Sample records for experimental electron density

  1. Statistical density modification using local pattern matching

    DOEpatents

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  2. Density functional theory and an experimentally-designed energy functional of electron density.

    PubMed

    Miranda, David A; Bueno, Paulo R

    2016-09-21

    We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.

  3. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  4. Electronic structure and electron momentum densities of Ag2CrO4

    NASA Astrophysics Data System (ADS)

    Meena, Seema Kumari; Ahuja, B. L.

    2018-05-01

    We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.

  5. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  6. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less

  7. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    PubMed

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  8. Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue.

    PubMed

    Overgaard, Jacob; Jones, Cameron; Dange, Deepak; Platts, James A

    2011-09-05

    The experimental electron density of the only known example of a four-membered Ga(I) N-heterocyclic carbene analogue has been determined by multipole modeling of 90 K X-ray diffraction data and compared to theoretical data. In order to obtain a satisfactory model, it is necessary to modify the radial dependency of the core electrons of Ga using two separate scaling parameters for s,p- and d-electrons. Evidence for significant lone-pair density on Ga is found in the electron density and derived properties despite the partial positive charge of this atom. Static deformation density and molecular electrostatic potential clearly show a directional lone pair on Ga, whereas the Laplacian of the total electron density does not; this feature is, however, present in the Laplacian of the valence-only density. The Ga center also acts as an acceptor in four intramolecular C-H···Ga contacts, whose nature is probed by density properties. Substantial covalent character is apparent in the Ga-N bonds, but no sign of donation from filled N p-orbitals to empty Ga p-orbitals is found, whereas π-delocalization over the organic ligand is evident. This study highlights the utility of experimental charge density analysis as a technique to investigate the unusual bonding and electronic characteristics of low oxidation state/low coordinate p-block complexes.

  9. Fingerprint-Based Structure Retrieval Using Electron Density

    PubMed Central

    Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628

  10. Fingerprint-based structure retrieval using electron density.

    PubMed

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  11. Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.

    First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less

  12. Bonding in uranium(V) hexafluoride based on the experimental electron density distribution measured at 20 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianopoulos, Christopher G.; Zhurov, Vladimir V.; Minasian, Stefan G.

    The electron density distribution of [PPh 4][UF 6] was obtained from high-resolution X-ray diffraction data measured at 20 K. The electron density was modeled with an augmented Hansen–Coppens multipolar formalism. Topological analysis reveals that the U–F bond is of incipient covalent nature. Theoretical calculations add further support to the bonding description gleaned from the experimental model. The impact of the uranium anomalous dispersion terms on the refinement is also discussed.

  13. Equation of state and electron localisation in fcc lithium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  14. Equation of state and electron localisation in fcc lithium

    DOE PAGES

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...

    2018-02-14

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  15. Bonding in uranium(V) hexafluoride based on the experimental electron density distribution measured at 20 K

    DOE PAGES

    Gianopoulos, Christopher G.; Zhurov, Vladimir V.; Minasian, Stefan G.; ...

    2017-02-06

    The electron density distribution of [PPh 4][UF 6] was obtained from high-resolution X-ray diffraction data measured at 20 K. The electron density was modeled with an augmented Hansen–Coppens multipolar formalism. Topological analysis reveals that the U–F bond is of incipient covalent nature. Theoretical calculations add further support to the bonding description gleaned from the experimental model. The impact of the uranium anomalous dispersion terms on the refinement is also discussed.

  16. Electron density studies of methyl cellobioside

    USDA-ARS?s Scientific Manuscript database

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  17. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  18. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    PubMed

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  19. Study of the effect of electron irradiation on the density of the activated sludge in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.

    2018-01-01

    Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.

  20. Influence of Plasma Unsteadiness on the Spectrum and Shape of Microwave Pulses in a Plasma Relativistic Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.

    2018-02-01

    Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.

  1. Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair.

    PubMed

    Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes

    2011-04-21

    Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.

  2. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  3. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    PubMed

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Quantum melting of a two-dimensional Wigner crystal

    NASA Astrophysics Data System (ADS)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.

  5. Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer

    NASA Astrophysics Data System (ADS)

    Xiang, Gao; Qiliang, Guo

    1990-12-01

    Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity showsmore » that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.« less

  7. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  8. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  9. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  10. Experimental investigation of mode transitions in asymmetric capacitively coupled radio-frequency Ne and CF4 plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian

    2018-02-01

    The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.

  11. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  12. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE PAGES

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...

    2017-05-30

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  13. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boerner, M.; Frank, A.; Pelka, A.

    2012-04-15

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10{sup 18} cm{sup -3}, the maximal one is 2 x 10{sup 20} cm{sup -3}. Furthermore, it provides a resolution of the electron density in space of 50 {mu}m and in time of 0.5 ns for one image with amore » customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.« less

  14. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  15. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.

    PubMed

    Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang

    2016-04-01

    The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.

  16. Ion and electron sheath characteristics in a low density and low temperature plasma

    NASA Astrophysics Data System (ADS)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  17. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    PubMed

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  18. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  19. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    NASA Astrophysics Data System (ADS)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  20. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  1. Probing the 5 f electrons in Am-I by hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Ray, Asok K.

    2009-11-01

    The ground states of the actinides and their compounds continue to be matters of considerable controversies. Experimentally, Americium-I (Am-I) is a non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground state is predicted. We show that hybrid density functional theory, which admixes a fraction, λ, of exact Hartree-Fock (HF) exchange with approximate DFT exchange, can correctly reproduce the ground state properties of Am. In particular, for λ=0.40, we obtain a non-magnetic ground state with equilibrium atomic volume, bulk modulus, 5 f electron population, and the density of electronic states all in good agreement with experimental data. We argue that the exact HF exchange corrects the overestimation of the approximate DFT exchange interaction.

  2. Normal and abnormal evolution of argon metastable density in high-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less

  3. Optical Diagnostics in the Gaseous Electronics Conference Reference Cell

    PubMed Central

    Hebner, G. A.; Greenberg, K. E.

    1995-01-01

    A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748

  4. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  5. Electron density determination and bonding in tetragonal binary intermetallics by convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan

    Intermetallics offer unique property combinations often superior to those of more conventional solid solution alloys of identical composition. Understanding of bonding in intermetallics would greatly accelerate development of intermetallics for advanced and high performance engineering applications. Tetragonal intermetallics L10 ordered TiAl, FePd and FePt are used as model systems to experimentally measure their electron densities using quantitative convergent beam electron diffraction (QCBED) method and then compare details of the 3d-4d (FePd) and 3d-5d (FePt) electron interactions to elucidate their role on properties of the respective ferromagnetic L10-ordered intermetallics FePd and FePt. A new multi-beam off-zone axis condition QCBED method has been developed to increase sensitivity of CBED patterns to change of structure factors and the anisotropic Debye-Waller (DW) factors. Unprecedented accuracy and precision in structure and DW factor measurements has been achieved by acquiring CBED patterns using beam-sample geometry that ensures strong dynamical interaction between the fast electrons and the periodic potential in the crystalline samples. This experimental method has been successfully applied to diamond cubic Si, and chemically ordered B2 cubic NiAl, tetragonal L10 ordered TiAl and FePd. The accurate and precise experimental DW and structure factors for L10 TiAl and FePd allow direct evaluation of computer calculations using the current state of the art density functional theory (DFT) based electron structure modeling. The experimental electron density difference map of L1 0 TiAl shows that the DFT calculations describe bonding to a sufficient accuracy for s- and p- electrons interaction, e. g., the Al-layer. However, it indicate significant quantitative differences to the experimental measurements for the 3d-3d interactions of the Ti atoms, e.g. in the Ti layers. The DFT calculations for L10 FePd also show that the current DFT approximations insufficiently describe the interaction between Fe-Fe (3d-3d), Fe-Pd (3d-4d) and Pd-Pd (4d-4d) electrons, which indicates the necessity to evaluate applicability of different DFT approximations, and also provides experimental data for the development of new DFT approximation that better describes transition metal based intermetallic systems.

  6. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  7. Measurements of density dependent intensity ratios of extreme ultraviolet line emission from Fe X, XI, and XII

    NASA Astrophysics Data System (ADS)

    Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki

    2017-05-01

    We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.

  8. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  9. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  10. Electron density measurements in STPX plasmas

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.

    2017-10-01

    Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.

  11. Density functional theory and experimental study of the electronic structure and transport properties of La, V, Nb, and Ta doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Baniecki, J. D.; Ishii, M.; Aso, H.; Kurihara, K.; Ricinschi, Dan

    2013-01-01

    The electronic structure and transport properties of donor doped SrTiO3 are studied using density functional theory with spin-orbit coupling and conductivity, Hall, and Seebeck effect measurements over a wide temperature range (100 K to 600 K). Split-off energies ΔSO are tunable through the dopant SO interaction strength and concentration varying from 28.1 meV for pure STO to 70.93 meV for SrTi0.5Nb0.5O3. At lower carrier concentrations and temperatures, SO coupling has a marked effect on both the filling dependence of the density-of-states mass as well as the temperature dependence of the Seebeck coefficient, with quantitative theoretical predictions based on DFT calculations that include the SO interaction in closer agreement to the experimental data. Moreover, the results suggest that the predictive power of the current theory is not unlimited, with less accuracy for the calculated S predicting the magnitude of the experimental S data at lower dopant concentrations than for degenerately doped systems. A concentration dependent mass enhancement of ˜2-5, relative to the density-of-states mass in the local density approximation, possibly due to the influence of electronic screening of the electron-phonon interaction, would bring the theoretical S in accord with the experimental S data. This additional carrier-dependent enhancement mechanism for S may give an additional degree of freedom in terms of designing new higher efficiency thermoelectric energy materials.

  12. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  13. Experimental studies of ionospheric irregularities and related plasma processes

    NASA Technical Reports Server (NTRS)

    Baker, Kay D.

    1992-01-01

    Utah State University (USU) continued its program of measuring and interpreting electron density and its variations in a variety of ionospheric conditions with the Experimental Studies of Ionospheric Irregularities and Related Plasma Processes program. The program represented a nearly ten year effort to provide key measurements of electron density and its fluctuations using sounding rockets. The program also involved the joint interpretation of the results in terms of ionospheric processes. A complete campaign summary and a brief description of the major rocket campaigns are also included.

  14. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory.

    PubMed

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D

    2017-07-12

    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  15. Coherent Transition Radiation Generated from Transverse Electron Density Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.; Tyukhtin, A. V.

    Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.

  16. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  17. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  18. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less

  19. Electronic Structures of Strained InAs x P1-x by Density Functional Theory.

    PubMed

    Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon

    2018-09-01

    We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.

  20. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  1. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: electronic and vibrational properties.

    PubMed

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    NASA Astrophysics Data System (ADS)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  3. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.

    PubMed

    Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J

    2015-05-13

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.

  4. Optical properties of B12P2 crystals: Ab initio calculation and EELS

    NASA Astrophysics Data System (ADS)

    Reshetniak, V. V.; Mavrin, B. N.; Medvedev, V. V.; Perezhogin, I. A.; Kulnitskiy, B. A.

    2018-05-01

    We report an experimental and theoretical investigation of the electronic structure and optical properties of B12P2 crystals in the energy range up to 60 eV. Experimental studies are performed by the method of electron energy loss spectroscopy, and theoretical studies are carried out using density functional theory and the GW approximation. The calculated dependence of the energy loss function is in agreement with the experiment. Based on the results of the calculations, we determine the optical properties of B12P2 crystals and investigate their anisotropy. The dispersion and density of electronic states are calculated and analyzed.

  5. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  6. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas

    2018-05-01

    Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.

  7. Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivković, M.; Konjević, N.

    2017-05-01

    In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.

  8. Electron momentum density and band structure calculations of α- and β-GeTe

    NASA Astrophysics Data System (ADS)

    Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.

    2011-12-01

    We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.

  9. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

  10. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  11. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filamentmore » with increasing distance from the tip of the anode.« less

  12. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  13. You are lost without a map: Navigating the sea of protein structures.

    PubMed

    Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R

    2015-04-01

    X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Experimental Investigation of Pseudospark generated electron beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.; Pal, U. N.

    2012-11-01

    The pseudospark (PS) discharge is, however, more recently recognized as a different type of discharge which is capable of generating electron beams with the highest combined current density and brightness of any known type of electron source. PS discharge is a specific type of gas discharge, which operates on the left-hand side of the hollow cathode analogy to the Paschen curve with axially symmetric parallel electrodes and central holes on the electrodes. The PS discharge generated electron beam has tremendous applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been carried out experimentally for different applied voltages. The investigation has been done at different axial and radial location inside the drift tube in argon atmosphere. This paper represents experimentally derived axial and radial variation of the beam current inside the plasma filled drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed. It has been further confirmed the successful propagation of electron beam in confined manner without any assistance of external magnetic field.

  15. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  16. Preliminary Study of a Hybrid Helicon-ECR Plasma Source

    NASA Astrophysics Data System (ADS)

    M. Hala, A.; Oksuz, L.; Ximing, Zhu

    2016-08-01

    A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.

  17. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    NASA Astrophysics Data System (ADS)

    Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola

    2018-02-01

    We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  18. Specular reflectivity and hot-electron generation in high-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, Gregory Elijah

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions. Spatial, temporal and spectral properties of the incident and specular pulses, both near and far away from the interaction region where experimental measurements are obtained, are used to benchmark simulations designed to infer dominant hot-electron acceleration mechanisms and their corresponding energy/angular distributions. To handle this highly coupled interaction, I employed particle-in-cell modeling using a wide variety of algorithms (verified to be numerically stable and consistent with analytic expressions) and physical models (validated by experimental results) to reasonably model the interaction's sweeping range of plasma densities, temporal and spatial scales, electromagnetic wave propagation and its interaction with solid density matter. Due to the fluctuations in the experimental conditions and limited computational resources, only a limited number of full-scale simulations were performed under typical experimental conditions to infer the relevant physical phenomena in the interactions. I show the usefulness of the often overlooked specular reflectivity measurements in constraining both high and low-contrast simulations, as well as limitations of their experimental interpretations. Using these experimental measurements to reasonably constrain the simulation results, I discuss the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions to initial target conditions and the dynamic evolution of the interaction region.

  19. Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)

    NASA Astrophysics Data System (ADS)

    Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.

    2018-05-01

    We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.

  20. Electronic Correlation and Magnetism in the Ferromagnetic Metal Fe 3GeTe 2

    DOE PAGES

    Zhu, Jian-Xin; Janoschek, Marc; Chaves, D. S.; ...

    2016-04-05

    Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within local density approximation (LDA) of the density functional theory, and its combination with dynamical mean-field theory (DMFT). For comparison to these calculations, we have measured magnetic and thermodynamic properties as well as X-ray magnetic circular dichroism and the photoemission spectrum of single crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT.more » Additionally, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. Lastly, these results establish the importance of electronic correlations in this ferromagnet.« less

  1. Substituent influence on the structural, vibrational and electronic properties of 2,5-dihydrothiophene-1,1-dioxide by experimental and DFT methods.

    PubMed

    Arjunan, V; Thirunarayanan, S; Durga Devi, G; Mohan, S

    2015-11-05

    Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values. Molecular electrostatic potential surface, total electron density distribution and frontier molecular orbital are constructed at B3LYP/cc-pVTZ level to understand the electronic properties. The charge density distribution and sites of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces. Natural bond orbital analysis of the molecules are carried out and the occupancies and the atomic hybrid contributions are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Study of electronic structure and Compton profiles of transition metal diborides

    NASA Astrophysics Data System (ADS)

    Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.

    2017-08-01

    We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.

  3. Measurement of electron density using reactance cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-05-15

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less

  4. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  5. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  6. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less

  7. Tissue heterogeneity in the anterior chest wall and its influence on radiation therapy of the internal mammary lymph nodes.

    PubMed

    Lindskoug, B; Hultborn, A

    1976-04-01

    The density (g cm-3) and electron density (cm-3) of material from the anterior chest wall was determined. On the average, the difference in density between rib bone and intercostal soft tissue amounted to 17 per cent, while the difference in electron density was 7 per cent. The attenuation of high-energy electrons in specimens of rib bone, costal cartilage and sternum was determined by an experimental technique, using dosimeters of TLD material. The results of determinations of attenuation of 10 and 13 MeV electrons in fresh specimens are presented. It is concluded that electron radiation in the energy range of 10 to 13 MeV can be utilized for irradiation of lymph glands along the internal thoracic vessels without risk of underdosage.

  8. Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.

    A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less

  9. Miniaturized magnet-less RF electron trap. II. Experimental verification

    DOE PAGES

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...

    2017-06-15

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  10. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study.

    PubMed

    Michael, J Robert; Koritsanszky, Tibor

    2017-05-28

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  11. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study

    NASA Astrophysics Data System (ADS)

    Michael, J. Robert; Koritsanszky, Tibor

    2017-05-01

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  12. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  13. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  14. Clathrates and beyond: Low-density allotropy in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Matt; Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu

    2016-12-15

    In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoreticalmore » and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.« less

  15. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  16. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  17. Progress of recent experimental research on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Gentle, K. W.; Chen, Z. Y.; Chen, Z. P.; Yang, Z. J.; Zheng, Wei; Hu, Q. M.; Chen, J.; Rao, B.; Zhong, W. L.; Zhao, K. J.; Gao, L.; Cheng, Z. F.; Zhang, X. Q.; Wang, L.; Jiang, Z. H.; Xu, T.; Zhang, M.; Wang, Z. J.; Ding, Y. H.; Yu, K. X.; Hu, X. W.; Pan, Y.; Huang, H.; the J-TEXT Team

    2017-10-01

    The progress of experimental research over the last two years on the J-TEXT tokamak is reviewed and reported in this paper, including: investigations of resonant magnetic perturbations (RMPs) on the J-TEXT operation region show that moderate amplitude of applied RMPs either increases the density limit from less than 0.7n G to 0.85n G (n G is the Greenwald density, {{n}\\text{G}}={{I}\\text{p}}/π {{a}2} ) or lowers edge safety factor q a from 2.15 to nearly 2.0; observations of influence of RMPs with a large m/n  =  3/1 dominant component (where m and n are the toroidal and poloidal mode numbers respectively) on electron density indicate electron density first increases (decreases) inside (around/outside) of the 3/1 rational surface, and it is increased globally later together with enhanced edge recycling; investigations of the effect of RMPs on the behavior of runaway electrons/current show that application of RMPs with m/n  =  2/1 dominant component during disruptions can reduce runaway production. Furthermore, its application before the disruption can reduce both the amplitude and the length of runaway current; experimental results in the high-density disruption plasmas confirm that local current shrinkage during a multifaceted asymmetric radiation from the edge can directly terminate the discharge; measurements by a multi-channel Doppler reflectometer show that the quasi-coherent modes in the electron diamagnetic direction occur in the J-TEXT ohmic confinement regime in a large plasma region (r/a ~ 0.3-0.8) with frequency of 30-140 kHz.

  18. Development and investigation of silicon converter beta radiation 63Ni isotope

    NASA Astrophysics Data System (ADS)

    Krasnov, A. A.; Legotin, S. A.; Murashev, V. N.; Didenko, S. I.; Rabinovich, O. I.; Yurchuk, S. Yu; Omelchenko, Yu K.; Yakimov, E. B.; Starkov, V. V.

    2016-02-01

    In this paper the results of the creation and researching characteristics of, experimental betavoltaic converters (BVC), based on silicon are discussed. It was presented the features of structural and technological performance of planar 2 D- structure of BVC. To study the parameters of the converter stream the beta particles of the radioisotope was simulated by 63Ni electron flux from scanning electron microscope. It was investigated the dependence of the collecting electrons efficiency from the beam energy current-voltage characteristic was measured when irradiated by an electron beam, from which the value of the short-circuit current density equal to 126 nA / cm2 and the value of the open circuit voltage of 150 mV were obtained. The maximum power density at 70 mV is 9.5 nW / cm2, and the conversion efficiency is 2.1%. It was presented the results of experimental studies of the current-voltage characteristics of samples by irradiating a film 63Ni. The values of load voltage 111 mV and short circuit current density of 27 nA / cm2 were obtained. Maximum power density was 1.52 nW / cm2.

  19. Effective homogeneity of the exchange-correlation and non-interacting kinetic energy functionals under density scaling.

    PubMed

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2012-01-21

    Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics

  20. Electron momentum density and Compton profile by a semi-empirical approach

    NASA Astrophysics Data System (ADS)

    Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.

    2015-08-01

    Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.

  1. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurgin, Jacob B., E-mail: jakek@jhu.edu; Bajaj, Sanyam; Rajan, Siddharth

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, themore » saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.« less

  3. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequencymore » further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.« less

  4. Transferability of electronic structure of four energetic materials by using single crystal and high resolution X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Sheng

    The electronic structures of four energetic materials, trinitrodiazapentalene (C6H3N5O6, TNDAP), beta-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (C4H8N8O8, beta-HMX), 1,3,3-trinitroazetidine (C3H4N4O6, TNAZ), and hexahydro-1,3,5-trinitro-1,3,5-s-triazine (C3H6N6O6, RDX), have been analyzed using Hansen-Coppens multipole refinements, using high resolution X-ray diffraction data collected at low temperature, as well as from theoretical calculated structure factors from the solid state phase using density functional theory (DFT), plus B3LYP level theory, and the 6-31G* basis set. However, when comparing both the deformation density and the electrostatic potentials from the theoretical results in TNDAP and TNAZ, they disagree with the experimental results. Therefore, those results have been deposited in appendices A4 and A6, for future reference. In HMX and RDX the theoretical results are in good agreement with experimental results. The physical properties derived from the electronic structure in these four energetic materials, such as multipole populations, the values of the electron density and its Laplacian of the electron density at the bond critical points, have also been calculated using "Atoms in Molecules" (AIM) theory both from the solid state phase calculation, and the experiment, as well as directly calculated from the free molecule in the gas phase. The electron density and the magnitude of its Laplacian from the gas phase are always larger than for the solid state phase calculation and the experiment. This may be due to the packing effect. The transferability of the experimental electronic structure of the NO 2 groups from HMX to TNDAP, TNAZ and RDX are also presented here. Even though the major populated multipoles are robust (small e.s.d.'s), these are few in number, compared with other lower populated multipoles for which the populations span a larger range. Since the deformation electron density distributions are reconstructed using linear combinations of the multipoles, it is necessary to give more degrees of freedom in the refinements. Therefore, those electron density distributions which have a wider range of the multipole populations should not be fixed in the refinements. Utilizing the same coordinate system setup in the multipole refinements of the functional groups, this system can be used as a starting point for solving the charge distribution of a larger system.

  5. Density measurements in low pressure, weakly magnetized, RF plasmas: experimental verification of the sheath expansion effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Roderick W.

    2017-07-01

    This experimental study shows the validity of Sheridan's method in determining plasma density in low pressure, weakly magnetized, RF plasmas using ion saturation current data measured by a planar Langmuir probe. The ion density derived from Sheridan's method which takes into account the sheath expansion around the negatively biased probe tip, presents a good consistency with the electron density measured by a cylindrical RF-compensated Langmuir probe using the Druyvesteyn theory. The ion density obtained from the simplified method which neglects the sheath expansion effect, overestimates the true density magnitude, e.g., by a factor of 3 to 12 for the present experiment.

  6. Optimization of laser-plasma injector via beam loading effects using ionization-induced injection

    NASA Astrophysics Data System (ADS)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2018-05-01

    Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .

  7. Alternative route to charge density wave formation in multiband systems.

    PubMed

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo

    2013-01-02

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.

  8. The effect of the ambient plasma conditions on the variation of charge on dust grains

    NASA Astrophysics Data System (ADS)

    Chakraborty, M.; Kausik, S. S.; Saikia, B. K.; Kakati, M.; Bujarbarua, S.

    2003-02-01

    An experimental study has been performed into the variation of charge on dust grains with change in the ambient plasma conditons. A dust beam containing submicron sized silver grains was passed through plasma. The dust grains were charged by the plasma particles as well as by primary electrons from the filament. An increase in the filament current increased both the plasma density and the number density of the primary electrons. The grain charge was found out both from the deflection of the dust grains and also from the floating potential. The experimental observations shows that the secondary emission caused by the primary electrons significantly influenced and played a prominent role in the establishment of charge on the grains.

  9. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  10. Solar corona electron density distribution

    NASA Astrophysics Data System (ADS)

    Esposito, P. B.; Edenhofer, P.; Lueneburg, E.

    1980-07-01

    The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.

  11. Density functional theory and phytochemical study of 8-hydroxyisodiospyrin

    NASA Astrophysics Data System (ADS)

    Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib

    2015-09-01

    Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.

  12. Electronic and optical response of Cr-doped MoSe2 and WSe2: Compton measurements and first-principles strategies

    NASA Astrophysics Data System (ADS)

    Kumar, Kishor; Heda, N. L.; Jani, A. R.; Ahuja, B. L.

    2017-08-01

    In this paper, we present energy bands, density of states and Mulliken's population (MP) data using the linear combination of atomic orbitals (LCAO) method. To compare the theoretical momentum densities, we have also employed 100 mCi 241Am Compton spectrometer to measure the Compton profiles of Cr0.5X0.5Se2 (X=Mo and W). The experimental Compton data have been used to check the performance of various exchange and correlation energies for the present mixed dichalcogenides within the LCAO scheme. It is seen that CPs based on the hybridization of Hartree-Fock and density functional theory give a better agreement with the experimental data than other schemes employed in the present investigations. All theoretical approximations show an indirect band gap between the Γ and K points of the Brillouin zone. Further, equal-valence-electron-density scaled experimental data predict a more ionic character in Cr0.5W0.5Se2 than in Cr0.5Mo0.5Se2, which is in tune with our MP data. Going beyond the computation of electronic properties using LCAO, we have also reported accurate electronic and optical properties using the modified Becke-Johnson (mBJ) potential within the full potential augmented plane wave (FP-LAPW) method. Optical properties computed using the FP-LAPW-mBJ method show the feasibility of using both the mixed dichalcogenides in photovoltaic devices.

  13. Magnetic field stabilized electron-hole liquid in indirect-band-gap A l x G a 1 - x As

    DOE PAGES

    Alberi, K.; Fluegel, B.; Crooker, S. A.; ...

    2016-02-29

    An electron-hole liquid (EHL), a condensed liquidlike phase of free electrons and holes in a semiconductor, presents a unique system for exploring quantum many-body phenomena. And while the behavior of EHLs is generally understood, less attention has been devoted to systematically varying the onset of their formation and resulting properties. Here, we report on an experimental approach to tune the conditions of formation and characteristics using a combination of low excitation densities and high magnetic fields up to 90 T. Demonstration of this approach was carried out in indirect-band-gap A l 0.387 G a 0.613 As . EHL droplets canmore » be nucleated from one of two multiexciton complex states depending on the applied excitation density. Furthermore, the excitation density influences the carrier density of the EHL at high magnetic fields, where filling of successive Landau levels can be controlled. The ability to manipulate the formation pathway, temperature, and carrier density of the EHL phase under otherwise fixed experimental conditions makes our approach a powerful tool for studying condensed carrier phases in further detail.« less

  14. Density functional theory and phytochemical study of Pistagremic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Habib; Rauf, Abdur; Ullah, Zakir; Fazl-i-Sattar; Anwar, Muhammad; Shah, Anwar-ul-Haq Ali; Uddin, Ghias; Ayub, Khurshid

    2014-01-01

    We report here for the first time a comparative theoretical and experimental study of Pistagremic acid (P.A). We have developed a theoretical model for obtaining the electronic and spectroscopic properties of P.A. The simulated data showed nice correlation with the experimental data. The geometric and electronic properties were simulated at B3LYP/6-31 G (d, p) level of density functional theory (DFT). The optimized geometric parameters of P.A were found consistent with those from X-ray crystal structure. Differences of about 0.01 and 0.15 Å in bond length and 0.19-1.30° degree in the angles, respectively; were observed between the experimental and theoretical data. The theoretical vibrational bands of P.A were found to correlate with the experimental IR spectrum after a common scaling factor of 0.963. The experimental and predicted UV-Vis spectra (at B3LYP/6-31+G (d, p)) have 36 nm differences. This difference from experimental results is because of the condensed phase nature of P.A. Electronic properties such as Ionization Potential (I.P), Electron Affinities (E.A), co-efficient of highest occupied molecular orbital (HOMO), co-efficient of lowest unoccupied molecular orbital (LUMO) of P.A were estimated for the first time however, no correlation can be made with experiment. Inter-molecular interaction and its effect on vibrational (IR), electronic and geometric parameters were simulated by using Formic acid as model for hydrogen bonding in P.A.

  15. INVESTIGATION OF NEW CONCEPTS AND LINEAR BEAM TECHNIQUES FOR MICROWAVE POWER GENERATION.

    DTIC Science & Technology

    ARSENIC ALLOYS, MILLIMETER WAVES, CAVITY RESONATORS, ELECTRON GUNS, ELECTRON DENSITY, EPITAXIAL GROWTH, OSCILLATORS, S BAND , X BAND , GERMANIUM...ELECTRIC FIELDS, SCATTERING, BRILLOUIN ZONES, RUBY, ELECTROSTRICTION, IONIZATION, MICROWAVE OSCILLATORS, KLYSTRONS , EXPERIMENTAL DESIGN.

  16. Ab-initio study on electronic properties of rocksalt SnAs

    NASA Astrophysics Data System (ADS)

    Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.

    2018-05-01

    Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.

  17. Investigation of reliability of the cutoff probe by a comparison with Thomson scattering in high density processing plasmas

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae

    2017-12-01

    A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.

  18. Mulliken's populations and electron momentum densities of transition metal tungstates using LCAO scheme

    NASA Astrophysics Data System (ADS)

    Meena, B. S.; Heda, N. L.; Ahuja, B. L.

    2018-05-01

    We have computed the Mulliken's populations (MP) and electron momentum densities (EMDs) for TMWO4 (TM=Co, Ni, Cu and Zn) using linear combination of atomic orbitals (LCAO) scheme. The latest hybridization of Hartree-Fock (HF) and density functional theory (DFT) under the framework of LCAO approximations (so called WC1LYP and B1WC) have been employed. The theoretical EMDs have been compared with the available experimental data which show that WC1LYP scheme gives slightly better agreement with the experimental data for all the reported tungstates. Such trend shows the applicability of Lee-Yang-Parr (LYP) correlation energies within hybrid approximations in predicting the electronic properties of these compounds. Further, the MP data show the charge transfer from Co/Ni/Cu/Zn and W to O atoms. In addition, we have plotted the total EMDs at the same normalized area which show almost similar type of localization of 3d electrons (in real space) of Cu and Zn, which is lower than that of Ni and Co atoms in their tungstates environment.

  19. Structural, bonding, and electronic properties of the hexagonal ferroelectric and paraelectric phases of LuMnO{sub 3} compound: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, A. M.; Coutinho, W. S.; Lima, A. F.

    2015-02-21

    We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less

  20. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  1. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.

  2. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    NASA Astrophysics Data System (ADS)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is demonstrated for the case of nanocrystalline Ni where realistic atomic configurations are taken from large-scale molecular dynamics simulations.

  3. Dynamics of electron injection in a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.

    2017-08-01

    The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

  4. Experimental studies of interactions between Alfv'en waves and striated density depletions in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, D. W.; Carter, T. A.; Vincena, S.

    2008-11-01

    Satellite measurements in the earth's magnetosphere have associated Alfv'en frequency fluctuations with density depletions striated along the geomagnetic field. This poster presents laboratory studies in the LADP experiment at UCLA modeling this phenomena. Density depletions are pre-formed in the plasma column by selectively blocking a portion of the drive beam, and Alfv'en waves are driven in the cavity by means of an inserted antenna. Relevant experimental parameters include an ion cyclotron radius around a mm, alfven parallel wavelength several meters, electron inertial length around 6 mm, and electron thermal speeds about a third of the alfv'en speed. We report here on modifications to the wave propagation due to the density depletion. We also report on the details of the interactions between the driven wave and the secondary drift-alfv'en wave instabilities that arise on the density boundary, including wave-wave interactions and possible turbulent broadening effects on the main wave.

  5. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  6. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less

  7. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  8. Inductively coupled Cl2/Ar plasma: Experimental investigation and modeling

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Kim, Dong-Pyo; Kim, Chang-Il

    2003-07-01

    Electrophysical and kinetic characteristics of Cl2/Ar plasma were investigated to understand the influence of the addition of Ar on the volume densities and fluxes of active particles, both neutral and charged. Our analysis combined both experimental methods and plasma modeling. It was found that addition of Ar to Cl2 leads to deformation of the electron energy distribution function and an increase of the electron mean energy due to the ``transparency'' effect. Direct electron impact dissociation of Cl2 molecules represents the main source of chlorine atoms in the plasma volume. The contributions of stepwise dissociation and ionization involving Ar metastable atoms were found to be negligible. Addition of Ar to Cl2 causes the decrease of both electron and ion densities due to a decrease in the total ionization rate and the acceleration of heterogeneous decay of charged particles.

  9. A beam current density monitor for intense electron beams

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.

    1983-12-01

    The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.

  10. Electron cyclotron thruster new modeling results preparation for initial experiments

    NASA Technical Reports Server (NTRS)

    Hooper, E. Bickford

    1993-01-01

    The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.

  11. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; ...

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of C π...C πinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  12. Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell

    DOE PAGES

    Audet, T. L.; Hansson, M.; Lee, P.; ...

    2016-02-16

    Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H 2+1%N 2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. Lastly, we discuss the interest of this regimemore » for optimizing the bunch charge in a selected energy window.« less

  13. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  14. Anhydrous crystals of DNA bases are wide gap semiconductors.

    PubMed

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  15. Compression of a mixed antiproton and electron non-neutral plasma to high densities

    NASA Astrophysics Data System (ADS)

    Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano

    2018-04-01

    We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

  16. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  17. Improving experimental phases for strong reflections prior to density modification

    DOE PAGES

    Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...

    2013-09-20

    Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  18. An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione

    NASA Astrophysics Data System (ADS)

    Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.

    2003-07-01

    We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.

  19. Spectroscopic and density functional theory studies of 5,7,3',5'-tetrahydroxyflavanone from the leaves of Olea ferruginea.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Ayub, Khurshid; Farooq, Umar

    2014-07-15

    5,7,3',5'-Tetrahydroxyflavanone (1) was isolated from the leaves of Olea ferruginea and a theoretical model was developed for obtaining the electronic and spectroscopic properties of 1. The geometric and electronic properties were calculated at B3LYP/6-311 G (d, p) level of Density Functional Theory (DFT). The theoretical data was in good agreement with the experimental one. The optimized geometric parameters of compound 1 were calculated for the first time. The theoretical vibrational frequencies of 1 were found to correlate with the experimental IR spectrum after a scaling factor of 0.9811. The UV and NMR spectral data computed theoretically were in good agreement with the experimental data. Electronic properties of the compound i.e., ionization potential (IP), electron affinity (EA), coefficients of HOMO and LUMO were estimated computationally for the first time which can be used to explain its antioxidant as well as other related activities and more active sites on it. The intermolecular interactions and their effects on IR frequencies, electronic and geometric parameters were simulated using water molecule as a model for hydrogen bonding with flavonoid hydroxyl groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Spectroscopic and density functional theory studies of 5,7,3‧,5‧-tetrahydroxyflavanone from the leaves of Olea ferruginea

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ali; Khan, Afsar; Ayub, Khurshid; Farooq, Umar

    2014-07-01

    5,7,3‧,5‧-Tetrahydroxyflavanone (1) was isolated from the leaves of Olea ferruginea and a theoretical model was developed for obtaining the electronic and spectroscopic properties of 1. The geometric and electronic properties were calculated at B3LYP/6-311 G (d, p) level of Density Functional Theory (DFT). The theoretical data was in good agreement with the experimental one. The optimized geometric parameters of compound 1 were calculated for the first time. The theoretical vibrational frequencies of 1 were found to correlate with the experimental IR spectrum after a scaling factor of 0.9811. The UV and NMR spectral data computed theoretically were in good agreement with the experimental data. Electronic properties of the compound i.e., ionization potential (IP), electron affinity (EA), coefficients of HOMO and LUMO were estimated computationally for the first time which can be used to explain its antioxidant as well as other related activities and more active sites on it. The intermolecular interactions and their effects on IR frequencies, electronic and geometric parameters were simulated using water molecule as a model for hydrogen bonding with flavonoid hydroxyl groups.

  1. Annular vortex merging processes in non-neutral electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaga, Chikato, E-mail: d146073@hiroshima-u.ac.jp; Ito, Kiyokazu; Higaki, Hiroyuki

    2015-06-29

    Non-neutral electron plasmas in a uniform magnetic field are investigated experimentally as a two dimensional (2D) fluid. Previously, it was reported that 2D phase space volume increases during a vortex merging process with viscosity. However, the measurement was restricted to a plasma with a high density. Here, an alternative method is introduced to evaluate a similar process for a plasma with a low density.

  2. 10th International Conference of Computational Methods in Sciences and Engineering

    DTIC Science & Technology

    2014-12-22

    Density Modulation ", in the 10th International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2014), April 4-7, 2014, Athens...ENGINEERING We organized the symposium, “Electronic Transport Properties in the Presence of Density Modulation ,” in the 10th International...Superlattices by Coplanar Waveguide Dr. Endo reported his recent experimental work on thermoelectric power of two-dimensional electron gases in the quantum

  3. On the generation of multi-MeV electrons using fs-laser pulses

    NASA Astrophysics Data System (ADS)

    Tsakiris, G. D.; Gahn, C.; Pukhov, A.; Meyer-Ter-Vehn, J.; Pretzler, G.; Witte, K. J.; Thirolf, P.; Habs, D.

    1999-11-01

    We have experimentally investigated the multi-MeV electron production concomitant to the relativistic self-channeling in a high-density gas jet using 200-fs, 1.2-TW laser pulses. Results of systematic measurements of the angularly resolved and absolutely calibrated electron spectra are presented for plasma electron densities in the range of 3× 10^19-4× 10^20 cm-3. Three-dimensional Particle-in-Cell (PIC) simulations closely reproduce the measured electron spectra. A more detailed analysis indicates that for the case investigated, the dominant electron acceleration mechanism is direct laser acceleration [1] at the channel betatron resonance. [1] A. Pukhov, et al., Phys. Plasmas 6, 2847 (1999).

  4. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    NASA Astrophysics Data System (ADS)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.

  5. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data

    NASA Astrophysics Data System (ADS)

    White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.

    2017-01-01

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  6. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.

    PubMed

    White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A

    2017-01-28

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  7. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    DTIC Science & Technology

    2017-06-01

    design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. The redistributed electric field along the channel length direction can... design can result in more uniform electron density and electron velocity distributions compared to a homojunction device. This uniform electron... design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. 14 Approved for public release, distribution is unlimited. 0 5 10 15 20

  8. Production of a large, quiescent, magnetized plasma

    NASA Technical Reports Server (NTRS)

    Landt, D. L.; Ajmera, R. C.

    1976-01-01

    An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.

  9. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakkar, Ajit J., E-mail: ajit@unb.ca; Wu, Taozhe

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identifymore » 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation.« less

  10. Comparative study on extinction process of gas-blasted air and CO2 arc discharge using two-dimensional electron density imaging sensor

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko; Nakano, Tomoyuki; Murai, Kosuke; Tanaka, Yasunori; Shinkai, Takeshi

    2017-05-01

    Shack-Hartmann type laser wavefront sensors were applied to gas-blasted arc discharges under current-zero phases, generated in a 50 mm-long interelectrode gap confined by a gas flow nozzle, in order to conduct a systematic comparison of electron density decaying processes for two kinds of arc-quenching gas media: air and \\text{C}{{\\text{O}}2} . The experimental results for the air and \\text{C}{{\\text{O}}2} arc plasmas showed that the electron densities and arc diameters became thinner toward the nozzle-throat inlet due to a stronger convection loss in the arc radial direction. In addition, \\text{C}{{\\text{O}}2} had a shorter electron density decaying time constant than air, which could be caused by convection loss and turbulent flow of \\text{C}{{\\text{O}}2} stronger than air.

  11. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    DOE PAGES

    Lee, Patrick; Maynard, G.; Audet, T. L.; ...

    2016-11-16

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less

  12. Experimental investigation of electron guns for THz microwave vacuum amplifiers

    NASA Astrophysics Data System (ADS)

    Burtsev, A. A.; Grigor'ev, Yu. A.; Navrotsky, I. A.; Rogovin, V. I.; Sakhadzhi, G. V.; Shumikhin, K. V.

    2016-05-01

    Single-sheet and multiple beam electron emitters based on thermionic minicathodes for terahertz traveling-wave tubes have been studied. Data are presented for impregnated blade thermionic cathode with dimensions 0.1 × 0.7 mm and a maximum current density of 114 A/cm2 in a pulsed mode. A variant of the five-beam electron gun with 0.25-mm-diameter cylindrical minicathodes in cells of a control grid is proposed that provides a current density of 85.5 A/cm2 at a grid potential of 900-1000 V.

  13. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Simultaneous Measurement of Electron Temperature and Density Fluctuations in the Core of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.

    2009-11-01

    Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.

  14. Visualizing ligand molecules in twilight electron density

    PubMed Central

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    Three-dimensional models of protein structures determined by X-ray crystallo­graphy are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  15. Visualizing ligand molecules in Twilight electron density.

    PubMed

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.

  16. Theoretical Calculation of the Electron Transport Parameters and Energy Distribution Function for CF3I with noble gases mixtures using Monte Carlo simulation program

    NASA Astrophysics Data System (ADS)

    Jawad, Enas A.

    2018-05-01

    In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.

  17. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  18. Prediction of electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor: an ab-initio study

    NASA Astrophysics Data System (ADS)

    Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.

    2018-03-01

    In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.

  19. Impact of Many-Body Effects on Landau Levels in Graphene

    NASA Astrophysics Data System (ADS)

    Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.

    2018-05-01

    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.

  20. Conductive mechanism in manganite materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Zhu, Hong; Zhang, Yuheng

    2002-01-01

    We describe a model in which f(T)=M(T)/Mmax represents both the fraction of the itinerant electron density in the double-exchange (DE) theory and the magnetization σ in the current carrier density collapse (CCDC) theory. With this model, we have checked the DE and CCDC theories with our experimental results of the transport behavior. The DE theory yields agreement with the experimental resistivity excellently, in which the conductivity is the sum of the polaronic and itinerant electronic conductivity for the insulator-metal transition regime. The fitting curves of the resistivity by the CCDC theory deviate from the experiment seriously. This might be caused by the improper assumption of the temperature-dependent carrier density and the temperature-independent carrier mobility. Therefore, it is concluded that the DE theory is more suitable to explain the conductive mechanism in perovskite manganites.

  1. Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function

    NASA Astrophysics Data System (ADS)

    S, M. Khidzir; M, F. M. Halid; W, A. T. Wan Abdullah

    2016-06-01

    In this work, we first use momentum density studies to understand strongly correlated electron behavior, which is typically seen in transition metal oxides. We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW (G is Green’s function and W is the screened Coulomb interaction) approximation (GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy. These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri. Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2before the Fermi break. The ground state momentum densities differ significantly from the quasiparticle momentum density, thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function. Finally we perform a calculation of the quasiparticle renormalization function, giving a quantitative description of the discontinuity of the GWA momentum density.

  2. Generalized variational approach to Kim-Gordon electron gas theory for ionic crystals

    NASA Astrophysics Data System (ADS)

    Ivanov, O. V.; Maksimov, E. G.

    1996-01-01

    The generalized approach to the Kim-Gordon electron gas model is proposed. The total density of a crystal is considered as a superposition of densities of individual overlapping ions. The possible distortions of individual ion densities are calculated in the presence of some auxiliary external potentials. The real values of these distortions are calculated by a variational method from the minimum total energy of a crystal. The proper prescription of the ion self-energy with a distorted density is given using the method elaborated in the nonequilibrium thermodynamics. Some examples of the calculation for phonon frequencies are presented and demonstrate a good agreement with experimental data.

  3. Probing the electronic structure of β,β‧-fused quinoxalino porphyrins and tetraazaanthracene-bridged bis-porphyrins with resonance Raman spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Elliott, Anastasia B. S.; Gordon, Keith C.; Khoury, Tony; Crossley, Maxwell J.

    2012-12-01

    A number of π-extended porphyrins and bis-porphyrins were characterised by resonance Raman spectroscopy and density functional theory (DFT) calculations, using both B3LYP and CAM-B3LYP functionals. Single porphyrin species, incorporating a β,β'-fused quinoxalino unit, and tetraazaanthracene-bridged bis-porphyrins were investigated. Geometry optimisation predicted all species were planar with respect to the porphyrin core(s). Comparison of experimental with simulated vibrational spectra, obtained via DFT calculations [B3LYP/6-31G(d)], verified the modelling; demonstrated by a mean absolute deviation (MAD) between experimental and calculated band positions of less than 10 cm-1. Simulated electronic transitions obtained via time-dependent DFT [TD-DFT, B3LYP and CAM-B3LYP/6-31G(d)] lay within 0.4 eV of experimental bands and calculations showed perturbation of the frontier molecular orbitals (FMOs) following substitution of the porphyrin core. The nature of transitions that were investigated experimentally via resonance Raman enhancement showed consistency with the character of calculated transitions. A wavepacket analysis of the resonance Raman intensities provided electronic parameters, such as reorganisation energy, as well as normal mode displacements (Δi) that were also consistent with the nature of the specific vibrational modes and probed optical transitions. The largest vibrational reorganisation value obtained was for the Bsh band of compound (1). This result is consistent with the greater electron density shift of the transition found from DFT and resonance Raman and also the less symmetrical nature of (1).

  4. Time Dependent Predictive Modeling of DIII-D ITER Baseline Scenario using Predictive TRANSP

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Andre, R. G.; Budny, R. V.; Solomon, W. M.; Yuan, X.; Candy, J.; Pinsker, R. I.; Staebler, G. M.; Holland, C.; Rafiq, T.

    2015-11-01

    ITER baseline scenario discharges on DIII-D are modeled with TGLF and MMM transitioning from combined ECH (3.3MW) +NBI(2.8MW) heating to NBI only (3.0 MW) heating maintaining βN = 2.0 on DIII-D predicting temperature, density and rotation for comparison to experimental measurements. These models capture the reduction of confinement associated with direct electron heating H98y2 = 0.89 vs. 1.0) consistent with stiff electron transport. Reasonable agreement between experimental and modeled temperature profiles is achieved for both heating methods, whereas density and momentum predictions differ significantly. Transport fluxes from TGLF indicate that on DIII-D the electron energy flux has reached a transition from low-k to high-k turbulence with more stiff high-k transport that inhibits an increase in core electron stored energy with additional electron heating. Projections to ITER also indicate high electron stiffness. Supported by US DOE DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-92-ER54141.

  5. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  6. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  7. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  8. Wireless Sensor Node for Surface Seawater Density Measurements

    PubMed Central

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  9. Electrochemistry at a Metal Nanoparticle on a Tunneling Film: A Steady-State Model of Current Densities at a Tunneling Ultramicroelectrode.

    PubMed

    Hill, Caleb M; Kim, Jiyeon; Bard, Allen J

    2015-09-09

    Here, a new methodology is proposed for treating electrochemical current densities in metal-insulator-metal nanoparticle (M-I-MNP) systems. The described model provides broad, practical insights about MNP-mediated electron transfer to redox species in solution, where electron transfer from the underlying electrode to a MNP via tunneling and heterogeneous electron transfer from the MNP to redox species in solution are treated as sequential steps. Tunneling is treated through an adaptation of the Simmons model of tunneling in metal-insulator-metal structures, and explicit equations are provided for tunneling currents, which demonstrate the effect of various experimental parameters, such as insulator thickness and MNP size. Overall, a general approach is demonstrated for determining experimental conditions where tunneling will have a measurable impact on the electrochemistry of M-I-MNP systems.

  10. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  11. In Silico Modeling of Indigo and Tyrian Purple Single-Electron Nano-Transistors Using Density Functional Theory Approach

    NASA Astrophysics Data System (ADS)

    Shityakov, Sergey; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert

    2017-07-01

    The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.

  12. Fundamental limits on the electron mobility of β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G.

    2017-06-01

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi’s golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  13. Fundamental limits on the electron mobility of β-Ga2O3.

    PubMed

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G

    2017-06-14

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga 2 O 3 . We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga 2 O 3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga 2 O 3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 10 17 to 10 20 cm -3 . We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 10 19 cm -3 . We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  14. Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases

    NASA Astrophysics Data System (ADS)

    Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib

    2015-04-01

    Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases.

  15. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  16. On-top density functionals for the short-range dynamic correlation between electrons of opposite and parallel spin

    NASA Astrophysics Data System (ADS)

    Hollett, Joshua W.; Pegoretti, Nicholas

    2018-04-01

    Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.

  17. Density-functional theory applied to d- and f-electron systems

    NASA Astrophysics Data System (ADS)

    Wu, Xueyuan

    Density functional theory (DFT) has been applied to study the electronic and geometric structures of prototype d- and f-electron systems. For the d-electron system, all electron DFT with gradient corrections to the exchange and correlation functionals has been used to investigate the properties of small neutral and cationic vanadium clusters. Results are in good agreement with available experimental and other theoretical data. For the f-electron system, a hybrid DFT, namely, B3LYP (Becke's 3-parameter hybrid functional using the correlation functional of Lee, Yang and Parr) with relativistic effective core potentials and cluster models has been applied to investigate the nature of chemical bonding of both the bulk and the surfaces of plutonium monoxide and dioxide. Using periodic models, the electronic and geometric structures of PuO2 and its (110) surface, as well as water adsorption on this surface have also been investigated using DFT in both local density approximation (LDA) and generalized gradient approximation (GGA) formalisms.

  18. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming

    2012-01-01

    The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.

  19. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  20. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    PubMed

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  1. Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source

    NASA Astrophysics Data System (ADS)

    Jin, Yizhou; Yang, Juan; Tang, Mingjie; Luo, Litao; Feng, Bingbing

    2016-07-01

    The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 sccm, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2×1016 m-3 to 10 eV/4×1016 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. supported by National Natural Science Foundation of China (No. 11475137)

  2. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20

    DOE PAGES

    Michael, J. Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily forl ≤ 4. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7.more » In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle–Coppens method in the Wolfram Mathematicasoftware to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.« less

  3. Investigation of the transition of multicycle AC operation in ISTTOK under edge electrode biasing

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Silva, C.; Figueiredo, H.; Nedzelskiy, I. S.; Fernandes, H.; Sharma, R.; Plyusnin, V. V.

    2017-11-01

    In this paper we present recent results obtained on plasma edge electrode biasing during AC discharges. The goal is to obtain experimental evidence on a number of plasma parameters that can play a role during the AC transition on the repeatability and reproducibility of AC operation. The control of the plasma density in the quiescent phase is made just before the AC transition by means of positive edge biasing leading to a transitory improved of density (30%-40%). Gas puff experiments show that the increase of background gas pressure during discharge led to a better success of the AC transition. The experimental results indicate that the increase of density during the AC transition induced by edge biasing is followed by an electron temperature drop. The drop in electron temperature leads in most cases the formation of runaway electrons. It has been observed that the runaway population during discharge flattop depends on the interplay between gas content and plasma density and temperature. The results also confirm that the correct balance of external magnetic fields is crucial during the AC transition phase where drift electron currents are formed. The results from the heavy ion beam diagnostic show that the formation of plasma current during consecutive AC transitions is asymmetric. Numerical simulations indicate that for some particular conditions this result could be reproduced from assuming the presence of two counter-currents during AC transition.

  4. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  5. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  6. Models of protein–ligand crystal structures: trust, but verify

    PubMed Central

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  7. Models of protein-ligand crystal structures: trust, but verify.

    PubMed

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  8. Effect of electron divergence in air gaps on the measurement of the energy of cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Apanasenko, A. V.; Baradzey, L. T.; Kanevskaya, Y. A.; Smorodin, Y. A.

    1975-01-01

    The effect of an increase in electron density in the vicinity of the cascade axis caused by an avalanche passing through the gap between lead filters of the emulsion chamber was investigated experimentally. Optical densities were measured in three X-ray films spaced at 400, 800 and 1200 micrometer from the filter surface having a thickness of 6 cascade units. The optical densities of blackening spots caused by electron photon cascades of 1 to 2, 2 to 7 and greater than 7 BeV energies were measured. The results prove the presence of a gap between the filter and the nuclear emulsion which results in the underestimation of energy by several tenths of a percent.

  9. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T e) and electron number density (n e) in the range of 0.5 – 4.0 keV and 3 × 10 22 – 3 × 10 23 cm -3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T e with n e. As a result, the importance of including quantum diffractionmore » is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.« less

  10. Analysis of plasma-mediated ablation in aqueous tissue

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2012-06-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  11. CuPc/Au(1 1 0): Determination of the azimuthal alignment by a combination of angle-resolved photoemission and density functional theory

    PubMed Central

    Lüftner, Daniel; Milko, Matus; Huppmann, Sophia; Scholz, Markus; Ngyuen, Nam; Wießner, Michael; Schöll, Achim; Reinert, Friedrich; Puschnig, Peter

    2014-01-01

    Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky)-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface. PMID:25284953

  12. Improving experimental phases for strong reflections prior to density modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uervirojnangkoorn, Monarin; University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck; Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the mapsmore » can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less

  13. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.

    PubMed

    Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D

    2015-07-31

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  14. Modeling of electron cyclotron resonance discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyyappan, M.; Govindan, T.R.

    The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.

  15. Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U

    NASA Astrophysics Data System (ADS)

    Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao

    An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.

  16. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  17. Experimental investigations of electron density and ion energy distributions in dual-frequency capacitively coupled plasmas for Ar/CF{sub 4} and Ar/O{sub 2}/CF{sub 4} discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Gao, Fei

    2014-01-07

    The electron density and ion energy distribution (IED) are investigated in low-pressure dual-frequency capacitively coupled Ar/CF{sub 4} (90%/10%) and Ar/O{sub 2}/CF{sub 4} (80%/10%/10%) plasmas. The relations between controllable parameters, such as high-frequency (HF) power, low-frequency (LF) power and gas pressure, and plasma parameters, such as electron density and IEDs, are studied in detail by utilizing a floating hairpin probe and an energy resolved quadrupole mass spectrometer, respectively. In our experiment, the electron density is mainly determined by the HF power and slightly influenced by the LF power. With increasing gas pressure, the electron density first goes up rapidly to amore » maximum value and then decreases at various HF and LF powers. The HF power also plays a considerable role in affecting the IEDs under certain conditions and the ion energy independently controlled by the LF source is discussed here. For clarity, some numerical results obtained from a two-dimensional fluid model are presented.« less

  18. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yung-Ta, E-mail: ysung2@wisc.edu; Li, Yan; Scharer, John E.

    2015-03-15

    Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.

  19. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  20. Valence electronic properties of porphyrin derivatives.

    PubMed

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  1. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    PubMed

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  2. Joint refinement model for the spin resolved one-electron reduced density matrix of YTiO3 using magnetic structure factors and magnetic Compton profiles data.

    PubMed

    Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel

    2018-04-28

    In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

  3. Electron density and plasma dynamics of a colliding plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less

  4. Orientation-dependent imaging of electronically excited quantum dots

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|

  5. Orientation-dependent imaging of electronically excited quantum dots.

    PubMed

    Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-14

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  6. Proton deflectometry of laser-driven relativistic electron jet from thin foil target

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Palaniyappan, S.; Gautier, D. C.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Near critical density relativistic electron jets from laser solid interaction carry currents approaching the Alfvén-limit and tens of kilo-Tesla magnetic fields. Such jets are often found in kinetic simulations with low areal density targets, but have not been confirmed experimentally. They may be used for X/gamma-ray generation and is also important for the understanding of post-transparency plasma dynamics. With a short-pulse probe beam at the Trident laser facility, we employed proton deflectometry to infer the jet's properties, structure and the long-time dynamics. We develop corresponding GEANT4 simulation model of the proton deflectometry, with input from the kinetic PIC simulations in 2D and quasi-3D geometry, to compare with the experimental radiography images. Detail comparison of the experimental and simulation features in the deflectometry will be discussed. Work supported by the LDRD program at LANL.

  7. Crystallographic perturbations to valence charge density and hydrogen-surface interactions

    NASA Astrophysics Data System (ADS)

    Ciston, James W.

    The subject of surfaces has been the epicenter of numerous studies in recent years, particularly with respect to applications in catalysis, thin films, and self-assembly of nanostructures where the surface-to-volume ratio is large. Understanding how the atomic structure of materials differs at surfaces where the atoms are far less constrained can yield fundamental insight into these interesting nanoscale phenomena. Quantum surface crystallography takes this one step further in an attempt to experimentally measure the structure of the electrons themselves, which is of greater importance than atomic positions in determining material properties. We report a procedure for obtaining a much better initial parameterization of the charge density than what is possible from a neutral atom model. This procedure involves the parameterization of a bulk charge density model in terms of simple variables such as bond lengths, which can then be transferred to the problem of interest, for instance a surface. Parameterization is accomplished through the fitting of Density Functional Theory calculations of a variety of crystal distortions to a bond-centered pseudoatom (BCPA) model. This parameterized model can then be applied to surfaces or for other problems where an initial higher-order model is needed without the addition of any extra fitted parameters. Through the use of the BCPA model, we report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (001) 2x1H surface. By properly accounting for the covalent bonding effects in the silicon structure, we were able to stably refine the positions of hydrogen atoms at this surface in three dimensions, which had never before been accomplished for any surface. In addition, we found experimentally an increased, slightly localized bond density of approximately 0.31 electrons between each Si atom pair at the surface. Both the atomic positions and the charge density were found to be in remarkably good agreement with density functional theory (DFT) calculations. The BCPA model was also applied to an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about the bond-centered pseudoatom model, we found experimentally that the adatoms were in an anti-bonding state with the atoms directly below. We were also able to experimentally refine a charge transfer of 0.26+/-0.04 e- from each adatom site to the underlying layers. This was the first statistically significant refinement of site-specific bonding information at any surface utilizing x-ray diffraction data. Precession electron diffraction (PED) is a technique which is gaining increasing interest due to its ease of use and reduction of the dynamical scattering problem in electron diffraction. To further investigate the usefulness of this technique, we performed a systematic study of the effect of precession angle on the mineral andalusite where the semiangle was varied from 6.5 to 32 mrad in five discrete steps. We have shown that the intensities of kinematically forbidden reflections decayed exponentially as the precession semiangle (ϕ) was increased. Additionally, we have determined that charge density effects were best observed at moderately low angles (6.5-13 mrad) even though PED patterns became more kinematical in nature as the precession angle was increased further. We have also shown that the amount of interpretable information provided by direct methods phase inversion of the diffraction data increases monotonically but non-systematically as ϕ increases. We report an experimental and theoretical analysis of the ✓3x✓3-R30° and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional calculations using the meta-GGA functional TPSS. We have not only conclusively solved the atomic structures of these reconstructions, but have developed a kinetic model for an evolutionary pathway between structures driven entirely by exchange of water molecules between the surface and the environment that does not require the cations to move when the structure transforms. This is the first time an experimentally and theoretically supported kinetic model has described not only all of the structures in a series on a single oxide surface, but also describes why none of the structures pass through the thermodynamically most stable configuration. Lastly, we have investigated the observability of valence bonding effects in aberration-corrected high resolution electron microscopy (HREM) images along the [010] projection of the mineral Forsterite (Mg2SiO 4). Direct observability of bonding effects would be both faster and less ambiguous than the refinement of similar features against diffraction data. Through analysis of simulated high resolution electron microscopy images, we have determined that bonding effects should be observable at levels approaching 20% of the total contrast. Initial experimental results for this material system have also been presented.

  8. Two-Dimensional Self-Consistent Radio Frequency Plasma Simulations Relevant to the Gaseous Electronics Conference RF Reference Cell

    PubMed Central

    Lymberopoulos, Dimitris P.; Economou, Demetre J.

    1995-01-01

    Over the past few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering our understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations. PMID:29151756

  9. Role of turbulence regime on determining the local density gradient

    DOE PAGES

    Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...

    2017-11-16

    In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less

  10. The Buccaneer software for automated model building. 1. Tracing protein chains.

    PubMed

    Cowtan, Kevin

    2006-09-01

    A new technique for the automated tracing of protein chains in experimental electron-density maps is described. The technique relies on the repeated application of an oriented electron-density likelihood target function to identify likely C(alpha) positions. This function is applied both in the location of a few promising ;seed' positions in the map and to grow those initial C(alpha) positions into extended chain fragments. Techniques for assembling the chain fragments into an initial chain trace are discussed.

  11. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  12. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  13. Effect of current density on electron beam induced charging in MgO

    NASA Astrophysics Data System (ADS)

    Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy

    2005-11-01

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  14. Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPd X (X = Ir, Os, and Rh) alloys

    NASA Astrophysics Data System (ADS)

    Shabbir, Ahmed; Muhammad, Zafar; M, Shakil; M, A. Choudhary

    2016-03-01

    The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.

  15. Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

    PubMed Central

    Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang

    2017-01-01

    Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845

  16. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    PubMed

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Compton profiles and electronic properties of TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Samir, E-mail: sameerbhatt011@gmail.com; Suthar, K. K.; Ahuja, B. L.

    In this paper, we report the experimental Compton profile (CP) of TiB{sub 2} using high energy {sup 137}Cs γ-rays Compton spectrometer. To interpret the experimental momentum density, we have calculated the CPs using Hartree-Fock (HF), density functional theory (DFT) and hybridization of DFT and HF within linear combination of atomic orbitals. The theoretical profile with generalized gradient approximation is found to be relatively in better agreement with the experimental profile. A sharp valley in density of states and hence the pseudogap near the Fermi energy is attributed to hybridization of Ti-3d and B-2p states and almost reverse trend of energymore » bands below and above the Fermi energy.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; van den Bedem, Henry; Brunger, Axel T.

    Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca 2+-CaM, but no assignment of these features has been made. In addition, Ca 2+-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 Å resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca 2+-CaM. Density-modified electron-density mapsmore » enabled the accurate assignment of Ca 2+-CaM main-chain and side-chain disorder. These experimental maps also substantiate complex disorder models that were automatically built using low-contour features of model-phased electron density. Furthermore, experimental electron-density maps reveal that 2-methyl-2,4-pentanediol (MPD) is present in the C-terminal domain, mediates a lattice contact between N-terminal domains and may occupy the N-terminal binding pocket. The majority of the crystal structures of target-free Ca 2+-CaM have been derived from crystals grown using MPD as a precipitant, and thus MPD is likely to be bound in functionally critical regions of Ca 2+-CaM in most of these structures. The adventitious binding of MPD helps to explain differences between the Ca 2+-CaM crystal and solution structures and is likely to favor more open conformations of the EF-hands in the crystal.« less

  19. Adequacy of damped dynamics to represent the electron-phonon interaction in solids

    DOE PAGES

    Caro, A.; Correa, A. A.; Tamm, A.; ...

    2015-10-16

    Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classicalmore » molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less

  20. Dual descriptors within the framework of spin-polarized density functional theory.

    PubMed

    Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P

    2008-08-14

    Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.

  1. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University.

    PubMed

    Ren, H T; Peng, S X; Xu, Y; Zhao, J; Lu, P N; Chen, J; Zhang, A L; Zhang, T; Guo, Z Y; Chen, J E

    2014-02-01

    At Peking University (PKU) we have developed several 2.45 GHz Permanent Magnet Electron Cyclotron Resonance ion sources for PKUNIFTY, SFRFQ, Coupled RFQ&SFRFQ, and Dielectric-Wall Accelerator (DWA) projects (respectively, 50 mA of D(+), 10 mA of O(+), 10 mA of He(+), and 50 mA of H(+)). In order to improve performance of these ion sources, it is necessary to better understand the principal factors that influence the plasma density and the atomic ion fraction. Theoretical analysis about microwave transmission and cut-off inside the discharge chamber were carried out to study the influence of the discharge chamber diameters. As a consequence, experimental studies on plasma density and ion fraction with different discharge chamber sizes have been carried out. Due to the difficulties in measuring plasma density inside the discharge chamber, the output beam current was measured to reflect the plasma density. Experimental results show that the plasma density increases to the maximum and then decreases significantly as the diameter changed from 64 mm to 30 mm, and the atomic ion fraction has the same tendency. The maximum beam intensity was obtained with the diameter of 35 mm, but the maximum atomic ion fraction with a diameter of 40 mm. The experimental results are basically accordant with the theoretical calculation. Details are presented in this paper.

  2. Energy balance in TM-1-MH Tokamak (ohmical heating)

    NASA Astrophysics Data System (ADS)

    Stoeckel, J.; Koerbel, S.; Kryska, L.; Kopecky, V.; Dadalec, V.; Datlov, J.; Jakubka, K.; Magula, P.; Zacek, F.; Pereverzev, G. V.

    1981-10-01

    Plasma in the TM-1-MH Tokamak was experimentally studied in the parameter range: tor. mg. field B = 1,3 T, plasma current I sub p = 14 kA, electron density N sub E 3.10 to the 19th power cubic meters. The two numerical codes are available for the comparison with experimental data. TOKATA-code solves simplified energy balance equations for electron and ion components. TOKSAS-code solves the detailed energy balance of the ion component.

  3. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  4. Two-resonance probe for measuring electron density in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kim, S. J.; Kim, J. H.; Oh, W. Y.

    2017-04-01

    A technique for measuring double-checked electron density using two types of microwave resonance is presented. Simultaneous measurement of the resonances (plasma and quarter-wavelength resonator resonances), which were used for the cutoff probe (CP) and hairpin probe (HP), was achieved by the proposed microwave resonance probe. The developed two-resonance probe (TRP) consists of parallel separated coaxial cables exposing the radiation and detection tips. The structure resembles that of the CP, except the gapped coaxial cables operate not only as a microwave feeder for the CP but also as a U- shaped quarter-wavelength resonator for the HP. By virtue of this structure, the microwave resonances that have typically been used for measuring the electron density for the CP and HP were clearly identified on the microwave transmission spectrum of the TRP. The two types of resonances were measured experimentally under various power and pressure conditions for the plasma. A three-dimensional full-wave simulation model for the TRP is also presented and used to investigate and reproduce the resonances. The electron densities inferred from the resonances were compared and showed good agreement. Quantitative differences between the densities were attributed to the effects of the sheath width and spatial density gradient on the resonances. This accessible technique of using the TRP to obtain double-checked electron densities may be useful for comparative study and provides complementary uses for the CP and HP.

  5. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  6. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    2016-10-01

    We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.

  7. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  8. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation.

    PubMed

    Escaño, Mary Clare Sison; Arevalo, Ryan Lacdao; Gyenge, Elod; Kasai, Hideaki

    2014-09-03

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4(-) on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  9. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    NASA Astrophysics Data System (ADS)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  10. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  11. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    PubMed

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strubbe, David

    Octopus is a scientific program aimed at the ab initio virtual experimentation on a hopefully ever-increasing range of system types. Electrons are described quantum-mechanically within density-functional theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the pseudopotential approximation.

  13. X-ray electron density investigation of chemical bonding in van der Waals materials

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  14. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  15. Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases.

    PubMed

    Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib

    2015-04-15

    Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, D. P.; Tyata, R. B.; Shrestha, R.

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e})more » of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.« less

  17. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  18. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  19. Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1984-01-01

    The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.

  20. Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Vedeshwar, Agnikumar G.

    2018-03-01

    It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.

  1. Quantum chemical calculation (electronic and topologic) and experimental (FT-IR, FT-Raman and UV) analysis of isonicotinic acid N-oxide

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-04-01

    In this work, the molecular conformation, vibrational and electronic analysis of isonicotinic acid N-oxide (iso-NANO) were presented in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The geometry optimization and energies associated possible two conformers (Rot-I and Rot-II) were computed. The vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The obtained structures were analyzed with the Atoms in Molecules (AIMs) methodology. The computational results diagnose the most stable conformer of iso-NANO as the Rot-I form. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (OPDOS) diagrams analysis for the most stable conformer (Rot-I) were calculated using the same method. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results.

  2. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥<1.4 cm-1, kr<3.5 cm-1 ( k⊥ρs<0.28 and krρs<0.7 ). The phase angle between turbulent temperature and density fluctuations, αnT, has also been measured by using an ECE radiometer coupled to a reflectometer along the same line of sight. These quantities are used simultaneously to constrain a set of ion-scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  3. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less

  4. Analysis of hydrogen plasma in MPCVD reactor

    NASA Astrophysics Data System (ADS)

    Shivkumar, Gayathri

    The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.

  5. Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods

    NASA Technical Reports Server (NTRS)

    Stott, Amanda C.; Brauer, Jonathan I.; Garg, Anita; Pepper, Stephen V.; Abel, Phillip B.; DellaCorte, Christopher; Noebe, Ronald D.; Glennon, Glenn; Bylaska, Eric; Dixon, David A.

    2010-01-01

    Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.

  6. A Density Functional Approach to Polarizable Models: A Kim-Gordon-Response Density Interaction Potential for Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacchi, G; Hutter, J; Mundy, C

    2005-04-07

    A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less

  7. Electrostatic Interactions in Aminoglycoside-RNA Complexes

    PubMed Central

    Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna

    2015-01-01

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932

  8. Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects.

    PubMed

    Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V

    2012-12-21

    We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

  9. Ion extraction from a plasma

    NASA Technical Reports Server (NTRS)

    Aston, G.; Wilbur, P. J.

    1981-01-01

    The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  10. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    NASA Astrophysics Data System (ADS)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  11. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B.; Meyer-ter-Vehn, J.; Zepf, M.; Schreiber, J.

    2018-02-01

    We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ˜30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

  12. Study on an azimuthal line cusp ion source for the KSTAR neutral beam injector.

    PubMed

    Jeong, Seung Ho; Chang, Doo-Hee; In, Sang Ryul; Lee, Kwang Won; Oh, Byung-Hoon; Yoon, Byung-Joo; Song, Woo Sob; Kim, Jinchoon; Kim, Tae Seong

    2008-02-01

    In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.

  13. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  14. Measuring the ionization balance of gold in a low-density plasma of importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M; Beiersdorfer, P; Schneider, M

    Charge state distributions (CSDs) have been determined in low density ({approx}10 {sup 12} cm{sup -3}) gold plasmas having either a monoenergetic beam (E{sub Beam} = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (T{sub e} = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3dmore » and 5f{yields}3d lines with synthetic spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EBIT-II.« less

  15. Measuring the Ionization Balance of Gold in a Low-Density Plasma of Importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Beiersdorfer, P.; Schneider, M.

    Charge state distributions (CSDs) have been determined in low density ({approx_equal}1012 cm-3) gold plasmas having either a monoenergetic beam (EBeam = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (Te = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3d and 5f{yields}3d lines with syntheticmore » spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EB0011IT-.« less

  16. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  17. Experimental observation of charge-shift bond in fluorite CaF2.

    PubMed

    Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof

    2017-08-01

    On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

  18. Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.

    2016-01-01

    In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.

  19. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  20. Spatial structure and electronic spectrum of TiSi{/n -} clusters ( n = 6-18)

    NASA Astrophysics Data System (ADS)

    Borshch, N. A.; Pereslavtseva, N. S.; Kurganskii, S. I.

    2014-10-01

    Results from optimizing the spatial structure and calculated electronic spectra of anion clusters TiSi{/n -} ( n = 6-18) are presented. Calculations are performed within the density functional theory. Spatial structures of clusters detected experimentally are established by comparing the calculated and experimental data. It is shown that prismatic and fullerene-like structures are the ones most energetically favorable for clusters TiSi{/n -}. It is concluded that these structures are basic when building clusters with close numbers of silicon atoms.

  1. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  2. Rapid model building of beta-sheets in electron-density maps.

    PubMed

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  3. Ferroelectric Polymers with Ultrahigh Energy Density, Low Loss, and Broad Operation Temperature for Navy Pulse Power Capacitors

    DTIC Science & Technology

    2014-02-01

    by the electron hopping theory in the amorphous material. By further tailoring the molecular structures, meta-aromatic polyurea which possesses a...higher dipolar density than many polyureas reported in the literature has been synthesized. Preliminary experimental results show that an enhanced...dielectric constant and higher energy density can be achieved in the new meta-aromatic polyurea . Technical section; Technical Objective: The objective

  4. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures

    NASA Astrophysics Data System (ADS)

    Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.

    2014-10-01

    Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.

  5. Electron Driven Processes in Atmospheric Behaviour

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Teubner, P. J. O.

    2006-11-01

    Electron impact plays an important role in many atmospheric processes. Calculation of these is important for basic understanding, atmospheric modeling and remote sensing. Accurate atomic and molecular data, including electron impact cross sections, are required for such calculations. Five electron-driven processes are considered: auroral and dayglow emissions, the reduction of atmospheric electron density by vibrationally excited N2, NO production and infrared emission from NO. In most cases the predictions are compared with measurements. The dependence on experimental atomic and molecular data is also investigated.

  6. Quasi-monoenergetic multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee

    2018-06-01

    Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.

  7. Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika; Singh, Sukhwinder

    2016-05-23

    The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.

  8. Ab initio study of the electron-phonon coupling at the Cr(001) surface

    NASA Astrophysics Data System (ADS)

    Peters, L.; Rudenko, A. N.; Katsnelson, M. I.

    2018-04-01

    It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.

  9. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  10. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study.

    PubMed

    Calderín, L; González, L E; González, D J

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm(-3). We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm(-3).

  11. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  12. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-03-07

    We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.

  13. Recombination of electrons with water cluster ions in the afterglow of a high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2018-07-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in H2O:N2 and H2O:O2 mixtures are presented for room temperature and at pressures from 2 to 5 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 1  ×  1012 and 2  ×  1012 cm‑3. Calculations showed that the plasma decay was controlled by recombination of thermalized electrons with H3O+(H2O) n ions for n from 0 to 4. Agreement between calculated and measured electron density histories was obtained only when using the recombination coefficients measured in the pulsed plasma afterglow experiments. The electron densities calculated using the data from the storage ring experiments were consistently greater than the values measured in this work for all conditions. It was concluded that the measurements of recombination coefficients for H3O+(H2O) n ions in the pulsed plasma afterglow were more appropriate for simulating the properties of high-density plasmas with high fractions of H2O, O2 and N2, such as discharge plasmas in water vapor and in humid air instead of the measurements in the storage ring experiments.

  14. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. First-principle calculation of the electronic structure, DOS and effective mass TlInSe2

    NASA Astrophysics Data System (ADS)

    Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.

    2017-05-01

    The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.

  16. A comparative study on vibrational, conformational and electronic structure of 2-chloro-4-methyl-3-nitropyridine and 2-chloro-6-methylpyridine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.

    Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.

  17. Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2007-01-15

    We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less

  18. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  19. Experimental study of a free turbulent shear flow at Mach 19 with electron-beam and conventional probes. [flow measurement

    NASA Technical Reports Server (NTRS)

    Harvey, W. P.; Hunter, W. D., Jr.

    1975-01-01

    An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.

  20. Characterization of background carriers in InAs/GaSb quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junbin; Wu, Xiaoguang; Wang, Guowei

    2016-03-07

    The origin of the background carriers in an undoped InAs/GaSb quantum well (QW) at temperatures between 40 K and 300 K has been investigated using conventional Hall measurements. It is found that the Hall coefficient changes its sign at around 200 K, indicating that both electrons and holes exist in the quantum well. The two-carrier Hall model is thus adopted to analyze the Hall data, which enables the temperature dependence of the carrier density to be obtained. It is found that considerable numbers of holes exist under low temperature conditions (<40 K) in the InAs/GaSb QW, and the hole density is one to twomore » orders higher than that of the electrons within the experimental temperature range. The origin of these low temperature holes and the temperature-dependent behavior of the carrier density over the entire experimental temperature range are then discussed.« less

  1. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    PubMed

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  2. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  3. Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Williams, Richard; Grim, Joel

    2013-08-15

    Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by γ-ray and high-energy electrons is a likely cause of the light yield nonproportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Förster transfer. The KMC simulationsmore » reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the nonproportional γ-ray and electron response of inorganic scintillators.« less

  4. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  5. Structure of the ripple phase in lecithin bilayers.

    PubMed Central

    Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F

    1996-01-01

    The phases of the x-ray form factors are derived for the ripple (Pbeta') thermodynamic phase in the lecithin bilayer system. By combining these phases with experimental intensity data, the electron density map of the ripple phase of dimyristoyl-phosphatidylcholine is constructed. The phases are derived by fitting the intensity data to two-dimensional electron density models, which are created by convolving an asymmetric triangular ripple profile with a transbilayer electron density profile. The robustness of the model method is indicated by the result that many different models of the transbilayer profile yield essentially the same phases, except for the weaker, purely ripple (0,k) peaks. Even with this residual ambiguity, the ripple profile is well determined, resulting in 19 angstroms for the ripple amplitude and 10 degrees and 26 degrees for the slopes of the major and the minor sides, respectively. Estimates for the bilayer head-head spacings show that the major side of the ripple is consistent with gel-like structure, and the minor side appears to be thinner with lower electron density. Images Fig. 1 Fig. 2 PMID:8692934

  6. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3},more » the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shibei; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Miao, Wenyong

    A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density,more » but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.« less

  8. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  9. Experimental and theoretical charge density studies at subatomic resolution.

    PubMed

    Fischer, A; Tiana, D; Scherer, W; Batke, K; Eickerling, G; Svendsen, H; Bindzus, N; Iversen, B B

    2011-11-17

    Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).

  10. Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods

    NASA Technical Reports Server (NTRS)

    Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.

    1994-01-01

    Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.

  11. Electron Density Distribution Changes of Magnesiowüstite With Pressure

    NASA Astrophysics Data System (ADS)

    Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.

    2017-12-01

    Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.

  12. Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Önder, P.; Turşucu, A.; Demir, D.; Gürol, A.

    2012-12-01

    Mass attenuation coefficient, μm , effective atomic number, Zeff, and effective electron density, Nel, were determined experimentally and theoretically for some thermoluminescent dosimetric (TLD) compounds such as MgSO4, CdSO4, Al2O3, Mg2SiO4, ZnSO4, CaSO4, CaF2, NaSO4, Na4P2O7, Ca5F(PO4)3, SiO2, CaCO3 and BaSO4 at 8.04, 8.91, 13.37, 14.97, 17.44, 19.63, 22.10, 24.90, 30.82, 32.06, 35.40, 36.39, 37.26, 43.74, 44.48, 50.38, 51.70, 53.16, 80.99, 276.40, 302.85, 356.01, 383.85 and 661.66 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. The theoretical mass attenuation coefficients were estimated using mixture rule. The calculated values were compared with the experimental values for all compounds. Good agreement has been observed between experimental and theoretical values within experimental uncertainties.

  13. Hot phonon effect on electron velocity saturation in GaN: A second look

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob; Ding, Yujie J.; Jena, Debdeep

    2007-12-01

    A theoretical model is developed for electron velocity saturation in high power GaN transistors. It is shown that electron velocity at high electric fields is reduced due to heating of electron gas since the high density of nonequilibrium LO phonons cannot efficiently transfer heat to the lattice. However, the resulting degradation of electron velocity is found to be weaker than previously reported. The results are compared with experimental data, and the ways to improve the efficiency of cooling the electron gas to increase the drift velocity are discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. G.; Ning, C. G.; Zhang, S. F.

    The measurements of electron density distributions and binding-energy spectrum of the complete valence shell of cyclopentene (C{sub 5}H{sub 8}) using a binary (e,2e) electron momentum spectrometer are reported. The experimental momentum profiles of the valence orbitals are compared with the theoretical distributions calculated using Hartree-Fock and density-functional-theory (DFT) methods with various basis sets. The agreement between theory and experiment for the shape and intensity of the orbital electron momentum distributions is generally good. The DFT calculations employing B3LYP hybrid functional with a saturated and diffuse AUG-CC-PVTZ basis set provide the better descriptions of the experimental data. Some ''turn up'' effectsmore » in the low momentum region of the measured (e,2e) cross section compared with the calculations of 3a{sup ''}, 2a{sup ''}, and 3a{sup '} orbitals could be mainly attributed to distorted-wave effects. The pole strengths of the main ionization peaks from the orbitals in the inner valence are estimated.« less

  15. A DSMC Study of Low Pressure Argon Discharge

    NASA Astrophysics Data System (ADS)

    Hash, David; Meyyappan, M.

    1997-10-01

    Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.

  16. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  17. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  18. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L., E-mail: marie-laure.david@univ-poitiers.fr; Pailloux, F.; Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballisticmore » collisions, leading to the ejection of the helium atoms from the bubble.« less

  20. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  1. Modeling of laser-induced ionization of solid dielectrics for ablation simulations: role of effective mass

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-11-01

    Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.

  2. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case.

    PubMed

    Guillot, Benoît; Jelsch, Christian; Podjarny, Alberto; Lecomte, Claude

    2008-05-01

    The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.

  3. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  4. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.

    PubMed

    Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S

    2009-04-30

    An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.

  5. Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)

    DOE PAGES

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...

    2016-10-11

    Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less

  6. Electronic structure of the organic semiconductor copper phthalocyanine: experiment and theory.

    PubMed

    Aristov, V Yu; Molodtsova, O V; Maslyuk, V V; Vyalikh, D V; Zhilin, V M; Ossipyan, Yu A; Bredow, T; Mertig, I; Knupfer, M

    2008-01-21

    The electronic structure of the organic semiconductor copper-phthalocyanine (CuPc) has been determined by a combination of conventional and resonant photoemission, near-edge x-ray absorption, as well as by the first-principles calculations. The experimentally obtained electronic valence band structure of CuPc is in very good agreement with the calculated density of states results, allowing the derivation of detailed site specific information.

  7. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  8. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE PAGES

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  9. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  10. Validation of multi-temperature nozzle flow code NOZNT

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung-Ho

    1993-01-01

    A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.

  11. Radiation characteristics of input power from surface wave sustained plasma antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp; Yamaura, S.; Fukuma, Y.

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input powermore » is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.« less

  12. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  13. Plasmas with an index of refraction greater than 1.

    PubMed

    Nilsen, Joseph; Scofield, James H

    2004-11-15

    Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.

  14. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  15. Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Aline; de Lima, Guilherme Ferreira; De Abreu, Heitor Avelino

    2018-01-01

    The Metal-Organic Frameworks M-MOF-74 (M = Mg, Co or Mn) were investigated through Density Functional Theory calculations. Structural parameters and band gap energies were determined in agreement with experimental data, with errors under 2%. The methods Electron Localization Function and Quantum Theory of Atoms in Molecules were applied to the analyses of the electronic density topology of the three solids. These methodologies indicated that the bonds between the metallic cations and the oxygen atoms are predominantly ionic while the other ones are predominantly covalent. Furthermore, non-conventional hydrogen bonds were identified to Mg-MOF-74 and Co-MOF-74, which were not observed to Mn-MOF-74.

  16. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  17. Electron-Hole Condensation in Semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties.

    PubMed

    Jeffries, C D

    1975-09-19

    In Ge and Si, and also in Ge-Si alloys (74), there is extensive evidence for the stable binding of electrons and holes into a cold plasma of constant density, which undergoes a phase separation. Liquid metallic drops 1 to 300 microm in size are formed, with lifetimes ranging from 0.1 to 600 microsec. For Ge a surprising amount is known: the phase diagram, the surface energy, the work function, the decay kinetics. Much less is known for Si. There is good agreement between theoretical and experimental values of the liquid density, the critical density, the critical temperature, and the binding energy. The stability of the liquid phase is strikingly dependent on band structure. The multivalley structure and mass anisotropy of Si, Ge, and Ge-Si, together with their indirect band gap, are no doubt responsible for the observed stability in these crystals. In the similar semiconductor gallium phosphide, drops have not yet been observed, most likely because the high impurity content traps the excitons. In gallium arsenide the existence of drops is controversial (75). Undoubtedly drops will be found to exist in other semiconductors, perhaps at even higher temperatures. This is an exciting field for the experimentalist; new phenomena are being rapidly discovered, usually before they are predicted. For the theorist, the electron-hole drop is of high intrinsic interest. It represents the first example of a quantum liquid of constant density in a periodic crystal lattice. A number of challenging experimental and theoretical problems remain.

  18. Aerosols: The key to understanding Titan's lower ionosphere

    NASA Astrophysics Data System (ADS)

    Molina-Cuberos, G. J.; Cardnell, S.; García-Collado, A. J.; Witasse, O.; López-Moreno, J. J.

    2018-04-01

    The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer. However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2 ×109 m-3 positive ions and ≈ 450 ×106 m-3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.

  19. Electronic properties of CdWO{sub 4}: Use of hybrid exchange and correlation functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, B. S., E-mail: bsmphysics@gmail.com; Mund, H. S.; Ahuja, B. L.

    Energy bands, density of states (DOS), Mulliken population (MP) and electron momentum densities (EMDs) of CdWO{sub 4} are presented using hybrid exchange and correlation functionals namely B3LYP, B3PW and PBE0. To validate the present hybrid potentials, theoretical EMDs have been compared with the experimental Compton profile. It is found that LCAO-B3LYP based Compton profile gives a better agreement with experiment than other theoretical profiles. The energy bands and DOS show a wide band gap semiconducting nature of CdWO{sub 4}. The theoretical band gap obtained using B3LYP scheme reconciles well with the available experimental data. In addition, we have also presentedmore » the anisotropies in EMDs along [100], [110] and [001] directions and the bonding effects using the MP data.« less

  20. Electronic and optical response of zirconium sulphoselenides: Compton spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Kishor; Bhatt, Samir; Jani, A. R.; Ahuja, B. L.

    2015-12-01

    We present the first-ever experimental Compton profiles (CPs) of ZrSSe2 and ZrS1.5Se1.5 using 100 mCi 241Am Compton spectrometer. To analyze the experimental momentum densities, we have computed for the first-time the CPs, energy bands and density of states using linear combination of atomic orbitals (LCAO) method. To model the exchange and correlation effects within LCAO approach, we have considered Hartree-Fock (HF), density functional theory (DFT) with revised functional of Perdew-Becke-Ernzerhof (PBEsol) and hybridization of HF and DFT. Going beyond computation of electronic properties using LCAO method, we have also derived electronic and optical properties using the modified Becke-Johnson (mBJ) potential within full potential linearized augmented plane wave (FP-LAPW) method. There is notable decrease in the energy band gap on replacing S by Se atoms in ZrSSe2 to obtain ZrS1.5Se1.5 composition, which is mainly attributed to readjustment of Zr-4d, S-3p and Se-4p states. It is seen that the CPs based on hybridization of HF and DFT show a better agreement with the experimental profiles than those based on individual HF and DFT-GGA-PBEsol schemes. The optical properties computed using FP-LAPW-mBJ method unambiguously depict feasibility of using both the sulphoselenides in photovoltaics and also utility of ZrS1.5Se1.5 in the field of non-linear optics.

  1. Alternative route to charge density wave formation in multiband systems

    PubMed Central

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo

    2013-01-01

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317

  2. Substituent effects on furan-phenylene copolymer for photovoltaic improvement: A density functional study

    NASA Astrophysics Data System (ADS)

    Janprapa, Nuttaporn; Vchirawongkwin, Viwat; Kritayakornupong, Chinapong

    2018-06-01

    The structural, electronic and photovoltaic properties of furan-phenylene copolymer ((Fu-co-Ph)4) and its derivatives were evaluated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The calculated band gaps of pristine furan and phenylene are in good agreement with the available experimental data. The lower band gap value of 2.72 eV was obtained from -NO2 and -NHCH3 substituents, leading to broader solar absorption range. With respected to the reorganization energy, -OCH3, -NHCH3, -OH, -SCH3, -CH3, -CF3, -NO2, and -F substituted (Fu-co-Ph)4 structures were classified as better electron donor materials. For combination with PC61BM, -NO2, -CN, -CF3 and -F functionalized copolymers demonstrated significantly higher open circuit voltage (Voc) values ranging from 1.07 to 2.10 eV. Our results revealed that electron withdrawing group substitution on furan-phenylene copolymers was an effective way for improving electronic and optical properties of donor materials used in photovoltaic applications.

  3. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  4. The Harvard organic photovoltaic dataset

    DOE PAGES

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; ...

    2016-09-27

    Presented in this work is the Harvard Organic Photovoltaic Dataset (HOPV15), a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  5. The Harvard organic photovoltaic dataset

    PubMed Central

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  6. The Harvard organic photovoltaic dataset.

    PubMed

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  7. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  8. Electronic properties of RDX and HMX: Compton scattering experiment and first-principles calculation.

    PubMed

    Ahuja, B L; Jain, Pradeep; Sahariya, Jagrati; Heda, N L; Soni, Pramod

    2013-07-11

    The first-ever electron momentum density (EMD) measurements of explosive materials, namely, RDX (1,3,5-trinitro-1,3,5-triazacyclohexane, (CH2-N-NO2)3) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, (CH2-N-NO2)4), have been reported using a 740 GBq (137)Cs Compton spectrometer. Experimental Compton profiles (CPs) are compared with the EMDs derived from linear combination of atomic orbitals with density functional theory. It is found that the CPs deduced from generalized gradient approximation (GGA) with Wu-Cohen exchange energies give a better agreement with the corresponding experimental profiles than those from local density approximation and other schemes of GGA. Further, Mulliken population, energy bands, partial and total density of states, and band gap have also been reported using GGA calculations. Present ground state calculations unambiguously show large band gap semiconductor nature of both RDX and HMX. A similar type of bonding in these materials is uniquely established using Compton data and density of states. It is also outstandingly consistent with the Mulliken population, which predicts almost equal amount of charge transfer (0.84 and 0.83 e(-)) from H1 + H2 + N2 to C1 + N1 + O1 + O2 in both the explosives.

  9. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  10. Experimental and computational studies on the electronic excited states of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Sunanda; Das, Asim Kumar; Singh, Param Jeet; Shastri, Aparna; Rajasekhar, B. N.

    2016-11-01

    The gas phase electronic absorption spectrum of nitrobenzene (C6H5NO2) in the 4.5-11.2 eV region is recorded using synchrotron radiation with a view to comprehend the nature of the excited states. Electronic excited states of nitrobenzene are mainly classified as local excitations within the benzene ring or nitro group and charge transfer excitations between the benzene and nitro group, with some transitions showing percentage from both. The nature of molecular orbitals, their orderings and energies are obtained from density functional theory calculations which help in assigning partially assigned/unassigned features in earlier photoelectron spectroscopy studies. Optimized geometry of ionic nitrobenzene predicts redistribution of charge density in the benzene ring rather than the nitro group resulting in stabilization of the benzene ring π orbitals in comparison to the neutral molecule. Time dependent density functional theory computations are found to describe the experimental spectra well with respect to energies, relative intensities and nature of the observed transitions in terms of valence, Rydberg or charge transfer type. New insights into the interpretation of 1B2u←1A1g and 1B1u←1A1g shifted benzene transitions in light of the present computational calculations are presented. The first few members of the ns, np and nd type Rydberg series in nitrobenzene, converging to the first six ionization potentials, identified in the spectra as weak but sharp peaks are reported for the first time. In general, transitions to the lowest three unoccupied molecular orbitals 4b1, 3a2 and 5b1 are valence or charge transfer in nature, while excitations to higher orbitals are predominantly Rydberg in nature. This work presents a consolidated experimental study and theoretical interpretation of the electronic absorption spectrum of nitrobenzene.

  11. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

    NASA Astrophysics Data System (ADS)

    Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian

    2017-05-01

    A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.

  12. Analysis of Data on the Cross Sections for Electron-Impact Ionization and Excitation of Electronic States of Atomic Hydrogen (Review)

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2018-01-01

    A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.

  13. Distribution of electron density and magnetocapacitance in the regime of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Pikus, F. G.; Efros, A. L.

    1993-06-01

    A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.

  14. Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1980-01-01

    An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  15. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds.

    PubMed

    Akman, F; Durak, R; Turhan, M F; Kaçal, M R

    2015-07-01

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  17. The hairpin resonator: A plasma density measuring technique revisited

    NASA Astrophysics Data System (ADS)

    Piejak, R. B.; Godyak, V. A.; Garner, R.; Alexandrovich, B. M.; Sternberg, N.

    2004-04-01

    A microwave resonator probe is a resonant structure from which the relative permittivity of the surrounding medium can be determined. Two types of microwave resonator probes (referred to here as hairpin probes) have been designed and built to determine the electron density in a low-pressure gas discharge. One type, a transmission probe, is a functional equivalent of the original microwave resonator probe introduced by R. L. Stenzel [Rev. Sci. Instrum. 47, 603 (1976)], modified to increase coupling to the hairpin structure and to minimize plasma perturbation. The second type, a reflection probe, differs from the transmission probe in that it requires only one coaxial feeder cable. A sheath correction, based on the fluid equations for collisionless ions in a cylindrical electron-free sheath, is presented here to account for the sheath that naturally forms about the hairpin structure immersed in plasma. The sheath correction extends the range of electron density that can be accurately measured with a particular wire separation of the hairpin structure. Experimental measurements using the hairpin probe appear to be highly reproducible. Comparisons with Langmuir probes show that the Langmuir probe determines an electron density that is 20-30% lower than the hairpin. Further comparisons, with both an interferometer and a Langmuir probe, show hairpin measurements to be in good agreement with the interferometer while Langmuir probe measurements again result in a lower electron density.

  18. Comment on "Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test"

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Surmick, David M.; Parigger, Christian G.

    2015-07-01

    In this letter, we present a brief comment regarding the recently published paper by Ivković et al., J Quant Spectrosc Radiat Transf 2015;154:1-8. Reference is made to previous experimental results to indicate that self absorption must have occurred; however, when carefully considering error propagation, both widths and peak-separation predict electron densities within the error margins. Yet the diagnosis method and the presented details on the use of the hydrogen beta peak separation are viewed as a welcomed contribution in studies of laser-induced plasma.

  19. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    PubMed

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and QD modes. The electron dynamics is exponential, whereas evolution of the injected hole through the low density manifold of states of the polymer is highly nonexponential. The time scale of the electron-hole recombination at the interface is intermediate between those in pristine polymer and QD and is closer to that in the polymer. The detailed atomistic insights into the photoinduced charge and energy dynamics at the polymer/QD interface provide valuable guidelines for optimization of solar light harvesting and photovoltaic efficiency in modern nanoscale materials.

  20. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  1. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Ding, B. J.; Li, M. H.

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lowermore » hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.« less

  2. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    NASA Astrophysics Data System (ADS)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  3. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positivemore » ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.« less

  4. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory.

    PubMed

    Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.

  5. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less

  6. Structural, electronic, and vibrational properties of high-density amorphous silicon: a first-principles molecular-dynamics study.

    PubMed

    Morishita, Tetsuya

    2009-05-21

    We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).

  7. Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio

    2006-12-04

    It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less

  8. a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Runge, Keith

    A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.

  9. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  10. Synthesis and Combined Experimental and Theoretical Characterization of Dihydro-tetraaza-acenes

    PubMed Central

    2018-01-01

    We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-phase electronic structures by means of ab initio density functional calculations employing an optimally tuned range-separated hybrid functional. By comparing with the parent linear oligoacenes (nA) and based on computed ionization potentials and electron affinities, we predict DHTAn molecules to be more stable than acenes of the same length, where we expect DHTAn molecules to be persistent at least up to n = 7 rings. We further exploit the analogy with nA by analyzing the entire intramolecular π-band structure of the DHTAn molecules. This clearly reveals that the additional two electrons donated by the dihydropyrazine group are delocalized over the entire molecule and contribute to its π-electron system. As a consequence, the symmetry of the frontier orbitals of DHTAn differs from that of the parent nA molecule. This also affects the UV–vis absorption spectra which have been measured for DHTA5, 6, and 7 dissolved in dimethyl sulfoxide and analyzed by means of excited state calculations within a time-dependent density functional theory framework. PMID:29623149

  11. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise.

    PubMed

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-11-20

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01-200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01-2 Hz. At the frequency range of 2-100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100-200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it.

  12. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  13. Redox reaction characteristics of riboflavin: a fluorescence spectroelectrochemical analysis and density functional theory calculation.

    PubMed

    Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing

    2014-08-01

    Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon

    Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).

  15. Carrier Density at LaAlO3/SrTiO3 Interfaces: Evidence of Electronic Reconstruction.

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoxing

    The origin of the 2D electron gas at the LaAlO3/SrTiO3 interface has been a controversial subject ever since its discovery. A serious inconsistency with the most accepted mechanism, an electronic reconstruction in response to a polar discontinuity at the interface, is that the carrier densities reported experimentally are invariably lower than the expected value except under conditions where reduction of SrTiO3 substrate is suspected. We have grown LaAlO3 films of different stoichiometry on TiO2-terminated SrTiO3 substrates using atomic layer-by-layer laser molecular beam epitaxy (ALL-Laser MBE), in which La2O3 and Al2O3 targets were sequentially ablated in 37 mTorr oxygen. The high oxygen pressure during growth prevents the possible oxygen reduction in SrTiO3, ensures that the LaAlO3 films are sufficiently oxygenated, and suppresses the La-Sr intermixing due to the bombardment effect. X-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) measurements show characteristics of oxygenated samples. In the electronic reconstruction picture, instead of the charge transfer of half of an electron in the case of a sufficiently thick stoichiometric LaAlO3, a LaAlO3 film thickness dependence is expected as well as a linear dependence on stoichiometry. Our experimental results on carrier densities in 10 nm-thick LaAl1 +yO3(1 +0.5y) films agree quantitatively with the theoretical expectations, lending a strong support for the electronic reconstruction mechanism. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Grant No. DE-SC0004764.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  17. The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong

    2016-10-01

    The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.

  18. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering.

    PubMed

    Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S

    2008-10-03

    We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.

  19. Electronic structure, chemical bonding, and geometry of pure and Sr-doped CaCO3.

    PubMed

    Stashans, Arvids; Chamba, Gaston; Pinto, Henry

    2008-02-01

    The electronic structure, chemical bonding, geometry, and effects produced by Sr-doping in CaCO(3) have been studied on the basis of density-functional theory using the VASP simulation package and molecular-orbital theory utilizing the CLUSTERD computer code. Two calcium carbonate structures which occur naturally in anhydrous crystalline forms, calcite and aragonite, were considered in the present investigation. The obtained diagrams of density of states show similar patterns for both materials. The spatial structures are computed and analyzed in comparison to the available experimental data. The electronic properties and atomic displacements because of the trace element Sr-incorporation are discussed in a comparative manner for the two crystalline structures. (c) 2007 Wiley Periodicals, Inc.

  20. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  1. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

    PubMed

    Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A

    2017-03-21

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.

    Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less

  3. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less

  4. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE PAGES

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    2017-03-16

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  5. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.

    PubMed

    Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  6. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  7. Electron density and plasma dynamics of a spherical theta pinch

    NASA Astrophysics Data System (ADS)

    Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.

    2012-03-01

    A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

  8. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Sretenović, Goran B.; Guaitella, Olivier; Sobota, Ana; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-03-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5-11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 4 × 1011 cm-3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.

  9. Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.

    2017-12-01

    It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.

  10. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  11. Compton scattering studies and electronic properties of BaTiO3

    NASA Astrophysics Data System (ADS)

    Meena, Seema Kumari; Bapna, Komal; Heda, N. L.; Ahuja, B. L.

    2018-04-01

    We present the experimental momentum density of BaTiO3 measured using 20 Ci 137Cs Compton spectrometer. The experimental Compton profile (CP) has been compared with the linear combination of atomic orbitals (LCAO) based theoretical profiles for various exchange-correlation potentials. It is found that LCAO-B3PW based CP gives a better agreement with experiment than other theoretical profiles. We have also deduced the energy bands and density of states (DOS) for BaTiO3 using LCAO-B3PW scheme. The energy bands and DOS suggest an indirect band gap in the system arising due to O-2p states of valence band and Ti-3d states of conduction band. Peculiar electronic response of this system is found to be mainly due to hybridized states of Ba-5p/5s and O-2p orbitals.

  12. Imaging electron wave functions inside open quantum rings.

    PubMed

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  13. Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4

    NASA Astrophysics Data System (ADS)

    El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.

    2016-10-01

    In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.

  14. Two-photon momentum density in La2-xSrxCuO4 and Nd2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Blandin, P.; Massidda, S.; Barbiellini, B.; Jarlborg, T.; Lerch, P.; Manuel, A. A.; Hoffmann, L.; Gauthier, M.; Sadowski, W.; Walker, E.; Peter, M.; Yu, Jaejun; Freeman, A. J.

    1992-07-01

    We present calculations of the electron-positron momentum density for the high-Tc superconductors La2-xSrxCuO4 and Nd2-xCexCuO4, together with experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) for Nd2-xCexCuO4. The calculations are based on first-principles electronic structure obtained using the full-potential linearized augmented-plane-wave and the linear muffin-tin orbital methods. Our results indicate a non-negligible overlap of the positron wave function with the CuO2 plane electrons responsible for the Fermi surfaces in these compounds. Therefore, these compounds may be well suited for investigating Fermi-surface-related effects. After the folding of umklapp terms according to Lock, Crisp, and West, the predicted Fermi-surface breaks are mixed with strong effects induced by the positron wave function in La2-xSrxCuO4, while their resolution is better in Nd2-xCexCuO4. A comparison of our calculations with the most recent experimental results for La2-xSrxCuO4 shows good agreement. For Nd2-xCexCuO4 good agreement is observed between theoretical and experimental 2D-ACAR profiles.

  15. On specular reflectivity measurements in high and low-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Link, A.; Ping, Y.; McLean, H. S.; Patel, P. K.; Freeman, R. R.; Schumacher, D. W.; Tiedje, H. F.; Tsui, Y. Y.; Ramis, R.; Fedosejevs, R.

    2015-01-01

    Using both experiment and 2D3V particle-in-cell (PIC) simulations, we describe the use of specular reflectivity measurements to study relativistic (Iλ2 > 1018 W/cm2ṡμm2) laser-plasma interactions for both high and low-contrast 527 nm laser pulses on initially solid density aluminum targets. In the context of hot-electron generation, studies typically rely on diagnostics which, more-often-than-not, represent indirect processes driven by fast electrons transiting through solid density materials. Specular reflectivity measurements, however, can provide a direct measure of the interaction that is highly sensitive to how the EM fields and plasma profiles, critical input parameters for modeling of hot-electron generation, evolve near the interaction region. While the fields of interest occur near the relativistic critical electron density, experimental reflectivity measurements are obtained centimeters away from the interaction region, well after diffraction has fully manifested itself. Using a combination of PIC simulations with experimentally inspired conditions and an analytic, non-paraxial, pulse propagation algorithm, we calculate reflected pulse properties, both near and far from the interaction region, and compare with specular reflectivity measurements. The experiment results and PIC simulations demonstrate that specular reflectivity measurements are an extremely sensitive qualitative, and partially quantitative, indicator of initial laser/target conditions, ionization effects, and other details of intense laser-matter interactions. The techniques described can provide strong constraints on many systems of importance in ultra-intense laser interactions with matter.

  16. Theory and simulations of current drive via injection of an electron beam in the ACT-1 device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuda, H.; Horton, R.; Ono, M.

    1985-02-01

    One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less

  17. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  18. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  19. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  20. Experimental validation of tunable features in laser-induced plasma resonators

    NASA Astrophysics Data System (ADS)

    Colón Quiñones, Roberto A.; Cappelli, Mark A.

    2017-08-01

    Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.

  1. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.

    PubMed

    Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J

    2016-03-18

    X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.

  3. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGES

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; ...

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×10 15 cm -2 and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  4. Scaled experimental investigation of the moderation of auroral cyclotron emissions by background plasma

    NASA Astrophysics Data System (ADS)

    McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.

    2012-04-01

    Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020

  5. Copper interstitial recombination centers in Cu3N

    NASA Astrophysics Data System (ADS)

    Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; Hanifi, David; Salleo, Alberto; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.

    2018-06-01

    We present a comprehensive study of the earth-abundant semiconductor Cu3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies VCu have shallow defect levels while copper interstitials Cui behave as deep potential wells in the conduction band, which mediate Shockley-Read-Hall recombination. The existence of Cui defects has been experimentally verified using photothermal deflection spectroscopy. A Cu3N /ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. The absence of photocurrent can be explained by a large concentration of Cui recombination centers capturing electrons in p -type Cu3N .

  6. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least ten times higher than the gas temperature. These observations confirm that low-pressure microwave micro-plasmas exhibit high-reactivity, and the present study shows that these features are controlled by electron kinetics, as expected.

  7. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  8. Infrared vibrational and electronic transitions in the dibenzopolyacene family.

    PubMed

    Mattioda, Andrew L; Bauschlicher, Charles W; Bregman, Jonathan D; Hudgins, Douglas M; Allamandola, Louis J; Ricca, Alessandra

    2014-09-15

    We report experimental spectra in the mid-infrared (IR) and near-IR for a series of dibenzoacenes isolated in Ar matrices. The experiments are supported by Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations with both vibrational and electronic transitions studied. For the neutrals, we find good agreement between the experimental and B3LYP and BP86 results for all species studied. The band at about 1440 cm(-1) carries more intensity than in typical PAHs and increases in intensity with the size of the dibenzoacene molecule. For the ions the B3LYP approach fails to yield reasonable IR spectra for most systems and the BP86 approach is used. Electronic transitions dominate the vibrational bands in the mid-IR region for the large dibenzoacene ions. In spite of the very strong electronic transitions, there is still reasonable agreement between theory and experiment for the vibrational band positions. The experimental and theoretical results for the dibenzoacenes are also compared with those for the polyacenes. Published by Elsevier B.V.

  9. Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: Two-dimensional mapping of the ambient and plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-04-15

    An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less

  10. Dependence of electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) thermoelectric oxides on lattice periodicity

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Andrei; Amouyal, Yaron

    2017-02-01

    The electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) compounds are studied applying the density functional theory (DFT) in terms of band structure at the vicinity of the Fermi level (EF). It is shown that the total density of states (DOS) values at EF increase with increase in the m-values, which implies an increase in the electrical conductivity, σ, with increasing m-values, in full accordance with experimental results. Additionally, the calculated values of the relative slopes of the DOS at EF correlate with the experimentally measured Seebeck coefficients. The electrical conductivity and Seebeck coefficients were calculated in the framework of the Boltzmann transport theory applying the constant relaxation time approximation. By the analysis of experimental and calculated σ(Τ) dependences, the electronic relaxation time and mean free path values were estimated. It is shown that the electrical transport is dominated by electron scattering on the boundaries between perovskite (CaMnO3) and Ca oxide (CaO) layers inside the crystal lattice.

  11. Magnetic behavior study of samarium nitride using density functional theory

    NASA Astrophysics Data System (ADS)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  12. Food Antioxidants: Chemical Insights at the Molecular Level.

    PubMed

    Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino

    2016-01-01

    In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.

  13. TEC data ingestion into IRI and NeQuick over the antarctic region

    NASA Astrophysics Data System (ADS)

    Nava, Bruno; Pezzopane, Michael; Radicella, Sandro M.; Scotto, Carlo; Pietrella, Marco; Migoya Orue, Yenca; Alazo Cuartas, Katy; Kashcheyev, Anton

    2016-07-01

    In the present work a comparative analysis to evaluate the IRI and NeQuick 2 models capabilities in reproducing the ionospheric behaviour over the Antarctic Region has been performed. A technique to adapt the two models to GNSS-derived vertical Total Electron Content (TEC) has been therefore implemented to retrieve the 3-D ionosphere electron density at specific locations where ionosonde data were available. In particular, the electron density profiles used in this study have been provided in the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project applying the Adaptive Ionospheric Profiler (AIP) to ionograms recorded at eight selected mid, high-latitude and polar ionosondes. The relevant GNSS-derived vertical TEC values have been obtained from the Global Ionosphere Maps (GIM) produced by the Center for Orbit Determination in Europe (CODE). The effectiveness of the IRI and NeQuick 2 in reconstructing the ionosphere electron density at the given locations and epochs has been primarily assessed in terms of statistical comparison between experimental and model-retrieved peak parameters values (foF2 and hmF2). The analysis results indicate that in general the models are equivalent in their ability to reproduce the critical frequency of the F2 layer and they also tend to overestimate the height of the peak electron density, especially during high solar activity periods. Nevertheless this tendency is more noticeable in NeQuick 2 than in IRI. For completeness, the statistics indicating the models bottomside reconstruction capabilities, computed as height integrated electron density profile mismodeling, will also be discussed.

  14. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  15. Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken Gap Heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Droubay, Timothy C.; Jeong, Jong S.

    2016-01-21

    Two-dimensional (2D) ultra-high carrier densities at complex oxide interfaces are of considerable current research interest for novel plasmonic and high charge-gain devices. However, the highest 2D electron density obtained in oxide heterostructures is thus far limited to 3×1014 cm-2 (½ electron/unit cell/interface) at GdTiO3/SrTiO3 interfaces, and is typically an order of magnitude lower at LaAlO3/SrTiO3 interfaces. Here we show that carrier densities much higher than 3×1014 cm-2 can be achieved via band engineering. Transport measurements for 3 nm SrTiO3/t u.c. NdTiO3/3 nm SrTiO3/LSAT (001) show that charge transfer significantly in excess of the value expected from the polar discontinuity modelmore » occurs for higher t values. The carrier density remains unchanged, and equivalent to ½ electron/unit cell/interface for t < 6 unit cells. However, above a critical NdTiO3 thickness of 6 u.c., electrons from the valence band of NdTiO3 spill over into the SrTiO3 conduction band as a natural consequence of the band alignment. An atomistic model consistent with first-principle calculations and experimental results is proposed for the charge transfer mechanisms. These results may provide an exceptional route to the realization of the room-temperature oxide electronics.« less

  16. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.

    PubMed

    Michael, J Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7 (Paturle & Coppens, 1988). In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.

  17. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  18. First principles predictions of electronic and elastic properties of BaPb2As2 in the ThCr2Si2-type structure

    NASA Astrophysics Data System (ADS)

    Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.

    2018-01-01

    A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.

  19. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  20. Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa

    NASA Astrophysics Data System (ADS)

    Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.

    2018-04-01

    An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.

  1. Simple and exact approach to the electronic polarization effect on the solvation free energy: formulation for quantum-mechanical/molecular-mechanical system and its applications to aqueous solutions.

    PubMed

    Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki

    2012-06-07

    We present a simple and exact numerical approach to compute the free energy contribution δμ in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy δμ can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy δμ agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.

  2. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Lustbader, J.; Musselman, M.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  3. Time-dependent spin-density-functional-theory description of He+-He collisions

    NASA Astrophysics Data System (ADS)

    Baxter, Matthew; Kirchner, Tom; Engel, Eberhard

    2017-09-01

    Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.

  4. Computational predictions of zinc oxide hollow structures

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  5. Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.

  6. Evolution of the orbitals Dy-4f in the DyB2 compound using the LDA, PBE approximations, and the PBE0 hybrid functional

    NASA Astrophysics Data System (ADS)

    Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel

    2018-04-01

    Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.

  7. Disorder and defects are not intrinsic to boron carbide

    NASA Astrophysics Data System (ADS)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  8. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  9. Structural and electron charge density studies of a nonlinear optical compound 4,4 di-methyl amino cyano biphenyl

    NASA Astrophysics Data System (ADS)

    Naima, Boubegra; Abdelkader, Chouaih; Mokhtaria, Drissi; Fodil, Hamzaoui

    2014-01-01

    The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å-1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I >= 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.

  10. Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality

    NASA Astrophysics Data System (ADS)

    de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.

    2010-09-01

    Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.

  11. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation withmore » a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).« less

  12. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  13. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  14. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  15. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).

  16. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  17. Study of the Auger line shape of polyethylene and diamond

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Pepper, S. V.

    1984-01-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.

  18. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  19. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  20. Experimental and theoretical study of topology and electronic correlations in PuB4

    NASA Astrophysics Data System (ADS)

    Choi, Hongchul; Zhu, Wei; Cary, S. K.; Winter, L. E.; Huang, Zhoushen; McDonald, R. D.; Mocko, V.; Scott, B. L.; Tobash, P. H.; Thompson, J. D.; Kozimor, S. A.; Bauer, E. D.; Zhu, Jian-Xin; Ronning, F.

    2018-05-01

    We synthesize single crystals of PuB4 using an Al-flux technique. Single-crystal diffraction data provide structural parameters for first-principles density functional theory (DFT) calculations. By computing the density of states, the Z2 topological invariant using the Wilson loop method, and the surface electronic structure from slab calculations, we find that PuB4 is a nonmagnetic strong topological insulator with a band gap of 254 meV. Our magnetic susceptibility, heat capacity, and resistivity measurements are consistent with this analysis, albeit with a smaller gap of 35 meV. DFT plus dynamical mean-field theory calculations show that electronic correlations reduce the size of the band gap, and provide better agreement with the value determined by resistivity. These results demonstrate that PuB4 is a promising actinide material to investigate the interplay of electronic correlations and nontrivial topology.

  1. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    NASA Astrophysics Data System (ADS)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  2. An investigation of the ionospheric D region at sunrise

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Sechrist, C. F., Jr.

    1970-01-01

    The growth over sunrise of the C and D layers of the ionosphere is investigated. The model which is analyzed includes the negative ion species O(-), O2(-), O3(-), O4(-), NO3(-), CO3(-), and CO4(-). Ionization sources due to galactic cosmic rays, precipitated electrons, ionization of NO by scattered Lyman alpha radiation, and the direct solar radiation ionization are also included. The photodetachment of most of the negative ions is discussed, as well as the time variation of these parameters. The time variations of the electron, negative ion, and positive ion densities are calculated over sunrise. From these data, the mesospheric C and D layer development is plotted. Several model parameters are varied until the best agreement with experimentally determined electron densities is obtained. The results are discussed in light of several atmospheric parameters including the O and NO concentrations and the electron-ion recombination coefficient.

  3. Comparison of ONIX simulation results with experimental data from the BATMAN testbed for the study of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu

    2016-10-01

    The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.

  4. Numerical simulation of current-free double layers created in a helicon plasma device

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  5. High-resolution Compton scattering study of the electron momentum density in Al

    NASA Astrophysics Data System (ADS)

    Ohata, T.; Itou, M.; Matsumoto, I.; Sakurai, Y.; Kawata, H.; Shiotani, N.; Kaprzyk, S.; Mijnarends, P. E.; Bansil, A.

    2000-12-01

    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's and their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are, however, discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff that is broader, and display a tail that is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.

  6. Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Paul, Souvik; Iuşan, Diana; Thunström, Patrik; Kvashnin, Yaroslav O.; Hellsvik, Johan; Pereiro, Manuel; Delin, Anna; Knut, Ronny; Phuyal, Dibya; Lindblad, Andreas; Karis, Olof; Sanyal, Biplab; Eriksson, Olle

    2018-03-01

    Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA +U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3 d states, whereas the LDA +U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3 d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3 d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

  7. Density functional calculations of the Mössbauer parameters in hexagonal ferrite SrFe12O19

    NASA Astrophysics Data System (ADS)

    Ikeno, Hidekazu

    2018-03-01

    Mössbauer parameters in a magnetoplumbite-type hexagonal ferrite, SrFe12O19, are computed using the all-electron band structure calculation based on the density functional theory. The theoretical isomer shift and quadrupole splitting are consistent with experimentally obtained values. The absolute values of hyperfine splitting parameters are found to be underestimated, but the relative scale can be reproduced. The present results validate the site-dependence of Mössbauer parameters obtained by analyzing experimental spectra of hexagonal ferrites. The results also show the usefulness of theoretical calculations for increasing the reliability of interpretation of the Mössbauer spectra.

  8. Modulated two-dimensional charge-carrier density in LaTiO3-layer-doped LaAlO3/SrTiO3 heterostructure.

    PubMed

    Nazir, Safdar; Bernal, Camille; Yang, Kesong

    2015-03-11

    The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

  9. Improved analysis techniques for cylindrical and spherical double probes.

    PubMed

    Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron

    2012-07-01

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.

  10. Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by charge flipping method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov

    2012-10-15

    Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less

  11. Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb

    NASA Astrophysics Data System (ADS)

    Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.

    2018-02-01

    We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.

  12. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory.

    PubMed

    Inkaya, Ersin; Dinçer, Muharrem; Sahan, Emine; Yıldırım, Ismail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, (1)H NMR, (13)C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z=2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory

    NASA Astrophysics Data System (ADS)

    İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.

  14. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  15. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.

    PubMed

    Soniat, Marielle; Rogers, David M; Rempe, Susan B

    2015-07-14

    A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.

  16. Anti-levitation of Landau levels in vanishing magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  18. A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds.

    PubMed

    Grabowsky, Simon; Pfeuffer, Thomas; Morgenroth, Wolfgang; Paulmann, Carsten; Schirmeister, Tanja; Luger, Peter

    2008-07-07

    In order to contribute to a rational design of optimised protease inhibitors which can covalently block the nucleophilic amino acids of the proteases' active sites, we have chosen three model compounds (aziridine , oxirane and acceptor-substituted olefin ) for the examination of their electron-density distribution. Therefore, high-resolution low temperature (9, 27 and 100 K) X-ray diffraction experiments on single-crystals were carried out with synchrotron and conventional X-radiation. It could be shown by the analysis of the electron density using mainly Bader's Theory of Atoms in Molecules, Volkov's EPMM method for interaction energies, electrostatic potentials and Gatti's Source Function that aziridine is most suitable for drug design in this field. A regioselective nucleophilic attack at carbon atom C1 could be predicted and even hints about the reaction's stereoselectivity could be obtained. Moreover, the comparison between two data sets of aziridine (conventional X-ray source vs. synchrotron radiation) gave an estimate concerning the reproducibility of the quantitative results.

  19. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao

    2016-05-05

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less

  20. Reflection and backscattering of microwaves under doubling of the plasma density and displacement of the gyroresonance region during electron cyclotron resonance heating of plasma in the l-2M stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.

    Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k{sub ⊥} ≈ 30 cm{sup –1}) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence ismore » discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.« less

  1. Two-component density functional theory calculations of positron lifetimes for small vacancy clusters in silicon

    NASA Astrophysics Data System (ADS)

    Makhov, D. V.; Lewis, Laurent J.

    2005-05-01

    The positron lifetimes for various vacancy clusters in silicon are calculated within the framework of the two-component electron-positron density functional theory. The effect of the trapped positron on the electron density and on the relaxation of the structure is investigated. Our calculations show that, contrary to the usual assumption, the positron-induced forces do not compensate in general for electronic inward forces. Thus, geometry optimization is required in order to determine positron lifetime accurately. For the monovacancy and the divacancy, the results of our calculations are in good agreement with the experimental positron lifetimes, suggesting that this approach gives good estimates of positron lifetimes for larger vacancy clusters, required for their correct identification with positron annihilation spectroscopy. As an application, our calculations show that fourfold trivacancies and symmetric fourfold tetravacancies have positron lifetimes similar to monovacancies and divacancies, respectively, and can thus be confused in the interpretation of positron annihilation experiments.

  2. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE PAGES

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; ...

    2018-01-05

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  3. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  4. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  5. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  6. Investigation on the electron flux to the wall in the VENUS ion source

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.

    2016-02-01

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.

  7. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  8. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets.

    PubMed

    Poludniowski, Gavin G; Evans, Philip M

    2007-06-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.

  9. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  10. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    PubMed Central

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  11. High-energy side-peak emission of exciton-polariton condensates in high density regime

    PubMed Central

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  12. Estimating loop length from CryoEM images at medium resolutions.

    PubMed

    McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing

    2013-01-01

    De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.

  13. Reentrant Metal-Insulator Transitions in Silicon -

    NASA Astrophysics Data System (ADS)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by considering a variety of samples with a wide range of mobilities and by varying the ratio of the carrier density (controlled by the applied gate voltage) to the impurity density (fixed during sample growth). A phase diagram showing the boundaries between the two dimensional electron gas, the Wigner solid, and the single particle localization induced insulator is established in terms of carrier density and sample mobility.

  14. Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Kresin, Vitaly V.

    Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less

  15. Electron collection theory for a D-region subsonic blunt electrostatic probe

    NASA Technical Reports Server (NTRS)

    Wai-Kwong Lai, T.

    1974-01-01

    Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.

  16. Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots

    DOE PAGES

    Halder, Avik; Kresin, Vitaly V.

    2016-08-09

    Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less

  17. Spectral ellipsometry studying of iron's optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Chernukha, Yevheniia; Stashchuk, Vasyl S.; Polianska, Olena; Oshtuk, Olexsandr

    2014-05-01

    Fe's optical and electronic properties were investigated at room temperature in different structural states. The sample's surface was explored in wide spectral range λ = 0,23-17,0 μm (E = 4,96 - 0,07 еV ) by the Beatty's spectral ellipsometry method. While an experiment was carried out ellipsometry parameters Δ and ψ were measure near the principal angle of incidence. The refraction index R , permittivity Ɛ and optical conductivity σ( hν ) , that is proportional to the interband density of electronic states, were calculated using these parameters. Fe's optical conductivities in liquid, amorphous and crystalline states were compared in this work. The optical conductivity was calculated using the published data of the iron's density of electronic states in crystalline, amorphous and liquid states for the comparison of the experimental and theoretical results. It is shown that, at structural transformations "amorphous, liquid state- crystalline state", the optical properties of metallic iron are determined, in the first turn, by the nearest neighborhood, and the electronic structure is not subjected to significant modifications.

  18. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  19. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  20. Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.

    PubMed

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  1. Copper interstitial recombination centers in Cu 3 N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam

    We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less

  2. Copper interstitial recombination centers in Cu 3 N

    DOE PAGES

    Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; ...

    2018-06-04

    We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less

  3. Linear free-energy relationships and the density functional theory: an analog of the hammett equation.

    PubMed

    Simón-Manso, Yamil

    2005-03-10

    Density functional theory has been applied to describe electronic substituent effects, especially in the pursuit of linear relationships similar to those observed from physical organic chemistry experiments. In particular, analogues for the Hammett equation parameters (sigma, rho) have been developed. Theoretical calculations were performed on several series of organic molecules in order to validate our model and for comparison with experimental results. The trends obtained by Hammett-like relations predicted by the model were found to be in qualitative agreement with the experimental data. The results obtained in this study suggest the applicability of similar correlation analysis based on theoretical methodologies that do not make use of empirical fits to experimental data can be useful in the study of substituent effects in organic chemistry.

  4. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demján, Tamás; Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest; Vörös, Márton

    2014-08-14

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSEmore » approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.« less

  5. Inductive Electron Heating Revisited

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.

    1996-11-01

    Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.

  6. A density functional theory (DFT) and time-dependent density functional theory (TDDFT) study on optical transitions in oligo(p-phenylenevinylene)-fullerene dyads and the applicability to resonant energy transfer.

    PubMed

    Toivonen, Teemu L J; Hukka, Terttu I

    2007-06-07

    The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.

  7. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  8. A generalized operational formula based on total electronic densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and electrophilic sites accurately on closed-shell molecules.

    PubMed

    Martínez-Araya, Jorge I

    2016-09-30

    By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Kashcheyev, A.

    2017-01-01

    Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.

  10. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less

  11. Study of the Generation of Intense Pulsed Electron Beams Using Glow Discharges

    DTIC Science & Technology

    1988-02-01

    de Investigaciones Opticas, Rep. Argentina. (2) On leave from PROFET (UNCPBA) Programa de Fisica Experimental Tandil, Rep. Argentina. (3) Edwards... de Investigaciones Opticas, (CIC-BA) Rep. Argentina. Section III-D. Measurements of the plasma density andB. T. Szapiro is on leave from Programa de ...discussed. The radial profiles Szapiro was supported by a fellowship from the Universidad Nacional de show the presence of a high-current-density

  12. Fission of Multielectron Bubbles in Liquid Helium Under Electric Fields

    NASA Astrophysics Data System (ADS)

    Vadakkumbatt, V.; Ghosh, A.

    2017-06-01

    Multielectron bubbles (MEBs) are cavities in liquid helium which contain a layer of electrons trapped within few nanometres from their inner surfaces. These bubbles are promising candidates to probe a system of interacting electrons in curved geometries, but have been subjected to limited experimental investigation. Here, we report on the observation of fission of MEBs under strong electric fields, which arises due to fast rearrangement of electrons inside the bubbles, leading to their deformation and eventually instability. We measured the electrons to be distributed unequally between the daughter bubbles which could be used to control the charge density inside MEBs.

  13. Adiabatic electron thermal pressure fluctuations in tokamak plasmas.

    PubMed

    Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J

    2001-08-20

    Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.

  14. Vacancy effects on the electronic and structural properties pentacene

    NASA Astrophysics Data System (ADS)

    Laraib, Iflah; Janotti, Anderson

    Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.

  15. Highly intensified emission of laser-accelerated electrons from a foil target through an additional rear laser plasma

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Nakamiya, Yoshihide; Teramoto, Kensuke; Hashida, Masaki; Sakabe, Shuji

    2018-04-01

    Intensification of electrons escaping from an intense laser-produced plasma is demonstrated by using double femtosecond laser pulses. The electron density distribution at the rear surface of a laser-irradiated foil target is controlled by preirradiation to suppress sheath field growth and to expand the plasma into which the fast electrons are released. Consequently, the number of electrons escaping from the plasma that have an energy of 380 keV increases by a factor of 7. The experimental results are well explained by numerical simulations of a foil plasma with a preformed plasma and analytical evaluations considering the plasma expansion.

  16. Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro

    2014-07-01

    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.

  17. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    NASA Astrophysics Data System (ADS)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  18. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal

    PubMed Central

    Lundholm, Ida V.; Rodilla, Helena; Wahlgren, Weixiao Y.; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-01-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed. PMID:26798828

  19. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.

    PubMed

    Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-09-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

  20. Combined hybrid functional and DFT+U calculations for metal chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr

    2014-07-28

    In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE)more » hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.« less

  1. Ultra-high-resolution X-ray structure of proteins.

    PubMed

    Lecomte, C; Guillot, B; Muzet, N; Pichon-Pesme, V; Jelsch, C

    2004-04-01

    The constant advances in synchrotron radiation sources and crystallogenesis methods and the impulse of structural genomics projects have brought biocrystallography to a context favorable to subatomic resolution protein and nucleic acid structures. Thus, as soon as such precision can be frequently obtained, the amount of information available in the precise electron density should also be easily and naturally exploited, similarly to the field of small molecule charge density studies. Indeed, the use of a nonspherical model for the atomic electron density in the refinement of subatomic resolution protein structures allows the experimental description of their electrostatic properties. Some methods we have developed and implemented in our multipolar refinement program MoPro for this purpose are presented. Examples of successful applications to several subatomic resolution protein structures, including the 0.66 angstrom resolution human aldose reductase, are described.

  2. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  3. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  4. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    DOE PAGES

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-09

    We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less

  5. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaezi, P.; Holland, C.; Thakur, S. C.

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  7. Modelling Of Chlorine Inductive Discharges

    NASA Astrophysics Data System (ADS)

    Chabert P.; Despiau-Pujo, E.

    2010-07-01

    III-V compounds such as GaAs, InP or GaN-based materials are increasingly important for their use in optoelectronic applications, especially in the telecommunications and light detection industries. Photonic devices including lasers, photodetectors or LEDs, require reliable etching processes characterized by high etch rate, profile control and low damage. Although many problems remain to be understood, inductively coupled discharges seem to be promising to etch such materials, using Cl2/Ar, Cl2/N2 and Cl2/H2 gas chemistries. Inductively coupled plasma (ICP) sources meet most of the requirements for efficient plasma processing such as high etch rates, high ion densities and low controllable ion energies. However, the presence of a negative ion population in the plasma alters the positive ion flux, reduces the electron density, changes the electron temperature, modifies the spatial structure of the discharge and can cause unstable operation. Several experimental studies and numerical simulation results have been published on inductively coupled Cl2/Ar plasmas but relatively few systematic comparisons of model predictions and experimental data have been reported in given reactor geometries under a wide range of op- erating conditions. Validation of numerical predictions is essential for chemically complex plasma processing and there is a need to benchmark the models with as many measurements as possible. In this paper, comparisons of 2D fluid simulations with experimental measurements of Ar/Cl2 plasmas in a low pressure ICP reactor are reported (Corr et al. 2008). The electron density, negative ion fraction and Cl atom density are investigated for various conditions of Ar/Cl2 ratio, gas pressure and applied RF power in H mode. Simulations show that the wall recombination coefficient of Cl atom (?) is a key parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for ? = 0.02, which is much lower than the value predicted for stainless steel walls (? = 0.6). This is consistent with reactor wall contaminations classi- cally observed in such discharges. The plasma electronegativity decreases with RF power and increases with Cl2 content. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experi- mental trends are well reproduced by the model, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper. Experimental studies have also shown that low-pressure inductive discharges operating with electronegative gases are subject to instabilities near the transition between capacitive (E) and inductive (H) modes. A global model, consisting of two particle balance equations and one energy balance equation, has been previously proposed to describe the instability mechanism in SF6/ArSF6 (Lieberman et al. 1999). This model, which agrees qualitatively well with experimental observations, leaves significant quantitative differences. In this work, this global model is revisited with Cl2 as the feedstock gas (Despiau-Pujo and Chabert 2009). An alternative treatment of the inductive power deposition is evaluated and chlorine chemistry is included. Old and new models are systematically compared. The alternative inductive coupling description slightly modifies the results. The effect of gas chemistry is even more pronounced. The instability window is smaller in pressure and larger in absorbed power, the frequency is higher and the amplitudes of oscillations are reduced. The feedstock gas is weakly dissociated (~16%) and Cl2+ is the dominant positive ion, which is consistent with the moderate electron density during the instability cycle.

  8. Simple and universal model for electron-impact ionization of complex biomolecules

    NASA Astrophysics Data System (ADS)

    Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.

    2018-03-01

    We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.

  9. Phonon-Mediated Tunneling into Graphene

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Grigorenko, I.; Lichtenstein, A. I.; Balatsky, A. V.

    2008-11-01

    Recent scanning tunneling spectroscopy experiments on graphene reported an unexpected gap of about ±60meV around the Fermi level [V. W. Brar , Appl. Phys. Lett.APPLAB0003-6951 91, 122102 (2007); 10.1063/1.2771084Y. Zhang , Nature Phys.NPAHAX1745-2481 4, 627 (2008)10.1038/nphys1022]. Here we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon-mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab initio theory and present a model for the electron-phonon interaction, which couples the graphene’s Dirac electrons with quasifree-electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated, and its effects on tunneling into graphene are discussed. Good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  10. Phonon mediated tunneling into graphene

    NASA Astrophysics Data System (ADS)

    Wehling, Tim; Grigorenko, Ilya; Lichtenstein, Alexander; Balatsky, Alexander

    2009-03-01

    Recent scanning tunneling spectroscopy experiments [V. W. Brar et al., Appl. Phys. Lett. 91, 122102 (2007); Y. Zhang et al., Nature Phys. 4, 627 (2008)] on graphene reported an unexpected gap of about ±60,eV around the Fermi level. Here, we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab-initio theory and present a model for the electron-phonon interaction, which couples the graphene's Dirac electrons with quasi free electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated and its effects on tunneling into graphene are discussed. In particular, good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found.

  11. Structural and electronic properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  12. Bunch Length Measurements Using CTR at the AWA with Comparison to Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neveu, N.; Spentzouris, L.; Halavanau, A.

    In this paper we present electron bunch length measurements at the Argonne Wakefield Accelerator (AWA) photoinjector facility. The AWA accelerator has a large dynamic charge density range, with electron beam charge varying between 0.1 nC - 100 nC, and laser spot size diameter at the cathode between 0.1 mm - 18 mm. The bunch length measurements were taken at different charge densities using a metallic screen and a Michelson interferometer to perform autocorrelation scans of the corresponding coherent transition radiation (CTR). A liquid helium-cooled 4K bolometer was used to register the interferometer signal. The experimental results are compared with OPAL-Tmore » numerical simulations.« less

  13. Density and fluence dependence of lithium cell damage and recovery characteristics

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1971-01-01

    Experimental results on lithium-containing solar cells point toward the lithium donor density gradient dN sub L/dw as being the crucial parameter in the prediction of cell behavior after irradiation by electrons. Recovery measurements on a large number of oxygen-rich and oxygen-lean lithium cells have confirmed that cell recovery speed is directly proportional to the value of the lithium gradient for electron fluences. Gradient measurements have also been correlated with lithium diffusion schedules. Results have shown that long diffusion times (25 h) with a paint-on source result in large cell-to-cell variations in gradient, probably due to a loss of the lithium source with time.

  14. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  15. Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Kurz, R. J.; Viehmann, W.

    1973-01-01

    The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.

  16. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  17. Effect of oxygen impurities on properties of the ternary superconductor SnMo/sub 6/S/sub 8/: Extended x-ray-absorption fine-structure determination of bond distances and local-density cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenzburger, D.; Ellis, D.E.; Montano, P.A.

    1985-10-01

    Electronic structure calculations were performed for clusters representing the Chevrel-phase SnMo/sub 6/S/sub 8/, with and without oxygen doping. In order to obtain the local structure around the Sn atom, extended x-ray-absorption fine-structure (EXAFS) measurements were made with synchro- tron radiation. The interatomic distances obtained experimentally were used in the calculations. The effect of oxygen doping on the Moessbauer isomer shift and quadrupole splitting values of /sup 119/Sn was investigated theoretically and compared with reported experimental values. The effect of oxygen substitution on the density of states at the Fermi energy of the (Mo/sub 6/S/sub 8/)/sup 2 -/ cluster was alsomore » studied. The results suggest that oxygen doping does not alter significantly the electronic structure of SnMo/sub 6/S/sub 8/.« less

  18. Surface plasmon polaritons in a topological insulator embedded in an optical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. L., E-mail: lllihfcas@foxmail.com; Xu, W., E-mail: wenxu-issp@aliyun.com; Department of Physics, Yunnan University, Kunming 650091

    Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidthmore » and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.« less

  19. Surface plasmon polaritons in a topological insulator embedded in an optical cavity

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Xu, W.

    2014-03-01

    Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidth and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.

  20. Hybrid density functional theory band structure engineering in hematite

    NASA Astrophysics Data System (ADS)

    Pozun, Zachary D.; Henkelman, Graeme

    2011-06-01

    We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.

Top