jérusalem, Antoine; Dao, Ming
2012-01-01
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus ongoing to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progresses are also being made at the experimental and modeling levels to better characterize many of the cell functions such as differentiation, growth, migration and death, among others. The work presented here aims at bridging both efforts by proposing a continuum model of neuronal cell submitted to blast loading. In this approach, cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different material constitutive models are adequately chosen for each one. The material parameters are calibrated against published experimental work of cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete fluid-structure interaction computational framework. The results are compared to the nanoindentation simulation and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during its deformation under blast loading and potentially leading to cell damage. It suggests more particularly the localization of damage at the nucleus membrane similarly to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. As a conclusion, the proposed model ultimately provides a new three dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreani, Michele
The pretest calculations of phase A of the International Standard Problem 42 (ISP-42) using the GOTHIC containment code are presented in this paper, together with the comparison with the experimental results.The focus of the analyses presented is on the mixing process in the drywells (DWs), initially filled with air, during the initial steam purging transient. Consequently, a large effort has been made to capture the flow pattern produced by the jet created by the steam injection, including in the model a large number of nodes for the three-dimensional (3-D) representation of the two vessels. The influence of the nodalization ofmore » the DWs on the calculation was investigated by means of two additional models using one volume for each of the DWs and a 3-D calculation using a much coarser mesh, respectively.Since the fluid in the DWs was well mixed and stratification occurred only below the injection level, all the models could predict very accurately the global variables such as pressure and temperature. The 3-D simulation also reproduced the wall and gas temperature distributions fairly well. The only (inferred) discrepancy with the test was the overprediction in the upward deflection of the buoyant steam jet.« less
Intrinsic motivation and attentional capture from gamelike features in a visual search task.
Miranda, Andrew T; Palmer, Evan M
2014-03-01
In psychology research studies, the goals of the experimenter and the goals of the participants often do not align. Researchers are interested in having participants who take the experimental task seriously, whereas participants are interested in earning their incentive (e.g., money or course credit) as quickly as possible. Creating experimental methods that are pleasant for participants and that reward them for effortful and accurate data generation, while not compromising the scientific integrity of the experiment, would benefit both experimenters and participants alike. Here, we explored a gamelike system of points and sound effects that rewarded participants for fast and accurate responses. We measured participant engagement at both cognitive and perceptual levels and found that the point system (which invoked subtle, anonymous social competition between participants) led to positive intrinsic motivation, while the sound effects (which were pleasant and arousing) led to attentional capture for rewarded colors. In a visual search task, points were awarded after each trial for fast and accurate responses, accompanied by short, pleasant sound effects. We adapted a paradigm from Anderson, Laurent, and Yantis (Proceedings of the National Academy of Sciences 108(25):10367-10371, 2011b), in which participants completed a training phase during which red and green targets were probabilistically associated with reward (a point bonus multiplier). During a test phase, no points or sounds were delivered, color was irrelevant to the task, and previously rewarded targets were sometimes presented as distractors. Significantly longer response times on trials in which previously rewarded colors were present demonstrated attentional capture, and positive responses to a five-question intrinsic-motivation scale demonstrated participant engagement.
Quantum mechanical studies of complex ferroelectric perovskites
NASA Astrophysics Data System (ADS)
Ramer, Nicholas John
In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new theoretical methodology has been developed to enable accurate modeling of complex materials; application of these methods has been demonstrated for the study of ferroelectric oxides; and these investigations have revealed new insights into the relationships between stress, chemical composition, and ferroelectricity in oxides. This set of accomplishments enables the future study of even more complex perovskites and other multi-component systems.
Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control
Badr, Mostafa
2004-01-01
Peroxisome proliferator-activated receptors (PPARs) were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ). Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα, δ, γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases. PMID:15292582
Space station final study report. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1987-01-01
Volume 1 of the Final Study Report provides an Executive Summary of the Phase B study effort conducted under contract NAS8-36526. Space station Phase B implementation resulted in the timely establishment of preliminary design tasks, including trades and analyses. A comprehensive summary of project activities in conducting this study effort is included.
Imanbaew, Dimitri; Lang, Johannes; Gelin, Maxim F; Kaufhold, Simon; Pfeffer, Michael G; Rau, Sven; Riehn, Christoph
2017-05-08
We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time-resolved femtosecond laser spectroscopy in an ion trap. This pump-probe "fragmentation action spectroscopy" gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas-phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Marker, Cassie
An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.
Multilayer Pressure Vessel Materials Testing and Analysis Phase 2
NASA Technical Reports Server (NTRS)
Popelar, Carl F.; Cardinal, Joseph W.
2014-01-01
To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritts, Matthew C.
The Cryogenic Dark Matter Search (CDMS) is designed to detectWeakly-Interacting Massive Particles (WIMPs) in the Milky Way halo. The phase known as CDMS II was performed in the Soudan Underground Laboratory. The final set of CDMS II data, collected in 2007-8 and referred to as Runs 125-8, represents the largest exposure to date for the experiment. We seek collisions between WIMPs and atomic nuclei in disk-shaped germanium and silicon detectors. A key design feature is to keep the rate of collisions from known particles producing WIMP-like signals very small. The largest category of such background is interactions with electrons inmore » the detectors that occur very close to one of the faces of the detector. The next largest category is collisions between energetic neutrons that bypass the experimental shielding and nuclei in the detectors. Analytical efforts to discriminate these backgrounds and to estimate the rate at which such discrimination fails have been refined and improved throughout each phase of CDMS. Next-generation detectors for future phases of CDMS require testing at cryogenic test facilities. One such facility was developed at the University of Minnesota in 2007 and has been used continuously since then to test detectors for the next phase of the experiment, known as SuperCDMS.« less
Phase Control in Nonlinear Systems
NASA Astrophysics Data System (ADS)
Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo
The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References
A search for the prewetting line. [in binary liquid system at vapor-liquid interface
NASA Technical Reports Server (NTRS)
Schmidt, J. W.; Moldover, M. R.
1986-01-01
This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.
NASA Technical Reports Server (NTRS)
Schopper, M. R.
1982-01-01
The hot-wire anemometer amplitude data contained in the 1977 report of P. J. Shapiro entitled, ""The Influence of Sound Upon Laminar Boundary'' were reevaluated. Because the low-Reynolds number boundary layer disturbance data were misinterpreted, an effort was made to improve the corresponding disturbance growth rate curves. The data are modeled as the sum of upstream and downstream propagating acoustic waves and a wave representing the Tollmien-Schlichting (TS) wave. The amplitude and phase velocity of the latter wave were then adjusted so that the total signal reasonably matched the amplitude and phase angle hot-wire data along the plate laminar boundary layer. The revised rates show growth occurring further upstream than Shapiro found. It appears that the premature growth is due to the adverse pressure gradient created by the shape of the plate. Basic elements of sound propagation in ducts and the experimental and theoretical acoustic-stability literature are reviewed.
Carpinteiro, J; Rodríguez, I; Cela, R
2004-11-01
The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.
Forini, Francesca; Nicolini, Giuseppina; Iervasi, Giorgio
2015-03-19
Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48-72 h after the insult), the subacute phase (from 72 h to 7-10 days) and chronic stage (from 10-14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).
Verheyen, G; Crabbé, E; Joris, H; Van Steirteghem, A
1998-06-01
Based on the results of animal studies, round spermatid injection (ROSI) has been introduced into the clinical practice of several in-vitro fertilization (IVF) centres. The efficiency of this procedure in terms of fertilization rates and pregnancy rates, however, remains very poor. An essential aspect which does not receive enough attention is the correct identification of this type of round cell within a heterogeneous population of testicular cells. A Nikon inverted microscope equipped with phase-contrast optics (DLL) provided a clear image which allowed reliable recognition of round spermatids in cell suspensions smeared at the glass bottom of the dish. Fluorescent in-situ hybridization confirmed the haploid status of the selected cells. However, exploration of several biopsies from patients with non-obstructive azoospermia showing no spermatozoa after extensive search did not reveal any round spermatids. This observation questions whether enough effort is spent on searching for mature spermatozoa or late spermatids. Experimental investigations should precede the introduction of ROSI into the clinical practice of any IVF centre.
A modified Embedded-Atom Method interatomic potential for uranium-silicide
NASA Astrophysics Data System (ADS)
Beeler, Benjamin; Baskes, Michael; Andersson, David; Cooper, Michael W. D.; Zhang, Yongfeng
2017-11-01
Uranium-silicide (U-Si) fuels are being pursued as a possible accident tolerant fuel (ATF). This uranium alloy fuel benefits from higher thermal conductivity and higher fissile density compared to uranium dioxide (UO2). In order to perform engineering scale nuclear fuel performance simulations, the material properties of the fuel must be known. Currently, the experimental data available for U-Si fuels is rather limited. Thus, multiscale modeling efforts are underway to address this gap in knowledge. In this study, a semi-empirical modified Embedded-Atom Method (MEAM) potential is presented for the description of the U-Si system. The potential is fitted to the formation energy, defect energies and structural properties of U3Si2. The primary phase of interest (U3Si2) is accurately described over a wide temperature range and displays good behavior under irradiation and with free surfaces. The potential can also describe a variety of U-Si phases across the composition spectrum.
NASA Astrophysics Data System (ADS)
Matahari, Rho Natta; Putra, Nandy; Ariantara, Bambang; Amin, Muhammad; Prawiro, Erwin
2017-02-01
High number of preterm births is one of the issues in improving health standard. The effort to help premature babies is hampered by high cost of NICU care in hospital. In addition, uneven distribution of electricity to remote area made it hard to operate the incubator. Utilization of phase change material beeswax to non-electricity incubator as heating element becomes alternative option to save premature babies. The objective of this experiment is to investigate the most efficient mass of beeswax according to Indonesian National Standard to earn over time and ideal temperature of incubator. Experiment was performed using prototype incubator, which utilizes natural convection phenomenon in the heating process of incubator. Utilization of fin is to accelerate heat distribution in the incubator. Result of experiment showed that the most efficient mass of PCM is 3 kg, which has 2.45 hours of running time for maintaining temperature of incubator in range of 32-36 °C.
Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compound...
Nebulized isotonic saline improves voice production in Sjögren's syndrome.
Tanner, Kristine; Nissen, Shawn L; Merrill, Ray M; Miner, Alison; Channell, Ron W; Miller, Karla L; Elstad, Mark; Kendall, Katherine A; Roy, Nelson
2015-10-01
This study examined the effects of a topical vocal fold hydration treatment on voice production over time. Prospective, longitudinal, within-subjects A (baseline), B (treatment), A (withdrawal/reversal), B (treatment) experimental design. Eight individuals with primary Sjögren's syndrome (SS), an autoimmune disease causing laryngeal dryness, completed an 8-week A-B-A-B experiment. Participants performed twice-daily audio recordings of connected speech and sustained vowels and then rated vocal effort, mouth dryness, and throat dryness. Two-week treatment phases introduced twice-daily 9-mL doses of nebulized isotonic saline (0.9% Na(+)Cl(-)). Voice handicap and patient-based measures of SS disease severity were collected before and after each 2-week phase. Connected speech and sustained vowels were analyzed using the Cepstral Spectral Index of Dysphonia (CSID). Acoustic and patient-based ratings during each baseline and treatment phase were analyzed and compared. Baseline CSID and patient-based ratings were in the mild-to-moderate range. CSID measures of voice severity improved by approximately 20% with nebulized saline treatment and worsened during treatment withdrawal. Posttreatment CSID values fell within the normal-to-mild range. Similar patterns were observed in patient-based ratings of vocal effort and dryness. CSID values and patient-based ratings correlated significantly (P < .05). Nebulized isotonic saline improves voice production based on acoustic and patient-based ratings of voice severity. Future work should optimize topical vocal fold hydration treatment formulations, dose, and delivery methodologies for various patient populations. This study lays the groundwork for future topical vocal fold hydration treatment development to manage and possibly prevent dehydration-related voice disorders. 2b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Liquid Phase Methanol (LPMEOH)(TM) demonstration project at King sport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol is being designed and constructed at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The Partnership will own and operate the facility for the four year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to `demonstrate the production ofmore » methanol using the LPMEOH(TM) Process in conjunction with an integrated coal gasification facility.` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four year demonstration period. The LPMEOH(TM) process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.« less
Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.
2012-12-01
Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
Probing flavor models with ^{ {76}}Ge-based experiments on neutrinoless double-β decay
NASA Astrophysics Data System (ADS)
Agostini, Matteo; Merle, Alexander; Zuber, Kai
2016-04-01
The physics impact of a staged approach for double-β decay experiments based on ^{ {76}}Ge is studied. The scenario considered relies on realistic time schedules envisioned by the Gerda and the Majorana collaborations, which are jointly working towards the realization of a future larger scale ^{ {76}}Ge experiment. Intermediate stages of the experiments are conceived to perform quasi background-free measurements, and different data sets can be reliably combined to maximize the physics outcome. The sensitivity for such a global analysis is presented, with focus on how neutrino flavor models can be probed already with preliminary phases of the experiments. The synergy between theory and experiment yields strong benefits for both sides: the model predictions can be used to sensibly plan the experimental stages, and results from intermediate stages can be used to constrain whole groups of theoretical scenarios. This strategy clearly generates added value to the experimental efforts, while at the same time it allows to achieve valuable physics results as early as possible.
Rydberg phases of Hydrogen and low energy nuclear reactions
NASA Astrophysics Data System (ADS)
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
Phase transformations involving the [alpha][sub 2] and O phases in Ti-Al-Nb alloys. [Ti-28. 5Al-13Nb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraleedharan, K.; Banerjee, D.
1993-08-15
An orthorhombic (O) phase with Cmcm space group and Ti[sub 2]AlNb composition has ben established in the Ti-Al-Nb system. Efforts to develop alloys with this orthorhombic phase as a major phase, in place of the [alpha][sub 2] (Ti[sub 3]Al) phase, resulted in compositions with superior combinations of strength and toughness. The determination of phase diagrams for the Ti-Al-Nb system is a continuing effort. Bendersky et al. considered possible transformation paths and the hierarchy of structures in going from the [beta] phase to [alpha][sub 2] or O phases through displacive or replacive reactions. Microstructures predicted by these considerations have been documentedmore » in the particularly well investigated [beta]-->O transformation. Very little work has however been carried out on the [alpha][sub 2]-->O phase transformation. In this paper, the authors report preliminary results of isothermal aging study of this transformation.« less
The Gerda search for neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Christopher; Gerda Collaboration
2013-10-01
The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-03-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-01-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131
Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.
2016-06-03
There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process inmore » a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe 2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental efforts. The expected delivery dates are at the end of July, 2016, and the middle of June, 2016, respectively. Tube production at STC would be the first attempt to apply cold-pilgering to the FeCrAl alloys. Communication has been initiated, and the materials have been machined for the cold-pilgering process.« less
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
Rating of Perceived Exertion During Circuit Weight Training: A Concurrent Validation Study.
Aniceto, Rodrigo R; Ritti-Dias, Raphael M; Dos Prazeres, Thaliane M P; Farah, Breno Q; de Lima, Fábio F M; do Prado, Wagner L
2015-12-01
The aim of this study was to determine whether rating of perceived exertion (RPE) is a valid method to control the effort during the circuit weight training (CWT) in trained men. Ten men (21.3 ± 3.3 years) with previous experience in resistance training (13.1 ± 6.3 months) performed 3 sessions: 1 orientation session and 2 experimental sessions. The subjects were randomly counterbalanced to 2 experimental sessions: CWT or multiple-set resistance training (control). In both sessions, 8 exercises (bench press, leg press 45°, seated row, leg curl, triceps pulley, leg extension, biceps curl, and adductor chair) were performed with the same work: 60% of 1 repetition maximum, 24 stations (3 circuits) or 24 sets (3 sets/exercise), 10 repetitions, 1 second in the concentric and eccentric phases, and rest intervals between sets and exercise of 60 seconds. Active muscle RPEs were measured after each 3 station/sets using the OMNI-Resistance Exercise Scale (OMNI-RES). In this same time, blood lactate was collected. Compared with baseline, both levels of blood lactate and RPE increased during whole workout in both sessions, the RPE at third, 23rd, and 27th minute and the blood lactate at third, seventh, 11th, 15th, 27th, and 31st minute were higher in multiple set compared with CWT. Positive correlation between blood lactate and RPE was observed in both experimental sessions. The results indicated that the RPE is a valid method to control the effort during the CWT in trained men and can be used to manipulate the intensity without the need to perform invasive assessments.
Improving Quality of Seal Leak Test Product using Six Sigma
NASA Astrophysics Data System (ADS)
Luthfi Malik, Abdullah; Akbar, Muhammad; Irianto, Dradjad
2016-02-01
Seal leak test part is a polyurethane material-based product. Based on past data, defect level of this product was 8%, higher than the target of 5%. Quality improvement effort was done using six sigma method that included phases of define, measure, analyse, improve, and control. In the design phase, a Delphi method was used to identify factors that were critical to quality. In the measure phase, stability and process capability was measured. Fault tree analysis (FTA) and failure mode and effect analysis (FMEA) were used in the next phase to analize the root cause and to determine the priority issues. Improve phase was done by compiling, selecting, and designing alternative repair. Some improvement efforts were identified, i.e. (i) making a checklist for maintenance schedules, (ii) making written reminder form, (iii) modifying the SOP more detail, and (iv) performing a major service to the vacuum machine. To ensure the continuity of improvement efforts, some control activities were executed, i.e. (i) controlling, monitoring, documenting, and setting target frequently, (ii) implementing reward and punishment system, (iii) adding cleaning tool, and (iv) building six sigma organizational structure.
MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results
NASA Technical Reports Server (NTRS)
Ignatonis, A. J.; Mitchell, K. L.
1974-01-01
Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, David A
2016-03-27
The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2more » storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support of the experimental efforts at PNNL, especially for energetics, structural properties, and interpretation of spectra.« less
Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions
Miller, Samuel A.; Gorai, Prashun; Ortiz, Brenden R.; ...
2017-01-06
High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κ L) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κ L by fitting density functional theory calculations to experimental data. Experimental values for κ L come from new measurements on SrIn 2O 4, Ba 2SnO 4, Cu 2ZnSiTe 4, MoTe 2, Ba 3In 2O 6, Cu 3TaTe 4, SnO,more » and InI as well as 55 compounds from across the published literature. Here, to capture the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κ L within a factor of 1.5 of the experimental value across 4 orders of magnitude in κ L values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.« less
Incorporation of Scientific Ballooning into Science Education
NASA Astrophysics Data System (ADS)
Chanover, N.; Stochaj, S.; Petty, C.
1999-12-01
We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1986-01-01
The nature of hydrocarbons and properties of elemental carbon in circumstellar, interstellar, and interplanetary dust is a long standing problem in astronomy and meteorite research. The textures and crystallographical properties of poorly graphitized carbon (PGC) from carbonaceous chondrites and Chondritic Porous Aggregates (CPAs) are comparable with PGCs formed by dehydrogenation and carbonization of hydrocarbon precursors under natural terrestrial and experimental conditions. A multistage model of hydrocarbon diagenesis in CPA and carbonaceous chondrite (proto-) planetary parent bodies was proposed in which hydrocarbons are subjected to low temperature hydrous pyrolysis. Continued efforts to recognize hydrocarbons and elemental phases in CPAs may allow understanding of the multistage hydrocarbon/elemental carbon model.
Electron teleportation via Majorana bound states in a mesoscopic superconductor.
Fu, Liang
2010-02-05
Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H.
2016-01-01
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1981-01-01
Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scales, John
The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1994-01-01
The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.
Geometric phase effects in the ultracold H + H 2 reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, N.
2016-10-27
The H 3 system has served as a prototype for geometric phase (GP) effects in bimolecular chemical reactions for over three decades. Despite a large number of theoretical and experimental efforts, no conclusive evidence of GP effects in the integral cross section or reaction rate has been presented until recently. Here we report a more detailed account of GP effects in the H + H 2(v = 4, j = 0) → H + H 2(v', j') (para-para) reaction rate coefficients for temperatures between 1 μK (8.6 × 10 –11 eV) and 100 K (8.6 × 10 –3 eV). Themore » GP effect is found to persist in both vibrationally resolved and total rate coefficients for collision energies up to about 10 K. The GP effect also appears in rotationally resolved differential cross sections leading to a very different oscillatory structure in both energy and scattering angle. It is shown to suppress a prominent shape resonance near 1 K and enhance a shape resonance near 8 K, providing new experimentally verifiable signatures of the GP effect in the fundamental hydrogen exchange reaction. As a result, the GP effect in the D + D 2 and T + T 2 reactions is also examined in the ultracold limit and its sensitivity to the potential energy surface is explored.« less
NASA Astrophysics Data System (ADS)
Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.
2017-04-01
The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.
Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D
2017-04-01
The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.
Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.
2017-01-01
The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218
2010-09-01
Discrimination of Closely-Spaced Geosynchronous Satellites – Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts...such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change...1]) have emphasized examples of multiple satellites occupying the same geosynchronous slot, with individual satellites maneuvering about one another
DOT National Transportation Integrated Search
2005-12-01
This volume provides an overview of the six studies that compose Phase II of the Enhanced Night Visibility project and the experimental plan for its third and final portion, Phase III. The Phase II studies evaluated up to 12 vision enhancement system...
2013-12-01
experimental studies and analyses performed and the resulting recommendations. Results from the present effort indicated that a minimum use limit of... experimental studies performed and the resulting recommendations regarding the minimum on-board use limit of FSII while maintaining safe operability...sumping. A detailed summary of the experimental efforts and results are provided in a separate report (Balster et al., 2010). For the ATCC
Trends in the exploitation of South Atlantic shark populations.
Barreto, Rodrigo; Ferretti, Francesco; Flemming, Joanna M; Amorim, Alberto; Andrade, Humber; Worm, Boris; Lessa, Rosangela
2016-08-01
Approximately 25% of globally reported shark catches occur in Atlantic pelagic longline fisheries. Strong declines in shark populations have been detected in the North Atlantic, whereas in the South Atlantic the situation is less clear, although fishing effort has been increasing in this region since the late 1970s. We synthesized information on shark catch rates (based on 871,177 sharks caught on 86,492 longline sets) for the major species caught by multiple fleets in the South Atlantic between 1979 and 2011. We complied records from fishing logbooks of fishing companies, fishers, and onboard observers that were supplied to Brazilian institutions. By using exploratory data analysis and literature sources, we identified 3 phases of exploitation in these data (Supporting Information). From 1979 to 1997 (phase A), 5 fleets (40 vessels) fished mainly for tunas. From 1998 to 2008 (phase B), 20 fleets (100 vessels) fished for tunas, swordfishes, and sharks. From 2008 to 2011 (phase C), 3 fleets (30 vessels) fished for multiple species, but restrictive measures were implemented. We used generalized linear models to standardize catch rates and identify trends in each of these phases. Shark catch rates increased from 1979 to 1997, when fishing effort was low, decreased from 1998 to 2008, when fishing effort increased substantially, and remained stable or increased from 2008 to 2011, when fishing effort was again low. Our results indicate that most shark populations affected by longlines in the South Atlantic are currently depleted, but these populations may recover if fishing effort is reduced accordingly. In this context, it is problematic that comprehensive data collection, monitoring, and management of these fisheries ceased after 2012. Concurrently with the fact that Brazil is newly identified by FAO among the largest (and in fastest expansion) shark sub-products consumer market worldwide. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Becker, Matthew D.; Wang, Yonggang; L. Paulsen, Jeffrey; Song, Yi-Qiao; Abriola, Linda M.; Pennell, Kurt D.
2014-12-01
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations. Electronic supplementary information (ESI) available: A schematic diagram of the nMag-MRI experimental systems, description of the mathematical modeling domain, further information regarding calibration of R2 to nMag concentration in sand, comparison of one- and two-site simulations of phases 1 and 2, DLVO interaction energy profiles for the system, and a time lapse movie of the best fit two-site model simulation of the nMag experimental data. See DOI: 10.1039/c4nr05088f
Tanker avionics and aircrew complement evaluation.
Moss, R W; Barbato, G J
1982-11-01
This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.
Universal real-time highway information system development program : final report phase II.
DOT National Transportation Integrated Search
2009-01-01
The final phase of a two phase effort was undertaken to establish data forms and communication protocols to provide the New York State Department of Transportation access to the unique highway data resource, HIVIS developed in the initial phase of th...
NASA Astrophysics Data System (ADS)
Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.
2017-12-01
Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.
Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.
Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan
2003-07-01
The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.
Experimental/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.
2000-01-01
The experimental/analytical research work described here addresses the rocket-ejector mode (Mach 0-2 operational range) of the RBCC engine. The experimental phase of the program includes studying the mixing and combustion characteristics of the rocket-ejector system utilizing state-of-the-art diagnostic techniques. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was utilized as the experimental platform. The goals of the experimental phase of the research being conducted at Penn State are to: (a) systematically increase the range of rocket-ejector understanding over a wide range of flow/geometry parameters and (b) provide a comprehensive data base for evaluating and anchoring CFD codes. Concurrent with the experimental activities, a CFD code benchmarking effort at Marshall Space Flight Center is also being used to further investigate the RBCC rocket-ejector mode. Experiments involving the single rocket based optically-accessible rocket-ejector system have been conducted for Diffusion and Afterburning (DAB) as well as Simultaneous Mixing and Combustion configurations. For the DAB configuration, air is introduced (direct-connect) or ejected (sea-level static) into a constant area mixer section with a centrally located gaseous oxygen (GO2)/gaseous hydrogen (GH2) rocket combustor. The downstream flowpath for this configuration includes a diffuser, an afterburner and a final converging nozzle. For the SMC configuration, the rocket is centrally located in a slightly divergent duct. For all tested configurations, global measurements of the axial pressure and heat transfer profiles as well as the overall engine thrust were made. Detailed measurements include major species concentration (H2 O2 N2 and H2O) profiles at various mixer locations made using Raman spectroscopy. Complementary CFD calculations of the flowfield at the experimental conditions also provide additional information on the physics of the problem. These calculations are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.
NASA Technical Reports Server (NTRS)
Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.
2017-01-01
The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a grasp-assist device that can improve astronaut performance and reduce the risk of injury by offsetting neuromuscular effort. Modifications to the experimental protocol are needed, however, to improve the outcome of the neuromuscular fatigue metrics and determine the effectiveness of SSRG in increasing astronaut endurance. Nevertheless, these findings will improve the understanding of astronaut-spacesuit interaction and provide direction toward designing improved spacesuit gloves and robotic-assist devices, like the SSRG.
An overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)
NASA Astrophysics Data System (ADS)
Dulac, François
2014-05-01
The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr) is a French initiative of the MISTRALS meta-programme (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It federates a great number of national and international cooperative research actions aiming at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The target is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry, in a context of strong regional anthropogenic and climatic pressures. The six ChArMEx work packages include Emissions, Chemical processes and ageing, Transport processes and air quality, Aerosol-radiation-climate interactions, Deposition, and Present and future variability and trends. For several years, efforts have been deployed in several countries to develop (i) a network of relevant stations for atmospheric chemistry at background sites on islands and continental coasts around the basin and (ii) several intensive field campaigns including the operation of surface supersites and various instrumented mobile platforms (large and ultra-light aircraft, sounding and drifting balloons, ZeroCO2 sailboat). This presentation is an attempt to provide an overview of the various experimental, remote sensing and modelling efforts produced and to highlight major findings, by referencing more detailed ChArMEx presentations given in this conference and recently published or submitted papers. During the first phase of the project experimental efforts have been mainly concentrated on the western basin. Plans for the 2nd phase of ChArMEx, more dedicated towards the eastern basin, will also be given. In particular we plan to develop monitoring activities at Cyprus and put more emphasis (i) on aerosol-cloud interactions in cooperation with the FP7/Environment project BACCHUS, (ii) the budget and transport of anthropogenic emissions from megacities, and (iii) processes at the air-sea interface with a proposal for a 1-month oceanographic cruise during a period of dust deposition events, joint with the biogeochemistry component of MISTRALS (project MERMEX: the Marine Ecosystem Response Mediterranean Experiment). Acknowledgements: ChArMEx activities involve about 50 institutes. FD expresses his gratitude to every contributing scientist. ChArMEx is supported by too many agencies for listing them all here. The main overall effort is from France, with ADEME, ANR, CNES, CNRS-INSU, the Collectivité Territoriale de Corse (incl. EU-FEDER funds), Météo-France, CEA and Ecole des Mines de Douai as the main funding agencies.
Experimental Demonstration of a Cheap and Accurate Phase Estimation
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; ...
2017-05-11
We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb + ion qubit. Here, we show this phase can be estimated with an uncertainty below 4 × 10 -4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.
U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.
2009-01-01
Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.
WISPER: Wirless Space Power Experiment
NASA Technical Reports Server (NTRS)
Hawkins, Joseph
1993-01-01
The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.
Demonstration of Active Combustion Control
NASA Technical Reports Server (NTRS)
Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.
2008-01-01
The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.
The Chancellor's Model School Project (CMSP)
NASA Technical Reports Server (NTRS)
Lopez, Gil
1999-01-01
What does it take to create and implement a 7th to 8th grade middle school program where the great majority of students achieve at high academic levels regardless of their previous elementary school backgrounds? This was the major question that guided the research and development of a 7-year long project effort entitled the Chancellor's Model School Project (CMSP) from September 1991 to August 1998. The CMSP effort conducted largely in two New York City public schools was aimed at creating and testing a prototype 7th and 8th grade model program that was organized and test-implemented in two distinct project phases: Phase I of the CMSP effort was conducted from 1991 to 1995 as a 7th to 8th grade extension of an existing K-6 elementary school, and Phase II was conducted from 1995 to 1998 as a 7th to 8th grade middle school program that became an integral part of a newly established 7-12th grade high school. In Phase I, the CMSP demonstrated that with a highly structured curriculum coupled with strong academic support and increased learning time, students participating in the CMSP were able to develop a strong foundation for rigorous high school coursework within the space of 2 years (at the 7th and 8th grades). Mathematics and Reading test score data during Phase I of the project, clearly indicated that significant academic gains were obtained by almost all students -- at both the high and low ends of the spectrum -- regardless of their previous academic performance in the K-6 elementary school experience. The CMSP effort expanded in Phase II to include a fully operating 7-12 high school model. Achievement gains at the 7th and 8th grade levels in Phase II were tempered by the fact that incoming 7th grade students' academic background at the CMSP High School was significantly lower than students participating in Phase 1. Student performance in Phase II was also affected by the broadening of the CMSP effort from a 7-8th grade program to a fully functioning 7-12 high school which as a consequence lessened the focus and structure available to the 7-8th grade students and teachers -- as compared to Phase I. Nevertheless, the CMSP does represent a unique curriculum model for 7th and 8th grade students in urban middle schools. Experience in both Phase I and Phase II of the project allowed the CMSP to be developed and tested along the broad range of parameters and characteristics that embody an operating public school in an urban environment.
Foltin, Richard W; Haney, Margaret; Bedi, Gillinder; Evans, Suzette M
This study examined how response effort (pressing a keyboard button) for cocaine and the value of an alternative reinforcer (opportunity to play a game of chance for money) combined with 'free' cocaine (with no response effort) affected cocaine choice when participants were maintained on modafinil or placebo. Nontreatment-seeking current cocaine smokers were enrolled in a placebo-controlled, double-blind, within-subject study comprising both inpatient and outpatient phases. Participants were maintained on placebo capsules (0mg/day) during one inpatient phase and modafinil (300mg/day) capsules during another inpatient phase in counter-balanced order. A minimum of 8 medication-free days separated the two 15-day inpatient phases to allow for medication clearance. Under each medication condition participants had the opportunity to self-administer smoked cocaine (25mg) when the response effort for cocaine was low (500responses/dose) and had a low value alternative (2 game plays for money) or when the response effort for cocaine was large (2500responses/dose) and had a more valuable alternative (4 game plays for money). Under both conditions, participants received one free dose of cocaine (0, 12, 25 or 50mg) prior to making their first choice of the session. Fifteen individuals began the study and 7 completed it. Participants chose fewer cocaine doses when the response effort for cocaine and the alternative value was high (4.4±0.19) compared to when the response effort for cocaine and the alternative value was low (5.3±0.14). Providing individuals a free "priming" dose of cocaine prior to making their cocaine choice did not alter cocaine taking. Modafinil decreased cocaine choice only when the response effort for cocaine and the alternative value was high. These results suggest that modafinil may be most effective when combined with therapy emphasizing the large personal costs of using cocaine. Copyright © 2016 Elsevier Inc. All rights reserved.
An experimental and theoretical evaluation of increased thermal diffusivity phase change devices
NASA Technical Reports Server (NTRS)
White, S. P.; Golden, J. O.; Stermole, F. J.
1972-01-01
This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.
Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)
NASA Technical Reports Server (NTRS)
Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.
2005-01-01
This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.
Overview of NASA's Propulsion 21 Effort
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
2006-01-01
Propulsion 21 technologies contribute to reducing CO2 and NO(x) emissions and noise. Integrated Government/Industry/University research efforts have produced promising initial technical results. Graduate students from 5 partnering universities will benefit from this collaborative research--> educating the future engineering workforce. Phase 2 Efforts scheduled to be completed 3QFY06.
Development of an intelligent hypertext system for wind tunnel testing
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes
1991-01-01
This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.
Laser diagnostics for microgravity droplet studies
NASA Technical Reports Server (NTRS)
Winter, Michael
1993-01-01
Rapid advances have recently been made in numerical simulation of droplet combustion under microgravity conditions, while experimental capabilities remain relatively primitive. Calculations can now provide detailed information on mass and energy transport, complex gas-phase chemistry, multi-component molecular diffusion, surface evaporation and heterogeneous reaction, which provides a clearer picture of both quasi-steady as well as dynamic behavior of droplet combustion. Experiments concerning these phenomena typically result in pictures of the burning droplets, and the data therefrom describe droplet surface regression along with flame and soot shell position. With much more precise, detailed, experimental diagnostics, significant gains could be made on the dynamics and flame structural changes which occur during droplet combustion. Since microgravity experiments become increasingly more expensive as they progress from drop towers and flights to spaceborne experiments, there is a great need to maximize the information content from these experiments. Sophisticated measurements using laser diagnostics on individual droplets and combustion phenomena are now possible. These include measuring flow patterns and temperature fields within droplets, vaporization rates and vaporization enhancement, radical species profiling in flames and gas-phase flow-tagging velocimetry. Although these measurements are sophisticated, they have undergone maturation to the degree where with some development, they are applicable to studies of microgravity droplet combustion. This program beginning in September of 1992, will include a series of measurements in the NASA Learjet, KC-135 and Drop Tower facilities for investigating the range of applicability of these diagnostics while generating and providing fundamental data to ongoing NASA research programs in this area. This program is being conducted in collaboration with other microgravity investigators and is aimed toward supplementing their experimental efforts.
Advanced Supercritical Carbon Dioxide Brayton Cycle Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sienicki, James; Moisseytsev, Anton
2015-10-21
Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less
NASA Technical Reports Server (NTRS)
Caporale, A. J.
1968-01-01
A brief history is reported of the first San Marco project, a joint program of the United States and Italy. The Project was a three phase effort to investigate upper air density and associated ionosphere phenomena. The initial phase included the design and development of the spacecraft, the experiments, the launch complex, and a series of suborbital flights, from Wallops Island. The second phase, consisting of designing, fabricating, and testing a spacecraft for the first orbital mission, culminated in an orbital launch also from Wallops Island. The third phase consisted of further refining the experiments and spacecraft instrumentation and of establishing a full-bore scout complex in Kenya. The launch of San Marco B, in April 1967, from this complex into an equatorial orbit, concluded the initial San Marco effort.
Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1
NASA Technical Reports Server (NTRS)
Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.
2014-01-01
To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.
Analytical and experimental study of control effort associated with model reference adaptive control
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1992-01-01
Numerical simulation results presently obtained for the performance of model reference adaptive control (MRAC) are experimentally verified, with a view to accounting for differences between the plant and the reference model after the control function has been brought to bear. MRAC is both experimentally and analytically applied to a single-degree-of-freedom system, as well as analytically to a MIMO system having controlled differences between the reference model and the plant. The control effort is noted to be sensitive to differences between the plant and the reference model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...
2017-03-28
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V A; Volkov, M V; Garanin, S G
2013-09-30
The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less
Vapor Phase Catalytic Ammonia Reduction
NASA Technical Reports Server (NTRS)
Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)
1994-01-01
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.
Approaching patient engagement in research: what do patients with cardiovascular disease think?
Finney Rutten, Lila J; Morris, Megan A; Schrader, Lisa M; Manemann, Sheila M; Pathak, Jyotishman; Dimler, Robert; Roger, Veronique L
2015-01-01
Movement toward patient-centered health care must be supported by an evidence base informed by greater patient engagement in research. Efforts to better understand patients' interest in and perspectives on involvement in the research process are fundamental to supporting movement of research programs toward greater patient engagement. We describe preliminary efforts to engage members of a community group of patients living with heart disease to better understand their interest and perspectives on involvement in research. A semi-structured focus group guide was developed to probe willingness to participate in the following three phases of research: preparation, execution, and translation. The focus group discussion, and our summary of key messages gleaned from said discussion, was organized around the phases of research that patients may be involved in, with the goal of delineating degrees of interest expressed for engagement in each phase. Consistent with what is known from the literature, a clear preference for engagement during the preparation and translation phase of the research process emerged. This preliminary conversation will guide our ongoing research efforts toward greater inclusion of patients throughout the research process.
Booth, David T
2009-01-01
Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.
High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor
NASA Technical Reports Server (NTRS)
Kopasakis, George
2003-01-01
This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng
2016-09-01
U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Mart; Dane, J. H.; Wietsma, Thomas W.
2007-08-01
A review is presented of original multidimensional, intermediate-scale experiments involving non-aqueous phase liquid (NAPL) flow behavior, imaging, and detection/quantification with solute tracers. In a companion paper (Oostrom, M., J.H. Dane, and T.W. Wietsma. 2006. A review of multidimensional, multifluid intermediate-scale experiments: Nonaqueous phase dissolution and enhanced remediation. Vadose Zone Journal 5:570-598) experiments related to aqueous dissolution and enhanced remediation were discussed. The experiments investigating flow behavior include infiltration and redistribution experiments with both light and dense NAPLs in homogeneous and heterogeneous porous medium systems. The techniques used for NAPL saturation mapping for intermediate-scale experiments include photon-attenuation methods such as gammamore » and X-ray techniques, and photographic methods such as the light reflection, light transmission, and multispectral image analysis techniques. Solute tracer methods used for detection and quantification of NAPL in the subsurface are primarily limited to variations of techniques comparing the behavior of conservative and partitioning tracers. Besides a discussion of the experimental efforts, recommendations for future research at this laboratory scale are provided.« less
Component effects on crystallization of RE-containing aluminoborosilicate glass
NASA Astrophysics Data System (ADS)
Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.
2016-09-01
Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce3BSi2O10), mullite (Al10Si2O19), and corundum (Al2O3). Cerianite (CeO2) was a common minor crystalline phase and Nd-silicate (Nd2Si2O7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO2 and B2O3 fractions increased and strongly increased with increasing fractions of RE oxides; Al2O3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Al-containing crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.
Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce 3BSi 2O 10), mullite (Al 10Si 2O 19), and corundum (Al 2O 3). Cerianite (CeOmore » 2) was a common minor crystalline phase and Nd-silicate (Nd 2Si 2O 7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO 2 and B 2O 3 fractions increased and strongly increased with increasing fractions of RE oxides; Al 2O 3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Alcontaining crystals.« less
Ionic liquids in solid-phase microextraction: a review.
Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L
2011-06-10
Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Lagoon Restoration Project: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This project is a multiyear effort focusing on energy flow in the Palace of Fine Arts lagoon just outside the Exploratorium in San Francisco. Phase 1 was a pilot study to determine the feasibility of improving biological energy flow through the small freshwater lagoon, using the expertise and resources of an environmental artist in collaboration with museum biologists and arts department staff. The primary outcome of Phase 1 is an experimental fountain exhibit inside the museum designed by public artist Laurie Lundquist with Exploratorium staff. This fountain, with signage, functions both as a model for natural aeration and filtration systemsmore » and as a focal point for museum visitors to learn about how biological processes cycle energy through aquatic systems. As part of the study of the lagoon`s health, volunteers continued biweekly bird consus from March through September, 1994. The goal was to find out whether the poor water quality of the lagoon is affecting the birds. Limited dredging was undertaken by the city Parks and Recreation Department. However, a more peermanent solution to the lagoon`s ecological problems would require an ambitious redesign of the lagoon.« less
Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.
2012-01-01
An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692
Butterflies' wings deformations using high speed digital holographic interferometry
NASA Astrophysics Data System (ADS)
Mendoza Santoyo, Fernando; Aguayo, Daniel D.; de La Torre-Ibarra, Manuel H.; Salas-Araiza, Manuel D.
2011-08-01
A variety of efforts in different scientific disciplines have tried to mimic the insect's in-flight complex system. The gained knowledge has been applied to improve the performance of different flying artifacts. In this research report it is presented a displacement measurement on butterflies' wings using the optical noninvasive Digital Holographic Interferometry technique with out of plane sensitivity, using a high power cw laser and a high speed CMOS camera to record the unrepeatable displacement movements on these organic tissues. A series of digital holographic interferograms were recorded and the experimental results for several butterflies during flapping events. The relative unwrapped phase maps micro-displacements over the whole wing surface are shown in a wire-mesh representation. The difference between flying modes is remarkably depicted among them.
Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1999-01-01
A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Evaluation of substitution monopole models for tire noise sound synthesis
NASA Astrophysics Data System (ADS)
Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.
2010-01-01
Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.
Synthetic Development of Low Dimensional Materials
Men, Long; White, Miles A.; Andaraarachchi, Himashi; ...
2016-11-02
Here, in this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains our motivation behind our work, as well as by a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts by others and us will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while,more » at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications.« less
CFD Evaluation of a 3rd Generation LDI Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Mongia, Hukam; Lee, Phil
2017-01-01
An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.
On-chip switch for reconfigurable mode-multiplexing optical network.
Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang
2016-09-19
The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.
NASA Astrophysics Data System (ADS)
Fat'yanov, O.; Asimow, P.
2013-06-01
In a continuous effort to determine experimentally the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. The limit was primarily caused by intense sublimation of pure MgO in vacuum above ~2050 K. Completely redesigned Mo capsules holding ~20 mm long MgO crystals with controlled thermal gradients were impacted by thin Ta flyers launched at 6.5 to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel pyrometer with 3 ns time resolution, over 440-750 nm spectral range. All our experiments showed smooth pressure dependence of MgO sound speed consistent with the solid phase at 204-239 GPa. Observed temperatures are ~1000 K lower than those predicted by the solid phase model, but the plot of measured shock temperature versus pressure exhibits a pattern typical of shock melting at the highest pressure investigated. This may suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line at 220-240 GPa. Sound speed data indistinguishable from the solid phase model do not exclude the possibility of melting there.
Phase shifts, herbivory, and the resilience of coral reefs to climate change.
Hughes, Terence P; Rodrigues, Maria J; Bellwood, David R; Ceccarelli, Daniela; Hoegh-Guldberg, Ove; McCook, Laurence; Moltschaniwskyj, Natalie; Pratchett, Morgan S; Steneck, Robert S; Willis, Bette
2007-02-20
Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
Control of Oscillatory Thermocapillary Convection in Microgravity
NASA Technical Reports Server (NTRS)
Skarda, Ray
1998-01-01
This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.
Achieving Common Expectations for Overall Goals amid Diversity among Cooperative Extension Faculty.
ERIC Educational Resources Information Center
Taylor, Barbara
As a part of the initial phase of a strategic planning effort for the development of Florida's 1988 through 1991 long-range cooperative extension program, an effort was initiated to achieve common expectations for overall organizational mission and purpose among diverse cooperative extension faculty. The unification effort included the following…
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
LEPER: Library of Experimental PhasE Relations
NASA Astrophysics Data System (ADS)
Davis, F.; Gordon, S.; Mukherjee, S.; Hirschmann, M.; Ghiorso, M.
2006-12-01
The Library of Experimental PhasE Relations (LEPER) seeks to compile published experimental determinations of magmatic phase equilibria and provide those data on the web with a searchable and downloadable interface. Compiled experimental data include the conditions and durations of experiments, the bulk compositions of experimental charges, and the identity, compositions and proportions of phases observed, and, where available, estimates of experimental and analytical uncertainties. Also included are metadata such as the type of experimental device, capsule material, and method(s) of quantitative analysis. The database may be of use to practicing experimentalists as well as the wider Earth science community. Experimentalists may find the data useful for planning new experiments and will easily be able to compare their results to the full body of previous experimentnal data. Geologists may use LEPER to compare rocks sampled in the field with experiments performed on similar bulk composition or with experiments that produced similar-composition product phases. Modelers may use LEPER to parameterize partial melting of various lithologies. One motivation for compiling LEPER is for calibration of updated and revised versions of MELTS, however, it is hoped that the availability of LEPER will facilitate formulation and calibration of additional thermodynamic or empirical models of magmatic phase relations and phase equilibria, geothermometers and more. Data entry for LEPER is occuring presently: As of August, 2006, >6200 experiments have been entered, chiefly from work published between 1997 and 2005. A prototype web interface has been written and beta release on the web is anticipated in Fall, 2006. Eventually, experimentalists will be able to submit their new experimental data to the database via the web. At present, the database contains only data pertaining to the phase equilibria of silicate melts, but extension to other experimental data involving other fluids or sub-solidus phase equilibria may be contemplated. Also, the data are at present limited to natural or near-natural systems, but in the future, extension to synthetic (i.e., CMAS, etc.) systems is also possible. Each would depend in part on whether there is community demand for such databases. A trace element adjunct to LEPER is presently in planning stages.
Model Transformation for a System of Systems Dependability Safety Case
NASA Technical Reports Server (NTRS)
Murphy, Judy; Driskell, Steve
2011-01-01
The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKellar, B. H. J.; He, X-G.; Klein, A. G.
2014-03-05
There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed wemore » pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.« less
Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase I)
DOT National Transportation Integrated Search
2014-10-01
Phase I of this research effort involved a review of the current state of the art of weld inspection using PAUT, development of the preliminary technical approach to inspecting CJP butt welds with and without transitions, fabrication of suitable test...
Parametric analysis of a shape memory alloy actuated arm
NASA Astrophysics Data System (ADS)
Wright, Cody; Bilgen, Onur
2016-04-01
Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.
The Development of Animal Behavior: From Lorenz to Neural Nets
NASA Astrophysics Data System (ADS)
Bolhuis, Johan J.
In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.
Perspective: THz-driven nuclear dynamics from solids to molecules
Hamm, Peter; Meuwly, Markus; Johnson, Steve L.; Beaud, Paul; Staub, Urs
2017-01-01
Recent years have seen dramatic developments in the technology of intense pulsed light sources in the THz frequency range. Since many dipole-active excitations in solids and molecules also lie in this range, there is now a tremendous potential to use these light sources to study linear and nonlinear dynamics in such systems. While several experimental investigations of THz-driven dynamics in solid-state systems have demonstrated a variety of interesting linear and nonlinear phenomena, comparatively few efforts have been made to drive analogous dynamics in molecular systems. In the present Perspective article, we discuss the similarities and differences between THz-driven dynamics in solid-state and molecular systems on both conceptual and practical levels. We also discuss the experimental parameters needed for these types of experiments and thereby provide design criteria for a further development of this new research branch. Finally, we present a few recent examples to illustrate the rich physics that may be learned from nonlinear THz excitations of phonons in solids as well as inter-molecular vibrations in liquid and gas-phase systems. PMID:29308420
Su, Zheng; Borho, Nicole; Xu, Yunjie
2006-12-27
In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.
Perspective: THz-driven nuclear dynamics from solids to molecules.
Hamm, Peter; Meuwly, Markus; Johnson, Steve L; Beaud, Paul; Staub, Urs
2017-11-01
Recent years have seen dramatic developments in the technology of intense pulsed light sources in the THz frequency range. Since many dipole-active excitations in solids and molecules also lie in this range, there is now a tremendous potential to use these light sources to study linear and nonlinear dynamics in such systems. While several experimental investigations of THz-driven dynamics in solid-state systems have demonstrated a variety of interesting linear and nonlinear phenomena, comparatively few efforts have been made to drive analogous dynamics in molecular systems. In the present Perspective article, we discuss the similarities and differences between THz-driven dynamics in solid-state and molecular systems on both conceptual and practical levels. We also discuss the experimental parameters needed for these types of experiments and thereby provide design criteria for a further development of this new research branch. Finally, we present a few recent examples to illustrate the rich physics that may be learned from nonlinear THz excitations of phonons in solids as well as inter-molecular vibrations in liquid and gas-phase systems.
Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth
NASA Technical Reports Server (NTRS)
Wiedemeier, H.
1985-01-01
The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.
Optimized Structures for Low-Profile Phase Change Thermal Spreaders
NASA Astrophysics Data System (ADS)
Sharratt, Stephen Andrew
Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum heat flux and decrease thermal resistance. This research provides key insights as to how to optimize heat pipe structures to minimize thermal resistance and increase maximum heat flux. These thin wick structures can also be combined with a thicker liquid supply layer so that thin, low-resistance evaporator layers can be constructed and higher heat fluxes realized. The work presented in this thesis can be used to aid in the development of high-performance phase change thermal spreaders, allowing for temperature control of a variety of powerful electronic components.
Combustion Processes in Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Venkateswaran,S.; Merkle, C. L.
1996-01-01
In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or regression rates as a function of the head-end oxidizer mass flux, G=rho(e)U(e), and the chamber pressure. Furthermore, computation of the full slab burner configuration has also been obtained for various stages of the burn. Comparisons with available experimental data from small scale tests conducted by General Dynamics-Thiokol-Rocketdyne suggest reasonable agreement in the predicted regression rates. Future work will include: (1) a model for soot generation in the flame for more quantitative radiative transfer modelling, (2) a parametric study of combustion efficiency, and (3) transient calculations to help determine the possible mechanisms responsible for combustion instability in hybrid rocket motors.
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.
2015-01-01
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251
NASA Astrophysics Data System (ADS)
Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.
2002-09-01
The scratch drive actuator (SDA) is a key element in microelectromechanical System (MEMS) technology. The actuator can be designed to travel very long distance with precise step size. Various articles describe the characteristics of scratch drive actuators.3, 6, 8 The MEMS designer needs models of SDA in order to incorporate them into their Microsystems applications. The objective of our effort is to develop models for SDA when it is in the working state. In this paper, a suspended SDA plate actuated by electrostatic force is analyzed. A mathematical model is established based on electrostatic coupled mechanical theory. Two phases have been calculated because the plate will contact the bottom surface due to the electrostatic force. One phase is named non-contact mode, and another is named contact mode. From these two models, the relationship between applied voltage and contact distance has been obtained. The geometrical model of bending plate is established to determine the relationship between contact distance and step size. Therefore we can use those two results to obtain the result of step size versus applied voltage that we expect. Finally, couple-field electro-mechanical simulation has been done by commercial software IntelliSuite. We assume that the dimension of SDA plate and bushing are fixed. All the material properties are from JDSU Cronos MUMPs. A Veeco NT1000 surface profiling tool has been used to investigate the bending of SDA plate. The results of experimental and theoretical are compared.
Experimental testing of a new integrated model of the budding yeast Start transition.
Adames, Neil R; Schuck, P Logan; Chen, Katherine C; Murali, T M; Tyson, John J; Peccoud, Jean
2015-11-05
The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1-S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1-S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model's simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network. © 2015 Adames et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Mixture experiment methods in the development and optimization of microemulsion formulations.
Furlanetto, S; Cirri, M; Piepel, G; Mennini, N; Mura, P
2011-06-25
Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. The results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1, v/v), 5% oil (Labrafac Hydro) and 17% aqueous phase (water). The stable region of MEs was identified using mixture experiment methods for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.
Grause, Juanita F; Ueti, Massaro W; Nelson, Jeffrey T; Knowles, Donald P; Kappmeyer, Lowell S; Bunn, Thomas O
2013-06-01
Theileria equi, one of the causative agents of equine piroplasmosis, is endemic in many regions of the world but is considered a 'foreign' animal disease in the USA. In an effort to prevent the importation of T. equi, stringent serological screening of horses is practiced prior to entry to the USA. Current regulatory options available where horses are found to be infected include permanent quarantine with or without chemotherapy, repatriation, or euthanasia. Chemotherapeutics that eliminate infection and subsequently transmission risk are critical in the management of infected horses. In this study, the efficacy of the drug imidocarb dipropionate against experimental T. equi infection was assessed. Of nine horses experimentally inoculated with T. equi isolated from an animal previously imported from Peru, six were treated with imidocarb dipropionate after the resolution of the acute phase of the disease. Elimination of the parasite was demonstrated in 5/6 by nested PCR, blood transfusions to naïve horses, and reversion to seronegative status. The findings support the use of this drug as a potential treatment option in controlling outbreaks of T. equi, and also suggest that 'combination testing' using both serological and PCR detection methods are necessary to demonstrate clearance of infection. Published by Elsevier Ltd.
Adaptive restoration of river terrace vegetation through iterative experiments
Dela Cruz, Michelle P.; Beauchamp, Vanessa B.; Shafroth, Patrick B.; Decker, Cheryl E.; O’Neil, Aviva
2014-01-01
Restoration projects can involve a high degree of uncertainty and risk, which can ultimately result in failure. An adaptive restoration approach can reduce uncertainty through controlled, replicated experiments designed to test specific hypotheses and alternative management approaches. Key components of adaptive restoration include willingness of project managers to accept the risk inherent in experimentation, interest of researchers, availability of funding for experimentation and monitoring, and ability to restore sites as iterative experiments where results from early efforts can inform the design of later phases. This paper highlights an ongoing adaptive restoration project at Zion National Park (ZNP), aimed at reducing the cover of exotic annual Bromus on riparian terraces, and revegetating these areas with native plant species. Rather than using a trial-and-error approach, ZNP staff partnered with academic, government, and private-sector collaborators to conduct small-scale experiments to explicitly address uncertainties concerning biomass removal of annual bromes, herbicide application rates and timing, and effective seeding methods for native species. Adaptive restoration has succeeded at ZNP because managers accept the risk inherent in experimentation and ZNP personnel are committed to continue these projects over a several-year period. Techniques that result in exotic annual Bromus removal and restoration of native plant species at ZNP can be used as a starting point for adaptive restoration projects elsewhere in the region.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Orbital express capture system: concept to reality
NASA Astrophysics Data System (ADS)
Stamm, Shane; Motaghedi, Pejmun
2004-08-01
The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the Phase II SBIR work, while the new mechanism, the Orbital Express Capture System, will emerge as a flight-qualified design for the Orbital Express program.
Robotics and telepresence for moon missions
NASA Technical Reports Server (NTRS)
Sallaberger, Christian
1994-01-01
An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.
Using thermal phase curves to probe the climate of potentially habitable planets
NASA Astrophysics Data System (ADS)
Kataria, Tiffany
2018-01-01
Thermal phase-curve observations probe the variation in emitted flux of a planet with phase, or longitude. When conducted spectroscopically, they allow us to probe the two-dimensional temperature structure in both longitude and altitude, which directly relate to the planet’s circulation and chemistry. In the case of small, potentially habitable exoplanets, spectroscopic phase-curve observations can provide us with direct evidence that the planet is capable of sustaining liquid water from measurements of its brightness temperature, and allow us to distinguish between a ‘airless’ body and one that has an appreciable atmosphere. In this talk I will summarize efforts to characterize exoplanets smaller than Neptune with phase-curve observations and emission spectroscopy using the Spitzer and Hubble Space Telescopes. I will then discuss how these ‘lessons learned’ can be applied to future efforts to characterize potentially habitable planets with phase-curve observations using JWST and future facilities such as the Origins Space Telescope (OST).
Harding, A.M.A.; van Pelt, Thomas I.; Piatt, John F.; Kitaysky, A.S.
2002-01-01
Using a supplemental feeding experiment, we investigated the ability of adult Horned Puffins to decrease provisioning effort in response to reduced nutritional requirements of chicks. We found no difference between experimental and control groups in parental provisioning before supplementary feeding was initiated. After receiving supplemental food for seven days, experimental chicks grew faster, gained more mass and received 87% less food from their parents than did control chicks. These results demonstrate that Horned Puffin parents can decrease food provisioning in response to a decrease in their chick nutritional requirements. ?? The Cooper Ornithological Society 2002.
Phase measurement error in summation of electron holography series.
McLeod, Robert A; Bergen, Michael; Malac, Marek
2014-06-01
Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Searching for dark matter with single phase liquid argon
NASA Astrophysics Data System (ADS)
Caldwell, Thomas S., Jr.
The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.
Gilson, Todd A; Heller, Emily A; Stults-Kolehmainen, Matthew A
2013-10-01
When training for sport, it can be argued that self-regulation-or how athletes attempt to learn new skills-is vital for success. However, self-regulation means little if athletes cannot apply it in the throes of adversity. Specifically, the confidence one has to use self-regulation skills (i.e., self-regulatory efficacy [SRE]) when faced with adverse conditions can contribute to positive or negative behavioral implications when examined in conjunction with an athlete's current goals. Therefore, the purpose of this study was twofold: (a) determine if athletes who hold an effort goal when training for sport will have higher SRE scores; and (b) assess the relationship between effort goals and SRE, as the strength of one's effort goal increases. In phase 1, interviews with 11 Division I athletes were conducted to determine the most salient dissuading conditions athletes experience when training for sport. This process resulted in 27 factors that were implemented into a questionnaire for phase 2. During this latter phase, 402 Division I football players (Mage = 20.1 years, SD = 1.3 years) completed a 2-part goal statement along with an SRE questionnaire. The results indicated that athletes who held a criterion effort goal related to training (n = 362) had significantly higher SRE scores when compared with athletes who did not report having an effort goal F(27,401) = 1.89, p < 0.01. Additionally, as athletes' effort goal increased, stronger SRE beliefs resulted for all dissuading conditions, with all p values <0.05. Based on these results, practitioners are encouraged to facilitate goal setting sessions early and often with athletes as a way to combat the negative effects of low SRE beliefs.
Two-Phase Flow in Microchannels with Non-Circular Cross Section
NASA Astrophysics Data System (ADS)
Eckett, Chris A.; Strumpf, Hal J.
2002-11-01
Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.
Particle Effects On The Extinction And Ignition Of Flames In Normal- And Micro-Gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2003-01-01
Reacting dusty flows have been studied to lesser extent than pure gas phase flows and sprays. Particles can significantly alter the ignition, burning and extinction characteristics of the gas phase due to the dynamic, thermal, and chemical couplings between the phases. The understanding of two-phase flows can be attained in stagnation flow configurations, which have been used to study spray combustion [e.g. 1] as well as reacting dusty flows [e.g. 2]. The thermal coupling between inert particles and a gas, as well as the effect of gravity, were studied in Ref. 3. It was also shown that the gravity can substantially affect parameters such as the particle velocity, number density, mass flux, and temperature. In Refs. 4 and 5, the effects of inert particles on the extinction of strained premixed and nonpremixed flames were studied both experimentally and numerically at 1-g and m-g. It was shown that large particles can cool flames more effectively than smaller particles. The effects of flame configuration and particle injection orientation were also addressed. It was shown that it was not possible to obtain a simple and still meaningful scaling that captured all the pertinent physics due to the complexity of the couplings between parameters. Also, the cooling by particles is more profound in the absence of gravity as gravity works to reduce the particle number density in the neighborhood of the flame. The efforts were recently shifted towards the understanding of the effects of combustible particles on extinction [6], the gas-phase ignition by hot particle injection [7], and the hot gas ignition of flames in the presence of particles that are not hot enough to ignite the gas phase by themselves.
Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted
NASA Technical Reports Server (NTRS)
Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.
2004-01-01
The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.
NASA Astrophysics Data System (ADS)
Ndengue, Steve Alexandre; Dawes, Richard
2017-06-01
Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.
NASA Astrophysics Data System (ADS)
Weber, Michael; Shandas, Robin
2005-11-01
Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.
Computational crystallization.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H
2016-07-15
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Involvement of opioid signaling in food preference and motivation: Studies in laboratory animals.
Morales, I; Font, L; Currie, P J; Pastor, R
2016-01-01
Motivation is a complex neurobiological process that initiates, directs, and maintains goal-oriented behavior. Although distinct components of motivated behavior are difficult to investigate, appetitive and consummatory phases of motivation are experimentally separable. Different neurotransmitter systems, particularly the mesolimbic dopaminergic system, have been associated with food motivation. Over the last two decades, however, research focusing on the role of opioid signaling has been particularly growing in this area. Opioid receptors seem to be involved, via neuroanatomically distinct mechanisms, in both appetitive and consummatory aspects of food reward. In the present chapter, we review the pharmacology and functional neuroanatomy of opioid receptors and their endogenous ligands, in the context of food reinforcement. We examine literature aimed at the development of laboratory animal techniques to better understand different components of motivated behavior. We present recent data investigating the effect of opioid receptor antagonists on food preference and effort-related decision making in rats, which indicate that opioid signaling blockade selectively affects intake of relatively preferred foods, resulting in reduced willingness to exert effort to obtain them. Finally, we elaborate on the potential role of opioid system manipulations in disorders associated with excessive eating and obesity. © 2016 Elsevier B.V. All rights reserved.
Anatase (101)-like Structural Model Revealed for Metastable Rutile TiO2(011) Surface.
Xu, Meiling; Shao, Sen; Gao, Bo; Lv, Jian; Li, Quan; Wang, Yanchao; Wang, Hui; Zhang, Lijun; Ma, Yanming
2017-03-08
Titanium dioxide has been widely used as an efficient transition metal oxide photocatalyst. However, its photocatalytic activity is limited to the ultraviolet spectrum range due to the large bandgap beyond 3 eV. Efforts to reduce the bandgap to achieve a broader spectrum range of light absorption have been successfully attempted via the experimental synthesis of dopant-free metastable surface structures of rutile-type TiO 2 (011) 2 × 1. This new surface phase possesses a reduced bandgap of ∼2.1 eV, showing great potential for an excellent photocatalyst covering a wide range of visible light. There is a need to establish the atomistic structure of this metastable surface to understand the physical cause for the bandgap reduction and to improve the future design of photocatalysts. Here, we report computational investigations in an effort to unravel this surface structure via swarm structure-searching simulations. The established structure adopts the anatase (101)-like structure model, where the topmost 2-fold O atoms form a quasi-hexagonal surface pattern and bond with the unsaturated 5-fold and 4-fold Ti atoms in the next layer. The predicted anatase (101)-like surface model can naturally explain the experimental observation of the STM images, the electronic bandgap, and the oxidation state of Ti 4+ . Dangling bonds on the anatase (101)-like surface are abundant making it a superior photocatalyst. First-principles molecular dynamics simulations have supported the high photocatalytic activity by showing that water and formic acid molecules dissociate spontaneously on the anatase (101)-like surface.
Multipurpose exciter with low phase noise
NASA Technical Reports Server (NTRS)
Conroy, B.; Le, D.
1989-01-01
Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.
Instructional Efficiency of Changing Cognitive Load in an Out-of-School Laboratory
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2010-04-01
Our research objective focused on monitoring students' mental effort and cognitive achievement to unveil potential effects of an instructional change in an out-of-school laboratory offering gene technology modules. Altogether, 231 students (12th graders) attended our day-long hands-on module. Within a quasi-experimental design, a treatment group followed the newly developed two-step approach derived from cognitive load theory while a control group applied experimentation in a conventional one-step mode. The difference consisted of additional focused discussions combined with noting students' ideas (Step 1) prior to starting any experimental procedure (Step 2). We monitored mental effort (nine times during the teaching unit) and cognitive achievement (in a pre-post-design with follow-up test). The treatment demonstrated a change in instructional efficiency (by combining mental effort and cognitive achievement data), especially for intrinsically high-loaded students. Conclusions for optimizing individual cognitive load in science teaching were drawn.
NASA Technical Reports Server (NTRS)
Chie, C. M.
1980-01-01
The Solar Power Satellite (SPS) concept and the reference phase control system investigated in earlier efforts are reviewed. A summary overview of the analysis and selection of the pilot signal and power transponder design is presented along with the SOLARSIM program development and the simulated SPS phase control performance. Evaluations of the ground based phase control system as an alternate phase control concept are summarized.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures
NASA Astrophysics Data System (ADS)
Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.
2018-06-01
In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
2016-05-23
Invited Article Helicity-selective phase-matching and quasi -phase matching of circularly polarized high-order harmonics: towards chiral attosecond...chromatic lasers was recently predicted theoretically and demonstrated experimentally . In that work, phase matching was analyzed by assuming that the...Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization
Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications
El-Desouki, Munir M.; Hynynen, Kullervo
2011-01-01
Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU). PMID:22346589
Driving circuitry for focused ultrasound noninvasive surgery and drug delivery applications.
El-Desouki, Munir M; Hynynen, Kullervo
2011-01-01
Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU).
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
NASA Technical Reports Server (NTRS)
1973-01-01
The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.
NASA Astrophysics Data System (ADS)
Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man
2008-11-01
The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.
Experimental demonstration of cheap and accurate phase estimation
NASA Astrophysics Data System (ADS)
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; Maunz, Peter
We demonstrate experimental implementation of robust phase estimation (RPE) to learn the phases of X and Y rotations on a trapped Yb+ ion qubit.. Unlike many other phase estimation protocols, RPE does not require ancillae nor near-perfect state preparation and measurement operations. Additionally, its computational requirements are minimal. Via RPE, using only 352 experimental samples per phase, we estimate phases of implemented gates with errors as small as 10-4 radians, as validated using gate set tomography. We also demonstrate that these estimates exhibit Heisenberg scaling in accuracy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Different structures of monoclinic martensitic phases in titanium nickelide
NASA Astrophysics Data System (ADS)
Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.
2000-03-01
The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.
Mental Effort in Binary Categorization Aided by Binary Cues
ERIC Educational Resources Information Center
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2013-01-01
Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…
NASA Astrophysics Data System (ADS)
Moradi, A.; Smits, K. M.
2014-12-01
A promising energy storage option to compensate for daily and seasonal energy offsets is to inject and store heat generated from renewable energy sources (e.g. solar energy) in the ground, oftentimes referred to as soil borehole thermal energy storage (SBTES). Nonetheless in SBTES modeling efforts, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications. The validation of numerical models that are designed to capture these processes is difficult due to the scarcity of experimental data, limiting the testing and refinement of heat and water transfer theories. A common assumption in most SBTES modeling approaches is to consider the soil as a purely conductive medium with constant hydraulic and thermal properties. However, this simplified approach can be improved upon by better understanding the coupled processes at play. Consequently, developing new modeling techniques along with suitable experimental tools to add more complexity in coupled processes has critical importance in obtaining necessary knowledge in efficient design and implementation of SBTES systems. The goal of this work is to better understand heat and mass transfer processes for SBTES. In this study, we implemented a fully coupled numerical model that solves for heat, liquid water and water vapor flux and allows for non-equilibrium liquid/gas phase change. This model was then used to investigate the influence of different hydraulic and thermal parameterizations on SBTES system efficiency. A two dimensional tank apparatus was used with a series of soil moisture, temperature and soil thermal properties sensors. Four experiments were performed with different test soils. Experimental results provide evidences of thermally induced moisture flow that was also confirmed by numerical results. Numerical results showed that for the test conditions applied here, moisture flow is more influenced by thermal gradients rather than hydraulic gradients. The results also demonstrate that convective fluxes are higher compared to conductive fluxes indicating that moisture flow has more contribution to the overall heat flux than conductive fluxes.
Hydrogen uptake causes molecular "avalanches" in palladium | Argonne
experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain transformation. Comparison between experimental and calculated strain distributions in the hydrogen-poor phase
Development of Vapor-Phase Catalytic Ammonia Removal System
NASA Technical Reports Server (NTRS)
Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale;
2007-01-01
A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.
DOT National Transportation Integrated Search
2013-08-01
The Sustainable Design Guidelines were developed in Phase I of this research program (WA-RD : 816.1). Here we are reporting on the Phase II effort that beta-tested the Phase I Guidelines on : example ferry terminal designs and refinements made ...
The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from thermal and fuel-bound sources in stationary gas turbine engines. Volume 1 covers Phase I of the four-phase effort. In Phase I, duty c...
Oertel, Bruno Georg; Lötsch, Jörn
2013-01-01
The medical impact of pain is such that much effort is being applied to develop novel analgesic drugs directed towards new targets and to investigate the analgesic efficacy of known drugs. Ongoing research requires cost-saving tools to translate basic science knowledge into clinically effective analgesic compounds. In this review we have re-examined the prediction of clinical analgesia by human experimental pain models as a basis for model selection in phase I studies. The overall prediction of analgesic efficacy or failure of a drug correlated well between experimental and clinical settings. However, correct model selection requires more detailed information about which model predicts a particular clinical pain condition. We hypothesized that if an analgesic drug was effective in an experimental pain model and also a specific clinical pain condition, then that model might be predictive for that particular condition and should be selected for development as an analgesic for that condition. The validity of the prediction increases with an increase in the numbers of analgesic drug classes for which this agreement was shown. From available evidence, only five clinical pain conditions were correctly predicted by seven different pain models for at least three different drugs. Most of these models combine a sensitization method. The analysis also identified several models with low impact with respect to their clinical translation. Thus, the presently identified agreements and non-agreements between analgesic effects on experimental and on clinical pain may serve as a solid basis to identify complex sets of human pain models that bridge basic science with clinical pain research. PMID:23082949
Desynchronization of stochastically synchronized chemical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul
Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less
ERIC Educational Resources Information Center
Northern Montana Coll., Havre.
The dissemination phase (Phase II) of the Rural Shared Services Project is reported in this document. Efforts of the dissemination phase were concentrated in 5 target states: Vermont, Georgia, Wyoming, Montana, and New Mexico; national dissemination was limited to attendance at national conferences, the U. S. Office of Education PREP materials for…
NASA Technical Reports Server (NTRS)
Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Hsu, Eddie; Bergman, Larry; Bhasin, Kul; Gary, Pat
1998-01-01
The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. Following the first phase, the second phase experiment is currently prepared. This paper describes the experimental network configuration, application demonstration, and performance evaluation plan of the second phase experiment.
Phase transition kinetics in DIET of vanadium pentoxide. I. Experimental results
NASA Astrophysics Data System (ADS)
Ai, R.; Fan, H.-J.; Marks, L. D.
1993-01-01
Experimental results of the kinetics of phase transformation in vanadium pentoxide during surface loss of oxygen from electron irradiation are described. Phase transformations under three different regimes were examined: (a) low flux; (b) intermediate flux and (c) high flux. Different phase transformation routes were observed under different fluxes. In a companion paper, numerical calculations are presented demonstrating that these results are due to a mixed interface/diffusion controlled phase transition pumped by surface oxygen loss.
Do dogs follow behavioral cues from an unreliable human?
Takaoka, Akiko; Maeda, Tomomi; Hori, Yusuke; Fujita, Kazuo
2015-03-01
Dogs are known to consistently follow human pointing gestures. In this study, we asked whether dogs "automatically" do this or whether they flexibly adjust their behavior depending upon the reliability of the pointer, demonstrated in an immediately preceding event. We tested pet dogs in a version of the object choice task in which a piece of food was hidden in one of the two containers. In Experiment 1, Phase 1, an experimenter pointed at the baited container; the second container was empty. In Phase 2, after showing the contents of both containers to the dogs, the experimenter pointed at the empty container. In Phase 3, the procedure was exactly as in Phase 1. We compared the dogs' responses to the experimenter's pointing gestures in Phases 1 and 3. Most dogs followed pointing in Phase 1, but many fewer did so in Phase 3. In Experiment 2, dogs followed a new experimenter's pointing in Phase 3 following replication of procedures of Phases 1 and 2 in Experiment 1. This ruled out the possibility that dogs simply lost motivation to participate in the task in later phases. These results suggest that not only dogs are highly skilled at understanding human pointing gestures, but also they make inferences about the reliability of a human who presents cues and consequently modify their behavior flexibly depending on the inference.
NASA Astrophysics Data System (ADS)
Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen
2016-05-01
To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Watts,Carly; Anderson, Molly; McMillin, Summer; Boerman, Craig; Colunga, Aaron; Vogel, Matthew
2011-01-01
Controlling carbon dioxide (CO2) and water (H2O) concentrations in the vapor phase of a space suit is critical to ensuring an astronauts safety, comfortability, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxides (MetOx). Lithium hydroxide is a consumable material and requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications which control atmospheric concentrations of both CO2 and H2O through a fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed and documented from experimental and theoretical perspectives. To support developmental efforts, a first principles model has also been established for the vacuum swing adsorption technology. The efforts documented herein summarize performance characterization and simulation results for several variable metabolic profiles subjected to the RCA. Furthermore, a variety of control methods are explored including timed swing cycles, instantaneous CO2 feedback control, and time-averaged CO2 feedback control. A variety of off-nominal tests are also explored including high/low suit temperatures, increasingly high humidity cases, and dynamic pressure cases simulating the suit pre-breathe protocol. Consequently, this work builds on efforts previous efforts to fully bound the performance of the rapid cycle amine under a variety of nominal and off-nominal conditions.
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2018-02-19
the group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...research interest of creating and manipulating unique quasi particles with topologically exceptional properties, such as Majorana particles, has added
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Michael R.
2006-11-16
Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.
Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Lin, Y. H.; Kao, T. H.; Chou, C. C.; Yang, H. D.
2012-03-01
Significant experimental effort has been explored to search and characterize high-k materials with magnetodielectric effect (MDE) of series of rare earth (RE) oxide (RE2O3) nanoparticles (NPs) embedded in SiO2 glass matrix by a sol-gel route. Properly annealed sol-gel glass (in which RE = Sm, Gd, and Er) shows colossal response of dielectric constant along with diffuse phase transition and MDE around room temperature. The radial distribution functions, reconstructed from extended x-ray absorption fine structure, show the shortening of RE3 + -O depending on the RE2O3 NP size, which is consistent with oxygen vacancy induced dielectric anomaly. The magnetoresistive MDE is very much conditioned by magnetic property of RE2O3 NP grain, the degree of deformation of the lattice and constituent host.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
A micromechanics model for bread dough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, M. A. P; Tarleton, E.; Charalambides, M. N.
The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelledmore » as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.« less
The mineralogy of global magnetic anomalies
NASA Technical Reports Server (NTRS)
Haggerty, S. E. (Principal Investigator)
1984-01-01
Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.
A micromechanics model for bread dough
NASA Astrophysics Data System (ADS)
Mohammed, M. A. P.; Tarleton, E.; Charalambides, M. N.; Williams, J. G.
2015-01-01
The mechanical behaviour of dough and gluten was studied in an effort to investigate whether bread dough can be treated as a two phase (starch and gluten) composite material. The dough and gluten show rate dependent behaviour under tension, compression and shear tests, and non-linear unloading-reloading curves under cyclic compression tests. There is evidence from cryo-Scanning Electron Microscopy (SEM) that damage in the form of debonding between starch and gluten occurs when the sample is stretched. A composite finite element model was developed using starch as filler and gluten as matrix. The interaction between the starch and gluten was modelled as cohesive contact. The finite element analysis predictions agree with trends seen in experimental test data on dough and gluten, further evidence that debonding of starch and gluten is a possible damage mechanism in dough.
Acoustic field modulation in regenerators
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.
2016-12-01
The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.
CFD-Based Design of a Filming Injector for N+3 Combustors
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Mongia, Hukam; Lee, Phil
2016-01-01
An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.
On-Board Sound Intensity (OBSI) study : phase 2.
DOT National Transportation Integrated Search
2014-05-01
This is a continuation effort of previous research (Modeling of Quieter Pavement in Florida) : and as such is a sister report to the previous final report. Both research efforts pertain to the : noise created at the tire/pavement interface, which con...
Railroad classification yard design methodology study Elkhart Yard Rehabilitation : a case study
DOT National Transportation Integrated Search
1980-02-01
This interim report documents the application of a railroad classification : yard design methodology to CONRAIL's Elkhart Yard Rehabilitation. This : case study effort represents Phase 2 of a larger effort to develop a yard : design methodology, and ...
Assessment of Alternative Substrates for Culturing Lumbriculus variegatus
Lasier, P.J.
2007-01-01
The freshwater oligochaete, Lumbriculus variegatus, is tank-cultured to provide organisms for aquatic-habitat assessments, regeneration research and as a clean source of live food for aquarium fishes. Shredded paper is the typical substrate in cultures used to rear L. variegatus for these purposes. However, the effort needed to separate large numbers from decomposing paper can be prohibitive. Burlap and nylon mesh material were compared to paper as potential alternatives that could reduce this effort. Oligochaete production and the amount of time needed to separate animals from substrate were compared for eight weeks among experimental cultures containing burlap, nylon mesh and paper. Cultures with paper substrate increased in number and weight two to three times faster than those with burlap or nylon mesh substrates. The time needed to separate animals from substrate was initially two to three times longer with paper substrate than with burlap or nylon mesh substrates, but this difference increased to between 10 and 40 times longer after six weeks as the paper substrate decomposed. Feeding rates varied by treatment and were based on average wet weight at the time of water replacement. Elevated ammonia and nitrite concentrations resulting from excess food may have reduced production in nylon mesh treatments and was lethal in paper treatments during the final phases of the study. The type of substrate recommended may depend on the desired production rate of oligochaetes, space available for cultures and the amount of effort available for substrate renewal and separating the animals from the cultures.
NASA Astrophysics Data System (ADS)
Mueller, Donn Christopher
1997-12-01
Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.
The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency research effort coordinated by the Environmental Protection Agency (EPA), Office of Research and Development (ORD). Phase I consists of demonstration/scoping studies using probability-based sampling ...
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction
NASA Astrophysics Data System (ADS)
Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg
2018-04-01
We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.
Equation of state and phase diagram of carbon
NASA Astrophysics Data System (ADS)
Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.
1996-05-01
Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
NASA Astrophysics Data System (ADS)
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
Development of sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Atkinson, William H.; Cyr, M. A.; Strange, R. R.
1994-01-01
The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.
Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2
NASA Technical Reports Server (NTRS)
Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.
1985-01-01
The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.
ERIC Educational Resources Information Center
Buckingham, Jennifer; Beaman-Wheldall, Robyn; Wheldall, Kevin
2014-01-01
The study reported here examined the efficacy of a small group (Tier 2 in a three-tier Response to Intervention model) literacy intervention for older low-progress readers (in Years 3-6). This article focuses on the second phase of a two-phase, crossover randomized control trial involving 26 students. In Phase 1, the experimental group (E1)…
The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...
ERIC Educational Resources Information Center
Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.
2015-01-01
Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…
The Feasibility of Radio Direction Finding for Swarm Localization
2017-09-01
First, basic RDF theory is presented. Next, a laboratory experiment to evaluate RDF using a SDR is developed. Finally, experimental data are presented...angle vs. the true angle (top) and the recovered angle error (bottom) for noisy phase measurements ............................................... 8...difference (middle), and corrected phase difference (bottom) ................................................... 19 Fig. 22 Experimental phase
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
Manipulation of parental effort affects plumage bacterial load in a wild passerine.
Alt, Grete; Saag, Pauli; Mägi, Marko; Kisand, Veljo; Mänd, Raivo
2015-06-01
It has been suggested that plumage microorganisms play an important role in shaping the life histories of wild birds. Some bacteria may act as pathogens or cause damage to feathers, and thereby reduce individual fitness. Intense parental care in birds can result in a reduction of self-maintenance and preening behavior in parents and therefore might affect the dynamics of microbiota living on their feathers. However, experimental evidence of this relationship is virtually absent. We manipulated the parental effort of wild breeding pied flycatcher (Ficedula hypoleuca) females by modifying their brood size or temporarily removing male partners. We expected that experimentally decreasing or increasing parental effort would affect feather sanitation in females and therefore also bacterial density on their plumage. In accordance with this hypothesis, manipulation affected the density of free-living bacteria: females with reduced broods had the lowest number of free-living bacteria on their feathers, while females left without male partners had the highest. However, manipulation did not have a significant effect on the densities of attached bacteria. Our results provide experimental evidence that a trade-off between self-maintenance and parental effort affects plumage bacterial densities in birds.
Design of Training Systems Phase I Summary Report.
ERIC Educational Resources Information Center
Lindahl, William H.; And Others
A summary is provided of the status of Phase I of the three-stage project, "Design of Training Systems" (DOTS). The purpose of the overall project is described as being to introduce the technologies of education, psychology, management and operations research into the management of Navy training. Phase I of the effort is designed to…
78 FR 9051 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Information Technology Phase 1.'' In accordance with the Paperwork Reduction Act, 44 U.S.C. 3501-3521, AHRQ... Technology Phase 1 This project is the first phase in AHRQ's effort toward the development of a health information technology (HIT) enabled tool designed to aid adolescents and young adults with sickle cell...
A Research Framework for Reducing Preventable Patient Harm
Weinstein, Robert; Cardo, Denise M.; Goeschel, Christine A.; Berenholtz, Sean M.; Saint, Sanjay; Jernigan, John A.
2011-01-01
Programs to reduce central line–associated bloodstream infections (CLABSIs) have improved the safety of hospitalized patients. Efforts are underway to disseminate these successes broadly to reduce other types of hospital-acquired infectious and noninfectious preventable harms. Unfortunately, the ability to broadly measure and prevent other types of preventable harms, especially infectious harms, needs enhancement. Moreover, an overarching research framework for creating and integrating evidence will help expedite the development of national prevention programs. This article outlines a 5-phase translational (T) framework to develop robust research programs that reduce preventable harm, as follows: phase T0, discover opportunities and approaches to prevent adverse health care events; phase T1, use T0 discoveries to develop and test interventions on a small scale; phase T2, broaden and strengthen the evidence base for promising interventions to develop evidence-based guidelines; phase T3, translate guidelines into clinical practice; and phase T4, implement and evaluate T3 work on a national and international scale. Policy makers should use this framework to fill in the knowledge gaps, coordinate efforts among federal agencies, and prioritize research funding. PMID:21258104
Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Kalogerakis, Georgios; Shaw, Wei-Tao
2006-12-01
Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.
Railroad classification yard design methodology study : East Deerfield Yard, a case study
DOT National Transportation Integrated Search
1980-02-01
This interim report documents the application of a railroad classification yard design methodology to Boston and Maine's East Deerfield Yard Rehabiliation. This case study effort represents Phase 2 of a larger effort to develop a yard design methodol...
[Effort-reward imbalance at work and depression: current research evidence].
Siegrist, J
2013-01-01
In view of highly prevalent stressful conditions in modern working life, in particular increasing work pressure and job insecurity, it is of interest to know whether specific constellations of an adverse psychosocial work environment increase the risk of depressive disorder among employed people. This contribution gives a short overview of current research evidence based on an internationally established work stress model of effort-reward imbalance. Taken together, results from seven prospective epidemiological investigations demonstrate a two-fold elevated relative risk of incident depressive disorder over a mean observation period of 2.7 years among exposed versus non-exposed employees. Additional findings from experimental and quasi-experimental studies point to robust associations of effort-reward imbalance at work with proinflammatory cytokines and markers of reduced immune competence. These latter markers may indicate potential psychobiological pathways. In conclusion, incorporating this new knowledge into medical treatment and preventive efforts seems well justified.
Kauffmann, Amitay; Ashby, Nathaniel J. S.; Zahavi, Gal
2017-01-01
Economic bubbles are an empirical puzzle because they do not readily fit the notion of an efficient market. We argue that bubbles are associated with a conflict and a gap in the allocation of effort during negotiation by sellers and buyers. We examined 21 experimental asset markets where in one condition players could buy and sell and in the other they could either buy or sell. The results indicated that when making concurrent buying and selling decisions the mean number of asks for sellers was 71% higher than the number of bids for buyers. Similar findings emerge in a re-analysis of data from Lei et al. (2001). Importantly, bubbles only emerged in markets where the number of asks was larger than that of bids. These findings indicate that bubbles are associated with increased negotiation effort when acting as a seller and diminished effort when acting as a buyer. PMID:29228034
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2018-07-01
Since the early 1970s, optical two-wavelength phase-metrology (TWPM) has been used in a wide variety of experimental set ups. In TWPM one may compute the phase-sum and the phase-difference of two close phase measurements. Early TWPM optically computed the phase difference and phase sum by double exposure holography. However soon after, TWPM became almost synonymous to calculating the phase-difference only. The more sensitive phase-sum was largely forgotten. The standard application for phase-difference TWPM is to extend the phase measurement depth without phase-unwrapping for discontinuous phase-objects. This phase-difference, while non-wrapped, decreases however the signal-to-noise ratio (SNR) of the estimated phase. On the other hand, the phase-sum increases the phase sensitivity, and the SNR of the estimated phase. In spite of these two great advantages, the use of the phase-sum in TWPM has been almost ignored. In this paper we review and set the stage for digital TWPM for super-sensitive phase-sum estimation. This is coupled with two-sensitivity phase-unwrapping to obtain extended-range super-sensitive fringe-projection profilometry estimations. Here we mathematically prove, and experimentally show that using the phase-sum one obtains a huge increase in SNR with respect to using the phase-difference alone. The pioneer works on double exposure TWPM holography that uses the phase-difference and phase-sum are also properly acknowledged. Finally, two experimental results from fringe-projection profilometry that clearly show the huge SNR gain of the phase-sum, with respect to the phase-difference is now mathematically well established.
Liu, Weilin; Yao, Jianping
2014-02-15
A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.
Electronic construction collaboration system : phase III.
DOT National Transportation Integrated Search
2011-12-01
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Br...
Microwave scanning beam approach and landing system phased array antenna.
DOT National Transportation Integrated Search
1971-09-01
The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...
The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency research effort coordinated by the Environmental Protection Agency (EPA), Office of Research and Development (ORD). The objective of the NHEXAS Phase I Arizona study was to determine the distribution...
The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency research effort coordinated by the Environmental Protection Agency (EPA), Office of Research and Development (ORD). Phase I consists of demonstration/scoping studies using probability-based sampling d...
Morristown Alternative Transportation Study Phase II.
DOT National Transportation Integrated Search
2005-10-14
This report summarizes the Phase II planning effort conducted by the park and the US Department of Transportation's Volpe Center (the Volpe Center) to articulate a viable park-community pilot transit service for Morristown National Historical Park. M...
Development of a test and flight engineering oriented language. Phase 3: Presentation
NASA Technical Reports Server (NTRS)
Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
The format material used in an oral presentation of the phase 3 study effort is given. The material includes a description of the language ALOFT and a terminology comparison with other test languages.
Adaptation and Study of AIDS Viruses in Animal and Cell Culture Systems
1991-06-28
Cancer Res 1985;44,69-120. 23. Armstrong D, and Walzer P: Experimental infections in the nude mouse. In: The Nude Mouse in Experimental and Clinical...3558-3564. 42. Reka S, Borcich A, Cronin W, Kotler DP: Intestinal HIV infection in AIDS and ARC: correlation with tissue content of p24 and...Assistant II (28 Aug 1989-20 Feb 1990) 100% effort Otho (Sonny) Armstrong , B.S., Research Assistant III (16April 1990-6April 1991) 100% effort Ada
TREX13: Mid-Frequency Measurements and Modeling of Scattering by Fish
2017-11-13
Another key element to the fish effort is the UW- led (Home) high frequency surveys of fish in the area. The WHOI-led ( tanton) effort focussed on...lik J from fi h with gas-filled swimbladd r . b. Presenc o[fish at experimental ile. There w •r lhr f fi h that dominated the C. numb r in the fixed...34) _., •..,, . . . ... . - ,. • ~ > (a) (b) (c) Figure 3. The dominant species of fish present at experimental site. All have swim bladders which
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.
1987-01-01
Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.
Early Days of Superfluid ^3He: An Experimenter's View
NASA Astrophysics Data System (ADS)
Lee, David
2010-03-01
The formulation of the BCS theory led theorists to investigate possible non-S-wave pairing in liquid ^3He. Unfortunately as time went on, estimates for the pairing temperature became unattainably low. Nevertheless, the push to lower temperatures by experimentalists continued and was facilitated by the invention of the dilution refrigerator. Nuclear adiabatic demagnetization could then be used to cool liquid ^3He to ˜1 mK as demonstrated by Goodkind. An alternate approach, suggested by Pomeranchuk, involved adiabatic compression of liquid ^3He into the solid phase. Efforts to develop this technique at the Kapitza Institute, La Jolla and Cornell achieved success in demonstrating cooling of mixtures of liquid and solid ^3He to ˜ 1 mK following dilution refrigerator pre-cooling. Although there was great pessimism regarding the possible observation of pairing in liquid ^3He, the unsettled problem of magnetic ordering in solid ^3He beckoned. Ultimately two phase transition along the melting curve were observed by Osheroff et al at Cornell. Although first associated with solid ^3He, extensive NMR studies showed them to be two new phases of liquid ^3He. A brief history of experiments at various laboratories following the discovery is given, along with early interpretations given by Anderson and Morel and Balian and Werthamer. The key role of Leggett's spin dynamics is also discussed.
Failsafe automation of Phase II clinical trial interim monitoring for stopping rules.
Day, Roger S
2010-02-01
In Phase II clinical trials in cancer, preventing the treatment of patients on a study when current data demonstrate that the treatment is insufficiently active or too toxic has obvious benefits, both in protecting patients and in reducing sponsor costs. Considerable efforts have gone into experimental designs for Phase II clinical trials with flexible sample size, usually implemented by early stopping rules. The intended benefits will not ensue, however, if the design is not followed. Despite the best intentions, failures can occur for many reasons. The main goal is to develop an automated system for interim monitoring, as a backup system supplementing the protocol team, to ensure that patients are protected. A secondary goal is to stimulate timely recording of patient assessments. We developed key concepts and performance needs, then designed, implemented, and deployed a software solution embedded in the clinical trials database system. The system has been in place since October 2007. One clinical trial tripped the automated monitor, resulting in e-mails that initiated statistician/investigator review in timely fashion. Several essential contributing activities still require human intervention, institutional policy decisions, and institutional commitment of resources. We believe that implementing the concepts presented here will provide greater assurance that interim monitoring plans are followed and that patients are protected from inadequate response or excessive toxicity. This approach may also facilitate wider acceptance and quicker implementation of new interim monitoring algorithms.
Rate of coal hydroliquefaction: correlation to coal structure. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.
This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
Stability of the body-centred-cubic phase of iron in the Earth's inner core.
Belonoshko, Anatoly B; Ahuja, Rajeev; Johansson, Börje
2003-08-28
Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.
Electronic holography using binary phase modulation
NASA Astrophysics Data System (ADS)
Matoba, Osamu
2014-06-01
A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.
Discovery of a metastable Al20Sm4 phase
NASA Astrophysics Data System (ADS)
Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C.-Z.; Ho, K.-M.
2015-03-01
We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.
A two-phase sampling design for increasing detections of rare species in occupancy surveys
Pacifici, Krishna; Dorazio, Robert M.; Dorazio, Michael J.
2012-01-01
1. Occupancy estimation is a commonly used tool in ecological studies owing to the ease at which data can be collected and the large spatial extent that can be covered. One major obstacle to using an occupancy-based approach is the complications associated with designing and implementing an efficient survey. These logistical challenges become magnified when working with rare species when effort can be wasted in areas with none or very few individuals. 2. Here, we develop a two-phase sampling approach that mitigates these problems by using a design that places more effort in areas with higher predicted probability of occurrence. We compare our new sampling design to traditional single-season occupancy estimation under a range of conditions and population characteristics. We develop an intuitive measure of predictive error to compare the two approaches and use simulations to assess the relative accuracy of each approach. 3. Our two-phase approach exhibited lower predictive error rates compared to the traditional single-season approach in highly spatially correlated environments. The difference was greatest when detection probability was high (0·75) regardless of the habitat or sample size. When the true occupancy rate was below 0·4 (0·05-0·4), we found that allocating 25% of the sample to the first phase resulted in the lowest error rates. 4. In the majority of scenarios, the two-phase approach showed lower error rates compared to the traditional single-season approach suggesting our new approach is fairly robust to a broad range of conditions and design factors and merits use under a wide variety of settings. 5. Synthesis and applications. Conservation and management of rare species are a challenging task facing natural resource managers. It is critical for studies involving rare species to efficiently allocate effort and resources as they are usually of a finite nature. We believe our approach provides a framework for optimal allocation of effort while maximizing the information content of the data in an attempt to provide the highest conservation value per unit of effort.
Relative velocity change measurement based on seismic noise analysis in exploration geophysics
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.
2011-12-01
Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.
Formally verifying human–automation interaction as part of a system model: limitations and tradeoffs
Bass, Ellen J.
2011-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE. PMID:21572930
DOT National Transportation Integrated Search
2014-04-01
The purpose of the current study was to further develop and refine the prototype Enhanced Rear Signaling (ERS) : system that was developed during the previous Phase III effort. Expanded development efforts for the ERS system : included modification o...
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; Nichols III, A L
The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as wellmore » with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.« less
Application of global kinetic models to HMX beta-delta transition and cookoff processes.
Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L
2007-03-08
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.
Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen
2016-01-15
Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%. Copyright © 2015 Elsevier B.V. All rights reserved.
ESP: Economics of Shipyard Painting, Bid Estimating Transfer Study
1993-11-10
Estimating Transfer Study Final Report i EXECUTIVE SUMMARY During Phase I of the “Economics of Shipyard Painting” project, it became evident that detail...an SP-3 panel directive to establish a 2nd phase of the “Economics of Shipyard Painting” focussed on applying the detailed data collected in Phase I to...bid-stage estimating. During Phase II, a program was developed that worked in tandem with the detailed data collection effort laid out in Phase I
Advanced deposition model for thermal activated chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cai, Dang
Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface reactions on the substrate surface, conductive, convective, inductive and radiative heat transfer, species transport and thereto-elastic stress distributions. Gas phase and surface reactions are studied thermodynamically and kinetically. Based on experimental results, detailed reaction mechanisms are proposed and the deposition rates are predicted. The deposition model proposed could be used for other experiments with similar operating conditions. Four different growth systems are presented in this thesis to discuss comprehensive transport phenomena in crystal growth from vapor. The first is the polysilicon bulk growth by modified Siemens technique in which a silicon tube is used as the starting material. The research effort has been focused on system design, geometric and operating parameters optimization, and heterogeneous and homogeneous silane pyrolysis analysis. The second is the GaN thin film growth by iodine vapor phase epitaxy technique. Heat and mass transport is studied analytically and numerically. Gas phase and surface reactions are analyzed thermodynamically and kinetically. Quasi-equilibrium and kinetic deposition models are developed to predict the growth rate. The third one is the AlN thin film growth by halide vapor phase epitaxy technique. The effects of gas phase and surface reactions on the crystal growth rate and deposition uniformity are studied. The last one is the AlN sublimation growth system. The research effort has been focused on the effect of thermal environment evolution on the crystal growth process. The thermoelastic stress formed in the as-grown AlN crystal is also calculated.
A multiyear assessment of a hospital-school program to promote teen motor vehicle safety.
Unni, Purnima; Estrada, Cristina M; Chung, Dai H; Riley, Emily B; Worsley-Hynd, Lesley; Stinson, Neil
2017-08-01
Motor vehicle crashes are the leading cause of death among teen drivers. The main goal of this program was to reduce texting while driving among high school teens through a unique peer-generated anti-texting campaign. The program consisted of two phases. In phase 1, student leaders participated in a half-day, hospital-based experiential program that emphasized safe teen driving. In phase 2, these students conceptualized and implemented an anti-texting while driving campaign during the school year. The program enrolled 32 schools with 137 student participants in phase 1.This study uses a prospective quasi-experimental pre-post design. A presurvey and a follow-up online survey were used. Response rate was 81%. In phase 2, two rounds of observations of drivers were made near the participating schools at the beginning and end of the phase 2 campaign. The results were analyzed using proportion tests. There was a strong belief (6.49 on a seven-point scale) that texting while driving could result in a crash. About 58% had texted while driving in the previous 7 days in the pre-survey. This proportion decreased significantly to 44% in the follow-up (p < 0.05). Knowledge of Tennessee Graduated Driver Licensing laws and feeling of empowerment to take action with a teen driver who was texting improved significantly (p < 0.05). In phase 2, 12,309 drivers (adults and teens) were observed in the first round, and 13,153 were observed in the second round of observations. Significant reduction in the proportion of drivers texting while driving (from 13% to 9%; p < 0.0001) was observed. Results of driver observations support the effectiveness of this program in meeting the key objective of reducing texting while driving. The program also influenced teenagers' willingness to take positive steps when faced with a driver who was texting. Future efforts should aim to influence social and peer norms. Therapeutic study, level III.
A multiyear assessment of a hospital-school program to promote teen motor vehicle safety.
Unni, Purnima; Estrada, Cristina M; Chung, Dai H; Riley, Emily B; Worsley-Hynd, Lesley; Stinson, Neil
2017-11-01
Motor vehicle crashes are the leading cause of death among teen drivers. The main goal of this program was to reduce texting while driving among high school teens through a unique peer-generated anti-texting campaign. The program consisted of two phases. In phase 1, student leaders participated in a half-day, hospital-based experiential program that emphasized safe teen driving. In phase 2, these students conceptualized and implemented an anti-texting while driving campaign during the school year. The program enrolled 32 schools with 137 student participants in phase 1. This study uses a prospective quasi-experimental pre-post design. A presurvey and a follow-up online survey were used. Response rate was 81%. In phase 2, two rounds of observations of drivers were made near the participating schools at the beginning and end of the phase 2 campaign. The results were analyzed using proportion tests. There was a strong belief (6.49 on a seven-point scale) that texting while driving could result in a crash. About 58% had texted while driving in the previous 7 days in the pre-survey. This proportion decreased significantly to 44% in the follow-up (p < 0.05). Knowledge of Tennessee Graduated Driver Licensing laws and feeling of empowerment to take action with a teen driver who was texting improved significantly (p < 0.05). In phase 2, 12,309 drivers (adults and teens) were observed in the first round, and 13,153 were observed in the second round of observations. Significant reduction in the proportion of drivers texting while driving (from 13% to 9%; p < 0.0001) was observed. Results of driver observations support the effectiveness of this program in meeting the key objective of reducing texting while driving. The program also influenced teenagers' willingness to take positive steps when faced with a driver who was texting. Future efforts should aim to influence social and peer norms. Therapeutic study, level IV.
Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory
NASA Astrophysics Data System (ADS)
Tuinier, R.; de Kruif, C. G.
1999-05-01
Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.
The cost of model reference adaptive control - Analysis, experiments, and optimization
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1993-01-01
In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.
Flegal, Kristin E.; Lustig, Cindy
2016-01-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either 1) mandated a specific strategy to increase deep, associative encoding, 2) attempted to suppress such encoding by mandating rote rehearsal, or 3) encouraged time and effort towards encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies. PMID:26549616
Flegal, Kristin E; Lustig, Cindy
2016-07-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies.
NASA Technical Reports Server (NTRS)
Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.
2014-01-01
The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.
fcc-bcc phase transition in plasma crystals using time-resolved measurements
NASA Astrophysics Data System (ADS)
Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.
2018-04-01
Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
ERIC Educational Resources Information Center
Al-Shammari, Zaid; Mohammad, Anwar; Al-Shammari, Bandar
2010-01-01
The study investigated the effectiveness of increasing ALT for college students' achievement in Kuwait. In Phase 1, 37 students participated (22, experimental; 15, control); in Phase 2, 19 students participated (8, sub-experimental; 11, sub-control). Several experimental research methods used in conducting this study, including development of a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahern, Keith; Daming, Liu; Hanley, Tim
The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducingmore » CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.« less
Molecular dynamics force-field refinement against quasi-elastic neutron scattering data
Borreguero Calvo, Jose M.; Lynch, Vickie E.
2015-11-23
Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulationmore » due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.« less
ERIC Educational Resources Information Center
Meyer, Angela Osterman; Mon, Manuel J.; Hibbard, Susan T.
2011-01-01
We present our Lunar Phases Project, an ongoing effort utilizing students' actual observations within a mental model building framework to improve student understanding of the causes and process of the lunar phases. We implement this project with a sample of undergraduate, nonscience major students enrolled in a midsized public university located…
NASA Astrophysics Data System (ADS)
D'Addato, Sergio; Chiara Spadaro, Maria
2018-03-01
Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-01-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011
Development of Advanced Multizone Facilities for Microgravity Processing
NASA Technical Reports Server (NTRS)
1998-01-01
NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.
Lagutschenkov, Anita; Springer, Andreas; Lorenz, Ulrich Joseph; Maitre, Philippe; Dopfer, Otto
2010-02-11
Cationic zirconocene complexes are active species in Ziegler-Natta catalysis for olefin polymerization. Their structure and metal-ligand bond strength strongly influence their activity. In the present work, the infrared multiphoton dissociation (IRMPD) spectrum of mass selected Zr(C(5)H(5))(2)(OH)(CH(3)CN)(+) cations was obtained in the 300-1500 cm(-1) fingerprint range by coupling a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization (ESI) source and the infrared free electron laser (IR-FEL) at the Centre Laser Infrarouge d'Orsay (CLIO). The experimental efforts are complemented by quantum chemical calculations at the MP2 and B3LYP levels using the 6-311G* basis set. Vibrational assignments of transitions observed in the IRMPD spectra to modes of the Zr-O-H, C(5)H(5), and CH(3)CN moieties are based on comparison to calculated linear absorption spectra. Both the experimental data and the calculations provide unprecedented information about structure, metal-ligand bonding, charge distribution, and binding energy of the complex.
Dropwise Condensation on Soft Hydrophobic Coatings.
Phadnis, Akshay; Rykaczewski, Konrad
2017-10-31
Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.
Applications of CCTO supercapacitor in energy storage and electronics
NASA Astrophysics Data System (ADS)
Pandey, R. K.; Stapleton, W. A.; Tate, J.; Bandyopadhyay, A. K.; Sutanto, I.; Sprissler, S.; Lin, S.
2013-06-01
Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nick Cannell; Adrian S. Sabau
The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phasemore » were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in the shell mold. A model for thermal radiation within the shell mold was developed, and the thermal model was successfully validated using ProCAST. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The prefiring of the empty shell mold was considered in the model, and the shell mold was limited to a pure elastic material. The alloy dimensions were obtained from numerical simulations only with coupled shell-alloy systems. The alloy dimensions were in excellent quantitative agreement with experimental data, validating the deformation module. For actual parts, however, the creep properties of the shell molds must also be obtained, modeled, and validated.« less
NASA Astrophysics Data System (ADS)
Chen, H.
2018-06-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-03-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
Geometry-constraint-scan imaging for in-line phase contrast micro-CT.
Fu, Jian; Yu, Guangyuan; Fan, Dekai
2014-01-01
X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... appropriate habitat is found, the area will be considered for experimental introduction. The conservation committee will increase research efforts in experimental translocations in Conservation Area B and evaluate... conduct experimental vegetation treatments within existing conservation areas to determine if this...
Pant, Apourv; Rai, J P N
2018-04-15
Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.
Ando, David; Garcia Martin, Hector
2018-01-01
Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is illustrated through a step-by-step demonstration, which is also contained in a digital Jupyter Notebook format that enhances reproducibility and provides the capability to be adopted to the user's specific needs. As an open-source software project, users can modify and extend the code base and make improvements at will, providing a base for future modeling efforts.
Microbial growth and transport in saturated and unsaturated porous media
NASA Astrophysics Data System (ADS)
Hron, Pavel; Jost, Daniel; Bastian, Peter; Ippisch, Olaf
2014-05-01
There is a considerable ongoing effort aimed at understanding the behavior of microorganisms in porous media. Microbial activity is of significant interest in various environmental applications such as in situ bioremediation, protection of drinking water supplies and for subsurface geochemistry in general. The main limiting factors for bacterial growth are the availability of electron acceptors, nutrients and bio-available water. The capillary fringe, defined - in a wider sense than usual - as the region of the subsurface above the groundwater table, but still dominated by capillary rise, is a region where all these factors are abundantly available. It is thus a region where high microbial activity is to be expected. In a research unit 'Dynamic Capillary Fringes - A Multidisciplinary Approach (DyCap)' founded by the German Research Foundation (DFG), the growth of microorganisms in the capillary fringe was studied experimentally and with numerical simulations. Processes like component transport and diffusion, exchange between the liquid phase and the gas phase, microbial growth and cell attachment and detachment were incorporated into a numerical simulator. The growth of the facultative anaerobic Escherichia coli as a function of nutrient availability and oxygen concentration in the liquid phase is modeled with modified Monod-type models and modifications for the switch between aerobic and anaerobic growth. Laboratory batch experiments with aqueous solutions of bacteria have been carried out under various combinations of oxygen concentrations in the gas phase and added amounts of dissolved organic carbon to determine the growth model parameters by solution of a parameter estimation problem. For the transport of bacteria the adhesion to phase boundaries is also very important. As microorganisms are transported through porous media, they are removed from the pore fluid by physicochemical filtration (attachment to sediment grain surfaces) or are adhering to gas-water interface. The cell attachment and detachment model was based on flow-through experiments and the parameters were obtained by fitting the model to measured bacteria breakthrough curves. Experiments on bacterial growth in porous media with and without groundwater flow were performed in Hele-Shaw cells filled with quartz sands. The cell density was determined by the fluorescence of a special protein produced by the genetically modified strain of E. coli. The simulation results are compared to experimental data and different modeling approaches are discussed.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.
Vaden, Timothy D; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-02-08
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol
Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-01-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Mullens, M.; Rath, P.
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysismore » of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less
Electronic construction collaboration system -- final phase.
DOT National Transportation Integrated Search
2014-09-01
This phase of the research project involved two major efforts: (1) Complete the implementation of AEC-Sync (formerly known as : Attolist) on the Iowa Falls Arch Bridge project and (2) develop a WPMS for projects under $10 million. : For the first maj...
Cement study : phases I, II, and III.
DOT National Transportation Integrated Search
1970-06-01
This report is the result of a three phase research program in which cements and aggregates from various supplier were studied in an effort to evaluate and improve various constitutents in concrete mixes. The major emphasis of this study has been on ...
Small car exposure data project. Phase 1 : methodology
DOT National Transportation Integrated Search
1985-10-01
The Small Car Exposure Data Project represents the first phase of an effort to build a data : base of exposure variables for crash-avoidance studies. Among these are: (1) vehicle make, : model, year, body style, wheel base, weight, and horsepower; (2...
Improvement of conspicuity of trailblazing signs, Phase III : evaluation of fluorescent colors.
DOT National Transportation Integrated Search
2001-01-01
This report represents a Phase III effort to design and evaluate a new sign design for incident route trailblazing. The colors evaluated were fluorescent coral, fluorescent purple, fluorescent yellow-green, and non-fluorescent purple. The results ind...
Department of Defense high power laser program guidance
NASA Astrophysics Data System (ADS)
Muller, Clifford H.
1994-06-01
The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).
Sawaki, Lumy; Butler, Andrew J.; Leng, Xiaoyan; Wassenaar, Peter A.; Mohammad, Yousef M.; Blanton, Sarah; Sathian, K.; Nichols-Larsen, Deborah S.; Wolf, Steven L.; Good, David C.; Wittenberg, George F.
2010-01-01
Background Constraint-induced movement therapy (CIMT) has received considerable attention as an intervention to enhance motor recovery and cortical reorganization after stroke. Objective The present study represents the first multicenter effort to measure cortical reorganization induced by CIMT in subjects who are in the subacute stage of recovery. Methods A total of 30 stroke subjects in the subacute phase (>3 and <9 months poststroke) were recruited and randomized into experimental (receiving CIMT immediately after baseline evaluation) and control (receiving CIMT after 4 months) groups. Each subject was evaluated using transcranial magnetic stimulation (TMS) at baseline, 2 weeks after baseline, and at 4-month follow-up (ie, after CIMT in the experimental groups and before CIMT in the control groups). The primary clinical outcome measure was the Wolf Motor Function Test. Results Both experimental and control groups demonstrated improved hand motor function 2 weeks after baseline. The experimental group showed significantly greater improvement in grip force after the intervention and at follow-up (P = .049). After adjusting for the baseline measures, the experimental group had an increase in the TMS motor map area compared with the control group over a 4-month period; this increase was of borderline significance (P = .053). Conclusions Among subjects who had a stroke within the previous 3 to 9 months, CIMT produced statistically significant and clinically relevant improvements in arm motor function that persisted for at least 4 months. The corresponding enlargement of TMS motor maps, similar to that found in earlier studies of chronic stroke subjects, appears to play an important role in CIMT-dependent plasticity. PMID:18780885
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.
2011-01-01
This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.
Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S
2008-04-01
Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessarymore » for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).« less
Improving experimental phases for strong reflections prior to density modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, G.M.; Walker, L.B.; Widner, T.E.
1993-09-01
The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in themore » Oak Ridge area and as a resource for citizens seeking information on historical emissions.« less
VME rollback hardware for time warp multiprocessor systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1992-01-01
The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Technical Reports Server (NTRS)
1993-01-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Advanced launch system. Advanced development oxidizer turbopump program
NASA Astrophysics Data System (ADS)
1993-10-01
On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.
Protein crystal growth in a microgravity environment
NASA Technical Reports Server (NTRS)
Bugg, Charles E.
1988-01-01
Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.
Low cost paths to binary optics
NASA Technical Reports Server (NTRS)
Nelson, Arthur; Domash, Lawrence
1993-01-01
Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.
Nucleation and Convection Effects in Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1997-01-01
Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.
A verification and validation effort for high explosives at Los Alamos National Lab (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovel, Christina A; Menikoff, Ralph S
2009-01-01
We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentropemore » for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.« less
Cosmic Visions Dark Energy: Small Projects Portfolio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Kyle; Frieman, Josh; Heitmann, Katrin
Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3)more » lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.« less
Development of explosively driven launcher for meteoroid studies
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results of a continuing program to develop an explosively driven 2-stage hypervelocity launcher capable of achieving velocities between 15 and 20 km/sec are described. Previous efforts had identified incomplete barrel collapse as a limiting factor in launcher performance. Correlation of experimental and computational results obtained in the present study indicate that boundary-layer gases within the barrel act to prevent complete closure. Simplified calculations suggest that in-contact explosives may have insufficient energy densities to collapse the barrel against a developed boundary layer. Higher energy densities, sufficient to produce complete closure, were obtained with the use of steel flyer plates accelerated by a phased explosive lens. However, when flat flyer plates were impacted on the barrel, the sides of the barrel were observed to rupture and leak gas prior to barrel closure. A promising solution to this problem (untested) is to produce a symmetrical collapse with a cylindrical tube around the barrel.
Brunk, Elizabeth; Ashari, Negar; Athri, Prashanth; Campomanes, Pablo; de Carvalho, F Franco; Curchod, Basile F E; Diamantis, Polydefkis; Doemer, Manuel; Garrec, Julian; Laktionov, Andrey; Micciarelli, Marco; Neri, Marilisa; Palermo, Giulia; Penfold, Thomas J; Vanni, Stefano; Tavernelli, Ivano; Rothlisberger, Ursula
2011-01-01
The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.
CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
2000-01-01
Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
Experimental clean combustor program, phase 1
NASA Technical Reports Server (NTRS)
Bahr, D. W.; Gleason, C. C.
1975-01-01
Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Project #OPE-FY14-0017, March 7, 2014. The OIG plans to begin the preliminary research phase of an evaluation of the EPA's efforts to incorporate environmental justice into Clean Air Act (CAA) inspections for air toxics.
Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T
2013-01-01
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Origin of in-plane anisotropic resistivity in the antiferromagnetic phase of Fe1 +xTe
NASA Astrophysics Data System (ADS)
Kaneshita, Eiji; Tohyama, Takami
2016-07-01
Motivated by a recent experimental report on in-plane anisotropic resistivity in the double-striped antiferromagnetic phase of FeTe, we theoretically calculate in-plane resistivity by applying a memory function approach to the ordered phase. We find that the resistivity is larger along an antiferromagnetically ordered direction than along a ferromagnetically ordered one, consistent with experimental observation. The anisotropic results are mainly contributed from Drude weight, whose behavior is attributed to Fermi surface topology of the ordered phase.
Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms
NASA Astrophysics Data System (ADS)
Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor
2015-08-01
We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.
Modelling of phase transformations occurring in low activation martensitic steels
NASA Astrophysics Data System (ADS)
Brachet, J.-C.; Gavard, L.; Boussidan, C.; Lepoittevin, C.; Denis, S.; Servant, C.
1998-10-01
The main objective of this paper is to summarize modelling of on-heating and on-cooling phase transformations occurring in Low Activation Martensitic (LAM) steels. Calculations of thermodynamic equilibrium phase fractions and kinetic aspects of phase transformations have been performed by using different approaches from experimental data (CCT and TTT diagrams obtained by dilatometry). All the calculated data have been compared to an important and systematic set of experimental data obtained on different LAM steels of the 7.5-11% CrWVT a type.
Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Kilmain, Charles J.
2006-01-01
An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied. Drive system performance measurements were made at varying speeds and loads (to 5,000 hp and 15,000 rpm). Also, an analytical effort was undertaken for comparison to the measured results. The influence of the various loss mechanisms from the analysis for this high speed helical gear train gearbox will be presented and compared to the experimental results.
Experimental optimization of the FireFly 600 photovoltaic off-grid system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Orozco, Ron; Ralph, Mark E.
2003-10-01
A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Outer planet Grand Tour missions photometry/polarimetry experiment critical components study
NASA Technical Reports Server (NTRS)
Pellicori, S. F.; Russell, E. E.; Watts, L. A.
1972-01-01
Work performed during this effort was limited to two primary areas of technical concern: optical design optimization, and sensor selection. An optical system concept was established, and various system components were evaluated through experimental test sequences. Photodetectors were investigated for the applicability in meeting OPGT requirements as constrained by the photometry/polarimetry team directives. The most promising (gallium arsenide PMT) was further experimentally tested to ascertain its behavior with respect to anticipated environmental conditions. Results of testing and summary of the preceding tradeoff study effort are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Brian; Castilone, Lisa
The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work inmore » this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
The rheology of three-phase suspensions at low bubble capillary number
Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.
2015-01-01
We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617
DOT National Transportation Integrated Search
2012-04-01
This paper presents a description of efforts to disseminate findings from the Phase I study (SPR-2244), provides examples of applied maturity testing and temperature monitoring in Connecticut, reviews several State Highway Agency protocols for using ...
Microanalytical Efforts in Support of NASA's Materials Science Programs
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
2004-01-01
Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.
Phase conjugation of Nd:YAG laser radiation
NASA Astrophysics Data System (ADS)
Chen, Jun
1988-06-01
The phase conjugation of Nd:YAG laser radiation by four-wave mixing in silicon and by stimulated Brillouin scattering in acetone and other organic liquids was experimentally and theoretically investigated. Due to nonlinear absorption in Si a saturation of the reflection of the phase conjugator was theoretically predicted, and experimentally observed. It is theoretically and experimentally shown that the radiation profile behind the Si-sample is annular due to defocusing. The experiments show that CS2 and acetone have the lowest thresholds for stimulated Brillouin scattering. A laser resonator was built using a Brillouin cell and two normal mirrors; the emitted laser beam is insensitive to phase perturbations in the resonator, and has a pulse duration of 5 ns and a pulse energy of 220 m.
Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.
Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan
2013-01-01
In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.
The western gulf forest tree improvement program, history and organization
J.P. Van Buijtenen
1973-01-01
The following remarks are primarily an account of the experience of the Texas Forest Service in organizing the Western Gulf Forest Tree Improvement Program (WGFTIP) and the philosophy that went into its devetopment. The program of the Texas Forest Service has had two very distinct phases, although in both phases it was a cooperative effort. The initial phase lasted...
Gilles, Martine Annie; Guélin, Jean-Charles; Desbrosses, Kévin; Wild, Pascal
2017-10-01
The working population is getting older. Workers must adapt to changing conditions to respond to the efforts required by the tasks they have to perform. In this laboratory-based study, we investigated the capacities of motor adaptation as a function of age and work pace. Two phases were identified in the task performed: a collection phase, involving dominant use of the lower limbs; and an assembly phase, involving bi-manual motor skills. Results showed that senior workers were mainly limited during the collection phase, whereas they had less difficulty completing the assembly phase. However, senior workers did increase the vertical force applied while assembling parts, whatever the work pace. In younger and middle-aged subjects, vertical force was increased only for the faster pace. Older workers could adapt to perform repetitive tasks under different time constraints, but adaptation required greater effort than for younger workers. These results point towards a higher risk of developing musculoskeletal disorders among seniors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coherently coupled high-power fiber arrays
NASA Astrophysics Data System (ADS)
Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael
2006-02-01
A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca
Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less
Topological Phases in the Real World
NASA Astrophysics Data System (ADS)
Hsu, Yi-Ting
The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to enhance the T c of the existing leading candidate Sr2RuO 4 and to propose new material candidates for topological superconductors. First, by carrying out perturbative renormalization group (RG) analysis, we predicted that straining the ruthenate films will maximize the T c for triplet pairing channel when the Fermi surface is close to van Hove singularities without tuning on to the singularity. Then with a similar RG approach and a self-consistent calculation for the gap equations, we investigated the repulsion-mediated intrinsic and proximity-induced superconductivity in a family of lightly hole-doped noncentrosymmetric semiconductors, monolayer transition metal dichalcogenides (TMDs). We found that thanks to the spin-valley locking in lightly hole-doped TMDs, two distinct topological pairing states are favored for the intrinsically superconducting case: an interpocket paired state with Chern number 2 and an intrapocket paired state with finite pair momentum. Moreover, nematic odd-parity pairing with a possibly high Tc can be induced when proximitized by a cuprate. A confirmation of our predictions will open up possibilities for manipulating unconventional and topological superconductivity at a higher temperature on the device-friendly platform of strained ruthenate films and monolayer TMDs. In the second part, I will discuss our studies on the stability of the Dirac surface states in 3D TIs in the presence of bulk states and in TI-ferromagnetic metal heterostructures. We constructed simple microscopic models with Fano-type couplings between localized and extended states for each situation. Then with ab initio calculations we investigated the fate of the Dirac surface states in terms of the spectrum, the spatial profile and the spin-texture. Based on our results, we proposed explanations for existing experimental spectroscopic and spin-torque results.
Trans-Pacific HDR Satellite Communications Experiment Phase-2 Project Plan and Experimental Network
NASA Technical Reports Server (NTRS)
Hsu, Eddie; Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Bergman, Larry; Bhasin, Kul
2000-01-01
The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. ATM-based 45 Mbps trans-Pacific link was established in the first phase, and the following experiments with 155 Mbps was planned as the phase 2. This paper describes the experimental network configuration and project plan of TP-HDR experiment phase 2. Additional information is provided in the original.
A Systematic Method for Verification and Validation of Gyrokinetic Microstability Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, Ronald
My original proposal for the period Feb. 15, 2014 through Feb. 14, 2017 called for an integrated validation and verification effort carried out by myself with collaborators. The validation component would require experimental profile and power-balance analysis. In addition, it would require running the gyrokinetic codes varying the input profiles within experimental uncertainties to seek agreement with experiment before discounting a code as invalidated. Therefore, validation would require a major increase of effort over my previous grant periods which covered only code verification (code benchmarking). Consequently, I had requested full-time funding. Instead, I am being funded at somewhat less thanmore » half time (5 calendar months per year). As a consequence, I decided to forego the validation component and to only continue the verification efforts.« less
Multibody modeling and verification
NASA Technical Reports Server (NTRS)
Wiens, Gloria J.
1989-01-01
A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.