Science.gov

Sample records for experimental field studies

  1. Experimental studies of sound field suppression at discrete frequencies

    NASA Astrophysics Data System (ADS)

    Fiks, I. Sh.; Korotin, P. I.; Potapov, O. A.; Fiks, G. E.

    2016-03-01

    Practical implementation of an active sound control system ensuring sound suppression in outer space is described as applied to sound insulation problems for equipment whose total noise level is mainly due to low-frequency discrete spectral components. The operational principle of the proposed system is based on inverse field generation with respect to the field of the initial source of quasi-monochromatic signals. The inverse field is formed by a set of radiators, which are controlled by the signals of pressure receivers positioned in the near field of the source. Experimental studies carried out with the proposed sound control system demonstrate its efficiency and testify to the stability of its operation.

  2. Phreatomagmatic explosive eruption processes informed by field and experimental studies

    NASA Astrophysics Data System (ADS)

    Valentine, Greg; Graettinger, Alison; Sonder, Ingo

    2015-04-01

    Phreatomagmatic explosive eruptions occur during the lifetime of nearly every volcano. Maar-diatremes form excellent case studies to understand such eruptions because most of these volcanoes are monogenetic so that the effects of the dominant phreatomagmatic activity are not overprinted by other processes as might occur at a polygenetic volcano. Diatremes preserve evidence of magma injection and explosions at various levels, in the form of irregularly shaped intrusions and vertical domains of country rock breccia and pyroclasts, and usually have subsidence features around the outer parts. Field data on intrusions in diatremes give analog information on the sizes of magma batches that might fuel phreatomagmatic explosions, and therefore the energies of individual explosions. Tephra rings often are dominated by country rock clasts, with progressively deeper-seated clasts appearing at progressively higher stratigraphic levels in the tephra. Scaled experiments with buried explosives show that only shallow explosions (<200 m) can deposit material onto tephra rings, and coarse ballistics are emplaced onto tephra rings mainly by explosions less than 100 m deep; therefore the presence of deep-seated lithics is related to mixing by multiple (non-erupting) explosions at various depths within the diatremes, not necessarily to progressive deepening of explosions. Excavation of experimental craters shows that mixing occurs through a combination of upward displacement and progressive disaggregation of host material domains, and marginal subsidence. Experimental explosion jets show a range of behaviors that depend on the scaled depth of explosions (physical depth scaled against explosion energy) and on the effects of pre-explosion crater morphology. Many scaled depth and pre-explosion crater combinations result in jets that collapse back into the crater and expel fine-grained density currents that travel radially outward. Field observations of fine-grained ash beds in tephra

  3. Review of Experimental Concepts for Studying the Quantum Vacuum Field

    SciTech Connect

    Davis, E. W.; Puthoff, H. E.; Teofilo, V. L.; Nickisch, L. J.; Rueda, A.; Cole, D. C.

    2006-01-20

    We review concepts that provide an experimental framework for exploring the possibility and limitations of accessing energy from the space vacuum environment. Quantum electrodynamics (QED) and stochastic electrodynamics (SED) are the theoretical approaches guiding this experimental investigation. This investigation explores the question of whether the quantum vacuum field contains useful energy that can be exploited for applications under the action of a catalyst, or cavity structure, so that energy conservation is not violated. This is similar to the same technical problem at about the same level of technology as that faced by early nuclear energy pioneers who searched for, and successfully discovered, the unique material structure that caused the release of nuclear energy via the neutron chain reaction.

  4. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  5. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun

    2016-11-01

    Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.

  6. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  7. Experimental studies of collective excitations of a BEC in light-induced gauge fields

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Niffenegger, Robert; Blasing, David; Olson, Abraham; Chen, Yong P.

    2015-05-01

    We present our experimental studies of collective modes including spin dipole mode and scissors mode of a 87Rb Bose-Einstein condensate (BEC) in the presence of Raman light-induced gauge fields and synthetic spin-orbit coupling (SOC). By Raman dressing the mf spin states within the F =1 manifold, we engineer atoms' energy-momentum dispersion to create synthetic SOC, and spin dependent synthetic electric and magnetic fields. We have used spin dependent synthetic electric fields to make two BECs with different spins oscillate and collide in the optical trap. We have studied the effects of SOC on both the momentum damping and thermalization behaviors of the BECs when undergoing such spin dipole oscillations. We have also used spatially dependent synthetic electric fields to excite the scissors mode, which has been used as a probe for superfluidity. We have investigated the effects of the synthetic gauge fields and SOC on the measured scissors mode.

  8. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields. PMID:24663998

  9. Experimental study of the formation of field-reversed configurations employing high-order multipole fields

    NASA Astrophysics Data System (ADS)

    Slough, J. T.; Hoffman, A. L.

    1990-04-01

    A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough Bθ at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall Bθ (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez≤3 V/cm, and Eθ≤20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.

  10. Theoretical and experimental studies of microwave radiation from a natural snow field

    NASA Technical Reports Server (NTRS)

    Tiuri, M.; Schultz, H.

    1980-01-01

    The brightness temperature of a natural snow field in northern Europe was studied theortically and experimentally at 5, 12, and 37 GHz for satellite remote sensing applications. A snow model consisting of ice spheres covered by a water shell was used in calculation, taking into account scattering and absorption. The brightness temperature of a natural snow field as a function of view angle was measured from a tower in 1978 and 1979. The measured brightness temperature curves can be fitted with calculated ones by assuming reasonable values for the wetness and the particle size of snow. Experimental results also show that relatively small changes in the snow conditions cause large changes in the brightness temperature. In order to obtain a more controlled situation, experiments were continued in 1980 using a measuring site covered with aluminum sheets and determining the wetness and the particle size in addition to the density and physical temperature.

  11. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    SciTech Connect

    Terasaka, K.; Ogiwara, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.

    2010-07-15

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |f{sub ci}L{sub B}/V{sub i}| becomes order unity, where f{sub ci}, L{sub B}, and V{sub i} are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the ExB rotation driven by the radial electric field.

  12. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  13. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.

    PubMed

    Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2013-10-17

    When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.

  14. An Experimental Study of the Effects of A Rotating Magnetic Field on Electrically Conducting Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Ramachandran Narayanan; Mazuruk, Konstantin

    1998-01-01

    The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.

  15. Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.

    NASA Astrophysics Data System (ADS)

    Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.

    The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' ­ 09°10'00''N, 70°13'49'' ­ 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 ­ 36, respectively, for the five-month experiment, and by a factor 30 ­ 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.

  16. An experimental and numerical study of flames in narrow channels with electric fields

    NASA Astrophysics Data System (ADS)

    Murphy, D. C.; Sánchez-Sanz, M.; Fernandez-Pello, C.

    2014-11-01

    The advancement of microscale combustion has been limited by quenching effects as flames cease to be much smaller than combustors. The long studied sensitivity of flames to electrical effects may provide means to overcome this issue. Here we experimentally and numerically investigate the potential of electric field effects to enhance combustion. The results demonstrate that, under specific conditions, externally electric fields will sustain combustion in structures smaller than the quenching distance. The analysis proposes a reduced mechanism to model this result and provides a study of the governing parameters. We find good qualitative agreement between the model and experiments. Specifically, the model is found to successfully capture the capacity to increase and decrease flame speed according to electric field magnitude and direction. Further, in both experiments and computations the sensitivity to electrical enhancement increases for more energetic mixtures. We do find that the model underpredicts the maximum achievable speed enhancement observed, suggesting that additional phenomena should be included to expand the range of conditions that can be studied.

  17. Analysis of water movement in paddy rice fields (I) experimental studies

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Liu, Chen Wuing

    2002-03-01

    For the purpose of increasing the amount of ground water recharge, we investigated the hydraulic characteristics of water infiltration in a flooded paddy rice field in Ten-Chung, Chung-Hwa county, Taiwan. Experimental results based on mini-tensiometers and double ring infiltrometer measurements indicated that the least permeable layer occurred at the interface of the puddled topsoil and non-puddled subsoil. The average thickness of this layer was about 7.5 cm and saturated hydraulic conductivity ranged from 0.034 to 0.083 cm/day. Vertical infiltration flow was saturated within the plow sole layer and became unsaturated in the subsoil below the plow sole layer. The hydraulic conductivity of the subsoil, 20-30 times greater than that of the plow sole layer, revealed that the subsoil was more permeable than the plow sole layer. In situ measurements also demonstrated that breakage of the plow sole layer increased infiltration rate by a factor of 3.7. Increasing ponded water depth from 6 to 16 cm increased infiltration 1.5 fold. It is suggested that using the fallow paddy rice fields without puddling is a feasible way to enhance groundwater recharge, but for cultivated paddy rice fields, breaking the plow sole needs further study in terms of its recoverability and because of the potential contamination of the shallow aquifer by agrochemicals. The experimental data can be applied in numerical simulation models to quantify detailed water movement mechanisms and accurately estimate the amount of ground water recharge in paddy rice fields.

  18. Experimental study of the nonlinear diffusion of a magnetic field and skin explosion of cylindrical conductors

    SciTech Connect

    Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Rybka, D. V.; Ratakhin, N. A.; Oreshkin, V. I.

    2015-11-15

    The paper presents the results of an experimental study of the skin explosion of cylindrical conductors of diameter 1–3 mm (copper, aluminum, titanium, steel 3, and stainless steel) at a peak magnetic field of 200–600 T. The experiments were carried out on the MIG pulsed power generator at a current of up to 2.5 MA and a current rise time of 100 ns. The surface explosion of a conductor was identified by the appearance of a flash of extreme ultraviolet radiation. A minimum magnetic induction has been determined below which no plasma is generated at the conductor surface. For copper, aluminum, steel 3, titanium, and stainless steel, the minimum magnetic induction has been estimated to be (to within 10%) 375, 270, 280, 220, and 245 T, respectively.

  19. Experimental study of the effects of alternating fields on HTS coils according to the winding insulation conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Y. J.; Ahn, M. C.; Lee, T. S.; Lee, W. S.; Ko, T. K.

    2013-08-01

    This paper examines the effects of alternating fields on high-temperature superconducting (HTS) coils according to the winding insulation condition. Alternating fields can occur in synchronous machines (armature reaction, faults) and other devices. In superconducting synchronous machines, alternating fields affect the operational characteristics of the machine and the superconducting field coil. Therefore, a method of reducing the effects of alternating fields is necessary in superconducting synchronous design. In this study, the effects of alternating fields on the HTS field coil according to the winding insulation condition were experimentally evaluated. The experimental results show that HTS coils made using the no-insulation technique can be a solution for reducing the effects of the alternating field. These results are expected to suggest useful data for applications of HTS field coils in superconducting synchronous machines.

  20. Experimental study of effects of tip geometry on the flow field in a turbine cascade passage

    NASA Astrophysics Data System (ADS)

    Ma, Hongwei; Wang, Lixiang

    2015-02-01

    This study investigates the effects of blade tip geometry on the flow field of a turbine cascade at the incidence angle of 0 degree experimentally. The tests were performed in a low-speed turbine cascade wind tunnel. The Reynolds number based on the blade chord was about 172300 at the exit. Traverses of the exit flow field were made in order to measure the overall performance. The effects of using flat tip and grooved tip with a chord-wise channel were studied. The case with the flat tip is referenced as the baseline. The tip clearances are all 1 mm measuring 0.84 percent of the blade span. The depth of channel is 2mm. The flow field at 10% chord downstream from the cascade trailing edge was measured at 38 span-wise positions and 26 pitch-wise positions using a mini five-hole pressure probe. The static pressure distribution on the tip end wall is measured at 16 pitch-wise stations and 17 chord-wise stations. Results show that there exists great pressure gradient in the pressure side for the flat tip and the pressure side squealer tip, which means strong leakage flow. The pressure gradient from the pressure side to the suction side is greatly decreased for the grooved tip, and the resulting leakage flow is weaker. The core of the leakage vortex moves closer to the suction side for the pressure side squealer tip and farther away from the suction side for the suction side squealer tip. The pressure side squealer has little advantages over the flat tip in improving the flow capacity and reducing the overall losses. The suction side squealer tip and grooved tip can effectively decrease the intensity of the tip leakage vortex, improve the flow capacity and reduce loss of the turbine cascade passage and the grooved tip performs the best.

  1. Analysis of exposure to electromagnetic fields in a healthcare environment: simulation and experimental study.

    PubMed

    de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria

    2013-11-01

    Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.

  2. A method to integrate descriptive and experimental field studies at the level of data and empirical concepts1

    PubMed Central

    Bijou, Sidney W.; Peterson, Robert F.; Ault, Marion H.

    1968-01-01

    It is the thesis of this paper that data from descriptive and experimental field studies can be interrelated at the level of data and empirical concepts if both sets are derived from frequency-of-occurrence measures. The methodology proposed for a descriptive field study is predicated on three assumptions: (1) The primary data of psychology are the observable interactions of a biological organism and environmental events, past and present. (2) Theoretical concepts and laws are derived from empirical concepts and laws, which in turn are derived from the raw data. (3) Descriptive field studies describe interactions between behavioral and environmental events; experimental field studies provide information on their functional relationships. The ingredients of a descriptive field investigation using frequency measures consist of: (1) specifying in objective terms the situation in which the study is conducted, (2) defining and recording behavioral and environmental events in observable terms, and (3) measuring observer reliability. Field descriptive studies following the procedures suggested here would reveal interesting new relationships in the usual ecological settings and would also provide provocative cues for experimental studies. On the other hand, field-experimental studies using frequency measures would probably yield findings that would suggest the need for describing new interactions in specific natural situations. PMID:16795175

  3. Experimental and numerical studies on plasma behavior flowing across perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, T.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, N.

    2016-05-01

    To understand particle acceleration mechanisms in a collisionless shock, we have investigated the behaviors of a one-dimensional fast plasma flow in a perpendicular magnetic field by experimental and numerical simulations in a laboratory scale experiment. The velocity of the plasma flow generated by a taper-cone-shaped plasma focus device has varied by the gradient of the perpendicular magnetic field. The plasma flow has accelerated by applying the magnetic field with the negative gradient. To clarify the behavior of the plasma flow in the perpendicular magnetic field, numerical simulations based on an electromagnetic hybrid particle-in-cell (PIC) method have been carried out. These results indicate that the magnetic field gradient affects the plasma flow velocity.

  4. Experimental study of the effects of radiofrequency electromagnetic fields on animals with soft tissue wounds.

    PubMed

    Detlavs, I; Dombrovska, L; Turauska, A; Shkirmante, B; Slutskii, L

    1996-02-01

    The effect of radio frequency electromagnetic fields (RF EMF) was studied on Wistar rats with excised full-thickness dermal wounds in the interscapular region. The wounded regions of experimental animals were subjected to EMF for 30 min daily during the first 5 days after wound infliction. Control animals received no treatment. We used RF EMF with (1) frequency 53.53 GHz without modulation; (2) frequency 42.19 GHz without modulation; (3) frequency 42.19 GHz, but with a frequency modulation band 200-MHz wide. On the 7th day the animals were terminated and the granulation-fibrous tissue (GFT) developed in the wounds was subjected to complex quantitative biochemical analysis. RF EMF without frequency modulation decreased the amounts of glycoprotein macromolecules, diminishing the inflammatory exudation. In striking contrast, under the influence of RF EMF with frequency modulation, hexoses and especially sialic acid concentrations were significantly elevated (P < 0.001). This indicated intensification of exudative phenomena. As a consequence of inflammation inhibition in the treatment without frequency modulation, the total collagen accumulation was lowered. However, when frequency was modulated, the inflammatory phenomena were intensified, and pronounced accumulation of collagenous proteins was noted. Thus, our experiments confirm the effects of non-thermal EMF on the reparative-proliferative processes of animals with soft tissue wounds.

  5. An Experimental Study of the Near Field Region of a Free Jet with Passive Mixing Tabs

    NASA Technical Reports Server (NTRS)

    Bohl, D. G.; Foss, J. F.

    1997-01-01

    An experimental study was performed to determine the flow characteristics of a tabbed free jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static pressure distributions in both the x-and y-directions along the top surface of the tunnel. Hot-wire measurements showed rapid expansion of the core fluid into the ambient region. Two counter rotating regions of streamwise vorticity were shown on each side of the primary tab. An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs, half the scale of the primary tab, were added to the primary tab to provide attachment surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight increase in the streamwise vorticity created from the upstream static pressure gradient while significantly increasing the re-oriented boundary layer vorticity. The combined pumping effect of the two counter rotating regions of vorticity caused a significant increase in the transport of the jet core fluid into the surrounding region.

  6. The biomineralization and fossilization of magnetotactic bacteria: Insights from experimental and field studies

    NASA Astrophysics Data System (ADS)

    Pan, Y.; LI, J.; Menguy, N.; Deng, C.; Kissel, C.; Liu, Q.; Zhu, R.

    2015-12-01

    Magnetotactic bacteria (MTB) are widespread prokaryotes which can navigate along the Earth's magnetic field lines and produce tens to hundreds of nanocrystals of magnetite (Fe3O4) or/and greigite (Fe3S4) aligned in chain(s) within a cell. The remains of MTB (i.e. magnetofossils) within geological records have therefore been considered as potential recorders of paleomagnetic, paleoenvironmental and ancient-life signals. These intracellularly-formed nanocrystals, called magnetosomes, generally have distinctively physical, chemical and crystallographic features from those magnetic minerals produced by abiotic or extracellular mineralization processes, and therefore could be distinguished by rock magnetic and electron microscopic approaches. However, identification and quantification of magnetofossils from sediments or sedimentary rocks are nevertheless not straightforward not only due to their tiny sizes, relatively low concentration, always mixing with abiotic magnetic minerals, but also the chain collapse and crystal maghemization during post-depositional processes. Comprehensive studies on the biomineralization and fossilization of magnetosomes are therefore essential for unambiguously identifying and quantitating magnetofossils from geologic samples. In this presentation, we summarize the biomineralization processes and magnetic properties of magnetosome chains within modern cultured and uncultured MTB. Experimental studies on the effects of the chain aligning and collapsing on the magnetic properties of magnetosomes are discussed, which give useful clues to understand the possible occurrence of magnetofossils within natural materials and their corresponding magnetic changes. Recent findings in magnetofossils from marine and lake sediments, showing how to identify magnetofossils from sediments by using the comprehensive rock magnetism, ferromagnetic resonance, and transmission electron microscopy approaches, as well as their implications for sedimentary magnetism

  7. Driving Position Field Study, Differences with the Whiplash Protocol and Biomechanics Experimental Responses

    PubMed Central

    Arregui-Dalmases, Carlos; Pozo, Eduardo Del; Lessley, David; Barrios, Jose Manuel; Nombela, Mario; Cisneros, Oscar; de Miguel, Juan Luis; Seguí-Gómez, María

    2011-01-01

    Rear-impact collisions at low speed are a leading cause of economic costs among motor vehicle accidents. Recently, EuroNCAP has incorporated in its protocol the whiplash test, to reproduce a low-speed rear impact. This paper presents a field driving study to assess the potential differences between the EuroNCAP dummy tests and actual drivers in the field, focusing on occupant position and biomechanics experimental results. A total of 182 drivers were randomly selected in two geographical areas in Spain. The driving position of each driver was recorded with a focus on the most relevant measurements for rear impact. Statistical analysis was performed to obtain means, standard deviations and density functions to compare observational seating position with that of the EuroNCAP testing protocol. The observational data showed a similar seatback angle to that used in the EuroNCAP protocol (24° in front of 25° for the protocol), a greater distance between the head vertex and the top of the head restraint (53mm compared to 39.5mm), and less distance between the occipital bone of the head and the headrest (67.9 compared to 89.3mm). Based on these data, 4 dummy tests were conducted using the dummy BioRID IIg. The baseline test was designed to reproduce the dummy position according to EuroNCAP 3.0 whiplash protocol. Three different additional tests were defined to reproduce the actual observed driving position as well as to assess a “worst case” scenario in terms of reduced seatback angle. These variations in initial driver position, comparing the EuroNCAP protocol to the observational study results, were not observed to cause significant differences in the biomechanical values measured in the BioRID IIg, The T1 acceleration was reduced less than 8%, the NIC was increased about 8%, and the NKm presented a reduction of 20%. Reducing the seat angle was observed to be more harmful in terms of NIC. PMID:22105385

  8. Experimental and numerical study of error fields in the CNT stellarator

    NASA Astrophysics Data System (ADS)

    Hammond, K. C.; Anichowski, A.; Brenner, P. W.; Pedersen, T. S.; Raftopoulos, S.; Traverso, P.; Volpe, F. A.

    2016-07-01

    Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and fluorescent rod, and were computed by means of a Biot–Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton–Raphson algorithm searches for the coils’ displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm’s ability to deduce the coils’ displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved agreement with the experimental results.

  9. Experimental and numerical study of error fields in the CNT stellarator

    NASA Astrophysics Data System (ADS)

    Hammond, K. C.; Anichowski, A.; Brenner, P. W.; Pedersen, T. S.; Raftopoulos, S.; Traverso, P.; Volpe, F. A.

    2016-07-01

    Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and fluorescent rod, and were computed by means of a Biot-Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton-Raphson algorithm searches for the coils’ displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm’s ability to deduce the coils’ displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved agreement with the experimental results.

  10. Simulation and experimental study of DC electric field distribution characteristics of rat hippocampal slices in vitro

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Qiu, Qian; Li, Ze-yan; Zhao, Zhe; Chen, Rui-juan; Wang, Hui-quan

    2016-06-01

    Direct current (DC) electric field is a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons. Despite its efficacy, the dielectric constant of artificial cerebrospinal fluid and the position and direction of brain slices and other factors can affect the field intensity and distribution acting on the surface of rat hippocampus slices, thus causing errors. In this study, we describe a new analytical method optimized for DC electric fields acting on brain slices, and the design of an external DC electric field stimulator to allow scientific evaluation of brain slices. We investigated parameters regarding the uniformity of electric field distribution and identified the maximal parameters using the finite element method. Then, we selected and simplified slice images using magnetic resonance imaging data and calculated the electric field intensity of the original and simplified models. The electric field simulator induced action potential and excitatory postsynaptic current with intensities of 1, 5, and 10 V/m. This study describes the development of a new electric field stimulator and successfully demonstrates its practicability for scientific evaluation of tissue slices.

  11. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force. PMID:20040404

  12. Experimental study of transport of relativistic electron beams in strong magnetic mirror field

    NASA Astrophysics Data System (ADS)

    Sakata, Shohei; Kondo, Kotaro; Bailly-Grandvaux, Mathiu; Bellei, Claudio; Santos, Joao; Firex Project Team

    2015-11-01

    Relativistic electron beams REB produced by ultra high intense laser pulses have generally a large divergence angle that results in degradation of energy coupling between the REB and a fuel core in the fast ignition scheme. Guiding and focusing of the REB by a strong external magnetic field was proposed to achieve high efficiency. We investigated REB transport through 50 μm or 250 μm thick plastic foils CuI doped under external magnetic fields, in magnetic mirror configurations of 1.2 or 4 mirror ratio. The experiment was carried out at the GEKKO XII and LFEX laser facility. Spatial pattern of the REB was measured by coherent transition radiation and/or Cu Ka x ray emission from the rear surface of the foil targets. Strong collimation of the REB by the external magnetic field was observed with 50 μm thick plastic targets, while the REB scattered in 250 μm thick targets. The experimental results are compared with computer simulations to understand the physical mechanisms of the REB transport in the external magnetic field. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR (France) and COST (Europe).

  13. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  14. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  15. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  16. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  17. Analysis of point fabrication model for near-field photolithography with experimental study.

    PubMed

    Lin, Zone-Ching; Yang, Ching-Been

    2006-01-01

    For the Gaussian beam, the power density distribution of the aluminum-coated optical tapered fiber probe is discussed and a theoretical fixed-point fabrication model for near-field photolithography is established. The energy density theorem is used to explore the surface exposure of photoresist, which is divided into multiple grids to evaluate the changes in the concentration of photoactive compounds at specific nodes of the interior layer. The full width at half maximum (FWHM) and the contour of the photolithograph following development are then calculated. The fixed-point lithographic experiment and aperture verification of the optic fiber probe are performed to confirm the reliability of the present model, and Dill A, B, C parameters are first measured in this article. According to the experimental results, a better image of the probe aperture can be achieved by increasing the conductivity of the measured articles and reducing the electric charges during the image taken by field-emission scanning electron microscope. The FWHM measured is 166.6 nm, while the measured average probe aperture size is 317.4 nm and the FWHM simulated by the proposed model is 151.3 nm. The error between experiment and simulation is <-9.2%. It is thus concluded that the proposed theoretical model is reasonable and acceptable. PMID:16502624

  18. Experimental research on electric propulsion. Note 5: Experimental study of a magnetic field stabilized arc-jet

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1984-01-01

    The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.

  19. Experimental studies of W-band accelerator structures at high field

    NASA Astrophysics Data System (ADS)

    Hill, Marc Edward

    2001-06-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, higher than any collider. Also presented are the first measurements of the quadrapole component of the monopole accelerating field.

  20. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study

    PubMed Central

    Anbarasan, Selvam; Baraneedharan, Ulaganathan; Paul, Solomon FD; Kaur, Harpreet; Rangaswami, Subramoniam; Bhaskar, Emmanuel

    2016-01-01

    Background: Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes. Materials and Methods: Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired't’ test. Results: In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters. Conclusions: Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA). PMID:26955182

  1. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers.

    PubMed

    Sorokin, Vladislav V; Ecker, Eva; Stepanov, Gennady V; Shamonin, Mikhail; Monkman, Gareth J; Kramarenko, Elena Yu; Khokhlov, Alexei R

    2014-11-21

    The dynamic modulus and the loss factor of magnetorheological elastomers (MREs) of various compositions and anisotropies are studied by dynamic torsion oscillations performed in the absence and in the presence of an external magnetic field. The emphasis is on the Payne effect, i.e. the dependence of the elastomer magnetorheological characteristics on the strain amplitude and their evolution with cyclically increasing and decreasing strain amplitudes. MREs are based on two silicone matrices differing in storage modulus (soft, G' ∼ 10(3) Pa, and hard, G' ∼ 10(4) Pa, matrices). For each matrix, the concentration of carbonyl iron particles with diameters of 3-5 μm was equal to 70 and 82 mass% (22 and 35 vol%, respectively) in the composite material. Samples for each filler content, isotropic and aligned-particles, are investigated. It is found that the Payne effect significantly increases in the presence of an external magnetic field and varies with the cyclical loading which reaches saturation after several cycles. The results are interpreted as the processes of formation-destruction-reformation of the internal filler structure under the simultaneously applied mechanical force and magnetic field. Impacts of matrix elasticity and magnetic interactions on the filler alignment are elucidated. PMID:25278263

  2. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers.

    PubMed

    Sorokin, Vladislav V; Ecker, Eva; Stepanov, Gennady V; Shamonin, Mikhail; Monkman, Gareth J; Kramarenko, Elena Yu; Khokhlov, Alexei R

    2014-11-21

    The dynamic modulus and the loss factor of magnetorheological elastomers (MREs) of various compositions and anisotropies are studied by dynamic torsion oscillations performed in the absence and in the presence of an external magnetic field. The emphasis is on the Payne effect, i.e. the dependence of the elastomer magnetorheological characteristics on the strain amplitude and their evolution with cyclically increasing and decreasing strain amplitudes. MREs are based on two silicone matrices differing in storage modulus (soft, G' ∼ 10(3) Pa, and hard, G' ∼ 10(4) Pa, matrices). For each matrix, the concentration of carbonyl iron particles with diameters of 3-5 μm was equal to 70 and 82 mass% (22 and 35 vol%, respectively) in the composite material. Samples for each filler content, isotropic and aligned-particles, are investigated. It is found that the Payne effect significantly increases in the presence of an external magnetic field and varies with the cyclical loading which reaches saturation after several cycles. The results are interpreted as the processes of formation-destruction-reformation of the internal filler structure under the simultaneously applied mechanical force and magnetic field. Impacts of matrix elasticity and magnetic interactions on the filler alignment are elucidated.

  3. Mother-calf vocal communication in Atlantic walrus: a first field experimental study.

    PubMed

    Charrier, Isabelle; Aubin, Thierry; Mathevon, Nicolas

    2010-05-01

    In all colonial pinnipeds studied, mother-young vocal recognition exists and allows rapid and reliable meetings in spite of the confusing environment of the breeding colony. The efficiency of this recognition process guarantees pup survival, especially in species where females alternate foraging sea trips and lactation periods on land. The Atlantic Walrus (Odobenus rosmarus rosmarus) is a highly gregarious pinniped with females attending their calves for an extended period of time (2-3 years). Although we expect mother-calf vocal recognition to occur in this species due to the high density of individuals packed in herds, it has never been experimentally demonstrated. Here, we assessed the individual stereotypy of both mother and calf barks recorded in the wild by measuring frequency and temporal acoustic parameters. Both discriminant function and artificial neural network analyses resulted in high correct classification rates, underlying a well-defined individual stereotypy in parameters related to frequency modulation and frequency values. Playback experiments showed that mothers were more responsive to the barks of their own calf than to those of unrelated young. Finally, propagation experiments revealed that barks propagate at greater distances over water surface than over ice, acoustic features such as frequency modulation and frequency spectrum being highly resistant to degradation during propagation. Thus, acoustic analysis and propagation experiments suggest that these frequency parameters might be the key acoustic features involved in the individual identification process. This experimental study clearly demonstrates that Atlantic walrus has developed a highly reliable mother-calf vocal communication allowing such strong social bond. PMID:19960216

  4. Mother-calf vocal communication in Atlantic walrus: a first field experimental study.

    PubMed

    Charrier, Isabelle; Aubin, Thierry; Mathevon, Nicolas

    2010-05-01

    In all colonial pinnipeds studied, mother-young vocal recognition exists and allows rapid and reliable meetings in spite of the confusing environment of the breeding colony. The efficiency of this recognition process guarantees pup survival, especially in species where females alternate foraging sea trips and lactation periods on land. The Atlantic Walrus (Odobenus rosmarus rosmarus) is a highly gregarious pinniped with females attending their calves for an extended period of time (2-3 years). Although we expect mother-calf vocal recognition to occur in this species due to the high density of individuals packed in herds, it has never been experimentally demonstrated. Here, we assessed the individual stereotypy of both mother and calf barks recorded in the wild by measuring frequency and temporal acoustic parameters. Both discriminant function and artificial neural network analyses resulted in high correct classification rates, underlying a well-defined individual stereotypy in parameters related to frequency modulation and frequency values. Playback experiments showed that mothers were more responsive to the barks of their own calf than to those of unrelated young. Finally, propagation experiments revealed that barks propagate at greater distances over water surface than over ice, acoustic features such as frequency modulation and frequency spectrum being highly resistant to degradation during propagation. Thus, acoustic analysis and propagation experiments suggest that these frequency parameters might be the key acoustic features involved in the individual identification process. This experimental study clearly demonstrates that Atlantic walrus has developed a highly reliable mother-calf vocal communication allowing such strong social bond.

  5. Vectorial transmission of Trypanosoma cruzi: an experimental field study with susceptible and immunized hosts.

    PubMed

    Catala, S S; Gorla, D E; Basombrio, M A

    1992-07-01

    The dynamics of vectorial transmission of Trypanosoma cruzi and the level of host (guinea pigs) protection after immunization with attenuated parasites (TCC strain) was studied under natural climatic conditions in an endemic region of northern Argentina. The experimental design included two guinea pig corrals isolated by mosquito netting. One (controls) had 17 healthy and susceptible adult guinea pigs. The other had 19 guinea pigs immunized with attenuated T. cruzi TCC strain. Each corral was colonized in April 1988 with equal-sized populations of Triatoma infestans naturally infected by T. cruzi. To evaluate relevant variables in the natural transmission of Chagas' disease, corrals were sampled in both winter and late spring to assess vector populations, and to carry out parasitologic studies on both vertebrate and invertebrate hosts. In both corrals, vector density decreased in winter and reached a maximum in the hot season. The vector infection rate was very high (greater than 50%) throughout the experiment. Vector infectivity increased with temperature and vector age, but did not differ between the experimental and control corrals. The vector-host contact rate showed a close relationship with temperature, although a very high vector density decreased this rate, even with high ambient temperatures. Initial infections by T. cruzi occurred among guinea pigs only during the hot season. Vectorial transmission risk was estimated from the total number of bug bites per day, the proportion of infected bugs, and the daily incidence in the guinea pig population. During the hot season, this risk was 6.84 x 10(-4) in the control group and 1.82 x 10(-4) in the immunized group. PMID:1636879

  6. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  7. Information transfer about roosts in female Bechstein's bats: an experimental field study.

    PubMed Central

    Kerth, Gerald; Reckardt, Karsten

    2003-01-01

    Information transfer among group members is believed to play an important part in the evolution of coloniality in both birds and bats. Although information transfer has received much scientific interest, field studies using experiments to test the underlying hypotheses are rare. We used a field experiment to test if communally breeding female Bechstein's bats (Myotis bechsteinii) exchange information regarding novel roosts. We supplied a wild colony, comprising 17 adult females of known relatedness, with pairs of suitable and unsuitable roosts and monitored the arrival of individuals marked with transponders (PIT-tags) over 2 years. As expected with information transfer, significantly more naive females were recruited towards suitable than towards unsuitable roosts. We conclude that information transfer about roosts has two functions: (i) it generates communal knowledge of a large set of roosts; and (ii) it aids avoidance of colony fission during roost switching. Both functions seem important in Bechstein's bats, in which colonies depend on many day roosts and where colony members live together for many years. PMID:12641906

  8. Experimental and theoretical study on nonsequential double ionization of carbon disulfide in strong near-IR laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, Wanlong; Ben, Shuai; Lv, Hang; Zhao, Lei; Guo, Jing; Liu, Xue-Shen; Xu, Haifeng; Jin, Mingxing; Ding, Dajun

    2016-05-01

    Nonsequential double ionization (NSDI) of carbon disulfide CS2 in strong 800-nm laser fields is studied experimentally and theoretically. A knee structure is observed in the intensity-dependent double ionization (DI) yield in linearly polarized laser fields, which exhibits a strong dependence on the laser ellipticity. The electron momentum distributions and energy trajectories after DI in both linearly and circularly polarized laser fields are investigated by employing the two-dimensional classical ensemble method. The results clearly show the evidence of NSDI in the strong-field DI of CS2 molecules. It is demonstrated that, similar to that of atoms, NSDI of CS2 molecules is produced via laser-driven electron recollision with the ion core and presents electron-electron correlations in the process. Analysis indicates that both mechanisms in atomic strong-field NSDI, i.e., recollision impact ionization and recollision excitation with subsequent ionization, may also be contributed to NSDI of CS2 in strong laser fields. Further studies are no doubt necessary for a full understanding of the underlying physical mechanism of molecular strong-field NSDI, due to the multicenter character of the molecular structure and the complex molecular excited states that could be involved in the ionization.

  9. Experimental study of near-field entrainment of moderately overpressured jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.

    2011-01-01

    Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.

  10. Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study

    PubMed Central

    Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard

    2014-01-01

    Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID

  11. An experimental correlation study between field-target overlap and sensitivity of surface plasmon resonance biosensors based on sandwiched immunoassays

    NASA Astrophysics Data System (ADS)

    Ryu, Yeonsoo; Moon, Seyoung; Oh, Youngjin; Kim, Yonghwi; Kim, Donghyun

    2012-10-01

    In this report, we have studied the effectiveness of field-target overlap to evaluate detection sensitivity of surface plasmon resonance (SPR) biosensors. The investigation used theoretical analysis based on the transfer matrix method, which was experimentally confirmed by thin film-based detection in sandwich and reverse sandwich immunoglobulin G (IgG) assays. Both theoretical and experimental results show that strong correlation exists between the overlap and the sensitivity with the coefficient of correlation higher than 95% in all the cases that we have considered. We have also confirmed the correlation in diffraction grating-based SPR measurement of IgG/anti-IgG interactions. The correlation elucidates the mechanism behind the far-field detection sensitivity of SPR biosensors and can lead to the enhancement of SPR biosensing with molecular scale sensitivity.

  12. Effects of Prompting in Reflective Learning Tools: Findings from Experimental Field, Lab, and Online Studies

    PubMed Central

    Renner, Bettina; Prilla, Michael; Cress, Ulrike; Kimmerle, Joachim

    2016-01-01

    Reflective learning is an important type of learning both in formal and informal situations—in school, higher education, at the workplace, and in everyday life. People may benefit from technical support for reflective learning, in particular when supporting each other by reflecting not only upon their own but also upon other people’s problems. We refer to this collective approach where people come together to think about experiences and find solutions to problems as “collaborative reflection.” We present three empirical studies about the effects of prompting in reflective learning tools in such situations where people reflect on others’ issues. In Study 1 we applied a three-stage within-group design in a field experiment, where 39 participants from two organizations received different types of prompts while they used a reflection app. We found that prompts that invited employees to write down possible solutions led to more comprehensive comments on their colleagues’ experiences. In Study 2 we used a three-stage between-group design in a laboratory experiment, where 78 university students were invited to take part in an experiment about the discussion of problems at work or academic studies in online forums. Here we found that short, abstract prompts showed no superiority to a situation without any prompts with respect to quantity or quality of contributions. Finally, Study 3 featured a two-stage between-group design in an online experiment, where 60 participants received either general reflection instructions or detailed instructions about how to reflect on other people’s problems. We could show that detailed reflection instructions supported people in producing more comprehensive comments that included more general advice. The results demonstrate that to increase activity and to improve quality of comments with prompting tools require detailed instructions and specific wording of the prompts. PMID:27303361

  13. Effects of Prompting in Reflective Learning Tools: Findings from Experimental Field, Lab, and Online Studies.

    PubMed

    Renner, Bettina; Prilla, Michael; Cress, Ulrike; Kimmerle, Joachim

    2016-01-01

    Reflective learning is an important type of learning both in formal and informal situations-in school, higher education, at the workplace, and in everyday life. People may benefit from technical support for reflective learning, in particular when supporting each other by reflecting not only upon their own but also upon other people's problems. We refer to this collective approach where people come together to think about experiences and find solutions to problems as "collaborative reflection." We present three empirical studies about the effects of prompting in reflective learning tools in such situations where people reflect on others' issues. In Study 1 we applied a three-stage within-group design in a field experiment, where 39 participants from two organizations received different types of prompts while they used a reflection app. We found that prompts that invited employees to write down possible solutions led to more comprehensive comments on their colleagues' experiences. In Study 2 we used a three-stage between-group design in a laboratory experiment, where 78 university students were invited to take part in an experiment about the discussion of problems at work or academic studies in online forums. Here we found that short, abstract prompts showed no superiority to a situation without any prompts with respect to quantity or quality of contributions. Finally, Study 3 featured a two-stage between-group design in an online experiment, where 60 participants received either general reflection instructions or detailed instructions about how to reflect on other people's problems. We could show that detailed reflection instructions supported people in producing more comprehensive comments that included more general advice. The results demonstrate that to increase activity and to improve quality of comments with prompting tools require detailed instructions and specific wording of the prompts. PMID:27303361

  14. The effectiveness of ethics education: a quasi-experimental field study.

    PubMed

    May, Douglas R; Luth, Matthew T

    2013-06-01

    Ethical conduct is the hallmark of excellence in engineering and scientific research, design, and practice. While undergraduate and graduate programs in these areas routinely emphasize ethical conduct, few receive formal ethics training as part of their curricula. The first purpose of this research study was to assess the relative effectiveness of ethics education in enhancing individuals' general knowledge of the responsible conduct of research practices and their level of moral reasoning. Secondly, we examined the effects of ethics education on the positive psychological outcomes of perspective-taking, moral efficacy, moral courage, and moral meaningfulness. To examine our research hypotheses, we utilized a pretest-posttest quasi-experimental design consisting of three ethics education groups (control, embedded modules, and stand-alone courses). Findings revealed that both embedded and stand alone courses were effective in enhancing participants' perspective-taking, moral efficacy, and moral courage. Moral meaningfulness was marginally enhanced for the embedded module condition. Moral judgment and knowledge of responsible conduct of research practices were not influenced by either ethics education condition. Contrary to expectations, stand alone courses were not superior to embedded modules in influencing the positive psychological outcomes investigated. Implications of these findings for future research and practice are discussed.

  15. Experimental study of temperature fields and thermal fluxes in the electrode walls of an MGD accelerator

    SciTech Connect

    Alferov, V.I.; Vitkovskaya, O.N.; Panfilova, O.V.; Rudakova, A.P.; Sukhobokov, A.D.; Shcherbakov, G.I.

    1980-07-01

    Results are presented of an experimental study of the features of heat transfer from a flow of air with KNa admixture to the electrode walls of an MGD accelerator in a wide range of operating modes (B=1--2.5 T,j=4--45 A/cm/sup 2/,P/sub st/0.2=(en-dash0.5)x10/sup 5/ Pa). Data are obtained on the size and distribution of the thermal fluxes in different zones of an MGD channel and over the electrodes, taken separately. Methods are chosen for calculating the convective thermal flux on the electrode walls over the entire length of the accelerator channel, and the values of the thermal flux in the discharge zone due to processes at the electrodes are determined. A possible explanation is proposed for the difference between the values of the thermal fluxes at the electrode walls over different portions of the MGD channel, which is based on features of the behavior of microarcs on the surface of the electrodes.

  16. Experimental Study of Corona Properties with a Heated Discharge Electrode and Crossed Magnetic Fields Individually

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, Karim

    2016-09-01

    This work involves ac and dc corona in air with heated discharge electrode, and breakdown streamers in corona in a crossed magnetic field. At first, the triggering of the breakdown streamers in positive and ac corona are governed by the temperature of the discharge electrode. In the negative corona, however, the breakdown streamers found to be practically independent of the temperature of the discharge electrode. Then, the transverse magnetic field, applied perpendicularly to the electric field, result in an improvement in pre-breakdown characteristic of the wire-tube gap. The application of the transverse field has the effect of increasing the corona onset voltage and the breakdown voltage. Also the transverse applied field has the effect of decreasing the corona current. It has been observed that triggering of the breakdown streamers in negative corona is affected appreciably by the transverse magnetic field.

  17. Experimental studies of rainbow trout populations exposed to field applications of Roundup herbicide.

    PubMed

    Hildebrand, L D; Sullivan, D S; Sullivan, T P

    1982-01-01

    This paper reports the effects of Roundup herbicide (MON 02139) on rainbow trout viability and behavior in several field experiments at the University of British Columbia Research Forest. Laboratory and field 96-hr LC50 values were similar: 54.8 and 52.0 mg/L. Avoidance-preference data indicated that fish would avoid lethal levels of Roundup. Operational application of Roundup at the recommended field dose of (2.2 kg a.e./ha), as well as 10x and 100x field dose resulted in no mortality to rainbow trout in field streams. Results indicate that operational spraying with this herbicide for weed control should not be detrimental to rainbow trout populations. Improper use or accidental spills of Roundup could be avoided by rainbow trout and should not be lethal if diluted in a moderately-flowing stream.

  18. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  19. Experimental study of cooling enhancement using a Fe3O4 magnetic nanofluid, in an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Stoian, F. D.; Holotescu, S.

    2014-11-01

    This paper presents the results of an experimental study that envisaged the evaluation of the cooling capabilities of a transformer oil based magnetic nanofluid with the solid volume fraction of magnetite nanoparticles equal to 0.0162, in an AC applied magnetic field (f = 50 Hz). The heating and cooling regimes of a coil immersed in the magnetic nanofluid were compared to that corresponding to the base fluid (transformer oil). The results of our study indicate that the temperature rise rate of the magnetic nanofluid is lower than that corresponding to the transformer oil and a lower stationary temperature is obtained in the coil core, where the magnetic flux density is the largest.

  20. Experimental study of the flow field inside a whirling annular seal

    NASA Astrophysics Data System (ADS)

    Morrison, Gerald L.; Deotte, Robert E., Jr.; Thames, H. Davis, III

    1992-09-01

    The flow field inside a whirling annular seal was measured using a 3-D Laser Doppler Anemometer (LDA) system. The seal investigated has a clearance of 1.27 mm, a length of 37.3 mm, and is mounted on a drive shaft with a 50 percent eccentricity ratio. This results in the rotor whirling at the same speed as the shaft rotation (whirl ratio = 1.0). The seal is operated at Reynolds number of 12,000 and a Taylor number of 6,300 (3,600 rpm). The 3-D LDA system is equipped with a rotary encoding system which is used to produce phase averaged measurements of the entire mean velocity vector field and Reynolds stress tensor field from 0.13 mm upstream to 0.13 mm downstream of the seal. The mean velocity field reveals a highly three dimensional flow field with large radial velocities near the inlet of the seal as well as a recirculation zone on the rotor surface. The location of maximum mean axial velocity migrates from the pressure side of the rotor at the inlet to the suction side at turbulence kinetic energy. However, turbulence production and dissipation attain equilibrium fairly quickly with remaining relatively constant over the last half of the seal.

  1. Experimental study of the flow field inside a whirling annular seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Deotte, Robert E., Jr.; Thames, H. Davis, III

    1992-01-01

    The flow field inside a whirling annular seal was measured using a 3-D Laser Doppler Anemometer (LDA) system. The seal investigated has a clearance of 1.27 mm, a length of 37.3 mm, and is mounted on a drive shaft with a 50 percent eccentricity ratio. This results in the rotor whirling at the same speed as the shaft rotation (whirl ratio = 1.0). The seal is operated at Reynolds number of 12,000 and a Taylor number of 6,300 (3,600 rpm). The 3-D LDA system is equipped with a rotary encoding system which is used to produce phase averaged measurements of the entire mean velocity vector field and Reynolds stress tensor field from 0.13 mm upstream to 0.13 mm downstream of the seal. The mean velocity field reveals a highly three dimensional flow field with large radial velocities near the inlet of the seal as well as a recirculation zone on the rotor surface. The location of maximum mean axial velocity migrates from the pressure side of the rotor at the inlet to the suction side at turbulence kinetic energy. However, turbulence production and dissipation attain equilibrium fairly quickly with remaining relatively constant over the last half of the seal.

  2. Impact of maintenance in the automotive field. Experimental study of mechanical vibration

    NASA Astrophysics Data System (ADS)

    Vulcu, O. I.; Arghir, M.

    2016-08-01

    In order to determine the impact of maintenance for vehicles, by analyzing the vibrating behaviour, were performed experimental measurements using specific equipment for vibration determination. Two measures were performed for the same vehicle. The period between actions was by one year. The results of analysis obtained by experimental measurements performed in the three critical points of the two passenger vehicles from mechanical vibration point of view are followings: vibrating behaviour is different in each point of the vehicle structure; technical state of vehicles depends on the maintenance applied and not of the using time or running distance. It is important to note that it was not taken into account the quality of the running.

  3. Tunable Acoustic Attenuation by Dilute Suspensions of Oblate-Spheroidal Ferromagnetic Particles Under an External Magnetic Field: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Shan, Jerry; Liu, Liping

    2015-11-01

    The microstructure of suspensions of spheroidal ferromagnetic particles with subwavelength size can be controlled by an external field, making it possible to develop novel broadband acoustic materials with anisotropic and tunable acoustic properties. In this study we experimentally show that dilute suspensions of nickel microflakes exhibit a 20% to 30% change in attenuation coefficient at MHz frequencies upon changing the direction of an external magnetic field, at particle volume fractions of only 0.5%. Further investigations are conducted to study the mechanism behind this anisotropy. The effects of particle aligning and chaining are analyzed with the aid of optical transmission measurements. By making comparison to suspensions of spherical particles, we show that the ellipsoidal shape of the nickel microflakes plays an important role in tunable acoustic properties of these suspensions.

  4. Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines

    SciTech Connect

    Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.

    2000-04-01

    The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.

  5. Validation of in situ networks via field sampling: case study in the South Fork Experimental Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Therefore, these stations are located along field boundaries or in non-representative sites with regards to so...

  6. Field and experimental studies on Dicrocoelium dendriticum and dicrocoeliasis in northern Spain.

    PubMed

    Manga-González, M Y; González-Lanza, C

    2005-12-01

    The transmission, control and the relationship between Dicrocoelium dendriticum and its definitive (sheep and cattle) and intermediate (molluscs and ants) hosts under natural and experimental conditions are described. Eleven species of molluscs and four of ants were found infected with larval D. dendriticum in León province, north-west Spain. Infected ants were observed between April and November and in tetania at 7.5-26.9 degrees C. The highest shedding of eggs by sheep and cattle was detected in winter. Two treatments applied in November and January were the most effective. In experimentally infected molluscs, the parasite was not visible under the stereomicroscope, at least until 50 days post-infection (p.i.). The prepatent period in experimentally infected lambs was 49-79 days p.i. The number of eggs per gram increased with the days p.i. and the parasite burden. The aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, leukocyte and neutrophil values of infected lambs increased, but those of lymphocytes decreased. Using the enzyme-linked immunosorbert assay technique, the IgG antibody response to excretory-secretory and somatic antigens of D. dendriticum was positive from day 30 p.i., although the maximum antibody levels were observed on day 60 p.i. The number of worms per lamb ranged between 30 and 2063. Cholangitis and cholangiectasia of the septal bile and hepatic ducts were observed. The best enzymatic systems for adult and larval D. dendriticum characterization were lactate dehydrogenase, glucose phosphate isomerase and phosphoglucomutase. Genetic variability of adult D. dendriticum was high using the random amplified polymorphic DNA technique.

  7. Experimental study on a Nb3Al insert coil under high magnetic field

    NASA Astrophysics Data System (ADS)

    Zhu, Guang; Dai, Yinming; Cheng, Junsheng; Chang, Kun; Liu, Jianhua; Wang, Qiuliang; Pan, Xifeng; Li, Chao

    2016-06-01

    Nb3Al is one of the most promising superconductors to replace Nb3Sn in large scale, high field superconducting magnet. Since the complicated conductor manufacturing process, long and stable Nb3Al conductor is difficult to acquire in a commercial scale. Based on a 70 m length of Nb-Al precursor conductor, we designed and fabricated a Nb3Al coil. The coil winding, low temperature diffusion heat treatment and epoxy impregnation are described in detail. The finished Nb3Al coil is tested as an insert in a background magnet. The test is performed at the background field from 7 T to 15 T. The test results are analyzed and presented in this paper.

  8. Automatic recognition of intermittent failures - An experimental study of field data

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar K.; Young, Luke T.; Krishna Iyer, P. V.

    1990-01-01

    A methodology is proposed for recognizing the symptoms of persistent problems in large systems. The system error rate is used to identify the error states among which relationships may exist. Statistical techniques are used to validate and quantify the strength of the relationship among these error states. As input, the approach takes the raw error logs containing a single entry for each error that is detected as an isolated event. As output, it produces a list of symptoms that characterize persistent errors. Thus, given a failure, it is determined whether the failure is an intermittent manifestation of a common fault or whether it is an isolated (transient) incident. The technique is shown to work on two CYBER systems and an IBM 3081 multiprocessor system. Comparisons to real failure/repair information obtained from field engineers show that, in about 85 percent of the cases, the error symptoms recognized by this approach correspond to real problems. The remaining 15 percent of the cases, although not directly supported by field data, are confirmed as being valid problems.

  9. Experimental and Numerical Study of Wind and Turbulence in a Near-Field Dispersion Campaign at an Inhomogeneous Site

    NASA Astrophysics Data System (ADS)

    Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand

    2016-09-01

    We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.

  10. Adult Career Counseling Using Possible Selves--A Quasi-Experimental Field Study in Naturalistic Settings

    ERIC Educational Resources Information Center

    Plimmer, Geoff

    2012-01-01

    This study examined the effectiveness of an adult career development program designed to reflect the diversity and demands of career choices, the low level of comfort many have with career choices, and the limited resources available to resolve complex adult career problems. A possible selves process was used, delivered through a blend of computer…

  11. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    PubMed

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate. PMID:25940850

  12. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    PubMed

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate.

  13. Effects of a tattoo on men's behavior and attitudes towards women: An experimental field study.

    PubMed

    Guéguen, Nicolas

    2013-11-01

    Previous studies have indicated negative evaluations of women with tattoos. However, a study by Swami and Furnham (2007) showed that tattooed women were rated as less physically attractive but more sexually promiscuous. Given that men interpret women's sexual intent according to their physical appearance, we predicted that women with tattoos would be more favorably approached by men. A temporary tattoo was placed on confederates' lower back, or not, and all confederates were instructed to read a book while lying flat on their stomach on a well-known beach. Two experiments were conducted. The first experiment showed that more men (N = 220) approached the tattooed confederates and that the mean latency of their approach was quicker. A second experiment showed that men (N = 440) estimated to have more chances to have a date and to have sex on the first date with tattooed confederates. However, the level of physical attractiveness attributed to the confederate was not influenced by the tattoo condition. These results were discussed with respect to men's possible misinterpretation of women wearing tattoos and the risks associated with this misinterpretation.

  14. The impact of nutritional labels and socioeconomic status on energy intake. An experimental field study.

    PubMed

    Crockett, Rachel A; Jebb, Susan A; Hankins, Matthew; Marteau, Theresa M

    2014-10-01

    There is some evidence for paradoxical effects of nutritional labelling on energy intake particularly amongst restrained eaters and those with a higher body mass index (BMI) resulting in greater consumption of energy from foods with a positive health message (e.g. "low-fat") compared with the same foods, unlabelled. This study aimed to investigate, in a UK general population sample, the likelihood of paradoxical effects of nutritional labelling on energy intake. Participants (n = 287) attended a London cinema and were offered a large tub of salted or toffee popcorn. Participants were randomised to receive their selected flavour with one of three labels: a green low-fat label, a red high-fat label or no label. Participants watched two film clips while completing measures of demographic characteristics, emotional state and taste of the popcorn. Following the experiment, popcorn consumption was measured. There were no main effects of nutritional labelling on consumption. Contrary to predictions neither BMI nor weight concern moderated the effect of label on consumption. There was a three-way interaction between low-fat label, weight concern and socioeconomic status (SES) such that weight-concerned participants of higher SES who saw a low-fat label consumed more than weight unconcerned participants of similar SES (t = -2.7, P = .04). By contrast, weight-concerned participants of lower SES seeing either type of label, consumed less than those seeing no label (t = -2.04, P = .04). Nutritional labelling may have different effects in different socioeconomic groups. Further studies are required to understand fully the possible contribution of food labelling to health inequalities. PMID:24879885

  15. The impact of nutritional labels and socioeconomic status on energy intake. An experimental field study.

    PubMed

    Crockett, Rachel A; Jebb, Susan A; Hankins, Matthew; Marteau, Theresa M

    2014-10-01

    There is some evidence for paradoxical effects of nutritional labelling on energy intake particularly amongst restrained eaters and those with a higher body mass index (BMI) resulting in greater consumption of energy from foods with a positive health message (e.g. "low-fat") compared with the same foods, unlabelled. This study aimed to investigate, in a UK general population sample, the likelihood of paradoxical effects of nutritional labelling on energy intake. Participants (n = 287) attended a London cinema and were offered a large tub of salted or toffee popcorn. Participants were randomised to receive their selected flavour with one of three labels: a green low-fat label, a red high-fat label or no label. Participants watched two film clips while completing measures of demographic characteristics, emotional state and taste of the popcorn. Following the experiment, popcorn consumption was measured. There were no main effects of nutritional labelling on consumption. Contrary to predictions neither BMI nor weight concern moderated the effect of label on consumption. There was a three-way interaction between low-fat label, weight concern and socioeconomic status (SES) such that weight-concerned participants of higher SES who saw a low-fat label consumed more than weight unconcerned participants of similar SES (t = -2.7, P = .04). By contrast, weight-concerned participants of lower SES seeing either type of label, consumed less than those seeing no label (t = -2.04, P = .04). Nutritional labelling may have different effects in different socioeconomic groups. Further studies are required to understand fully the possible contribution of food labelling to health inequalities.

  16. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    SciTech Connect

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  17. Experimental study of the self-deflection of a light beam in a photorefractive crystal exposed to an external alternating electric field

    NASA Astrophysics Data System (ADS)

    Asselborn, S. A.; Kundikova, N. D.; Novikov, I. V.

    2008-02-01

    We have experimentally studied the propagation of an intensity-modulated light beam in a Ba2NaNb5O15 photorefractive crystal exposed to an external alternating sinusoidal electric field. The dependence of the extent of beam self-focusing on the applied field amplitude is determined. The possibility of soliton formation under such conditions is demonstrated.

  18. Experimental study on the effect of applying a crossed magnetic field on the insulator flashover behavior in high vacuum

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, K.

    2015-09-01

    In this study, a possible method of reducing the flashover stress is achieved by the effect of an additional magnetic field in the transverse direction on the main applied electric field. The degree of vacuum used in this study was 5×10-5 Pa. The magnetic flux density B employed in this study extends from 4×10-3 to 24×10-3 T. From the results obtained throughout this work, the transverse magnetic field increases the flashover voltage and decreases the leakage current. The effect of the transverse magnetic field on the surface flashover of the dielectric solid in vacuum shows a marked dependence on the material and the thickness of the test specimen, the vacuum degree, the type of electric field (AC or DC) as well as the type of magnetic field (AC or DC).

  19. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-01

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  20. Experimental and theoretical study on effects of magnetic field topology on near wall conductivity in a Hall thruster

    SciTech Connect

    Yu Daren; Li Hong; Ning Zhongxi; Yan Guojun; Wu Zhiwen

    2009-10-15

    An experiment has been made to investigate the effect of curved magnetic field topology on near wall conductivity in the ion acceleration region of Hall thrusters. The experimental results show that the electron current due to near wall conductivity is of the minimum in the case of focused topology and increases in the cases of both less-focus and over-focus topologies. This finding cannot be explained properly by the magnetic mirror effect, which is the one and only reported effect related to the magnetic field curvature so far. Based on the analysis of interaction between the plasma and the wall, a new physical effect is proposed. The difference of magnetic field topology causes different electric potential distribution, leads to different ion flux to the wall, results in the change of sheath property and secondary electron emission, and finally affects the electron current due to near wall conductivity. This effect is further justified by the agreement between the experiment and simulation which is performed with a particle-in-cell model. Therefore, we conclude that the ion flow injection is a significant effect to near wall conductivity in the scope of curved magnetic field topology besides the magnetic mirror effect. Moreover, we find that the focus topology of magnetic field is favorable to obtain a high thruster performance from both the ion acceleration aspect and the electron conduction aspect and so is useful practically for thruster optimization.

  1. Near-field effects in Green's function retrieval from cross-correlation of elastic fields: experimental study with application to elastography.

    PubMed

    Benech, N; Brum, J; Catheline, S; Gallot, T; Negreira, C

    2013-05-01

    In a lossless system, the causal and acausal Green's function for elastic waves can be retrieved by cross-correlating the elastic field at two positions. This field, composed of converging and diverging waves, is interpreted in the frame of a time-reversal process. In this work, the near-field effects on the spatio-temporal focusing of elastic waves are analyzed through the elastodynamic Green's function. Contrary to the scalar field case, the spatial focusing is not symmetric preserving the directivity pattern of a simple source. One important feature of the spatial asymmetry is its dependency on the Poisson ratio of the solid. Additionally, it is shown that the retrieval of the bulk wave speed values is affected by diffraction. The correction factor depends on the relative direction between the source and the observed field. Experimental verification of the analysis is carried out on the volume of a soft-solid. A low-frequency diffuse-like field is generated by random impacts at the sample's free surface. The displacement field is imaged using ultrasound by a standard speckle tracking technique. One important application of this work is in the estimation of the shear elastic modulus in soft biological tissues, whose quantification can be useful in non-invasive diagnosis of various diseases. PMID:23654383

  2. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  3. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm‑1 to 0.27 MV cm‑1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm‑1 to 0.99 MV cm‑1 have been observed with the increase in the GaN(cap) thickness from 5–30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm‑1 to 0.64 MV cm‑1 and an increase of the electric field in the GaN layer from 0.57 MV cm‑1 to 0.99 MV cm‑1 were observed with the increase in the AlGaN thickness from 10–40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  4. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel

    NASA Astrophysics Data System (ADS)

    Herman, C.; Kang, E.

    An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re=520 to Re=6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re=1054 and Re=1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re=1580 and Re=2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re=1580 the dominant oscillation frequency was found to be around 26Hz and at Re=2370 the frequency distribution formed a band around 125Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel.

  5. A method for introduction of magnetic nanoparticles into tissues by means of magnetic field gradient: an experimental study.

    PubMed

    Dobretsov, K G; Afon'kin, V Yu; Kirichenko, A K; Ladygina, V P; Stolyar, S V; Bayukov, O A; Sipkin, A V

    2009-06-01

    Targeted effects of magnetic nanoparticles were studied. Solution with iron-containing nanosubstance was applied to resected nasal bone and cartilage tissues. Magnetic field was generated by a Polus-101 device for low-frequency magnetotherapy, which provided permanent work of one inductor (10.14+/-19.56 mT). The results indicate that magnetic nanoparticles placed into magnetic field gradient penetrate into the thickness of the cartilage and bone tissues. PMID:19902074

  6. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  7. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    SciTech Connect

    Gladysiewicz, M. Janicki, L.; Kudrawiec, R.; Siekacz, M.; Cywinski, G.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaN layers.

  8. An experimental study of the effect of magnet length on the performance of a multi-cusped field thruster

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Liu, Hui; Gao, Yuanyuan; Mao, Wei; Yu, Daren

    2016-07-01

    The multi-cusped field thruster is a novel concept in electric propulsion, which employs alternating permanent polarity magnets to create a periodic magnetic field. As an important factor for the optimal design, the magnet length of a low-power thruster is designed to be changeable. The effects of the ultimate stage length (L u) and the middle stage length (L m) on the performance characteristics are studied in a series of experiments. The results show that increasing L u could prolong the axial motion range of the electrons and promote the ionization process. In addition, it can enlarge the relative distance between the ionization and the acceleration regions. Both of these aspects can help improve the thrust and the anode efficiency. With regard to he reverse trend, wefound that the longer L m leads to a reduction of the thruster’s performance for the enhanced ion loss to the wall. Overall this study can provide some optimal design ideas on the magnet length to improve the total performance of the multi-cusped field thruster.

  9. Lethal effects of experimental warming approximating a future climate scenario on southern African quartz-field succulents: a pilot study.

    PubMed

    Musil, Charles F; Schmiedel, Ute; Midgley, Guy F

    2005-02-01

    Here we examine the response of succulents in a global biodiversity hot spot to experimental warming consistent with a future African climate scenario. Passive daytime warming (averaging 5.5 degrees C above ambient) of the natural vegetation was achieved with 18 transparent hexagonal open-top chamber arrays randomized in three different quartz-field communities. After 4-months summer treatment, the specialized-dwarf and shrubby succulents displayed between 2.1 and 4.9 times greater plant and canopy mortalities in the open-top chambers than in the control plots. Those surviving in cooler ventilated areas and shaded refuges in the chambers had lower starch concentrations and water contents; the shrubby succulents also exhibited diminished chlorophyll concentrations. It is concluded that current thermal regimes are likely to be closely proximate to tolerable extremes for many endemic succulents in the region, and that anthropogenic warming could significantly exceed their thermal thresholds. Further investigation is required to elucidate the importance of associated moisture deficits in these warming experiments, a potential consequence of supplementary (fog and dew) precipitation interception by open-top chambers and higher evaporation therein, on plant mortalities.

  10. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  11. Experimental monitoring and numerical study of pesticide (carbofuran) transfer in an agricultural soil at a field site

    NASA Astrophysics Data System (ADS)

    Hmimou, Abderrahim; Maslouhi, Abdellatif; Tamoh, Karim; Candela, Lucila

    2014-09-01

    We studied the transport of a pesticide at field scale, namely carbofuran molecule, which is known for its high mobility, especially in sandy soils with high hydraulic conductivity and low organic matter. To add to our knowledge of the future of this high-mobility molecule in this type of soils, we developed a mechanistic numerical model allowing the simulation of hydric and solute transfers (bromide and carbofuran) in the soil. We carried out this study in an agricultural plot in the region of Mnasra in Morocco. Confrontation of the measured and simulated values allowed the calibration of the parameters of hydric transfer and carbofuran. The developed model accurately reproduces the measured values. Despite a weak irrigation and precipitation regime, carbofuran was practically leached beyond the root zone. Prospective simulations show that under a more important irrigation regime, carbofuran reaches a 100-cm depth, whereas it does not exceed 60 cm under a deficit regime.

  12. Geochemical and magnetic characteristics of aeolian transported materials under different near-surface wind fields: An experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Xia, Dunsheng

    2015-06-01

    By combining field investigations, field sampling, wind-tunnel experiments, and laboratory measurements, the relationships between near-surface winds and the geochemical and magnetic characteristics of wind-transported materials were statistically analyzed. Our study was conducted using bulk surface samples from a major potential dust source area in Central Asia (the Ala Shan Plateau). Under near-surface wind velocities ranging from 8 to 22 m/s, the coefficients of variation ranged between 1.6% and 14.9% for χlf, 1.4% and 11.0% for χARM, and 0.7% and 12.3% for SIRM of the transported materials. For the 26 elements and oxides investigated, the coefficients of variation of Ti, Cr, As, Zr, Ce, Pb, and Cu in the samples were greater than 10%. No consistent patterns were found between magnetic characteristics and elemental and iron oxide concentrations as a function of variations in near-surface wind velocities. In potential dust source areas under near-surface wind velocities, there are variations in the relationships between magnetic and geochemical characteristics in the fine fractions of transported materials with different particle sizes. Given the wide variation in magnetic and geochemical characteristics of aeolian-transported materials under different near-surface winds, their use as proxies for past climate reconstruction must be carefully appraised.

  13. Collective Experimentation: Lessons from the Field

    ERIC Educational Resources Information Center

    Misiko, M.

    2009-01-01

    The purpose of this paper is to document smallholder experiences during a participatory experimental initiative and draw useful lessons for field practitioners. The main methods used to collect data were participant observation, in-depth interviews among 40 farmers, and analyses of notes taken during participatory monitoring and evaluation. These…

  14. Strain localization along the Main Boundary Thrust (MBT) zone in the Eastern Himalaya: insights from field and experimental studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir

    2016-04-01

    The southward tapering Himalayan tectonic wedge is sliding over the upper boundary of the subducting Indian crust that act as the basal low angle detachment fault, known as the Main Himalayan Thrust (MHT). It is now established that at least four crustal-scale south verging thrust faults, such as Main Central Thrust (MCT), Daling Thrust (~ Ramgarh Thrust ~ Shumar Thrust) (DT), Main Boundary Thrust (MBT) and Main Frontal Thrust (MFT), have emerged from the MHT, striking the entire length of Himalayan mountain belts. These structures accommodated hundreds of kilometers of crustal shortening since India-Asia collision and eventually, juxtaposed different tectono-metamorphic rocks in their hanging wall. Field investigations reveal increased number of thrust faults towards the frontal Himalayan mountain belts and their spacing between the successive thrusts are relatively small in contrast to the hinterland part of the mountain belt. For example, in the Eastern Himalayan belt the MBT zone in the Lesser Himalayan Sequence is marked by several such closely spaced thrusts. The present work is aimed to delineate factors that likely to have influenced for the development of such high frequency thrusting. Employing the model of Coulomb Wedge Theory (CWT), several researchers have shown that spacing between two consecutive thrusts is a function of basal friction and pore fluid pressure ratio. However, this model does not explain the cause of closely spaced thrust localization towards the frontal mountain belts during the wedge growth. Our present study using field relations and physical modeling shows that relative strength difference between the basal low angle detachment fault and the interface-strength of the varying lithology of the cover rocks has a major role for such thrust localization with narrow thrust spacing. Moreover, our findings may become useful for structural interpretation for the localization of Main Boundary Thrust zone in the frontal Himalayan mountain

  15. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  16. Effects of Experimental Learning--Outcomes of an Empirical Study in the Vocational Field of Structural Engineering

    ERIC Educational Resources Information Center

    Bünning, Frank

    2013-01-01

    Pedagogic approaches to TVET offer a limited range of teaching strategies which make use of experimental learning. Thus experiments were developed for teachers of structural engineering and timber processing technologies and were subject to empirical evaluation by a researcher at the Otto-von-Guericke-University Magdeburg and Kassel University.…

  17. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    PubMed Central

    2012-01-01

    Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5) are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs) or filtered air for 8 h (7:00 AM - 3:00 PM). Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF) and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3) and Grand Rapids (519 μg/m3). Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase), eosinophils (90%), and total protein (300%) compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2.5, disparate health

  18. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Kotani, Akio; Matsuda, Yasuhiro H.; Nojiri, Hiroyuki

    2009-11-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi2(Si0.18Ge0.82)2 and YbInCu4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  19. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study

    SciTech Connect

    Onstott, Tullis C; Pffifner, Susan M; Chourey, Karuna

    2014-11-07

    Our results to date indicate that CO2 and CH4 fluxes from organic poor, Arctic cryosols on Axel Heiberg Island are net CH4 sinks and CO2 emitters in contrast to organic-rich peat deposits at sub-Arctic latitudes. This is based upon field observations and a 1.5 year long thawing experiment performed upon one meter long intact cores. The results of the core thawing experiments are in good agreement with field measurements. Metagenomic, metatranscriptomic and metaproteomic analyses indicate that high affinity aerobic methanotrophs belong to the uncultivated USCalpha are present in <1% abundance in these cryosols are are active in the field during the summer and in the core thawing experiments. The methanotrophs are 100 times more abundant than the methanogens. As a result mineral cryosols, which comprise 87% of Arctic tundra, are net methane sinks. Their presence and activity may account for the discrepancies observed between the atmospheric methane concentrations observed in the Arctic predicted by climate models and the observed seasonal fluctuations and decadal trends. This has not been done yet.

  20. An experimental study on the motion, deformation and electrical charging of water drops falling in oil in the presence of high voltage D.C. electric field

    SciTech Connect

    Jalaal, M.; Khorshidi, B.; Esmaeilzadeh, E.

    2010-11-15

    The motion, deformation and electrical charging of conducting water drops falling in an insulating liquid subjected to various electric fields strength were studied experimentally. The drop motion was recorded contentiously by high speed camera and their responses to deformation under the influence of electric field were digitally extracted by image processing of the sequential frames. Two parameters were defined for describing the deviation and deformation of the drops under the electric forces. Outcomes depicted that the deviation of the drops from the vertical line would be increased by adding to the applied electrical potential as well as reduction of drop size. Moreover, regarding to deformation diagram, the results revealed a dissimilar deformation manner between large and small drops, which can be helpful in describing the drop-drop electro coalescence phenomena and in design of electrically driven droplet-based systems. (author)

  1. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2015-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753

  2. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2014-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753

  3. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2014-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.

  4. Experimental study of the ponderomotive effects of a large amplitude microwave field on a magnetized electron beam

    SciTech Connect

    Hadjoudj, Y.; Pierre, T.; Heuraux, S.; Leclert, G.

    1995-11-01

    Charged particles propagating in an inhomogeneous large amplitude microwave field experience a nonlinear force called the ponderomotive force. This effect can be theoretically evaluated either from the single particle or the fluid theories. For magnetized particles, these two descriptions predict quite different behaviors. A previous experiment [J. Vaclavik {ital et} {ital al}., Phys. Fluids {bold 29}, 2034 (1986)] has shown results in agreement with the fluid theory. Here, an experiment with a magnetized electron beam is described, which brings out a ponderomotive deflection in agreement with the single particle theory. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. [Experimental study of pilot-assisted detection of changes in the information field of the on-board view indicator].

    PubMed

    Tyryshkin, V A; Oboznov, A A

    1999-01-01

    The paper reports experimental data about the effects of operative memory restrictions on the indices of reliability of the visual identification of changes in external objects represented on the onboard visual indicator display. It was demonstrated that parallel piloting and visual tracking reduced the probability of identification of changes in two external objects up to 0.89 and deteriorated the ability to sustain the designated mode of piloting in six and more times. Two types of erroneous responses were delineated: overlooking changes in symbol-targets and false anxieties. Changes in the background symbols appeared to provoke false anxieties. The highest levels of reliability of eye tracking could be reached by changing color and/or contours of symbols-targets on the display.

  6. Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field

    NASA Astrophysics Data System (ADS)

    Changli, Liu; Feng-E, Zhang; Yun, Zhang; Shuhong, Song; Sheng, Zhang; Hao, Ye; Hongbing, Hou; Lijuan, Yang; Ming, Zhang

    2005-10-01

    The water quality of shallow aquifers that have direct relationship to human heath and ecological safety has been seriously threatened by widespread dumping of industrial solid waste, urban and rural garbage. A garbage dump field with hydrogeological, environ-geological characteristics typical of the Beijing plain was selected for investigation. A hydrogeological model was constructed and the equations used to describe pollutant transport in one-dimensional (1D) steady, uniform groundwater flow to investigate the transport/diffusion processes. In addition to the coefficients for calculation, diffusion coefficient and other coefficients of the aquifer were obtained by conducting in situ diffusion experiments and sample tests. Velocity and scope of pollutant transport/diffusion process were calculated. Accordingly, the real pollution situation in the aquifer was evaluated through in situ drilling and sample testing. Transport/diffusion processes of pollutants within the aquifer abide by the solute equation applicable to 1D steady flow. The transport and diffusion dominate in the direction of groundwater flowing at a speed of about 120 m per year. Comparably, the lateral diffusive width is much smaller. Pollution degree decreases by the law of Y=1.08 exp(33.533/ X), where Y is the distance from the garbage dump field and X is the overall pollution index.

  7. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  8. Experimental study on vertical scaling of InAs-on-insulator metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko

    2014-06-30

    We have investigated effects of the vertical scaling on electrical properties in extremely thin-body InAs-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs). It is found that the body thickness (T{sub body}) scaling provides better short channel effect (SCE) control, whereas the T{sub body} scaling also causes the reduction of the mobility limited by channel thickness fluctuation (δT{sub body}) scattering (μ{sub fluctuation}). Also, in order to achieve better SCEs control, the thickness of InAs channel layer (T{sub channel}) scaling is more favorable than the thickness of MOS interface buffer layer (T{sub buffer}) scaling from a viewpoint of a balance between SCEs control and μ{sub fluctuation} reduction. These results indicate necessity of quantum well channel structure in InAs-OI MOSFETs and these should be considered in future transistor design.

  9. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  10. Theoretical and experimental studies of high-beta plasmas formed by odd-parity rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel

    2007-11-01

    Hamiltonian simulations of ion and electron heating by odd-parity rotating magnetic fields applied to FRC plasmas have predicted rapid heating of both electrons and ions to multi-keV temperatures, even at low relative RMF strengths. Both the onset of heating and saturation of energy have been explained by perturbation analysis in stochastic theory. These simulations assumed full RMF penetration to the major axis and collisionless particle trajectories, the latter expected in fusion reactor. However, most present RMF/FRC experiments do not achieve full RMF penetration and operate in a low-temperature collisional regime, far from fusion-reactor conditions. Recent experiments at Princeton, which employ commercial off-the-shelf hardware and non-invasive diagnostics and which use, for the first time in FRC research, remote divertor chambers, have achieved a thousand-fold reduction in collisionality to below 0.001, volume-averaged beta above 0.5, electron temperatures above 200 eV, and full penetration of the RMF while avoiding the radiation barrier encountered by other RMF/FRC experiments. Comparisons between theory and experiment show the important role of infrequent collisions, particularly with neutrals. Motivations for a superconducting next-step FRC and design considerations for a car-sized practical FRC reactor will be described.

  11. Resolving the aluminum ordering in aluminosilicates by a combined experimental/theoretical study of 27Al electric field gradients.

    PubMed

    Rocquefelte, Xavier; Clabau, Frédéric; Paris, Michael; Deniard, Philippe; Le Mercier, Thierry; Jobic, Stéphane; Whangbo, Myung-Hwan

    2007-07-01

    The discrimination between atomic species in light-element materials is a challenging question. An archetypal example is the resolution of the Al/Si ordering in aluminosilicates. Only an average long-range order can be deduced from powder X-ray or neutron diffraction, while magic-angle-spinning NMR provides an accurate picture of the short-range order. The long- and short-range orders thus obtained usually differ, hence raising the question of whether the difference between local and extended orders is intrinsic or caused by the difficulty of obtaining an accurate picture of the long-range order from diffraction techniques. In this communication we resolve this question for the monoclinic phases of BaAl2Si2O8 and SrAl2Si2O8 on the basis of 27Al NMR measurements and ab initio simulation of electric field gradient. Although the long- and short-range orders deduced from our XRD and NMR experiments differ, they become similar when the XRD atomic positions are optimized by ab initio electronic structure calculations.

  12. Experimental and Computational Studies of the Control of Convection of Non-Conducting Liquids During solidification by Means of a Magnetic Field Gradient

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow

  13. An experimental study into the influence of aquatic plant motion characteristics on the generation of a fluvial turbulent flow field

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Marjoribanks, T.; Parsons, D. R.; Thomas, R. E.

    2015-12-01

    Aquatic vegetation has a determining effect on flow and consequently sediment transport as it generates both skin friction and form drag. The measurement of flow above the vegetation canopy has received much attention and there is now a good process understanding of mean and turbulent flow, although, much of this research has focused on rigid vegetation with relatively simple morphology. However, vegetation immersed in a flow experiences several forces (buoyancy; drag; virtual mass; Basset; and Saffman) which are counteracted by the properties of the vegetation (flexural rigidity; modulus of elasticity; the plant area exposed to the flow and; the packing density of the stems). The ratio of these forces determines the plant motion characteristics which are generally classified as either i) erect with no movement; ii) gently swaying; iii) strong, coherent swaying or; iv) prone. Here we report on an investigation into the influence of plant motion on the turbulence structure in the mixing zone as vortices in this region have been shown to account for the majority of the momentum transport between the canopy and the open flow. We report on a series of flume experiments where flow over a canopy of surrogate aquatic vegetation was measured using PIV at a spatial resolution of ~1mm2 and at a temporal resolution of 100 Hz. This provided whole flow field measurements for all three components of flow over the vegetation canopy. Plant motion characteristics were altered by modifying the flow Reynolds number through both velocity and depth. The influences of plant stem length were also assessed. The measured flows were analysed by standard Reynolds decomposition approaches and Eulerian and Lagrangian coherent flow structure identification methods. Kelvin-Helmholtz and Görtler-type vortices were identified within the canopy shear layer that are generated close to the canopy top and evolve downstream into span-wise roller vortices, which expand with both distance and time. When

  14. Psychophysiological analysis of mental load during driving on rural roads--a quasi-experimental field study.

    PubMed

    Richter, P; Wagner, T; Heger, R; Weise, G

    1998-05-01

    The objective of this study was the development and validation of an integrated measure-assessment approach (driving performance and psychophysiological indicators) for the assessment of driving demands of rural road segments as a starting point for design. With 31 student test drivers and a selection of six study roads, the reactivity of psychophysiological parameters was evaluated based on a general model of cognitive-energetic effort regulation according to Hockey (1993). The road curvature change rate was introduced as the independent variable, which served as a criterion of objective road difficulty. Based on a reliability analysis, the longitudinal and cross-sectional stability, especially for heart rate (HR) and blink rate (BR) measures, is sufficiently high. Both these psychophysiological variables and speed vary as a function of the curvature change rate of the rural road segments. The speed parameter differentiates very strongly the different curvature change rates. Among the psychophysiological indicators, changes in the blink rate almost exactly mirror the level of the curvature change rate owing to the fact that the BR decreases almost steadily with increasing curvature change rate. Cardiovascular parameters, such as heart rate (HR) and heart rate variability (HRV), and skin conductance response (SCR) also vary in relation to driving difficulty of road segments, but at levels of intermediate curvature other additional road characteristics may also influence these measures.

  15. Experimental Study to Produce Multiple Focal Points of Acoustic Field for Active Path Selection of Microbubbles through Multi-bifurcation

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Koido, Jun; Ito, Takumi; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempt to propel microbubbles in a flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from the surface of the body, controlling bubbles in an against-flow was necessary. It is unpractical to use multiple transducers to produce the same number of focal points because single-element transducers cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a two-dimensional (2D) array transducer to produce multiple focal points for the active control of microbubbles in an against-flow. From the results, about 15% more microbubbles were led to the desired path with multiple focal points of ultrasound relative to the no-emission case.

  16. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  17. Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Drake, J. R.; Brunsell, P. R.; Yadikin, D.; Cecconello, M.; Malmberg, J. A.; Gregoratto, D.; Paccagnella, R.; Bolzonella, T.; Manduchi, G.; Marrelli, L.; Ortolani, S.; Spizzo, G.; Zanca, P.; Bondeson, A.; Liu, Y. Q.

    2005-07-01

    Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.

  18. Health responses to a new high-voltage power line route: design of a quasi-experimental prospective field study in the Netherlands

    PubMed Central

    2014-01-01

    Background New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. Methods/Design The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n = 2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n = 2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. Discussion This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines. PMID:24606914

  19. Establishing a web-based integrated surveillance system for early detection of infectious disease epidemic in rural China: a field experimental study

    PubMed Central

    2012-01-01

    Background A crucial goal of infectious disease surveillance is the early detection of epidemics, which is essential for disease control. In China, the current surveillance system is based on confirmed case reports. In rural China, it is not practical for health units to perform laboratory tests to confirm disease and people are more likely to get 'old' and emerging infectious diseases due to poor living conditions and closer contacts with wild animals and poultry. Syndromic surveillance, which collects non-specific syndromes before diagnosis, has great advantages in promoting the early detection of epidemics and reducing the necessities of disease confirmation. It will be especially effective for surveillance in resource poor settings. Methods/Design This is a field experimental study. The experimental tool is an innovative electronic surveillance system, combining syndromic surveillance with the existing case report surveillance in four selected counties in China. In the added syndromic surveillance, three types of data are collected including patients' major symptoms from health clinics, pharmaceutical sales from pharmacies and absenteeism information from primary school. In order to evaluate the early warning capability of the new added syndromic surveillance, the timelines and validity of the alert signals will be analyzed in comparison with the traditional case reporting system. The acceptability, feasibility and economic evaluation of the whole integrated surveillance system will be conducted in a before and after study design. Discussions Although syndromic surveillance system has mostly been established in developed areas, there are opportunities and advantages of developing it in rural China. The project will contribute to knowledge, experience and evidence on the establishment of an integrated surveillance system, which aims to provide early warning of disease epidemics in developing countries. PMID:22305256

  20. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  1. Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: An experimental study using a strain-controlled rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Kim, Yong-Seok; Song, Ki-Won

    2015-08-01

    The objective of the present study is to experimentally investigate the transient rheological behavior of concentrated xanthan gum solutions in start-up shear flow fields. Using a strain-controlled rheometer, a number of constant shear rates were suddenly imposed to aqueous xanthan gum solutions with different concentrations and the resultant shear stress responses were measured with time. The main findings obtained from this study can be summarized as follows: (1) For all shear rates imposed, however low it may be, the shear stress is rapidly increased with time (stress overshoot) upon inception of steady shear flow before passing through the maximum stress value and then gradually decreased with time (stress decay) until reaching a steady state flow. (2) As the imposed shear rate is increased, a more pronounced stress overshoot takes place and the maximum stress value becomes larger, whereas both times at which the maximum stress is observed and needed to reach a steady state flow are shortened. (3) The maximum shear stress is linearly increased with shear rate in a double logarithmic scale and becomes larger with increasing concentration at equal shear rates. In addition, the time at which the maximum stress occurs exhibits a linear relationship with the inverse of shear rate in a double logarithmic scale for all xanthan gum solutions, regardless of their concentrations. (4) The shear stress is sharply increased with an increase in strain until reaching the maximum stress at small range of deformations. The maximum stress is observed at similar strain values, irrespective of the imposed shear rates lower than 10 1/s. (5) The Bird-Leider model can be successfully used with regard to quantitatively predicting the transient behavior of concentrated xanthan gum solutions. However, this model has a fatal weakness in terms of describing a decrease in shear stress (stress decay).

  2. Experimental investigation of strong field trident production

    SciTech Connect

    Esberg, J.; Kirsebom, K.; Knudsen, H.; Thomsen, H. D.; Uggerhoej, E.; Uggerhoej, U. I.; Sona, P.; Mangiarotti, A.; Ketel, T. J.; Dizdar, A.; Dalton, M. M.; Ballestrero, S.; Connell, S. H.

    2010-10-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.

  3. An experimental charge density study of the effect of the noncentric crystal field on the molecular properties of organic NLO materials.

    PubMed

    Gopalan, R S; Kulkarni, G U; Rao, C N

    2000-11-01

    The structure, packing, and charge distribution in molecules of nonlinear optical materials have been analysed with reference to their counterparts in centrosymmetric structures based on low temperature X-ray measurements. The systems studied are the centric and noncentric polymorphs of 5-nitrouracil as well as the diamino, dithio, and thioamino derivatives of 1,1-ethylenedicarbonitrile; the latter possesses a noncentric structure. The molecular structure of 5-nitrouracil is invariant between the two forms, while the crystal packing is considerably different, leading to dimeric N-H·∙∙O rings in the centric polymorph and linear chains in noncentric one. There is an additional C-H·∙∙O contact in the centric form with a significant overlap of the electrostatic potentials between the alkenyl hydrogen atom and an oxygen atom of the nitro group. The dipole moment of 5-nitrouracil in the noncentric form is much higher (μ=9 D) than in the centric form (≈6 D). Among the 1,1-ethylenedicarbonitriles, there is an increased charge separation in the noncentric thioamino derivative, leading to an enhanced dipole of 15 D compared to the centric diamino (5 D) and dithio (6 D) derivatives. The effect of the crystal field is borne out by semiempirical AM1 calculations on the two systems. Dipole moments calculated for the molecules in the frozen geometries match closely with those obtained for centric crystals from the experimental charge densities. The calculated values of the dipole moment in the frozen or optimized geometries in the noncentric structures are, however, considerably lower than the observed value. Furthermore, the conformation of the S-CH(3) group in the noncentric crystal is anti with respect to the central C=C bond while the syn conformation is predicted for the free molecule in the optimized geometry. PMID:23696303

  4. Relation between experimental and non-experimental study designs. HB vaccines: a case study

    PubMed Central

    Jefferson, T.; Demicheli, V.

    1999-01-01

    STUDY OBJECTIVE: To examine the relation between experimental and non- experimental study design in vaccinology. DESIGN: Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. SETTING: Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. RESULTS: Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.   PMID:10326054

  5. Towards experimental quantum-field tomography with ultracold atoms

    PubMed Central

    Steffens, A.; Friesdorf, M.; Langen, T.; Rauer, B.; Schweigler, T.; Hübener, R.; Schmiedmayer, J.; Riofrío, C.A.; Eisert, J.

    2015-01-01

    The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems. PMID:26138511

  6. Towards experimental quantum-field tomography with ultracold atoms.

    PubMed

    Steffens, A; Friesdorf, M; Langen, T; Rauer, B; Schweigler, T; Hübener, R; Schmiedmayer, J; Riofrío, C A; Eisert, J

    2015-07-03

    The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems.

  7. Profiling of energy deposition fields in a modular HTHR with annular core: Computational/experimental studies at the ASTRA critical facility

    SciTech Connect

    Boyarinov, V. F.; Garin, V. P.; Glushkov, E. S.; Zimin, A. A.; Kompaniets, G. V.; Nevinitsa, V. A.; Polyakov, D. N.; Ponomarev, A. S.; Ponomarev-Stepnoi, N. N.; Smirnov, O. N.; Fomichenko, P. A.; Chunyaev, E. I.; Marova, E. V.; Sukharev, Yu. P.

    2010-12-15

    The paper presents the results obtained from the computational/experimental studies of the spatial distribution of the {sup 235}U fission reaction rate in a critical assembly with an annular core and poison profiling elements inserted into the inner graphite reflector. The computational analysis was carried out with the codes intended for design computation of an HTHR-type reactor.

  8. [Experimental studies of micromotor headpieces].

    PubMed

    Kanaev, V F; Repin, V A

    1982-01-01

    Experimental studies of handpieces for micromotors have been performed to make more precise their operating parameters. The special stand has been used for the measurements of the following data: head temperature, power losses in handpieces at no-load, and operating power required for machining by means of spherical burrs. The experimental results made it possible to specify more exactly the range of handpiece rotational speeds and to select optimum loads under reliability testing. PMID:7050601

  9. Experimental Infrasound Studies in Nevada

    NASA Astrophysics Data System (ADS)

    Herrin, E. T.; Negraru, P. T.; Golden, P.; Williams, A.

    2009-12-01

    An experimental propagation study was carried out in Nevada in June 2009 on Julian days 173-177. During this field experiment we deployed 16 single channel digital infrasound recorders to monitor the munitions disposal activities near Hawthorne, NV. The sensors were deployed in a single line and placed approximately 12 km apart at distances ranging from 2 to 177 km. A four element semi-permanent infrasound array named FNIAR was installed approximately 154 km north of the detonation site in line with the individual temporary recorders. Tropospheric arrivals were observed during all days of the experiment, but during day 176 the observed arrivals had very large amplitudes. A large signal was observed at 58 km from the detonation site with amplitude as large as 4 Pascals, while at 94 km no signal was observed. At FNIAR the amplitude of the tropospheric arrival was 1 Pascal. During this day meteorological data acquired in the propagation path showed a strong jet stream to the north. On day 177 we were not able to identify tropospheric arrivals beyond 34 km, but at stations beyond 152 km we observed stratospheric arrivals. Continuous monitoring of these signals at FNIAR shows that stratospheric arrivals are the most numerous. In a two month period, from 06/15/2009 to 08/15/2009 there were 35 operational days at the Hawthorne disposal facility resulting in 212 explosions with known origin times. Based on the celerity values there were 115 explosions that have only stratospheric arrivals (celerities of 300-275 m/s), 72 explosions with both tropospheric (celerities above 330 m/s) and stratospheric arrivals, 20 explosions that were not detected and five explosions that have only tropospheric arrivals.

  10. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  11. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field-implications for paleomagnetic studies of red beds

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José

    2015-10-01

    Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of the CRM acquisition process must be understood. Here, we contribute to this issue by synthesizing hematite under controlled 'Earth-like' field conditions (≲ 100 μ T). CRM was imparted in 90 oriented samples with varying inclinations. The final synthesis product appeared to be dominated by hematite with traces of ferrimagnetic iron oxides. When the magnetic field intensity is ≳ 40 μ T, the CRM records the field direction faithfully. However, for field intensities ≲ 40 μ T, the CRM direction may deviate considerably from that of the applied field during synthesis. The CRM intensity normalized by the isothermal remanent magnetization (CRM/IRM@2.5 T) increases linearly with the intensity of growth field, implying that CRM could potentially be useful for relative paleointensity studies if hematite particles of chemical origins have consistent properties. CRM in hematite has a distributed unblocking temperature spectrum from ˜200 to ˜650 °C, while hematite with a depositional remanent magnetization (DRM) has a more confined spectrum from ˜ 600to 680 °C because it is usually coarser-grained and more stoichiometric. Therefore, the thermal decay curves of CRM with their concave shape are notably different from their DRM counterparts which are convex. These differences together are suggested to be a potential discriminator of CRM from DRM carried by hematite in natural red beds, and of significance for the interpretation of paleomagnetic studies on red beds.

  12. Experimental Studies in Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Wright, Timothy Peter

    Ice nuclei play a critical role in the formation of precipitation in mixed phase clouds. Modification of IN concentrations can lead to changes in cloud lifetimes and precipitation size. Presented in this study are experimental investigations into ice nuclei in an ongoing effort to reduce the uncertainties that ice nuclei have on cloud processes and climate. This research presents a new version of the cold stage drop freezing assay to investigate the time-dependence of heterogeneous nucleation. The temperature range for the instrument spans from the melting point of water to the homogeneous freezing limit of ˜-38 deg C. Temperature stability for the instrument allowed for experimental operation for up to four days while interrogating the same sample. Up to a one hundred fold increase in the number of analyzed drops was accomplished through an in-house written automated drop freezing detection software package. Combined instrument design improvements allow for the analysis of IN concentrations down to ˜10-8 ice nuclei per picoliter of sample water. A new variant of the multiple-component stochastic model for heterogeneous ice nucleation was used to investigate the time dependence of heterogeneous freezing processes. This was accomplished by analyzing how the changes in the cooling rate can impact the observed nucleation rate. The model employed four material-dependent parameters to accurately capture the observed freezing of water drops containing Arizona Test Dust. The parameters were then used to accurately predict the freezing behavior of the drops in time dependent experiments. The time dependence freezing of a wide range of materials was then investigated. These materials included the minerals montmorillonite and kaolinite, the biological proxy ice nuclei contained within the product Icemax, and flame soot generated from the incomplete combustion of ethylene gas. The time dependence for ice nuclei collected from rainwater samples was also investigated. The

  13. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  14. An experimental study of the structure and acoustic field of a jet in a cross stream. [Ames 7-ft by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Camelier, I.; Karamcheti, K.

    1976-01-01

    The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1 + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the jet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.

  15. Microbial Field Pilot Study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-11-01

    This report covers progress made during the first year of the Microbial Field Pilot Study project. Information on reservoir ecology and characterization, facility and treatment design, core experiments, bacterial mobility, and mathematical modeling are addressed. To facilitate an understanding of the ecology of the target reservoir analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. A preliminary design of facilities for the operation of the field pilot test was prepared. In addition, procedures for facilities installation and for injection treatments are described. The Southeast Vassar Vertz Sand Unit (SEVVSU), the site of the proposed field pilot study, is described physically, historically, and geologically. The fields current status is presented and the ongoing reservoir simulation is discussed. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. Two possible mechanisms, relative permeability effects and changes in the capillary number, are discussed and related to four Berea core experiments' results. The experiments were conducted at reservoir temperature using SEVVSU oil, brine, and bacteria. The movement and activity of bacteria in porous media were investigated by monitoring the growth of bacteria in sandpack cores under no flow conditions. The rate of bacteria advancement through the cores was determined. A mathematical model of the MEOR process has been developed. The model is a three phase, seven species, one dimensional model. Finite difference methods are used for solution. Advection terms in balance equations are represented with a third- order upwind differencing scheme to reduce numerical dispersion and oscillations. The model is applied to a batch fermentation example. 52 refs., 26 figs., 21 tabs.

  16. Experimental and theoretical studies on the effects of magnetic fields on the arrangement of surface spins and the catalytic activity of Pd nanoparticles.

    PubMed

    Li, Ran; Yang, Yang; Li, Ren; Chen, Qianwang

    2015-03-25

    Nanocatalysts have very high catalytic activities due to surface atoms with their unpaired spins. It is the purpose of this paper to investigate the effect of magnetic fields (MFs) on the arrangement of surface spins and their catalytic activities. Pd nanoparticles supported on MIL-100(Cr) were selected as catalysts for the reduction of 4-nitrophenol under MFs. The result demonstrates that MFs can reduce the reaction time from 2.6 to 1.4 min under 0.5 T. This study first shows that the configuration of surface spins has an effect on the catalytic activity, which can be regulated by a foreign MF.

  17. Studying fringe field effect of a field emitter array

    NASA Astrophysics Data System (ADS)

    Sayfullin, M. F.; Nikiforov, K. A.

    2014-10-01

    Field emitter arrays on heavy As-doped Si wafer are studied in vacuum nanoelectronics diode configuration. Different shapes of emitters are considered: cone-shaped point-emitters and cylinder-shaped sharp-edge-emitters are compared. Micro scale field enhancement factor on the edge of cylindrical emitter was calculated via home-developed Matlab application and the results are presented. Two types of anode geometry are proposed: plane anode and spherical anode. Experimental and modelling results of surface electric field distribution are presented. The spherical shape of anode allows higher voltage (and higher field emission current) without destructive arcs risk.

  18. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  19. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  20. High resolution vacuum ultraviolet pulsed field ionization photoelectron band for OCS{sup +}(X{sup 2}{Pi}): An experimental and theoretical study

    SciTech Connect

    Stimson, S.; Evans, M.; Ng, C.Y.; Hsu, C.; Heimann, P.; Destandau, C.; Chambaud, G.; Rosmus, P.

    1998-04-01

    The vacuum ultraviolet pulsed field ionization photoelectron (PFI-PE) band for OCS{sup +}(X{sup 2}{Pi}) in the energy region of 11.09{endash}11.87 eV has been measured using high resolution monochromatized synchrotron radiation. The ionization energies (IEs) for the formation of the (0,0,0) X{sup 2}{Pi}{sub 3/2} and (0,0,0) {sup 2}{Pi}{sub 1/2} states of OCS{sup +} are determined to be 11.1831{plus_minus}0.0005 and 11.2286{plus_minus}0.0005eV, respectively, yielding a value of 367{plus_minus}1.2cm{sup {minus}1} for the spin{endash}orbit splitting. Using the internally contracted multireference configuration interaction approach, three-dimensional potential energy functions (PEFs) for the OCS{sup +}(X{sup 2}{Pi}) state have been generated and used in the variational Renner{endash}Teller calculations of the vibronic states. The energies of all vibronic states (J=P) for J=1/2, 3/2, 5/2, and 7/2 have been computed in the energy range of {approx}4000cm{sup {minus}1} above the IE[OCS{sup +}(X{sup 2}{Pi}{sub 3/2})] for the assignment of the experimental spectrum. By a minor modification of the {ital ab initio} PEFs, good correlations are found between the experimental and theoretical Renner{endash}Teller structures. Similar to the PFI-PE bands for CO{sub 2}{sup +}(X{sup 2}{Pi}{sub g}) and CS{sub 2}{sup +}(X{sup 2}{Pi}{sub g}), weak transitions have been detected in the PFI-PE band for OCS{sup +}(X{sup 2}{Pi}), which are forbidden in the Franck{endash}Condon approximation. The nonvanishing single-photon ionization cross sections involving the excitation of the bending vibrational modes of OCS{sup +}, CO{sub 2}{sup +}, and CS{sub 2}{sup +}, in their ground electronic states are attributed to the symmetries of the geometry-dependent electronic transition dipole operator components. {copyright} {ital 1998 American Institute of Physics.}

  1. The linear model and experimentally observed resonant field amplification in tokamaks and reversed field pinches

    SciTech Connect

    Pustovitov, V. D.

    2011-01-15

    A review is given of the experimentally observed effects related to the resonant field amplification (RFA) and the Resistive Wall Mode (RWM) instability in tokamaks and reversed field pinches (RFPs). This includes the feedback rotation of RWM in RFX-mod RFP, dependence of the RWM growth rate on the plasma-wall separation observed in JT-60U, appearance of the slowly growing RWM precursors in JT-60U and similar phenomena in other devices. The experimental results are compared with theoretical predictions based on the model comprising the Maxwell equations, Ohm's law for the conducting wall, the boundary conditions and assumption of linear plasma response to the external magnetic perturbations. The model describes the plasma reaction to the error field as essentially depending on two factors: the plasma proximity to the RWM stability threshold and the natural rotation frequency of the plasma mode. The linear response means that these characteristics are determined by the plasma equilibrium parameters only. It is shown that the mentioned effects in different devices under different conditions can be described on a common basis with only assumption that the plasma behaves as a linear system. To extend the range of the model validation, some predictions are derived with proposals for experimental studies of the RFA dynamics.

  2. Experimental studies of glass refining

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.; Kondos, P.

    1984-01-01

    The basic components of the experimental apparatus were selected and acquired. Techniques were developed for the fabrication of the special crucibles necessary for the experiments. Arrangements were made for the analysis of glass and gas bubble samples for composition information. Donations of major equipment were received for this project from Owens, Illinois where a similar study had been conducted a few year ago. Decisions were made regarding the actual glass composition to be used, the gas to be used in the first experiments, and the temperatures at which the experiments should be conducted. A microcomputer was acquired, and work was begun on interfacing the video analyzer to it.

  3. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  4. Experimental studies with palygorskite dusts.

    PubMed

    Wagner, J C; Griffiths, D M; Munday, D E

    1987-11-01

    As the preliminary results of experimental studies on dust from the palygorskite group have led to some confusion a detailed description of the completed investigation is given for clarification. As in other experiments the biological effects have been shown to be associated with the physical characteristics of the fibres in these specimens. Samples of sepiolite and attapulgite from Spain and a single sample of palygorskite from the United Kingdom have been studied. Serious abnormalities were produced only by the palygorskite and one of the attapulgite dusts. The palygorskite is of no commercial interest and the attapulgite was from one small deposit and was used only in the preparation of drilling mud in the exploration of oil deposits. PMID:2961365

  5. An experimental study of the flow of gas along synthetic faults of varying orientation to the stress field: Implications for performance assessment of radioactive waste disposal

    NASA Astrophysics Data System (ADS)

    Cuss, Robert J.; Harrington, Jon F.; Noy, David J.; Sathar, Shanvas; Norris, Simon

    2015-05-01

    Critical stress theory states that fault transmissivity is strongly dependent upon orientation with respect to the stress tensor. This paper describes an experimental study aimed at verifying critical stress theory using a bespoke angled shear rig designed to examine the relationship between gas flows along a kaolinite-filled synthetic fault as a function of fault dip. A total of 22 gas injection experiments were conducted on faults oriented 0°, 15°, 30°, and 45° to horizontal; both with and without active shear. Gas flow was seen to be complex; repeat gas injection testing showed a consistent gas entry pressure but considerably different, nonrepeatable, gas peak or breakthrough pressure. Gas flow occurred along discrete, dilatant pathways. The physics governing the pressure at which these features formed was repeatable; however, permeability was dependent on the number, distribution, and geometry of the resultant pathways. The nonrepeatable gas response suggests that the number of pathways was dependent on very subtle variations in gouge properties. No fault orientations were seen to exhibit nonflow characteristics, although critical stress theory predicted that two of the investigated fault angles should be effective seals. However, a small variation in gas entry pressure was seen with fault angle as a result of varying normal and shear stress acting on the gouge material. Shear was seen to enhance gas movement by reducing gas entry pressure and increased permeability once gas became mobile. Therefore, in kaolinite gouge-filled faults, shear is not an effective self-sealing mechanism to gas flow.

  6. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  7. Utilization of proteomics in experimental field conditions--A case study of poplars growing on grassland affected by long-term starch wastewater irrigation.

    PubMed

    Szuba, Agnieszka; Lorenc-Plucińska, Gabriela

    2015-08-01

    The presented study verified the possibility of using proteomics as a tool for investigating poplars growing on obviously separate plots. The examination covered poplars planted on grassland irrigated for 40 years with potato industry wastewater and in a plot appropriate for poplar planting, spaced at a distance of 67 km from each other (hereinafter referred to as forest). The work aimed to compare the obtained proteomic results with data on biometric and biochemical parameters and mineral composition as well as to assess, at a molecular level, the usefulness of grasslands for planting. Proteome analysis showed that most of the stress-related proteins detected were less abundant on the irrigated grassland, confirming the viability of its revegetation with poplars. Proteomic data corresponded well with the other results, highlighting the probable reason for the proteome changes; i.e. deficiency of phosphate ions detected in the forest area. Moreover, proteome analysis revealed biotic stress symptoms in plants growing on the grassland, which were also well explained by other data but would not have been detected without performing the proteomic analysis. Therefore, environmental plant proteomics is a useful and valuable tool during field studies, even when samples are taken from plots some distance apart.

  8. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  9. Systematic validation of protein force fields against experimental data.

    PubMed

    Lindorff-Larsen, Kresten; Maragakis, Paul; Piana, Stefano; Eastwood, Michael P; Dror, Ron O; Shaw, David E

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field--the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins--one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins.

  10. Inverted annular flow experimental study

    SciTech Connect

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow.

  11. An experimental study of reactive turbulent mixing

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Marek, C. J.; Strehlow, R. A.

    1977-01-01

    An experimental study of two coaxial gas streams, which react very rapidly, was performed to investigate the mixing characteristics of turbulent flow fields. The center stream consisted of a CO-N2 mixture and the outer annular stream consisted of air vitiated by H2 combustion. The streams were at equal velocity (50 m/sec) and temperature (1280 K). Turbulence measurements were obtained using hot film anemometry. A sampling probe was used to obtain time averaged gas compositions. Six different turbulence generators were placed in the annular passage to alter the flow field mixing characteristics. The turbulence generators affected the bulk mixing of the streams and the extent of CO conversion to different degrees. The effects can be related to the average eddy size (integral scale) and the bulk mixing. Higher extents of conversion of CO to CO2 were found be increasing the bulk mixing and decreasing the average eddy size.

  12. Horse Manure and Other Fun Projects. Field Studies and Laboratory Experiences in Environmental Biology - A Book of Experimental Ideas for Secondary School Biology Teachers.

    ERIC Educational Resources Information Center

    Brown, Robert T., Ed.; Clark, Barbara G., Ed.

    This guide contains a collection of laboratory and field inquiries designed to promote ecological awareness, sensitivity, and understanding. The activities compiled by 28 teachers are for use in teaching biology at the secondary level. They are presented in a "recipe" form to make it possible for teachers without prior experience or training to…

  13. Theoretical and Experimental Research of Error of Method of Thermocouple with Controlled Profile of Temperature Field

    NASA Astrophysics Data System (ADS)

    Jun, Su; Kochan, O.; Chunzhi, Wang; Kochan, R.

    2015-12-01

    The method of study and experimental researches of the error of method of the thermocouple with controlled profile of temperature field along the main thermocouple are considered in this paper. Experimentally determined values of error of method are compared to the theoretical estimations done using Newton's law of cooling. They converge well.

  14. Experimental studies of transonic flow field near a longitudinally slotted wind tunnel wall. Ph.D. Thesis - George Washington Univ., 1988

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Bobbitt, Percy J.

    1994-01-01

    The results of detailed parametric experiments are presented for the near-wall flow field of a longitudinally slotted transonic wind tunnel. Existing data are reevaluated and new data obtained in the Langley 6- by 19-inch Transonic Wind Tunnel are presented and analyzed. In the experiments, researchers systematically investigate many pertinent wall-geometry variables such as the wall openness and the number of slots along with the free stream Mach number and model angle of attack. Flow field surveys on the plane passing through the centerline of the slot were conducted and are presented. The effects of viscosity on the slot flow are considered in the analysis. The present experiments, combined with those of previous investigations, give a more complete physical characterization of the flow near and through the slotted wall of a transonic wind tunnel.

  15. Experimental Study of RF Pulsed Heating

    SciTech Connect

    Laurent, Lisa; Tantawi, Sami; Dolgashev, Valery; Nantista, Christopher; Higashi, Yasuo; Aicheler, Markus; Heikkinen, Samuli; Wuensch, Walter; /CERN

    2011-11-04

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop(reg. sign), copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110 C and remained at this temperature for approximately 10 x 10{sup 6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  16. Experimental study of rf pulsed heating

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa; Tantawi, Sami; Dolgashev, Valery; Nantista, Christopher; Higashi, Yasuo; Aicheler, Markus; Heikkinen, Samuli; Wuensch, Walter

    2011-04-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×106 rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  17. Precision improvement in dark-field microscopy imaging by using gold nanoparticles as an internal reference: a combined theoretical and experimental study.

    PubMed

    Ma, Jun; Liu, Yue; Gao, Peng Fei; Zou, Hong Yan; Huang, Cheng Zhi

    2016-04-28

    Low accuracy is a big obstacle in the dark-field microscopy imaging (iDFM) technique in practical applications. In order to reduce the deviations and fluctuations in the observed or snapped scattered light in the iDFM technique caused by unavoidable measurement errors, bare gold nanoparticles (AuNPs) were introduced as an internal reference (IR). The feasibility of using AuNPs as the IR in iDFM in theory was verified. The function of the IR in improving the precision of the acquired data through post data analysis was identified by three kinds of experiments: monitoring the oxidation process of silver nanoparticles (AgNPs) at room temperature, quantifying the level of glucose with AgNPs used as probes and quantifying the change in the light intensity of AuNPs after the plasmon resonance energy transfer (PRET) between AuNPs and tetramethylrhodamine (TAMRA). PMID:27065307

  18. Precision improvement in dark-field microscopy imaging by using gold nanoparticles as an internal reference: a combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Liu, Yue; Gao, Peng Fei; Zou, Hong Yan; Huang, Cheng Zhi

    2016-04-01

    Low accuracy is a big obstacle in the dark-field microscopy imaging (iDFM) technique in practical applications. In order to reduce the deviations and fluctuations in the observed or snapped scattered light in the iDFM technique caused by unavoidable measurement errors, bare gold nanoparticles (AuNPs) were introduced as an internal reference (IR). The feasibility of using AuNPs as the IR in iDFM in theory was verified. The function of the IR in improving the precision of the acquired data through post data analysis was identified by three kinds of experiments: monitoring the oxidation process of silver nanoparticles (AgNPs) at room temperature, quantifying the level of glucose with AgNPs used as probes and quantifying the change in the light intensity of AuNPs after the plasmon resonance energy transfer (PRET) between AuNPs and tetramethylrhodamine (TAMRA).Low accuracy is a big obstacle in the dark-field microscopy imaging (iDFM) technique in practical applications. In order to reduce the deviations and fluctuations in the observed or snapped scattered light in the iDFM technique caused by unavoidable measurement errors, bare gold nanoparticles (AuNPs) were introduced as an internal reference (IR). The feasibility of using AuNPs as the IR in iDFM in theory was verified. The function of the IR in improving the precision of the acquired data through post data analysis was identified by three kinds of experiments: monitoring the oxidation process of silver nanoparticles (AgNPs) at room temperature, quantifying the level of glucose with AgNPs used as probes and quantifying the change in the light intensity of AuNPs after the plasmon resonance energy transfer (PRET) between AuNPs and tetramethylrhodamine (TAMRA). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08837b

  19. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-01-01

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions or the reservoir and increase sweep efficiency. Injection of nutrient stimulates the growth and metabolism of reservoir bacteria, which produces beneficial products to enhance oil recovery. Sometimes, chemical treatments are used to clean or condition injection water. Such a chemical treatment has been initiated by Sullivan and Company at the Southeast Vassar Vertz Sand Unit. The unit injection water was treated with a mixture of water, methanol, isopropyl alcohol, and three proprietary chemicals. To determine if the chemicals would have an impact on the pilot, it was important to determine the effects of the chemical additives on the growth and metabolism of the bacteria from wells in this field. Two types of media were used: a mineral salts medium with molasses and nitrate, and this medium with 25 ppm of the treatment chemicals added. Samples were collected anaerobically from each of two wells, 1A-9 and 7-2. A sample from each well was inoculated and cultured in the broth tubes of molasses-nitrate medium with and without the chemicals. Culturing temperature was 35{degrees}C. Absorbance, pressure and cell number were checked to determine if the chemicals affected the growth and metabolism of bacteria in the brine samples. 12 figs.

  20. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    NASA Astrophysics Data System (ADS)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a <8 mm composite of field-contaminated, lower vadose zone sediments. For each size fraction, equilibrium U(VI) sorption/desorption in static batch reactors was well-described by surface complexation models over a range of chemical conditions applicable to the field site. Desorption rates from individual size fractions in flow-through batch reactors, examined under a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions <2 mm. Kinetic U(VI) desorption in flow-through batch reactors was modeled using a multi-rate surface complexation approach, where sorption/desorption rates were

  1. The effect of a deviatoric stress on physical rock properties. An experimental study simulating the in-situ stress field at the KTB drilling site, Germany

    SciTech Connect

    Kern, H.; Popp, T.; Schmidt, R.

    1994-09-01

    Petrophysical measurements were carried out on dry specimens of mica-gneiss, amphibolite and serpentinite from KTB core samples and samples of surface outcrops in order to determine the effect that a deviatoric stress field, as observed at the KTB area, may have on the in-situ rock properties. Simulating the variation of the actual principal stresses and temperature with depth, seismic wave velocities, densities, linear and volumetric strain (porosity) have been measured, taking into account the overall spatial orientation of the foliation at the KTB area with respect to the principal stress axes. Comparison with respective data evaluated for lithostatic pressure conditions revealed that the stress-related (crack-related) effect on wave velocities respectively on velocity anisotropy is in the range 1-3%, due to microcracks which are selectively closed or kept open by the deviatoric stress. The effect of the deviatoric stress is particularly documented by shear wave splitting due to microfractures that are oriented normal to the minimum principal stress axis.

  2. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  3. An Experimental Study of the Rainfall Variability Within TRMM/GPM Precipitation Radar and Microwave Sensor Instantaneous Field of View During MC3E

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Petersen, Walter Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.

    2011-01-01

    Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm/h for 20 minutes. We will compare the findings with previous studies.

  4. An Experimental Study of the Rainfall Variability Within TRMM/GPM Precipitation Radar and Microwave Sensor Instantaneous Field of View During MC3E

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Petersen, Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.

    2011-01-01

    Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm h-1 for 20 minutes. We will compare the findings with previous studies.

  5. Experimental studies on pump limiters

    NASA Astrophysics Data System (ADS)

    Mioduszewski, P.

    1982-12-01

    Pump limiters are mechanical devices for He-ash removal, fuel particle control, and possibly impurity control. Different designs have been suggested by various authors over the past decade. However, the magnetic divertor concepts seemed to be more promising, mainly because of their remote plasma-material interactions. All of the characteristics of magnetic divertors have been proven experimentally, but the overall performance and complexity cause concern about their application to tokamak reactors. Consequently, it is now time to explore the potential of mechanical particle control devices, i.e. pump limiters. Because of the high recycling at the limiter, it is sufficient to exhaust only a small fraction, about 1-10%, of the limiter particle flux to remove e.g. He at its rate of production. Pump limiter experiments have been conducted so far on Alcator, PDX, Macrotor, and ISX. Depending on the experimental design, a pressure build-up of between 1 mTorr and 50 mTorr has been reported. The closed configuration pump limiters provide high collection efficiencies, but have to accomodate high power fluxes at the leading edge. An open configuration, on the other hand, avoids leading edges but provides only fairly low collection efficiencies. The pump limiter development program now calls for a full pump limiter to be implemented in a major tokamak device. Presently, full-size pump limiter experiments on PDX, ISX, and TEXTOR are in preparation.

  6. Experimental studies on pump limiters

    SciTech Connect

    Mioduszewski, P.

    1982-01-01

    Pump limiters are mechanical devices for He-ash removal, fuel particle control, and possibly impurity control. Different designs have been suggested by various authors over the past decade. However, the magnetic divertor concepts seemed to be more promising, mainly because of their remote plasma-material interactions. All of the characteristics of magnetic divertors have been proven experimentally, but the overall performance and complexity cause concern about their application to tokamak reactors. Consequently, it is time now to explore the potential of mechanical particle control devices, i.e. pump limiters. Because of the high recycling at the limiter, it is sufficient to exhaust only a small fraction, about 1 to 10%, of the limiter particle flux to remove e.g. He at its rate of production. Pump limiter experiments have been conducted so far on Alcator, PDX, Macrotor, and ISX. Depending on the experimental design, a pressure build-up of between 1 mTorr and 50 mTorr has been reported.

  7. Experimental violation of Tsirelson's bound by Maxwell fields

    NASA Astrophysics Data System (ADS)

    Sandeau, N.; Akhouayri, H.; Matzkin, A.; Durt, T.

    2016-05-01

    In analogy with quantum optics it is possible to impose nonseparability between different degrees of freedom of an optical beam. The resulting correlations between these degrees of freedom can be investigated with correlations functions traditionally employed in quantum mechanics, such as the well-known Clauser-Horne-Shimony-Holt (CHSH) correlation function. In this paper we present results achieving a maximal violation of Tsirelson's bound on CHSH correlations between spatial and polarization degrees of freedom of classical (Maxwell) fields. We describe the theoretical method, based on the realization of a nonunitary gate, and then proceed to its experimental implementation carried out with classical optical techniques. Our approach relies on the realization at the level of classical Maxwell fields of a so-called POVM (positive operator valued measure) which is traditionally discussed in the realm of quantum physics.

  8. Adaptive wave field synthesis for active sound field reproduction: experimental results.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain

    2008-04-01

    Sound field reproduction has applications in music reproduction, spatial audio, sound environment reproduction, and experimental acoustics. Sound field reproduction can be used to artificially reproduce the spatial character of natural hearing. The objective is then to reproduce a sound field in a real reproduction environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. The room response thus reduces the quality of the physical sound field reproduction by WFS. In recent research papers, adaptive wave field synthesis (AWFS) was defined as a potential solution to compensate for these quality reductions from which WFS objective performance suffers. In this paper, AWFS is experimentally investigated as an active sound field reproduction system with a limited number of reproduction error sensors to compensate for the response of the listening environment. Two digital signal processing algorithms for AWFS are used for comparison purposes, one of which is based on independent radiation mode control. AWFS performed propagating sound field reproduction better than WFS in three tested reproduction spaces (hemianechoic chamber, standard laboratory space, and reverberation chamber). PMID:18397007

  9. Escalation of aggression: experimental studies.

    PubMed

    Goldstein, J H; Davis, R W; Herman, D

    1975-01-01

    A finding commonly obtained in research using the Buss "aggression machine" is a main effect for trail blocks, indicating an escalation in shock intensity over trails. Theoretical explanations for this effect were tested in a modified verbal operant-conditioning situation. In Experiment 1, subjects could administer any of 10 levels of positive reinforcement to a "learner" for correct verbal responses or any of 10 levels of negative reinforcement to a learner for incorrect responses. Half of the subjects were required to begin with weak, half with strong, reinforcements. Results indicated that, regardless of condition, subjects gave more intense reinforcements as the learning trails progressed. Those who administered negative reinforcements devalued the learner relative to those who administered positive reinforcements. In Experiment 2, a role-playing procedure was used in which subjects administered either positive or negative reinforcements to a learner whose performance either did or did not improve over trials. Again, in all experimental groups, subjects administered increasingly intense reinforcements over trials. The results are interpreted as supporting a disinhibition theory of anti- and prosocial behavior.

  10. AN EXPERIMENTAL STUDY OF DIATHERMY

    PubMed Central

    Christie, Ronald V.; Ehrich, Wilhelm; Binger, Carl A. L.

    1928-01-01

    1. An experimental pneumonia with more or less lobar distribution has been produced in dogs by the method of intrabronchial insufflation of B. friedlænderi, Type B, and Pneumococcus, Type I. 2. Such dogs as showed evidences of a pulmonary lesion when photographed by x-ray were selected for lung temperature measurements. 3. Measurements of lung temperature were made by means of thermocouples before and during diathermy. 4. The thermocouples which recorded the temperature in the consolidated lobes showed in most instances a more rapid rate of heating during diathermy than those in the normal lobes. The final increase in temperature in the pathological lobes over the normal lobes amounted to slightly more than 1°C. 5. When local heating occurred during diathermy it was of the order of magnitude found in a lung in which the branch of the pulmonary artery supplying it had been clamped. 6. Histological examination of the lungs showed the pathological reaction to consist of intraalveolar exudate composed of polymorphonuclear leucocytes and desquamated alveolar epithelium. In some sections the exudate was sufficient to cause compression and emptying of the alveolar capillaries. 7. The local heating, we believe, depends upon this ischemic state of the smaller vessels. 8. Further evidence for an imparied circulation in the pneumonic lung is furnished by injection preparations in which the uninjected area corresponded exactly to the gross pathological lesion. PMID:19869441

  11. Synchronization in coupled Ikeda delay systems. Experimental observations using Field Programmable Gate Arrays

    NASA Astrophysics Data System (ADS)

    Valli, D.; Muthuswamy, B.; Banerjee, S.; Ariffin, M. R. K.; Wahab, A. W. A.; Ganesan, K.; Subramaniam, C. K.; Kurths, J.

    2014-06-01

    In this work, we demonstrate the use of a Field Programmable Gate Array (FPGA) as a physical platform for realizing chaotic delay differential equations (DDE). Moreover, using our platform, we also experimentally study the synchronization between two time delayed systems. We illustrate two different experimental approaches - one is hardware co-simulation (using a Digilent Atlys with a Xilinx Spartan-6 FPGA) and the other is analog output (using a Terasic DE2-115 with an Altera Cyclone IV E FPGA).

  12. Experimental study and evaluation of radioprotective drugs

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Thomson, J. F.

    1968-01-01

    Experimental study evaluates radioprotective drugs administered before exposure either orally or intravenously. Specifically studied are the sources of radiation, choice of radiation dose, choice of animals, administration of drugs, the toxicity of protective agents and types of protective drug.

  13. Experimental Study of Olivine-rich Troctolites

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2014-12-01

    This experimental study is designed to complement field observations of olivine-rich troctolites in ophiolites and from mid-ocean ridges. The olivine-rich troctolites are characterized by high volume proportion of olivine with interstitial plagioclase and clinopyroxene. Typically the clinopyroxene occurs in the form of few large, poikilitic grains. The primary purpose of this study is to investigate the effects of cooling process on the geometry of the interstitial phases (clinopyroxene and plagioclase). Experiments are conducted in a piston cylinder apparatus by first annealing olivine plus a basaltic melt with a composition designed to be in equilibrium with four phases at ~ 1 GPa and 1250ºC. Initially, we anneal the olivine-basalt aggregates at 1350 °C and 0.7 GPa for one week to produce a steady state microstructure. At this temperature only olivine and minor opx are present as crystalline phases. We then cool the samples over two weeks below their solidus temperature, following different protocols. The post-run samples are sectioned, polished, and imaged at high resolution and analyzed by using a field emission SEM. Initial observations show that under certain conditions clinopyroxene nucleates distributed throughout the aggregate at many sites, forming relatively small, rounded to near euhedral grains. Under certain conditions few cpx grains nucleate and grow with a poikilitic shape, partially or fully enclosing olivine grains, as is observed in natural samples. As for partially molten aggregates quenched form the annealing temperature, the microstructure will be characterized by tracing phase boundaries on screen by using ImageJ software. The geometry of the interstitial phases will be quantified by determining the grain boundary wetness, in this case the ratio of the length of polyphase to single phase (olivine-olivine) boundaries. Compositional data will also be used to study the change in major element compositions before and after the cooling process.

  14. Analysis of TJ-II experimental data with neoclassical formulations of the radial electric field

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Tapia, C.; Martinell, J. J.; López-Bruna, D.; Melnikov, A. V.; Eliseev, L.; Rodríguez, C.; Ochando, M. A.; Castejón, F.; García, J.; van Milligen, B. P.; Fontdecaba, J. M.

    2015-11-01

    Neoclassical theory provides usable expressions for studying transport in toroidal plasmas and computing the associated radial electric field. An algebraic and three semi-analytical models are used here to study the radial electric field in TJ-II plasmas and compare it with experimental data from a heavy ion beam probe (HIBP) and with DKES calculations. Good qualitative agreement as well as reasonable quantitative agreement is found which allows us to validate the models for describing TJ-II radial electric fields. Furthermore, a simple algebraic formulation (2005 Plasma Phys. Rep. 31 14) provides physical insight for the interpretation of experimental data from the TJ-II heliac in spite of its complicated geometry, like the place of the transition from the electron to the ion root of the radial electric field, which occurs at the maximum value of collisionality, for example.

  15. A far-field radio-frequency experimental exposure system with unrestrained mice.

    PubMed

    Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L

    2015-01-01

    Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies. PMID:26558172

  16. Effect of static magnetic field on experimental dermal wound strength

    PubMed Central

    Ekici, Yahya; Aydogan, Cem; Balcik, Cenk; Haberal, Nihan; Kirnap, Mahir; Moray, Gokhan; Haberal, Mehmet

    2012-01-01

    Context: An animal model. Aim: We sought to evaluate the effect of static magnetic fields on cutaneous wound healing. Materials and Methods: Male Wistar rats were used. Wounds were created on the backs of all rats. Forty of these animals (M group) had NeFeB magnets placed in contact with the incisions, either parallel (Pa) and perpendicular (Pr) to the incision. The other 40 animals (sham [S] group) had nonmagnetized NeFeB bars placed in the same directions as the implanted animals. Half of the animals in each group were killed and assessed for healing on postoperative day 7 and the other half on postoperative day 14. The following assessments were done: gross healing, mechanical strength, and histopathology. Statistical Analysis Used: Intergroup differences were compared by using the Mann-Whitney U or t test. Values for P less than 0.05 were accepted as significant. Results and Conclusions: There were no differences between the magnetic and sham animals with respect to gross healing parameters. The mechanical strength was different between groups. On postoperative day 14, the MPr14 had significantly higher scores than the other groups. When static, high-power, magnetic fields are placed perpendicular to the wound, increased wound healing occurs in the skin of the experimental model. PMID:23162219

  17. Experimental analysis of a new retarding field energy analyzer

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Xiang; Liu, Shu-Qing; Li, Xian-Xia; Shen, Hong-Li; Huang, Ming-Guang; Liu, Pu-Kun

    2015-06-01

    In this paper, a new compact retarding field energy analyzer (RFEA) is designed for diagnosing electron beams of a K-band space travelling-wave tube (TWT). This analyzer has an aperture plate to sample electron beams and a cylindrical electrode to overcome the defocusing effects. The front end of the analyzer constructed as a multistage depression collector (MDC) structure is intended to shape the field to prevent electrons from being accelerated to escape. The direct-current (DC) beams of the K-band space TWTs with the removing MDC can be investigated on the beam measurement system. The current density distribution of DC beams is determined by the analyzer, while the anode voltage and helix voltage of the TWTs are 7000 V and 6850 V, respectively. The current curve's slope effect due to the reflection of secondary electrons on the copper collector of the analyzer is discussed. The experimental analysis shows this RFEA has a good energy resolution to satisfy the requirement of beam measurement.

  18. Experimental Modeling of Proliferative Vitreoretinopathy. An Experimental Morphological Study.

    PubMed

    Khoroshilova-Maslova, I P; Leparskaya, N L; Nabieva, M M; Andreeva, L D

    2015-05-01

    A model of proliferative vitreoretinopathy induced by simultaneous intravitreal injection of recombinant IL-1β and platelet concentrate is created and its main morphological manifestations are studied on Chinchilla rabbits. The model reflects pathogenesis of proliferative vitreoretinopathy: epiretinal membrane with the formation of retinal plication, traction detachment of the retina; moderate inflammatory reaction in the uveal tract, in the optic nerve infundibulum, in the vitreous body; intact structural elements of the retina, dissociation of the retinal pigmented epithelium cells with their subsequent migration. The model is adequate to the clinical picture of proliferative vitreoretinopathy in humans, which recommends it for experimental studies of the efficiency of drug therapy and prevention of this disease. PMID:26033599

  19. Flow over periodic hills: an experimental study

    NASA Astrophysics Data System (ADS)

    Rapp, Ch.; Manhart, M.

    2011-07-01

    Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers ({5,600} le Re le {37,000}). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for Re ge {10,000}. We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.

  20. Field experimental design comparisons to detect field effects associated with agronomic traits in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...

  1. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, C.

    2000-01-01

    The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally and theoretically.

  2. Experimental study and modeling of a novel magnetorheological elastomer isolator

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Du, Haiping; Li, Weihua; Li, Yancheng; Li, Jianchun; Sun, Shuaishuai; Deng, H. X.

    2013-11-01

    This paper reports an experimental setup aiming at evaluating the performance of a newly designed magnetorheological elastomer (MRE) seismic isolator. As a further effort to explore the field-dependent stiffness/damping properties of the MRE isolator, a series of experimental testing were conducted. Based upon the analysis of the experimental responses and the characteristics of the MRE isolator, a new model that is capable of reproducing the unique MRE isolator dynamics behaviors is proposed. The validation results verify the model’s effectiveness to portray the MRE isolator. A study on the field-dependent parameters is then provided to make the model valid with fluctuating magnetic fields. To fully explore the mechanism of the proposed model, an investigation relating the dependence of the proposed model on every parameter is carried out.

  3. Experimental design of a waste glass study

    SciTech Connect

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150{degrees}C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases.

  4. Experimental and Modeling Studies of Massif Anorthosites

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1999-01-01

    This termination report covers the latter part of a single research effort spanning several grant cycles. During this time there was a single title, "Experimental and Modeling Studies of Massif Anorthosites", but there were several contract numbers as the mode and location of NASA contract administration changed. Initially, the project was funded as an increment to the PI's other grant, "Early Differentiation of the Moon: Experimental and Modeling Studies", but subsequently it became an independent grant. Table 1 contains a brief summary of the dates and contract numbers.

  5. Theoretical and experimental studies of elementary physics

    SciTech Connect

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1992-04-30

    The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions (Fermilab E706); Production of hybrid mesons in the nuclear Coulomb field; The D-Zero experiment at the Tevatron collider; Deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; Nonlinear QED at critical field strengths at SLAC; The Experiments at KEK (AMY, 17keV neutrino); The CDF experiment at the Tevatron collider; and SSC-related detector R D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors.

  6. Comparative Studies of Mutations in Animal Isolates and Experimental In Vitro- and In Vivo-Selected Mutants of Salmonella spp. Suggest a Counterselection of Highly Fluoroquinolone-Resistant Strains in the Field

    PubMed Central

    Giraud, Etienne; Brisabois, Anne; Martel, Jean-Louis; Chaslus-Dancla, Elisabeth

    1999-01-01

    The occurrence of mutations in the genes coding for gyrase (gyrA and gyrB) and topoisomerase IV (parE and parC) of Salmonella typhimurium experimental mutants selected in vitro and in vivo and of 138 nalidixic acid-resistant Salmonella field isolates was investigated. The sequencing of the quinolone resistance-determining region of these genes in highly fluoroquinolone-resistant mutants (MICs of 4 to 16 μg/ml) revealed the presence of gyrA mutations at codons corresponding to Gly-81 or Ser-83, some of which were associated with a mutation at Asp-87. No mutations were found in the gyrB, parC, and parE genes. An assay combining allele-specific PCR and restriction fragment length polymorphism was developed to rapidly screen mutations at codons 81, 83, and 87 of gyrA. The MICs of ciprofloxacin for the field isolates reached only 2 μg/ml, versus 16 μg/ml for some in vitro-selected mutants. The field isolates, like the mutants selected in vivo, had only a single gyrA mutation at codon 83 or 87. Single gyrA mutations were also found in highly resistant in vitro-selected mutants (MIC of ciprofloxacin, 8 μg/ml), which indicates that mechanisms other than the unique modification of the intracellular targets could participate in fluoroquinolone resistance in Salmonella spp. A comparison of experimental mutants selected in vitro, field strains, and mutants selected in vivo suggests that highly fluoroquinolone-resistant strains are counterselected in field conditions in the absence of selective pressure. PMID:10471553

  7. A FIELD-EXPERIMENTAL STUDY OF THE FUNCTIONS OF EDUCATIONAL TELEVISION FOR ITS AUDIENCES, WITH SPECIAL REFERENCE TO THE POTENTIAL ROLE OF CHILDREN IN STIMULATING FAMILY USE OF THIS MEDIUM.

    ERIC Educational Resources Information Center

    CARTER, ROY E.; AND OTHERS

    THE POTENTIAL ROLE OF CHILDREN IN STIMULATING FAMILY USE OF EDUCATIONAL TELEVISION DURING EVENING HOURS WAS STUDIED. FOUR EXPERIMENTAL CONDITIONS WERE CREATED AMONG TENTH-GRADE SOCIAL STUDIES TEACHERS AND THEIR CLASSES--(1) A DISCUSSION PROCEDURE WAS USED TO STIMULATE VIEWING OF A PUBLIC AFFAIRS SERIES ON THE AREA'S EDUCATIONAL TELEVISION STATION,…

  8. EDF field operation computerization study

    SciTech Connect

    Guillot, L.; Pirus, D.

    2006-07-01

    The main control room has been the subject of extensive research and actions into improved operations assistance. On the other hand, few studies concern the need for field operation improvements, which have few assistance resources adapted to working requirements. Why? Past studies have shown the inability of technology to assume job constraints (insufficient screen readability, excessive equipment weight, prohibitive response times). Nevertheless, today new technologies can be adapted to field operations, and they justify further study. Real needs exist: local operations are often complex and are led in difficult environments where conditions prevent the use of paper-based documents. The issue is a significant risk of error which might impact plant reliability. The cumbersome nature of paper procedures, the working environment and the operational feed-back of experience led us to concentrate on the field operation to identify how it may be improved by the use of these new technologies. Such equipment would allow a better traceability and quality of actions. Possibility of communications with other plant personnel and information sharing may be also immediately available for all. This paper presents a study which intends to collect assistance requirements through an analysis of working practices and organizations with local personnel. Our aim is to identify which of those might benefit from IT support. This collection was obtained through interviews and observations. These two methods helped us to define potential needs, constraints and consequences for work organization. This paper presents the study results and findings, identifies professions which may benefit from the use of wearable computers and describes how the reliability and efficiency of human actions would be improved. Finally we identify design requirements and criteria to be used for writing the technical specifications for a test prototype. (authors)

  9. Experimental Investigation of Effectiveness of Magnetic Field on Food Freezing Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Takeuchi, Yuri; Masuda, Kazunori; Watanabe, Manabu; Shirakashi, Ryo; Fukuda, Yutaka; Tsuruta, Takaharu; Yamamoto, Kazutaka; Koga, Nobumitsu; Hiruma, Naoya; Ichioka, Jun; Takai, Kiyoshi

    Recently, several food refrigeration equipments that utilize magnetic field have attracted much attention from food production companies, consumers and mass media. However, the effectiveness of the freezers is not scientifically examined. Therefore, the effectiveness should be clarified by experiments or theoretical considerations. In this study, the effect of weak magnetic field (about 0.0005 T) on freezing process of several kinds of foods was investigated by using a specially designed freezer facilitated with magnetic field generator. The investigation included the comparison of freezing curves, drip amount, physicochemical evaluations on color and texture, observation of microstructure, and sensory evaluation. From the results of the control experiments, it can be concluded that weak magnetic field around 0.0005 T provided no significant difference on temperature history during freezing and on the qualities of frozen foods, within our experimental conditions.

  10. The importance of accurate experimental data to marginal field development

    SciTech Connect

    Overa, S.J.; Lingelem, M.N.

    1997-12-31

    Since exploration started in the Norwegian North Sea in 1965 a total of 196 fields have been discovered. Less than one-third of these fields have been developed. The marginal fields can not be developed economically with current technology even though some of those fields have significant reserves. The total cost to develop one of those large installations is estimated to be 2--5 billion US dollars. Therefore new technology is needed to lower the designed and installed costs of each unit. The need for new physical property data is shown. The value of valid operating data from present units is also pointed out.

  11. Experimental evidence for seismoelectric observations at field scale

    NASA Astrophysics Data System (ADS)

    Holzhauer, Julia; Yaramanci, Ugur

    2010-05-01

    In the past decades, seismoelectric has concentrated a growing interest as a promising tool for hydrogeophysical studies. Resulting from an electrokinetic coupling in porous saturated media traversed by an acoustic wave, this method could ultimately offer a direct access to various hydraulic parameters ranging from porosity to permeability or fluids conductivity. In some other aspects it also occasionally showed some ability to thin-layer resolution. Within the development of the new test-site Schillerslage with typical north-German geology, consisting of two shallow quaternary aquifers separated by a till layer over cretaceous marl, we tested the observability of the seismoelectric signal along with various conventional (seismic, georadar, geoelectric) and unconventional (magnetic resonance sounding -MRS, spectral induced polarisation -SIP) geophysical methods as well as boreholes analysis. The special focus was on the converted seismoelectric signal, an electromagnetic wave acting as a vertical dipole which should theoretically display on the seismoelectrogram as a horizontal arrival. This converted wave appears when the incident acoustic wave meets a hydraulic discontinuity affecting the pore space in any geometrical or chemical manner. This electromagnetic signal fades out rapidly, due to its dipole nature and its weakness, so that its relevance is restricted to the near surface characterisation. In the given setting, such a wave could either initiate at the water table or originate from an abrupt transition from sand to till. Decision was made to record both seismic and seismoelectric signal concomitantly. To allow the detection of the later signal, the field layout was gradually adjusted. Considering the source, hammer-seismic was chosen for its precision in near surface application and automatic trigger-techniques producing major disturbances in the first 10 ms of the seismoelectrogram were abandoned in favour of manual triggering. To avoid any further noise

  12. Experimental Evaluation of Field Trips on Instruction in Vocational Agriculture.

    ERIC Educational Resources Information Center

    McCaslin, Norval L.

    To determine the effect of field trips on student achievement in each of four subject matter areas in vocational agriculture, 12 schools offering approved programs were randomly selected and divided into a treatment group and a control group. Uniform teaching outlines and reference materials were provided to each group. While no field trips were…

  13. Experimental and computational study of thaumasite structure

    SciTech Connect

    Scholtzová, Eva; Kucková, Lenka; Kožíšek, Jozef; Pálková, Helena; Tunega, Daniel

    2014-05-01

    The structure of thaumasite has been studied experimentally by means of a single crystal X-ray diffraction and FTIR methods, and theoretically using density functional theory (DFT) method. Very good agreement was achieved between calculated and experimental structural parameters. In addition, calculations offered the refinement of the positions of the hydrogen atoms. The detailed analysis of the hydrogen bonds existing in the thaumasite structure has been performed. Several types of hydrogen bonds have been classified. The water molecules coordinating Ca{sup 2+} cation act as proton donors in moderate O-H···O hydrogen bonds formed with CO₃⁻²and SO₄⁻² anions. The multiple O-H···O hydrogen bonds exist among water molecules themselves. Finally, relatively weak hydrogen bonds form water molecules with the OH groups from the coordination sphere of the Si(OH)₆⁻² anion. Further, calculated vibrational spectrum allowed complete assignment of all vibrational modes which are not available from the experimental spectrum that has a complex structure with overlapped bands, especially below 1500 cm⁻¹. Highlights: • The thaumasite structure was studied experimentally and using DFT method. • We used DFT method for the refinement of the positions of hydrogen atoms. • A detailed analysis of the hydrogen bonds was done. • A complete assignment of all bands to particular types of vibrations was done.

  14. Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2015-09-01

    Planar Hall effect magnetic field sensors with ring and diamond shaped geometries are experimentally compared with respect to their magnetic field sensitivity and total signal variation. Theoretically, diamond shaped sensors are predicted to be 41% more sensitive than corresponding ring shaped sensors for negligible shape anisotropy. To experimentally validate this, we have fabricated both sensor geometries in the exchange-biased stack Ni80Fe20(tFM)/Cu(tCu)/Mn80Ir20(10 nm) with tFM=10 , 20, and 30 nm and tCu=0 , 0.3, and 0.6 nm. Sensors from each stack were characterized by external magnetic field sweeps, which were analyzed in terms of a single domain model. The total signal variation of the diamond sensors was generally found to be about 40% higher than that for the ring sensors in agreement with theoretical predictions. However, for the low-field sensitivity, the corresponding improvement varied from 0% to 35% where the largest improvement was observed for sensor stacks with comparatively strong exchange bias. This is explained by the ring sensors being less affected by shape anisotropy than the diamond sensors. To study the effect of shape anisotropy, we also characterized sensors that were surrounded by the magnetic stack with a small gap of 3 μm. These sensors were found to be less affected by shape anisotropy and thus showed higher low-field sensitivities.

  15. Plant Taxonomy as a Field Study

    ERIC Educational Resources Information Center

    Dalby, D. H.

    1970-01-01

    Suggests methods of teaching plant identification and taxonomic theory using keys, statistical analyses, and biometrics. Population variation, genotype- environment interaction and experimental taxonomy are used in laboratory and field. (AL)

  16. An experimental study of the glottal jet

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Sidlof, Petr; Kotek, Michal; Kopecky, Vaclav

    2016-03-01

    The paper presents results of the flow field analysis in a static scaled model of human larynx. Here we are focused on the effect of the nozzle gap parameter and the incoming flow velocity. The study is performed in the aerodynamic channel using the PIV technique.

  17. Real versus Simulated Mobile Phone Exposures in Experimental Studies.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-01-01

    We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets.

  18. Real versus Simulated Mobile Phone Exposures in Experimental Studies

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets. PMID:26346766

  19. Real versus Simulated Mobile Phone Exposures in Experimental Studies.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-01-01

    We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets. PMID:26346766

  20. Feasibility study of the AOSTA experimental campaign

    NASA Astrophysics Data System (ADS)

    Carta, M.; Blaise, P.; Bethaz, C.; Boccia, F.; Fabrizio, V.; Geslot, B.; Grossi, A.; Gruel, A.

    2016-03-01

    The reduction of the nuclear waste is one of the most important nuclear issues. The high radiotoxicity of the spent fuel is due to plutonium and some minor actinides (MAs) such as neptunium, americium and curium, above all. One way to reduce their hazard is to destroy by fission MAs in appropriate nuclear reactors. To allow the MAs destruction an important effort have been done on the nuclear data due to the poor knowledge in this field. In the framework of one of the NEA Expert Group on Integral Experiments for Minor Actinide Management an analysis of the feasibility of MAs irradiation campaign in the TAPIRO fast research reactor is carried out. This paper provides preliminary results obtained by calculations modelling the irradiation, in different TAPIRO irradiation channels, of some CEA samples coming from the French experimental campaign OSMOSE, loaded with different contents of MAs, in order to access, through particular peak spectrometry, to their capture cross section. On the basis of neutron transport calculation results, obtained by both deterministic and Monte Carlo methods, an estimate of the irradiated samples counting levels from the AOSTA (Activation of OSMOSE Samples in TAPIRO) experimental campaign is provided.

  1. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  2. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    SciTech Connect

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  3. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    NASA Astrophysics Data System (ADS)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new

  4. Field-structured composite studies.

    SciTech Connect

    Martin, James Ellis; Williamson, Rodney L.

    2004-04-01

    Field-structured composites (FSCs) were produced by hosting micron-sized gold-coated nickel particles in a pre-polymer and allowing the mixture to cure in a magnetic field environment. The feasibility of controlling a composite's electrical conductivity using feedback control applied to the field coils was investigated. It was discovered that conductivity in FSCs is primarily determined by stresses in the polymer host matrix due to cure shrinkage. Thus, in cases where the structuring field was uniform and unidirectional so as to produce chainlike structures in the composite, no electrical conductivity was measured until well after the structuring field was turned off at the gel point. In situations where complex, rotating fields were used to generate complex, three-dimensional structures in a composite, very small, but measurable, conductivity was observed prior to the gel point. Responsive, sensitive prototype chemical sensors were developed based on this technology with initial tests showing very promising results.

  5. Numerical and Experimental Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Brown, Cliff; Khavaran, Abbas

    2003-01-01

    To reduce ambiguity in the reporting of far field jet noise, three round jets operating at subsonic conditions have recently been studied at the NASA Glenn Research Center. The goal of the investigation was to determine the location of the geometric far field both numerically and experimentally. The combination of the WIND Reynolds-Averaged Navier-Stokes solver and the MGBK jet noise prediction code was used for the computations, and the experimental data was collected in the Aeroacoustic Propulsion Laboratory. While noise sources are distributed throughout the jet plume, at great distances from the nozzle the noise will appear to be emanating from a point source and the assumption of linear propagation is valid. Closer to the jet, nonlinear propagation may be a problem, along with the known geometric issues. By comparing sound spectra at different distances from the jet, both from computational methods that assume linear propagation, and from experiments, the contributions of geometry and nonlinearity can be separately ascertained and the required measurement distance for valid experiments can be established. It is found that while the shortest arc considered here (approx. 8D) was already in the geometric far field for the high frequency sound (St greater than 2.0), the low frequency noise due to its extended source distribution reached the geometric far field at or about 50D. It is also found that sound spectra at far downstream angles does not strictly scale on Strouhal number, an observation that current modeling does not capture.

  6. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas.

    PubMed

    Kobayashi, T; Itoh, K; Ido, T; Kamiya, K; Itoh, S-I; Miura, Y; Nagashima, Y; Fujisawa, A; Inagaki, S; Ida, K; Hoshino, K

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt "radial" electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson's equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  7. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-08-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude.

  8. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas

    PubMed Central

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2016-01-01

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128

  9. Experimental Identification of Electric Field Excitation Mechanisms in a Structural Transition of Tokamak Plasmas.

    PubMed

    Kobayashi, T; Itoh, K; Ido, T; Kamiya, K; Itoh, S-I; Miura, Y; Nagashima, Y; Fujisawa, A; Inagaki, S; Ida, K; Hoshino, K

    2016-08-04

    Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt "radial" electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson's equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude.

  10. Experimental Measurement of the Flow Field of Heavy Trucks

    SciTech Connect

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated

  11. Experimental Studying of Dust Particles Charging by Electron Beam

    SciTech Connect

    Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Vorona, N. A.; Vasiliev, M. N.

    2008-09-07

    The studying of the dusty plasma properties under electron beam action are of great interest because it gives the unique opportunities for experimental investigation of strongly coupled systems as well as for developing the new dusty plasma technologies of creating the new composite materials. Highly charged dust particle generates electrostatic field that can accelerate positive ions to high power. It gives the unique possibilities of using these macroparticles (for deeply ions implantation, as catalysts for increasing rate of reactions with the high energy barrier, in the new ionic engines etc.). Presented work deals with the experimental investigation of dust particles charging under direct influence of electron beam. On the basis of experimental data the average velocities of dust particles were obtained and the charge of macroparticle was estimated.

  12. Continuous game dynamics: an experimental study.

    SciTech Connect

    Patelli, P.; Sato, Yuzuru

    2004-01-01

    In this paper we study an experiment with human agents strategically interacting in a game characterized by continuous time and continuous strategy space. The research is focused in studying the agents interaction dynamic under different experimental settings. The agents play a two person game that is an extension of the classic Cournot duopoly. Having agents making decision continuously allows us to track the temporal structure of strategy evolution very precisely. We can follow the agents continuous behavior evolution avoiding the data under-sampling. To our knowledge this is the first attempt to approach experimentally the continuous time decision making. We also emphasize that the focus of our work is not the Cournot model but rather the more general problem of studying the agents strategic interaction dynamic in continuous space time. Flaming the problem as the well studied Cournot Duopoly would be a good starting point. In economics dynamics studies the oligopoly model literature in both discrete and continuous time is one of the richest. There is also a vast literature in experimental economics about repeated games in general and more specifically in duopoly/oligopoly models. Cox and Walker studied whether subjects can learn to play the Cournot Duopoly strategies comparing the experimental results with the theoretical prediction of learning models. The Cox Walker experiment differs from our settings because it is in discrete time and is an evolutionary dynamics framework through a random matching mechanism of the experimental subjects. From the theoretical perspective many works have been focused in studying the Cournot model in a dynamical settings. Okuguchi and Szidarovsky formulated a continuous time version of the Cournot Oligopoly with multiproduct firms. They analyzed the stability of the equilibrium and proved that it is stable, under certain conditions, independently from the value of the adjustments. Chiarella and Khomin extended this analysis to

  13. Experimental investigation of the velocity field and skin friction for convecting vortex/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    MacRorie, Michael; Pauley, Wayne R.

    1993-01-01

    The interaction between propagating spanwise vortices and a turbulent boundary layer was studied experimentally. The experimental techniques include hotwire anemometry and smoke visualization. The results focus on the relationship between the passage of vortex structures and the response of the boundary layer in terms of unsteady mean velocity, wall shear, and turbulence quantities. Both positive and negative circulation vortices were studied at three different heights above the test surface. The results indicate that the height of the vortex above the surface has an effect on the wall shear response. However, vortex height and strength are related in this experiment. A phase lag between the passage of the vortex center and the peak wall shear stress response is demonstrated. This phase lag was found to increase with streamwise distance. An examination of the response of the mean and turbulent velocity fields in the boundary layer shows that the phase lag is confined to a region close to the wall.

  14. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  15. Experimental Study of Nucleon Structure and QCD

    SciTech Connect

    Jian-Ping Chen

    2012-03-01

    Overview of Experimental Study of Nucleon Structure and QCD, with focus on the spin structure. Nucleon (spin) Structure provides valuable information on QCD dynamics. A decade of experiments from JLab yields these exciting results: (1) valence spin structure, duality; (2) spin sum rules and polarizabilities; (3) precision measurements of g{sub 2} - high-twist; and (4) first neutron transverse spin results - Collins/Sivers/A{sub LT}. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; and (2) Precision extraction of transversity/tensor charge/TMDs.

  16. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  17. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  18. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    PubMed

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  19. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    PubMed

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-01-01

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science. PMID:26531855

  20. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials

    PubMed Central

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.

    2015-01-01

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science. PMID:26531855

  1. An experimental Lagrangian study of inhomgeneous turbulence

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Mordant, Nicolas

    2015-11-01

    We investigate experimentally the Lagrangian properties of inhomogeneous turbulence in the general scope of dispersion studies in natural and industrial flows. Lagrangian studies of homogeneous turbulence are becoming common, but very little Lagrangian experimental data exists for inhomogeneous turbulence despite the vast range of applications. Particle tracking velocimetry using a very high speed camera in a fully developed turbulent channel flow in water is achieved at ReH = 33 , 000 . This technique provides Lagrangian velocity and acceleration statistics fully resolved at the smallest turbulent scales near the wall. These statistics, conditioned by the distance to the wall, allow the the investigation of the inhomogeneity of the statistical properties of this flow. Autocorrelations of velocity and acceleration show increasing Lagrangian turbulent scales as distance from the wall increases, as well as decreasing anisotropy. PDF's and moments of Lagrangian quantities are presented by showing the evolution of structure functions across the boundary layer. These results are compared to direct numerical simulation results from a similar flow, and their implications for stochastic models of inhomogeneous flows are discussed.

  2. Experimental investigations of hard photon emission from strong crystalline fields

    NASA Astrophysics Data System (ADS)

    Medenwaldt, R.; Møller, S. P.; Jensen, B. N.; Strakhovenko, V. M.; Uggerhøj, E.; Worm, T.; Elsener, K.; Sona, P.; Connell, S. H.; Sellschop, J. P. F.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.

    1992-05-01

    For the first time very pronounced high-energy photon peaks have been measured in the radiation emission from 70, 150 and 240 GeV electrons incident at 0.1-1.0 mrad to the axis in diamond and Si crystals. The energy of the photons in the peaks is 0.7-0.8 times the particle energy with yields of 50 times the Bethe-Heitler one (in diamond). The peaks consist of single photons and are caused by the influence of strong crystalline fields on emission of coherent bremsstrahlung, emitted when the ultrarelativistic electrons cross the rows of atoms in a crystal plane. The effect should be envisaged as a source for nearly monoenergetic photons in the multihundred GeV-region.

  3. Theoretical and experimental examination of near-field acoustic levitation.

    PubMed

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense. PMID:12002842

  4. Experimental studies on coaxial vortex loops

    NASA Astrophysics Data System (ADS)

    Mariani, R.; Kontis, K.

    2010-12-01

    An experimental study has been conducted on the formation and propagation of coaxial vortex loops using a shock tube facility. The study aimed at evaluating the flow characteristics of pairs of corotating vortex rings that generate the leapfrogging phenomenon. The driver and driven gas of the shock tube were air. Three driver pressures were used (4, 8, and 12 bars) with the driven gas being at ambient conditions. The Mach numbers of the shock wave generated inside the shock tube were 1.34, 1.54, and 1.66, respectively. The sudden expansion present at the diaphragm location effectively decreased the Mach number value of the traveling shock wave. Results showed that a pair of vortex rings staggered with respect to time and with the same direction rotation lead to leapfrogging. Results also indicated that the number of leapfrogging occurrences is related to the Reynolds number of the vortex ring pairs with a decrease in leapfrogs at higher Reynolds numbers.

  5. Experimental Study of Top Heat Mode Thermosyphon

    NASA Astrophysics Data System (ADS)

    Hirashima, Masao; Kimura, Kenichiro; Utsumi, Yoichi; Kimura, Kenichi; Negishi, Kanji

    The purpose of this study is to develop the top heat mode thermosyphon that is very attractive means, for example, to accumulate directly the summer solar energy into the underground soil for the winter season. In this case, it can exclude the complex piping and mechanical pump to circulate the hot water absorbed the solar energy through the piping system buried in the soil layer. The several ideas concerning the top heat thermosyphon had been proposed, however, there were few reports on the definite experiments. The authors have carried out the experimental study of the top heat mode thermosyphon, with a simple lifting pipe, which could draw the working liquid from the under condenser to the upper evaporator section. The improvement of the main construction parts such as evaporator, lifting pipe, liquid reservoir trap and vapour nozzle have been performed in the present experiment in order to obtain the optimum operation range.

  6. Insights into Arbovirus Evolution and Adaptation from Experimental Studies

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2010-01-01

    Arthropod-borne viruses (arboviruses) are maintained in nature by cycling between vertebrate hosts and haematophagous invertebrate vectors. These viruses are responsible for causing a significant public health burden throughout the world, with over 100 species having the capacity to cause human disease. Arbovirus outbreaks in previously naïve environments demonstrate the potential of these pathogens for expansion and emergence, possibly exacerbated more recently by changing climates. These recent outbreaks, together with the continued devastation caused by endemic viruses, such as Dengue virus which persists in many areas, demonstrate the need to better understand the selective pressures that shape arbovirus evolution. Specifically, a comprehensive understanding of host-virus interactions and how they shape both host-specific and virus-specific evolutionary pressures is needed to fully evaluate the factors that govern the potential for host shifts and geographic expansions. One approach to advance our understanding of the factors influencing arbovirus evolution in nature is the use of experimental studies in the laboratory. Here, we review the contributions that laboratory passage and experimental infection studies have made to the field of arbovirus adaptation and evolution, and how these studies contribute to the overall field of arbovirus evolution. In particular, this review focuses on the areas of evolutionary constraints and mutant swarm dynamics; how experimental results compare to theoretical predictions; the importance of arbovirus ecology in shaping viral swarms; and how current knowledge should guide future questions relevant to understanding arbovirus evolution. PMID:21994633

  7. Experimental studies of auroral arc generators

    SciTech Connect

    Suszcynsky, D.M.; Borovsky, J.E.; Thomsen, M.F.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An all-sky video camera system was deployed in Eagle, Alaska at the foot of the magnetic field line that threads geosynchronous satellite 1989-046 as part of a campaign to study correlations of ground-based auroral activity with satellite-based plasma and energetic particle measurements. The overall intent of the project was to study magnetosphere-ionosphere coupling as it relates to the aurora, and, in particular, to look for signatures that may help to identify various auroral generator mechanism(s). During this study, our efforts were primarily directed towards identifying the generator mechanism(s) for pulsating aurora. Our data, though not conclusive, are found to support theories that propose a cyclotron resonance mechanism for the generation of auroral pulsations.

  8. Experimental approaches to studying cumulative cultural evolution

    PubMed Central

    Caldwell, Christine A.; Atkinson, Mark; Renner, Elizabeth

    2016-01-01

    In humans, cultural traditions often change in ways which increase efficiency and functionality. This process, widely referred to as cumulative cultural evolution, sees beneficial traits preferentially retained, and it is so pervasive that we may be inclined to take it for granted. However, directional change of this kind appears to distinguish human cultural traditions from behavioural traditions that have been documented in other animals. Cumulative culture is therefore attracting an increasing amount of attention within psychology, and researchers have begun to develop methods of studying this phenomenon under controlled conditions. These studies have now addressed a number of different questions, including which learning mechanisms may be implicated, and how the resulting behaviours may be influenced by factors such as population structure. The current article provides a synopsis of some of these studies, and highlights some of the unresolved issues in this field. PMID:27397972

  9. On the proper study design applicable to experimental balneology

    NASA Astrophysics Data System (ADS)

    Varga, Csaba

    2016-08-01

    The simple message of this paper is that it is the high time to reevaluate the strategies and optimize the efforts for investigation of thermal (spa) waters. Several articles trying to clear mode of action of medicinal waters have been published up to now. Almost all studies apply the unproven hypothesis, namely the inorganic ingredients are in close connection with healing effects of bathing. Change of paradigm would be highly necessary in this field taking into consideration the presence of several biologically active organic substances in these waters. A successful design for experimental mechanistic studies is approved.

  10. On the proper study design applicable to experimental balneology.

    PubMed

    Varga, Csaba

    2016-08-01

    The simple message of this paper is that it is the high time to reevaluate the strategies and optimize the efforts for investigation of thermal (spa) waters. Several articles trying to clear mode of action of medicinal waters have been published up to now. Almost all studies apply the unproven hypothesis, namely the inorganic ingredients are in close connection with healing effects of bathing. Change of paradigm would be highly necessary in this field taking into consideration the presence of several biologically active organic substances in these waters. A successful design for experimental mechanistic studies is approved.

  11. Effects of Fipronil Insecticide Application on Sympetrum sp. Larvae and Adults in Experimental Rice Paddy Field

    NASA Astrophysics Data System (ADS)

    Jinguji, Hiroshi; Ueda, Tetsuyuki; Tsunoda, Manami; Aihara, Shoko; Saito, Mitsuo

    The effect of on sowing and before transplanting application of the phenyl pyrazole insecticide, fipronil, on the survivorship Sympetrum spp. was investigated in plots of an experimental rice paddy field. In addition, the effect of two pesticide applications on rice weevils was investigated. A total of nine paddy plots were used in this study: three were treated with fipronil at the before transplanting application , three at the on sowing application, and the three remaining plots were left untreated for use as controls. Fipronil concentrations in paddy water at the time of application in before transplanting and on sowing treatments reached 1.45 and 1.20 μg/L, respectively. A comparison of experimental and control plots revealed a marked absence of Sympetrum frequens larvae, exuviae and adults from fipronil-treated fields. Adult density of Sympetrum sp. and members of Lestidae in paddy fields before transplanting application were considerably lower than in control plots. Our results show that before transplanting application is more effective than on sowing application for treating rice weevils, but that on sowing application may still be harm against dragonflies.

  12. Selective Cooperation in the Supermarket : Field Experimental Evidence for Indirect Reciprocity.

    PubMed

    Lange, Florian; Eggert, Frank

    2015-12-01

    Numerous laboratory experiments suggest that mechanisms of indirect reciprocity might account for human cooperation. However, conclusive field data supporting the predictions of indirect reciprocity in everyday life situations is still scarce. Here, we attempt to compensate for this lack by examining the determinants of cooperative behavior in a German supermarket. Our methods were as follows: Confederates of the experimenter lined up at the checkout, apparently to buy a single item. As an act of cooperation, the waiting person in front (the potential helper) could allow the confederate to go ahead. By this means, the potential helper could take a cost (additional waiting time) by providing the confederate with a benefit (saved waiting time). We recorded the potential helpers' behavior and the number of items they purchased as a quantitative measure proportional to the confederate's benefit. Moreover, in a field experimental design, we varied the confederates' image by manipulating the item they purchased (beer vs. water). As predicted, the more waiting time they could save, the more likely the confederates were to receive cooperation. This relationship was moderated by the confederates' image. Cost-to-benefit ratios were required to be more favorable for beer-purchasing individuals to receive cooperation. Our results demonstrate that everyday human cooperation can be studied unobtrusively in the field and that cooperation among strangers is selective in a way that is consistent with current models of indirect reciprocity.

  13. Experimental Investigation on Liquid Metal Flow Distribution in Insulating Manifold under Uniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Miura, Masato; Ueki, Yoshitaka; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Magnetohydrodynamics (MHD) problem which is caused by interaction between electrical conducting fluid flow and the magnetic field is one of the biggest problem in the liquid metal blanket of the fusion reactor. In the liquid metal blanket concept, it is necessary to distribute liquid metal flows uniformly in the manifold because imbalance of flow rates should affect the heat transfer performance directly, which leads to safety problem. While the manifold is insulated electrically as well as the flow duct, the 3D-MHD effect on the flowing liquid metal in the manifold is more apparent than that in straight duct. With reference to the flow distribution in this concept, the liquid metal flow in the electrical insulating manifold under the uniform transverse magnetic field is investigated experimentally. In this study, GaInSn is selected as working fluid. The experimental system includes the electrical magnet and the manifold test section which is made of acrylic resin for perfectly electrical insulation. The liquid metal flows in a non-symmetric 180°-turn with manifold, which consists of one upward channel and two downward channels. The flow rates in each channel are measured by electromagnetic flow meters for several combinations Reynolds number and Hartman number. The effects of magnetic field on the uniformity of flow distribution are cleared.

  14. Field experimental approach to bromide leaching as affected by scale-specific rainfall characteristics

    NASA Astrophysics Data System (ADS)

    Wendroth, Ole; Vasquez, Vicente; Matocha, Christopher J.

    2011-06-01

    Although inherent soil spatial and temporal variabilities complicate analysis of solute leaching, impacts of specific processes associated with rainfall amount, intensity, and frequency on solute leaching under field conditions require investigation. The objective of this study was to introduce (1) a new experimental approach to quantify bromide (Br-) leaching under field conditions as influenced by rainfall characteristics and (2) analytical opportunities applicable to scale-specific spatial treatment distribution. The quantitative range of treatments was established in nonrandom periodically oscillating patterns. The characteristic length of a period over which a treatment fluctuates was considered the specific treatment scale. A Br- tracer study was established in the field with treatments applied at two different spatial scales. The tracer was applied with a sprayer in a transect of 32 plots, each 2 m long, followed by a site-specific sprinkler irrigation, and 128 soil cores subsequently taken at 0.5 m intervals and divided into 10-cm depth increments. The scale-specific associations between treatments and Br- center of mass (COM) were addressed. Treatments can be periodically imposed over specific scales and their spatial relationships quantified with semivariance and power spectral analysis. An additive state-space model was applied to separate the long- and short-wave components of Br- COM. Subsequently, the large-scale process was described in an autoregressive state-space model. The proposed experimental approach and the separation of small- and large-scale variability components support studying soil ecosystem processes that vary at different scales even in the presence of underlying large-scale trends that are currently considered obstacles in field research.

  15. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  16. Experimental study of crossing angle collision

    SciTech Connect

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-05-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small ({approximately}12mrad) crossing angle is to excite 5Q{sub x}{plus_minus}Q{sub s}=integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle ({approximately}2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured.

  17. Experimental study of turbulent axisymmetric cavity flow

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sung, H. J.

    1994-08-01

    An experimental study is made of turbulent axisymmetric cavity flow. The flow configuration consists of a sudden expansion and contraction pipe joint. In using the LDV system, in an effort to minimize refraction of laser beams at the curved interface, a refraction correction formula for the Reynolds shear stress is devised. Three values of the cavity length ( L = 300, 600 and 900 mm) are chosen, and the cavity height ( H) is fixed at 55 mm. Both open and closed cavities are considered. Special attention is given to the critical case L = 600 mm, where the cavity length L is nearly equal to the reattachment length of the flow. The Reynolds number, based on the inlet diameter ( D = 110 mm) is 73,000. Measurement data are presented for the static wall pressure, mean velocity profiles, vorticity thickness distributions, and turbulence quantities.

  18. Lipid peroxidation in experimental uveitis: sequential studies.

    PubMed

    Goto, H; Wu, G S; Chen, F; Kristeva, M; Sevanian, A; Rao, N A

    1992-06-01

    Previously we have detected the occurrence of retinal lipid peroxidation initiated by phagocyte-derived oxygen radicals in experimental autoimmune uveitis (EAU). In the current studies, the confirmation of inflammation-mediated lipid peroxidation was proceeded further to include measurement of multiple parameters, including conjugated dienes, ketodienes, thiobarbituric acid reactive substances and fluorescent chromolipids. The assay for myeloperoxidase, a measure for the number of polymorphonuclear leukocytes in the inflammatory sites was also carried out. The levels of all these parameters were followed through the course of EAU development. The sequential evaluation of histologic changes using both light and electron microscopy was also carried out and the results were correlated with lipid peroxidation indices. These data suggest that the retinal lipid peroxidation plays a causative role in the subsequent retinal degeneration.

  19. [Brackets and friction in orthodontics: experimental study].

    PubMed

    Ben Rejeb Jdir, Saloua; Tobji, Samir; Turki, Wiem; Dallel, Ines; Khedher, Nedra; Ben Amor, Adel

    2015-09-01

    Many authors have been involved in developing brackets in order to improve the quality, stability, speed and efficiency of orthodontic treatment. In order to reduce friction between bracket and archwire, new therapeutic approaches have been devised based on novel technologies. Among these innovative techniques, self-ligating brackets are increasingly popular. SLBs can be classified into several categories according to their mode of action and their materials. We performed an experimental study to compare the friction forces generated during the sliding of orthodontic archwires made from various alloys through conventional and self-ligating brackets. Results show the favorable influence of SLBs, compared to conventional systems using elastomeric or metal ligatures, on the level of friction, particularly when shape-memory Ni-Ti archwires are used. PMID:26370596

  20. [Endodontics in horses. An experimental study].

    PubMed

    Garcia, F; Sanromán, F; Llorens, M P

    1990-04-01

    A total of 44 experimental endodontic treatments were performed in incisors of eight horses of different ages. Four different endodontic pastes were used: Cloropercha, AH26 De Trey, Eugenol-Endometasone, and Universal N2. Gutta-percha points were also included in the last two treatments. Access to the pulp cavity of incisors was gained through their vestibular and occlusal faces. Holes drilled in vestibular faces were sealed with composite and those drilled in occlusal faces were sealed with Amalgama. Animals were observed during eighteen months at least after endodontics. Radiographic controls were done just after surgery and before slaughtering. Treated incisors and alveoli were studied histopathologically. During the experiment all animals were in good condition. They ate apparently without trouble, and neither clinical nor radiological signs were present.

  1. [Brackets and friction in orthodontics: experimental study].

    PubMed

    Ben Rejeb Jdir, Saloua; Tobji, Samir; Turki, Wiem; Dallel, Ines; Khedher, Nedra; Ben Amor, Adel

    2015-09-01

    Many authors have been involved in developing brackets in order to improve the quality, stability, speed and efficiency of orthodontic treatment. In order to reduce friction between bracket and archwire, new therapeutic approaches have been devised based on novel technologies. Among these innovative techniques, self-ligating brackets are increasingly popular. SLBs can be classified into several categories according to their mode of action and their materials. We performed an experimental study to compare the friction forces generated during the sliding of orthodontic archwires made from various alloys through conventional and self-ligating brackets. Results show the favorable influence of SLBs, compared to conventional systems using elastomeric or metal ligatures, on the level of friction, particularly when shape-memory Ni-Ti archwires are used.

  2. Experimental Studies in Helicopter Vertical Climb Performance

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1996-01-01

    Data and analysis from an experimental program to measure vertical climb performance on an eight-foot model rotor are presented. The rotor testing was performed using a unique moving-model facility capable of accurately simulating the flow conditions during axial flight, and was conducted from July 9, 1992 to July 16, 1992 at the Dynamic Model Track, or 'Long Track,' just prior to its demolition in August of 1992. Data collected during this brief test program included force and moment time histories from a sting-mounted strain gauge balance, support carriage velocity, and rotor rpm pulses. In addition, limited video footage (of marginal use) was recorded from smoke flow studies for both simulated vertical climb and descent trajectories. Analytical comparisons with these data include a series of progressively more detailed calculations ranging from simple momentum theory, a prescribed wake method, and a free-wake prediction.

  3. Experimental concept for examination of biological effects of magnetic field concealed by gravity.

    PubMed

    Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T

    2004-01-01

    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept.

  4. Design of organic scintillators for non-standard radiation field dosimetry: experimental setup.

    PubMed

    Norman H, Machado R; Maximiliano, Trujillo T; Javier E, García G; Diana C, Narvaez G; Paula A, Marín M; Róbinson A, Torres V

    2013-01-01

    This paper describes an experimental setup designed for sensing the luminescent light coming from an organic plastic scintillator stimulated with ionizing radiation. This device is intended to be a part of a complete dosimeter system for characterization of small radiation fields which is the project of the doctoral thesis of the medical physicist at the Radiation Oncology facility of Hospital San Vicente Fundación in conjunction with the Universidad de Antioquia of Medellín Colombia. Some preliminary results predict a good performance of the unit, but further studies must be conducted in order to have a completed evaluation of the system. This is the first step in the development of an accuracy tool for measurement of non-standard fields in the Radiotherapy or Radiosurgery processes. PMID:24110369

  5. Experimental and Computational Investigation of a Plasma Ion Accelerator with Multiple Magnetic Field Cusps

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Cappelli, Mark

    2011-10-01

    A cusped-field discharge produces efficient ionization by trapping electrons from an external cathode through magnetic mirroring between adjacent magnetic cusps. These discharges have applications in space propulsion, particularly at low power (under 200W). However, the underlying physics driving electron transport and ionization in these devices is still poorly understood. In the current study, the plasma potential of a 40-250 W cylindrical cusped-field discharge is characterized using a floating emissive probe. The potential exhibits a spatial structure that mimics visible light emission; elevated potential is observed in a surrounding conical region downstream of the discharge channel, concomitant with ion emission. The experimentally measured plasma potential is used in single-electron particle simulations to investigate transport processes associated with electron migration from the external cathode to the anode at the base of the discharge channel. A cusped-field discharge produces efficient ionization by trapping electrons from an external cathode through magnetic mirroring between adjacent magnetic cusps. These discharges have applications in space propulsion, particularly at low power (under 200W). However, the underlying physics driving electron transport and ionization in these devices is still poorly understood. In the current study, the plasma potential of a 40-250 W cylindrical cusped-field discharge is characterized using a floating emissive probe. The potential exhibits a spatial structure that mimics visible light emission; elevated potential is observed in a surrounding conical region downstream of the discharge channel, concomitant with ion emission. The experimentally measured plasma potential is used in single-electron particle simulations to investigate transport processes associated with electron migration from the external cathode to the anode at the base of the discharge channel. The authors acknowledge support from the Air Force Office of

  6. Effect of pulsed electromagnetic field on healing of experimental nonunion in rat tibiae.

    PubMed

    Muhsin, A U; Islam, K M; Ahmed, A M; Islam, M S; Rabbani, K S; Rahman, S M; Ahmed, S; Hossain, M

    1991-06-01

    To see the effect of Pulsed Electromagnetic Field (PEMF) on nonunited fracture healing, nonunion was induced in rat tibiae and PEMF was applied on it. Out of five different techniques utilised for inducing nonunion soft tissue interposition was found to be the most suitable and effective method of experimental induction of nonunion. Twenty eight experimental and 15 control rats were finally evaluated for the effect of PEMF applied for up to 8 weeks. After sacrifice of 8 experimental and 4 controls, 6 experimental and 3 controls, again 6 experimental and 3 controls and finally 8 experimental and 5 controls at 2, 4, 6 and 8 weeks respectively of PEMF application no significant difference as to the quality of healing was observed between the experimental and control animals. It was thus concluded that PEMF appeared to have no beneficial effect on the healing of nonunited fractures in experimental set-up.

  7. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  8. Experimental studies into mechanisms of cardiac arrest.

    PubMed Central

    Russell, D C

    1984-01-01

    Experimental studies have revealed that a wide variety of different pathophysiological mechanisms may induce ventricular fibrillation (VF) and cardiac arrest during acute myocardial ischaemia or infarction. Distinct phases of enhanced vulnerability (the amount of current required to stimulate ectopic activity in the heart following application of an extra stimulus) to VF follow coronary occlusion and correspond to 'pre-hospital', 'in-hospital' and 'out-of-hospital' periods of arrhythmogenesis. Electrophysiological evidence suggests very early (phase 1a) VF results from multiple re-entrant excitation within the ischaemic zone. Slowed and fragmented conduction and inhomogeneities in refractoriness rapidly develop which mapping studies show to occur in association with development of spatial inhomogeneities in residual blood flow distribution and metabolism. Onset of VF may be triggered by adrenergic mechanisms or influenced by peripheral metabolic responses. Automatic mechanisms (spontaneous pacemaker activity) may induce later VF or VF on reperfusion or trigger re-entry. Findings indicate no single therapeutic approach to be likely to protect against all forms of cardiac arrest. PMID:6399208

  9. Experimental study of ocean-atmosphere exchanges

    SciTech Connect

    Eymard, L.; Weill, A.; Planton, S.

    1994-12-31

    The SOFIA/ASTEX and SEMAPHORE campaigns were performed over open ocean, near the Azores, to study the ocean-atmosphere exchanges at the local and meso-scales, with a particular insight to the spatial variability of fluxes and related processes. In both cases, the experimental strategy involved two research aircraft and an oceanographic vessel, as well as surface buoys. SOFIA/ASTEX was more particularly devoted to the study of boundary layer and cloud properties, including microphysical and radiative aspects, in the framework of the international campaign ASTEX. SEMAPHORE was aimed at the analysis of surface fluxes and interactions with the upper ocean at the mesoscale. It included an important network of ocean circulation and thermal properties, from ships, current meter moorings, current drifters, and drifting buoys. The thermal front associated with the Azores current is an important feature of the ocean circulation and was particularly investigated. The analysis of data from meteorological satellites is also an important aspect of the two campaigns.

  10. Theoretical and Experimental Studies of Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Vinci, T.; Boireau, L.; Koenig, M.; Bouquet, S.; Benuzzi-Mounaix, A.; Osaki, N.; Herpe, G.; Falize, E.; Loupias, B.; Atzeni, S.

    2007-01-01

    This paper deals with the radiative shock from both theoretical and numerical points of view. It is based on the whole experimental results obtained at Laboratoire d'Utilisation des Lasers Intenses (LULI, École Polytechnique). Radiative shocks are high-Mach number shocks with a strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. These shocks are involved in various astrophysical systems: stellar accretion shocks, pulsating stars, interaction between supernovae and the interstellar medium. In laboratory, these radiative shocks are generated using high power lasers. New diagnostics have been implemented to study the geometrical shape of the shock and the front shock density. Data were obtained varying initial conditions for different laser intensities and temperature. The modeling of these phenomena is mainly performed through numerical simulations (1D and 2D) and analytical studies. We exhibit results obtained from several radiative hydrodynamics codes. As a result, it is possible to discuss about the influence of the geometry and physical parameters introduced in the 1D and 2D models.

  11. Developments in the field of allergy mechanisms in 2015 through the eyes of Clinical & Experimental Allergy.

    PubMed

    Roberts, G; Boyle, R; Bryce, P J; Crane, J; Hogan, S P; Saglani, S; Wickman, M; Woodfolk, J A

    2016-10-01

    In the first of two papers we described the development in the field of allergy mechanisms as described by Clinical and Experimental Allergy in 2015. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered. A second paper will cover clinical aspects. PMID:27682977

  12. Experimental study of a high-frequency megawatt gyrotron oscillator

    SciTech Connect

    Kreischer, K.E.; Grimm, T.L.; Guss, W.C.; Mobius, A.W.; Temkin, R.J.

    1990-03-01

    A detailed experimental study of the efficiency and output power of a pulsed gyrotron operating in the TE{sub 16,2,1} mode at 148 GHz has been conducted. A peak efficiency of 30% was achieved at 80 kV and 20 A for an output power of 480 kW. The highest output power of 925 kW, corresponding to an efficiency of 19%, was measured at 120 kV and 40 A. Two cavities with different interaction lengths (6.0{lambda} and 4.2{lambda}) were investigated. In both cases, agreement was found between the theoretical and experimental efficiency for beam currents up to 15--20 A. At higher currents, the experimental efficiency saturated between 20% and 25%, well below the 35%-- 40% predicted by theory. No increase was obtained for modest positive or negative linear tapering of the cavity magnetic field. Measurements indicate that the beam velocity ratio decreases as beam current increases, partially explaining the reduced efficiency at higher currents. Operation in different azimuthal rotations of the cavity modes was also observed. The measured rotation was found to be consistent with the theoretical coupling between the beam and rf field.

  13. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  14. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion–ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  15. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion-ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  16. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning.

    PubMed

    Seyoum, A; Pålsson, K; Kung'a, S; Kabiru, E W; Lwande, W; Killeen, G F; Hassanali, A; Knols, B G J

    2002-01-01

    Ethnobotanical survey in 2 communities in western Kenya revealed that the most commonly known repellent plants were Ocimum americanum L. (64.1%), Lantana camara L. (17.9%), Tagetes minuta L. (11.3%) and Azadirachta indica A. Juss (8.7%) on Rusinga Island, and Hyptis suaveolens Poit. (49.2%), L. camara (30.9%) and O. basilicum L. (30.4%) in Rambira. Direct burning of plants is the most common method of application for O. americanum (68.8%), L. camara (100%) and O. basilicum (58.8%). Placing branches or whole plants inside houses is most common for H. suaveolens (33.3 and 57.8% for the respective locations), A. indica (66.7 and 100%), and T. minuta (54.8 and 56.0%). The repellency of plants suggested by the ethnobotanical survey and other empirical information was evaluated against the malaria vector Anopheles gambiae s.s. Giles in experimental huts within a screenwalled greenhouse. Thermal expulsion and direct burning were tested as alternative application methods for the selected plants O. americanum, O. kilimandscharicum Guerke, O. suave Willd., L. camara, A. indica, H. suaveolens, Lippia uckambensis Spreng and Corymbia citriodora Hook. When thermally expelled, only H. suaveolens failed to repel mosquitoes, whereas the leaves of C. citriodora (74.5%, P < 0.0001), leaves and seeds of O. suave (53.1%, P < 0.0001) and O. kilimandscharicum (52.0%, P < 0.0001) were the most effective. Leaves of C. citriodora also exhibited the highest repellency (51.3%, P < 0.0001) by direct burning, followed by leaves of L. uckambensis (33.4%, P = 0.0004) and leaves and seeds of O. suave (28.0%, P = 0.0255). The combination of O. kilimandscharicum with L. uckambensis repelled 54.8% of mosquitoes (P < 0.0001) by thermal expulsion. No combination of plants increased repellency by either method. The semi-field system described appears a promising alternative to full-field trials for screening large numbers of candidate repellents without risk of malaria exposure.

  17. A Computational and Experimental Study of Slit Resonators

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ju, H.; Jones, M. G.; Watson, W. R.; Parrott, T. L.

    2003-01-01

    Computational and experimental studies are carried out to offer validation of the results obtained from direct numerical simulation (DNS) of the flow and acoustic fields of slit resonators. The test cases include slits with 90-degree corners and slits with 45-degree bevel angle housed inside an acoustic impedance tube. Three slit widths are used. Six frequencies from 0.5 to 3.0 kHz are chosen. Good agreement is found between computed and measured reflection factors. In addition, incident sound waves having white noise spectrum and a prescribed pseudo-random noise spectrum are used in subsequent series of tests. The computed broadband results are again found to agree well with experimental data. It is believed the present results provide strong support that DNS can eventually be a useful and accurate prediction tool for liner aeroacoustics. The usage of DNS as a design tool is discussed and illustrated by a simple example.

  18. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  19. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  20. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields

    NASA Astrophysics Data System (ADS)

    Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  1. Experimental Study of Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  2. Theoretical & Experimental Studies of Elementary Particles

    SciTech Connect

    McFarland, Kevin

    2012-10-04

    Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities for graduate students

  3. Naturalistic Versus Experimental Approaches to the Study of Human Aggression: Theoretical and Methodological Issues.

    ERIC Educational Resources Information Center

    Gaebelein, Jacquelyn W.

    Research strategies used to study human aggression include laboratory study, experimental simulation, field experiment, field study, judgment task, sample survey, and less empirical strategies such as computer simulations and formal theory. The context of these strategies can be classified as either contrived, natural, or irrelevant. Major issues…

  4. Studies in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bastianelli, Fiorenzo

    We analyze several topics in quantum field theory, mainly motivated by their role in the formulation of string theories. The common theme in what follows is the implementation of symmetries, such as local supersymmetry or BRST symmetry, through an action principle and the analysis of anomalies, the latter describing the breakdown of these symmetries at the quantum level. In the first part of this dissertation, we analyze "chiral bosons", i.e. massless scalar fields in a two -dimensional spacetime propagating in only one of the two light-cone directions. We present a general method for constructing couplings for chiral bosons and give details for the coupling to supergravity. The notion of a two dimensional chiral boson is generalized in d = 4k + 2 spacetime dimensions to that of a self-dual antisymmetric tensor field. We derive the coupling to gravity and compute the gravitational anomalies using the Feynman rules obtained from the action. We find agreement with the important work of Alvarez-Gaume and Witten, who conjectured the relevant Feynman rules. Our result therefore completes and justifies the Alvarez-Gaume-Witten findings. For the case of d = 2 we also show how to use the method of Fujikawa for computing anomalies from the non-invariance of the path integral measure. We obtain the full effective action by integrating the anomaly equation. In the second part we focus on a method for computing the consistent anomalies in the Fujikawa scheme. In a first application, we derive the consistent regulators for the various fields of the quantum action of the spinning string in superspace. These regulators produce the anomalies which satisfy the Wess-Zumino consistency conditions. In a second application, we analyze the anomalous structure of the Green-Schwarz formulation of the heterotic string. We find anomalies which generically do not cancel on an arbitrary world-sheet manifold. This raises questions concerning the possible validity of such a formulation of

  5. EDITORIAL: Experimental studies of zonal flow and turbulence

    NASA Astrophysics Data System (ADS)

    Itoh, Sanae-I.

    2006-04-01

    There has been remarkable progress made in the research of structure formation by turbulence in nonequilibrium plasmas. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in the system of turbulence and zonal flows, as highlighted in the recent review paper `Zonal flows in plasma—a review' by P H Diamond et al (2005 Plasma Phys. Control. Fusion} 47 R35). There has also been increasing research in experimental studies of zonal flows, geodesic acoustic modes, and the generation of global electric field by turbulence. In recognition of this a cluster Plasma Physics and Controlled Fusion occasionally publishes a small collection of articles on a specific topic. These special sections highlight a specific area of research that is of importance to the journal either as a new or growing research area. The subjects are selected by the Editorial Board and managed by a Guest Editor, Professor Itoh in this case. of 15 papers on `Experimental studies of zonal flow and turbulence' is presented in this issue of Plasma Physics and Controlled Fusion. Each paper in this special cluster describes the present research status and new scientific knowledge/results on the authors' machine involved, on the subject of experimental studies of zonal flows, electric field and nonlinear interactions with turbulence (including studies of Reynolds-Maxwell stresses, etc). Readers of, and contributors to, Plasma Physics and Controlled Fusion have been facing a new phase of plasma physics, with the expanding application of plasma physics to the explosive growth of our knowledge of the astronomical, space and laboratory plasmas, and the approach of ITER. The evolution of modern plasma physics into the new arena is backed up by extensive research as illustrated by this cluster of papers and review papers. We believe that this group of articles will

  6. Fractional calculus in viscoelasticity: An experimental study

    NASA Astrophysics Data System (ADS)

    Meral, F. C.; Royston, T. J.; Magin, R.

    2010-04-01

    Viscoelastic properties of soft biological tissues provide information that may be useful in medical diagnosis. Noninvasive elasticity imaging techniques, such as Magnetic Resonance Elastography (MRE), reconstruct viscoelastic material properties from dynamic displacement images. The reconstruction algorithms employed in these techniques assume a certain viscoelastic material model and the results are sensitive to the model chosen. Developing a better model for the viscoelasticity of soft tissue-like materials could improve the diagnostic capability of MRE. The well known "integer derivative" viscoelastic models of Voigt and Kelvin, and variations of them, cannot represent the more complicated rate dependency of material behavior of biological tissues over a broad spectral range. Recently the "fractional derivative" models have been investigated by a number of researchers. Fractional order models approximate the viscoelastic material behavior of materials through the corresponding fractional differential equations. This paper focuses on the tissue mimicking materials CF-11 and gelatin, and compares fractional and integer order models to describe their behavior under harmonic mechanical loading. Specifically, Rayleigh (surface) waves on CF-11 and gelatin phantoms are studied, experimentally and theoretically, in order to develop an independent test bed for assessing viscoelastic material models that will ultimately be used in MRE reconstruction algorithms.

  7. Experimental Study on Revetec Engine Cam Performance

    NASA Astrophysics Data System (ADS)

    Mohyeldin Gasim, Maisara; Giok Chui, Lee; Anwar, Khirul Azhar bin

    2012-09-01

    In Revetec engine (three-lobed) cam replaces the crankshaft to convert the reciprocating motion of the engine piston, to a rotating motion in the drive line. Since the cam controls the piston movement, the cam profile has a great effect on engine performance. In this paper an experimental study was done to a (three- lobed) cam with Cycloidal motion profile but with different ratios between the base circle radius of the cam and the radius of the roller follower. DEWESoft was used to find the displacement and the vibration of the piston, and compare the actual results from the test with the theoretical results from the cam profile equation. The results showed that there is a periods of miss contact between the follower and the cam when the ratio between the base circle radius of the cam and the radius of the roller follower is less than a certain value, and also increasing of vibration. The suggested ratio between the cam and follower radius is to be more than 2:1.

  8. Phosphatic fertiliser poisoning of sheep: experimental studies.

    PubMed

    O'Hara, P J; McCausland, I P; Coup, M R

    1982-11-01

    The toxicity of serpentine phosphate and superphosphate for non-pregnant dry ewes, pregnant ewes and lactating ewes was investigated by oral dosing. An attempt was made to reproduce a natural episode of poisoning by exposing pregnant and lactating ewes to topdressed pasture. A total dose in the range of 1200 to 1800 g of serpentine phosphate was required to kill two ewes and it was concluded that natural episodes of poisoning with this material are unlikely. The toxic process was similar to that caused by superphosphate. The LD50 of superphosphate was estimated to be in the range of 5 to 6 g/kg and a dose in the range of 200 to 300 g was sufficient to kill most sheep. The apparently greater susceptibility of pregnant and lactating sheep to poisoning suggested by the study of natural outbreaks was not demonstrated in these experiments, but the numbers of experimental animals may have been too small to detect differing susceptibility. The clinical disease resembled that seen in natural episodes; anorexia, diarrhoea, progressive depression and death in a period of 5 to 8 days after the start of dosing. Sublethal doses produced a transient diarrhoea and, in two sheep, a severe wool-break. The principal biochemical changes were hyperphosphataemia and evidence of renal failure (oliguria, uraemia, azotaemia). Gross lesions were not consistently present but included abomasal ulceration and renal cortical swelling and pallor. The histopathological evidence of renal tubular obstruction by flocculant eosinophilic casts was characteristic. PMID:16030836

  9. Experimental study of finite Larmor radius effects

    SciTech Connect

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N/sub 2/, and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10/sup 15//cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 ..mu..sec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 ..mu..F, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption.

  10. Electric field driven fractal growth in polymer electrolyte composites: Experimental evidence of theoretical simulations

    NASA Astrophysics Data System (ADS)

    Dawar, Anit; Chandra, Amita

    2012-11-01

    The influence of electric field on the diffusion limited aggregation has been observed experimentally. The observation provides experimental confirmation of the theoretical model proposed by Zhi-Jie Tan et al. [Phys. Lett. A 268 (2000) 112]. Most strikingly, a transition from a disordered ramified pattern to an ordered pattern (chain-like growth) has been observed. The growth is governed by diffusion, convection and migration in an electric field which give rise to the different patterns. This Letter can also be considered as an experimental evidence of computer simulated fractal growth given by Huang and Hibbert [Physica A 233 (1996) 888].

  11. Evolution of an experimental population of Phytophthora capsici in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Populations of the vegetable pathogen Phytophthora capsici are often highly diverse, with limited gene flow between fields. To investigate the structure of a newly established, experimental population, an uninfested research field was inoculated with two single zoospore isolates of P. capsici in Sep...

  12. Experimental studies of gas-aerosol reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-05-01

    The aqueous phase oxidation of SO2 by H2O2 is believed to the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective is to quantify the importance of the noncloud liquid phase reactions of SO2 by H2O2 in the atmosphere. Growth rates of submicron droplets exposed to SO2 and H2O2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMA's) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charter capable of generating singly charged particles up to 1.0 microns was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH4)2SO4 particles with SO2 and H2O2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets greater than or equal to 0.3 microns, the fractional diameter growth was independent of particle size and for droplets less than or equal to 0.2 microns, it decreased as particle size decreased. The observed decrease is due to NH3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium, and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH4)2SO4 particles exposed to SO2, H2O2, NH3, and H2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH4)2SO4 particles doped with catalysts (Fe(2+), Fe(3+), Mn(2+) and Cu(2+)) in a molar ratio of 1:500 grew slower than

  13. Experimental study of periodic flow effects on spanwise vortex

    NASA Astrophysics Data System (ADS)

    Garcia Molina, Cruz Daniel; Lopez Sanchez, Erick Javier; Ruiz Chavarria, Gerardo; Medina Ovando, Abraham

    2014-11-01

    We present an experimental study about the spanwise vortex produced in a flow going out of a channel in shallow waters. This vortex travels in front of the dipole. The velocity field measurement was done using the PIV technique, and DPIVsoft (https://www.irphe.fr/ ~meunier/) was used for data processing. In this case the flow has a periodic forcing to simulate ocean tides. The experiment was conducted in a channel with variable width and the measurements were made using three different values of the aspect ratio width-depth. We present results of the position, circulation of this spanwise vortex and the flow inversion effect. The change of flow direction modify the intensity of the vortex, but it does not destroy it. The vertical components of the velocity field contributes particle transport. G. Ruiz Chavarria, E. J. Lopez Sanchez and C. D. Garcia Molina acknowledge DGAPA-UNAM by support under project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  14. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  15. Mentoring Field Directors: A National Exploratory Study

    ERIC Educational Resources Information Center

    Ellison, Martha L.; Raskin, Miriam S.

    2014-01-01

    In social work field education, mentoring is underused and lacks research data. There is a paucity of research that examines the effect mentoring has on social work field directors who administer field programs at the undergraduate and/or graduate level. This exploratory study fills this void by examining the mentoring opportunities and…

  16. Evapotranspiration studies for protective barriers: Experimental plans

    SciTech Connect

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  17. Experimental studies of weakly coupled superconductors (Review)

    NASA Astrophysics Data System (ADS)

    Dmitrenko, I. M.

    2004-07-01

    A review is given of the main experimental results obtained in research on weakly coupled superconductors after 1964 at the Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkov (ILTPE).

  18. An experimental study on microwave electron gun

    SciTech Connect

    Wang, G.; Wu, J.; Wang, Y.

    1995-12-31

    We report both the simulation and experimental results of using a ring cathode instead of the solid cathode to reduce the back bombardment effect of a thermionic cathode microwave electron gun. The result shows that the back bombardment power is decreased about 2/3 without changing the beam quality apparently which allows operation at higher repetition rate. Experimental results are compared with the simulation with good agreement.

  19. A field study of wind over a simulated block building

    NASA Technical Reports Server (NTRS)

    Frost, W.; Shahabi, A. M.

    1977-01-01

    A full-scale field study of the wind over a simulated two-dimensional building is reported. The study develops an experiment to investigate the structure and magnitude of the wind fields. A description of the experimental arrangement, the type and expected accuracy of the data, and the range of the data are given. The data are expected to provide a fundamental understanding of mean wind and turbulence structure of the wind field around the bluff body. Preliminary analysis of the data demonstrates the reliability and completeness of the data in this regard.

  20. Vibrio viscosus in farmed Atlantic salmon Salmo salar in Scotland: field and experimental observations.

    PubMed

    Bruno, D W; Griffiths, J; Petrie, J; Hastings, T S

    1998-11-30

    Winter mortality occurred in market-sized (2 to 3 kg) Atlantic salmon Salmo salar reared in sea cages in Scottish waters. Many of the fish had skin ulcers. Internally prominent dark-brown petechiae or ecchymotic haemorrhage was observed. Splenomegaly was associated with congestion and widespread necrosis. A Vibrio sp. was isolated from internal organs. Biochemically isolates of the bacterium were similar to a previously described bacterium, Vibrio viscosus, recorded in a phenotypic study from farmed salmon in Norway. This work examines the occurrence of V. viscosus in marine-reared Atlantic salmon for the first time in Scottish waters. An experimental study reproduced the field observations and Koch's postulates were fulfilled. The histopathology associated with natural infection was compared with that in laboratory-infected fish. PMID:9891731

  1. Experimental and computational studies of nanofluids

    NASA Astrophysics Data System (ADS)

    Vajjha, Ravikanth S.

    The goals of this dissertation were (i) to experimentally investigate the fluid dynamic and heat transfer performance of nanofluids in a circular tube, (ii) to study the influence of temperature and particle volumetric concentration of nanofluids on thermophysical properties, heat transfer and pumping power, (iii) to measure the rheological properties of various nanofluids and (iv) to investigate using a computational fluid dynamic (CFD) technique the performance of nanofluids in the flat tube of a radiator. Nanofluids are a new class of fluids prepared by dispersing nanoparticles with average sizes of less than 100 nm in traditional heat transfer fluids such as water, oil, ethylene glycol and propylene glycol. In cold regions of the world, the choice of base fluid for heat transfer applications is an ethylene glycol or propylene glycol mixed with water in different proportions. In the present research, a 60% ethylene glycol (EG) or propylene glycol (PG) and 40% water (W) by mass fluid mixture (60:40 EG/W or 60:40 PG/W) was used as a base fluid, which provides freeze protection to a very low level of temperature. Experiments were conducted to measure the convective heat transfer coefficient and pressure loss of nanofluids flowing in a circular tube in the fully developed turbulent regime. The experimental measurements were carried out for aluminum oxide (Al2O3), copper oxide (CuO) and silicon dioxide (SiO2) nanoparticles dispersed in 60:40 EG/W base fluid. Experiments revealed that the heat transfer coefficient of nanofluids showed an increase with the particle volumetric concentration. Pressure loss was also observed to increase with the nanoparticle volumetric concentration. New correlations for the Nusselt number and the friction factor were developed. The effects of temperature and particle volumetric concentration on different thermophysical properties (e.g. viscosity, thermal conductivity, specific heat and density) and subsequently on the Prandtl number

  2. Industrial Noise and Tooth Wear - Experimental Study

    PubMed Central

    Cavacas, Maria Alzira; Tavares, Vitor; Borrecho, Gonçalo; Oliveira, Maria João; Oliveira, Pedro; Brito, José; Águas, Artur; dos Santos, José Martins

    2015-01-01

    Tooth wear is a complex multifactorial process that involves the loss of hard dental tissue. Parafunctional habits have been mentioned as a self-destructive process caused by stress, which results in hyperactivity of masticatory muscles. Stress manifests itself through teeth grinding, leading to progressive teeth wear. The effects of continuous exposure to industrial noise, a “stressor” agent, cannot be ignored and its effects on the teeth must be evaluated. Aims: The aim of this study was to ascertain the effects of industrial noise on dental wear over time, by identifying and quantifying crown area loss. Material and Methods: 39 Wistar rats were used. Thirty rats were divided in 3 experimental groups of 10 animals each. Animals were exposed to industrial noise, rich in LFN components, for 1, 4 and 7 months, with an average weekly exposure of 40 hours (8h/day, 5 days/week with the weekends in silence). The remaining 9 animals were kept in silence. The areas of the three main cusps of the molars were measured under light microscopy. Statistical analysis used: A two-way ANOVA model was applied at significance level of 5%. Results: The average area of the molar cusps was significantly different between exposed and non-exposed animals. The most remarkable differences occurred between month 1 and 4. The total crown loss from month 1 to month 7 was 17.3% in the control group, and 46.5% in the exposed group, and the differences between these variations were significant (p<0.001). Conclusions: Our data suggest that industrial noise is an important factor in the pathogenesis of tooth wear. PMID:25798052

  3. Creativity and the homospatial process. Experimental studies.

    PubMed

    Rothenberg, A

    1988-09-01

    Through empirical studies involving intensive and extensive interviewing of outstanding creative persons in literature, visual art, and science, a specific creative cognitive operation involving complex mental imagery was identified. This operation has been designated the "homospatial process" and defined as actively conceiving two or more discrete entities occupying the same space, a conception leading to the articulation of new identities. Four experimental assessments involving exposure to stimuli designed to evoke the homospatial process have been carried out with groups of talented persons as follows: (1) 43 writers produced short poetic metaphors in response to 10 different pairs of slide stimuli. Subjects were randomly assigned to view the pairs either superimposed upon one another, and thereby appearing to occupy the same spatial location, or separated and side by side on the screen as a control condition. (2) 46 writers were similarly divided and exposed for a shortened period of time to the same stimuli in order to encourage mental elaboration in the creation of poetic metaphors. (3) Drawings were created by 43 artists separated into a group exposed to three superimposed images and a control group exposed to the same component images side by side. (4) 39 artists were separated into a group exposed to three superimposed images and a control group exposed to the same images constructed into a single-image figure-ground display. Findings were that, in all four experiments, subjects' productions in response to the superimposed visual stimuli were rated significantly higher in creativity, by independent experts, than productions in response to the control condition. Therefore, the externalized representations of the homospatial process facilitated both literary and artistic creativity.

  4. Interplay of LNA and 2'-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results.

    PubMed

    Yildirim, Ilyas; Kierzek, Elzbieta; Kierzek, Ryszard; Schatz, George C

    2014-12-11

    LNA and 2'-O-methyl RNA residues have C3'-endo sugar puckering, structurally LNA residues have a frozen sugar backbone which provides entropic enhancement of stabilities while the 2'-O-methyl RNA residues are more flexible and maintain base stacking that is almost untouched compared to RNA. Thus, enhancement of the structural stabilities of RNA duplexes by 2'-O-methyl RNA modifications is smaller than for the corresponding LNA modifications. Indeed, our experimental measurements show that on average each 2'-O-methyl RNA and LNA substitution in a RNA duplex enhances duplex stability by 0.2 and 1.4 kcal/mol, respectively. Our computational binding free energy predictions are qualitatively in line with these results. The only exception is for the full 2'-O-methyl RNA duplex, which is overstabilized, implying that further force field revisions are needed. Collectively, the results presented in this paper explain the atomistic details of the structural and thermodynamic roles of LNA and 2'-O-methyl RNA residues in RNA hybrid duplexes, shedding light on the mechanism behind targeting endogenous micro RNA (miRNA) in order to regulate mRNA activity and inhibit gene expression in the cell.

  5. New experimental technique for the measurement of the velocity field in thin films falling over obstacles

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.

    2014-11-01

    We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  6. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  7. Computatonal and experimental study of laminar flames

    SciTech Connect

    Smooke, M.D.; Long, M.B.

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  8. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  9. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect

    Herman, D.L.

    1991-04-01

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  10. Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: I. Experimental design and exposure system

    SciTech Connect

    Stuchly, M.A.; Lecuyer, D.W.; McLean, J. )

    1991-01-01

    The rationale for selection of an animal model, the experimental design, and the design and evaluation of an exposure system used in studies of 60-Hz magnetic fields are described. The studies were conceived to assay development of cancer and immune responsiveness in mice exposed to magnetic fields. The exposure system utilized a quadrupole-coil configuration to minimize stray magnetic fields. Four square-wound coil provided a uniform field within a volume occupied by 16 animal cages. The magnetic field had a mean flux density of 2 mT that varied less than {plus minus} 10% within the volume occupied by animals' cages. The flux density decreased to less than 0.1 microT at a distance of 2 m from the coils. In each exposure system 32 animals could be housed in plastic cages.

  11. Validity of archaeomagnetic field recording: an experimental pottery kiln at Coppengrave, Germany

    NASA Astrophysics Data System (ADS)

    Schnepp, Elisabeth; Leonhardt, Roman; Korte, Monika; Klett-Drechsel, Johannes

    2016-04-01

    Palaeomagnetic data obtained from archaeological materials are used for reconstructions of the Earth's magnetic field of the past millennia. While many studies tested the reliability of this recorder for palaeointensity only a few studies did this for direction. The study presents an archaeomagnetic and rock magnetic investigation applied to an experimental pottery kiln, which was operated in 2003 to produce stone ware. This kind of high-quality pottery needs a temperature of at least 1160 °C. Shortly before heating of the kiln direct absolute measurements of the absolute geomagnetic field vector have been carried out close to it. After cooling of the kiln 24 oriented palaeomagnetic samples have been taken. Although Curie temperatures are about 580 °C, that is the typical temperature for magnetite, thermal as well as alternating field demagnetisations reveal also a considerable amount of hematite as magnetic carrier. This mixture of magnetite and hematite is dominated by pseudo-single domain grains. Demagnetisation removed in some cases weak secondary components, but in most cases the specimens carried a single component thermoremanent magnetisation. The mean characteristic remanent magnetisation direction agrees on 95 per cent confidence level with the directly measured field direction. Archaeointensity was obtained from five specimens with the Thellier-Coe method and with the multiple-specimen palaeointensity domain-state corrected method. Six of these specimens also provided a result of the Dekkers-Böhnel method, which overestimated the archaeointensity by about 9 per cent compared to the direct value, while after correction for fraction the value agrees very well. For the multiple-specimen palaeointensity domain-state corrected method only fractions between 25 and 75 per cent have been used and specimens showing alteration have been excluded. Above 450 °C many specimens showed alteration of the magnetic grains. Because median destructive temperatures were

  12. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    SciTech Connect

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  13. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    NASA Astrophysics Data System (ADS)

    Anderson, L. E.

    1992-06-01

    Studies were conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function; (2) experiments on cancer development in animals; and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats were shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies were conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels were shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements were performed which form the basis for animals and human exposure comparisons.

  14. Preparing for biofilm studies in the field.

    PubMed

    McLean, Robert J C; Simpson, Thomas R

    2008-08-01

    In their natural environments, microorganisms are under constant environmental selection to form biofilms. Using aquatic biofilms as an example, this unit illustrates general concepts in field biology and practical suggestions for designing, conducting, and analyzing biofilm experiments at varying distances from the laboratory. The unit also addresses an example of a special situation (space flight) where experimentation must be done by proxy through another individual or machine.

  15. Experimental and theoretical study of dispersion in potential flows

    NASA Astrophysics Data System (ADS)

    Eames, Ian; Woods, Andy

    1998-11-01

    We examine tracer dispersion in a potential flow, where the velocity field may be writted in terms of the gradient of a scalar function. A range of relevant environmental flows, such as the flow through porous media or thin cracks, may be described to leading order as potential flows. In such flows, tracer dispersion is significantly affected by diverging and converging streamlines which may occur due to variations in permeability, crack thickness or the thickness of a porous layer. We build upon previous studies of dispersion in potential flows in order to examine the effect of geometry of porous inclusions or the spatial variation of crack thickness on plume dispersion. Complementary experimental work is also present using a Hele-Shaw cell, which consists of a uniform viscid flow between two rigid plates. By introducing various shaped obstacles of prescribed thickness between the plates, we are able to study the effect of geometry and permeability on plume dispersion. Here the streamlines correspond to the flow past porous inclusions (and the magnetic field lines past paramagnetic materials), however the velocity field is not similar. These aspects of the flow are included in our analysis.

  16. Experimental studies of magnetorotational instability in differentially rotating cylindrical flows

    NASA Astrophysics Data System (ADS)

    Brawn, Barbara; Lathrop, Daniel

    2006-11-01

    Given the ubiquity of rotating disks in the observable universe (e.g., galaxies, planetary rings, protoplanetary disks and accretion disks around compact objects), understanding differentially rotating, electrically conducting flows is of considerable astrophysical interest. Theoretical and numerical studies indicate that infall and accretion of orbiting material can result from a so-called magnetorotational instability (MRI) arising in such flows. Recent experimental work suggests that MRI is observable in a laboratory setting; inspired by these observations, we are building a sodium Taylor-Couette experiment, comprised of a stationary 30 cm diameter outer cylinder and a rotating 15 cm diameter inner cylinder, with liquid sodium filling the gap between the cylinders. Numerical studies indicate that MRI arises in this geometry in the presence of an external magnetic field; we will impose on the sodium flow a uniform axial magnetic field produced by Helmholtz coils at either end of the experiment. We will use ultrasound Doppler velocimetry to examine the turbulent sodium flow, and a Hall probe array to examine the induced magnetic field of the system, and will relate our observations to theoretical and numerical expectations.

  17. Validating lipid force fields against experimental data: Progress, challenges and perspectives.

    PubMed

    Poger, David; Caron, Bertrand; Mark, Alan E

    2016-07-01

    Biological membranes display a great diversity in lipid composition and lateral structure that is crucial in a variety of cellular functions. Simulations of membranes have contributed significantly to the understanding of the properties, functions and behaviour of membranes and membrane-protein assemblies. This success relies on the ability of the force field used to describe lipid-lipid and lipid-environment interactions accurately, reproducibly and realistically. In this review, we present some recent progress in lipid force-field development and validation strategies. In particular, we highlight how a range of properties obtained from various experimental techniques on lipid bilayers and membranes, can be used to assess the quality of a force field. We discuss the limitations and assumptions that are inherent to both computational and experimental approaches and how these can influence the comparison between simulations and experimental data. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  18. Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field.

    PubMed

    Kaldorf, Michael; Renker, Carsten; Fladung, Matthias; Buscot, François

    2004-10-01

    Ectomycorrhizas (EM) from aspen clones released on an experimental field were characterized by morphotyping, restriction analysis and internal transcribed spacer (ITS) sequencing. In addition, their community structure and spatial distribution was analyzed. Among the 23 observed morphotypes, six mycobionts dominated, forming roughly 90% of all ectomycorrhizas: Cenococcum geophilum, Laccaria sp., Phialocephala fortinii, two different Thelephoraceae, and one member of the Pezizales. The three most common morphotypes had an even spatial distribution, reflecting the high degree of homogeneity of the experimental field. The distribution of three other morphotypes was correlated with the distances to the spruce forest and deciduous trees bordering the experimental field. These two patterns allowed two invasion strategies of ectomycorrhizal fungi (EMF) to be recognized, the success of which depends on adaptation of the EMF to local ecological conditions.

  19. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as

  20. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    NASA Astrophysics Data System (ADS)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-05-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS field winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque.

  1. Study of microcirculation of the ocular ciliary body in experimental kidney disease.

    PubMed

    Obrubov, S A; Ivanova, A O; Klyuchnikov, S O; Dreval, A A; Boginskaya, O A

    2014-08-01

    We studied disorders in ciliary body microcirculation in experimental chronic glomerulonephritis with tubulointerstitial nephritis and evaluated the hemodynamic effects of low-frequency pulsed electromagnetic field in this pathology. Laser Doppler flowmetry demonstrated vasospasm with reduced nutrient blood fl ow in the ciliary body of animals with experimental chronic glomerulonephritis with tubulointerstitial nephritis. The exposure to low-frequency pulsed electromagnetic field using developed technology will lead to significant reduction of the vascular tone and improve arterial blood supply to the microcirculatory bed.

  2. The experimental study of the magnetic field dependence of specific heat in S = {1}/{2} quantum-spin chain CuSO 4 · 5H 2O

    NASA Astrophysics Data System (ADS)

    Kačmár, M.; Orendáč, M.; Černák, J.; Feher, A.

    1999-05-01

    The magnetic specific heat measurements were performed on monocrystalline CuSO 4·5H 2O in a magnetic field from 0 up to T applied in a direction parallel to the easy axis at temperatures 415, 615 and 815 mK. The specific heat as a function of the applied magnetic field exhibits behaviour that cannot be accounted for by the spin-wave approximation.

  3. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  4. Experimental study on behavior of GFRP stiffened panels under compression

    NASA Astrophysics Data System (ADS)

    Kankeri, Pradeep; Ganesh Mahidhar, P. K.; Prakash, S. Suriya; Ramji, M.

    2015-03-01

    Glass Fiber Reinforced Polymer (GFRP) materials are extensively used in the aerospace and marine industries because of their high strength and stiffness to weight ratio and excellent corrosion resistance. Stiffened panels are commonly used in aircraft wing and fuselage parts. The present study focuses on the behavior of composite stiffened panels under compressive loading. With the introduction of stiffeners to unstiffened composite plates, the structural stiffness of the panel increases resulting in higher strength and stiffness. Studies in the past have shown that the critical structural failure mode under compressive loading of a stiffened composite panel is by local buckling. The present study attempts to evaluate the mechanical behavior of composite stiffened panels under compression using blade stiffener configuration and in particular on the behavior of the skin- stiffener interface through experimental testing. A novel test fixture is developed for experimental testing of GFRP stiffened panels. A non-contact whole field strain analysis technique called digital image correlation (DIC) is used for capturing the strain and damage mechanisms. Blade stiffeners increased the strength, stiffness and reduced the out-of plane displacement at failure. The failure of both the unstiffened and stiffened panels was through local buckling rather than through material failure. DIC was able to capture the strain localization and buckling failure modes.

  5. Experimental and numerical results on the fluid flow driven by a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Lantzsch, R.; Galindo, V.; Grants, I.; Zhang, C.; Pätzold, O.; Gerbeth, G.; Stelter, M.

    2007-07-01

    A traveling magnetic field (TMF) driven flow and its transition from a laminar to a time-dependent flow is studied by means of ultrasonic Doppler velocimetry and numerical simulations. The experimental setup comprises a cylindrical cavity containing the electrically conducting model fluid GaInSn and a system of six equidistant coils, which are fed by an out-of-phase current to create an up- or downward directed TMF. Hence, a Lorentz force is induced in the melt which leads to meridional flow patterns. For numerical simulations commercial codes (Opera/Fidap) and a spectral code are used. The characteristic parameters of the magnetohydrodynamic model system are chosen close to the conditions used for vertical gradient freeze (VGF) crystal growth. The axisymmetric basic flow and its dependence on the dimensionless shielding parameter S are examined. It is shown that, for S>10, the flow velocity decreases significantly, whereas almost no influence is found for a smaller shielding parameter. The critical Reynolds number for the onset of instability is found in the range of 300-450. Good agreement between experimental results and the numerical simulations is achieved.

  6. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    SciTech Connect

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed.

  7. Experimental Studies of Ferromagnetism in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph

    2014-03-01

    Breaking of time reversal symmetry has proven to be an incisive method for experimentally drawing out the exotic nature of topological insulators. In particular, the introduction of magnetic dopants in to three dimensional topological insulators has led to the realization of theoretically predicted novel types of ferromagnetic order and a quantized version of the anomalous Hall effect. Here, I will present recent work on the synthesis and measurement of bulk and thin film topological insulators doped with 3 d transition metals. I will discuss the ferromagnetic order that arises in various systems and the associated electrical transport response of the surface modes.

  8. Experimental Study of the Pseudospark Switches

    NASA Astrophysics Data System (ADS)

    Luo, Chengmu; Zhao, Huiliang; Xie, Zifeng

    2001-02-01

    The self-breakdown characteristics (SBC) of pseudospark switches (PSS) with different structure have been experimentally investigated. Two kinds of double-stage PSS with unique structure have been developed. One possesses intermediate cavity electrode and there are two co-axial holes on the upper and lower walls. The another one possesses a plane intermediate electrode with three holes arranged in an equilateral triangle about the center. The SBC of the two kinds of two-gap PSS are shifted to higher-pressure range compared with the single-gap PSS and the ordinary two-gap PSS@. They are suitable for developing high hold-off voltage PSS.

  9. Experimental studies of magnetism of trimer chains

    NASA Astrophysics Data System (ADS)

    Hase, M.; Kohno, M.; Kitazawa, H.; Tsujii, N.; Suzuki, O.; Ozawa, K.; Kido, G.; Imai, M.; Hu, X.

    Trimer chains with J1- J2- J2 and J1- J1- J2 interactions exist in Cu 3(P 2O 6OH) 2 and ANi 3P 4O 14 (A=Ca, Sr, Ba, Pb), respectively, where J1 and J2 denote exchange interaction parameters in the first-shortest and second-shortest bonds, respectively. A 1/3 magnetization plateau was observed in the spin- {1}/{2} compound Cu 3(P 2O 6OH) 2. Experimental results of magnetic susceptibility and magnetization agree well with quantum Monte Carlo results for the trimer chain with the antiferromagnetic (AF) interactions whose values are J1=95 K and J2=28 K. Cu 3(P 2O 6OH) 2 is the first model compound of trimer chains with only AF interactions showing a magnetization plateau. In the spin-1 compound ANi 3P 4O 14, a magnetic phase transition occurs and a small spontaneous magnetization appears at low temperatures. Experimental results are explainable qualitatively by ferrimagnetic long-range order in chains with AF J1 and ferromagnetic J2 interactions and by imperfect cancellation of net magnetic moments of the chains. This is the first observation of ferrimagnetic long-range order whose origin is the periodicity of the exchange interactions in the chains.

  10. Experimental studies of Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Niccolai, Silvia

    2015-12-01

    Generalized Parton Distributions (GPDs) are nowadays the object of an intense effort of research, in the perspective of understanding nucleon structure. They describe the correlations between the longitudinal momentum and the transverse spatial position of the partons inside the nucleon and they can give access to the contribution of the orbital momentum of the quarks to the nucleon spin. Deeply Virtual Compton scattering (DVCS), the electroproduction on the nucleon, at the quark level, of a real photon, is the process more directly interpretable in terms of GPDs of the nucleon. Depending on the target nucleon (proton or neutron) and on the DVCS observable extracted (cross-sections, target- or beam-spin asymmetries, etc.), different sensitivity to the various GPDs for each quark flavor can be exploited. This article is focused on recent promising results, obtained at Jefferson Lab, on cross-sections and asymmetries for DVCS, and their link to GPDs. These data open the way to a “tomographic” representation of the structure of the nucleon, allowing the extraction of transverse-space densities of the quarks at fixed longitudinal momentum. The extensive experimental program to measure GPDs at Jefferson Lab with the 12 GeV-upgraded electron accelerator and the complementary detectors that will be housed in three experimental Halls (A, B and C), will also be presented.

  11. A Experimental Study of Viscous Vortex Rings.

    NASA Astrophysics Data System (ADS)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  12. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  13. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Holland, Scott Douglas

    1991-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.

  14. Experimental study of external fuel vaporization

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Tevelde, J. A.

    1982-01-01

    The fuel properties used in the design of a flash vaporization system for aircraft gas turbine engines were evaluated in experiments using a flowing system to determine critical temperature and pressure, boiling points, dew points, heat transfer coefficients, deposit formation rates, and deposit removal. Three fuels were included in the experiments: Jet-A, an experimental referree broad specification fuel, and a premium No. 2 diesel fuel. Engine conditions representing a NASA Energy Efficient Engine at sea-level take-off, cruise, and idle were simulated in the vaporization system and it was found that single phase flow was maintained in the heat exchanger and downstream of the throttle. Deposits encountered in the heat exchanger represented a thermal resistance as high as 1300 sq M K/watt and a deposit formation rate over 1000 gC/sq cm hr.

  15. Experimental studies in transmission ultrasound computed tomography.

    PubMed

    Jago, J R; Whittingham, T A

    1991-11-01

    The reconstruction of the speed-of-sound distribution within a target can be achieved by CT techniques from measurements on transmitted ultrasonic pulses. The mathematical relationship between speed-of-sound imaging and the conventional CT situation is explained. An experimental system, which has been developed to investigate speed-of-imaging and other forms of in-vivo ultrasound CT, is described, along with the techniques used for data acquisition and image reconstruction. These include measurement of pulse time-of-flight by the threshold or cross-correlation methods. Techniques for reducing artifacts in speed-of-sound images are also described, such as median filtering and modified Shepp-Logan filtering. These techniques have been used to obtain high quality speed-of-sound images of various phantoms. Images of tissue in-vitro have been less satisfactory, because of refraction and attenuation effects. Ways of overcoming these difficulties in an improved system are proposed.

  16. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  17. Experimental Study of Torsional Column Failure

    NASA Technical Reports Server (NTRS)

    Nile, Alfred S

    1939-01-01

    Thirty-three 24ST aluminum-alloy 2- by 2- by 0.10-inch channels, with lengths ranging from 10 to 90 inches were tested at Stanford University in compression to obtain an experimental verification of the theoretical formulas for torsional failure developed by Eugene E. Lundquist of the N.A.C.A. The observed critical loads and twist-axis locations were sufficiently close to the values obtained from the formulas to establish the substantial validity of the latter. The differences between observed and computed results were small enough to be accounted for by small and mostly unavoidable differences between actual test conditions and those assumed in deriving the formulas. Some data were obtained from the shorter specimens regarding the growth of the buckles that resulted in local buckling failure.

  18. Design and experimental study of a novel giant magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie; Xie, Wenqiang

    2016-12-01

    Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can't exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in "T" type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects.

  19. Computational and experimental study of laminar flames

    SciTech Connect

    Smooke, Mitchell

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  20. Molecular approaches to field studies of malaria.

    PubMed

    Beck, Hans-Peter; Tetteh, Kevin

    2008-12-01

    The third 'Molecular Approaches to Malaria' conference was held in Lorne, Australia, in February 2008 and provided extensive information on the application of molecular tools in field studies on malaria. In recent years, technological advances and capacity building in malaria-endemic countries have permitted molecular tools to be applied much more frequently and successfully with exciting new findings. In this review, Hans-Peter Beck and Kevin Tetteh report on the most recent findings using molecular tools in field studies.

  1. Combined Experimental and Numerical Diagnostics for Near-field Flow around a Supersonic Flight Model

    NASA Astrophysics Data System (ADS)

    Matsuda, Atsushi; Shimizu, Katsuya; Suzuki, Kakuei; Sasoh, Akihiro; Murakami, Keiichi; Aoyama, Takashi

    A system for evaluating the near-field pressure distribution around a supersonic flight model by combining experimental and numerical diagnostics has been developed. Experimental measurement is conducted using a ballistic range with four kinds of axi-symmetric flight models. Schlieren flow visualization is recorded using a high-speed framing camera and near-field pressure histories are measured using piezoelectric pressure transducers flush-mounted on the surface of flat plates in the test section. The numerical diagnostics is done using FaSTAR, a numerical simulation tool developed by the Japan Aerospace Exploration Agency (JAXA). The experimental and numerical data are compared to each other, and the numerical results well validated. Based on the numerical results, it becomes possible to estimate the accuracy of experimental conditions including the flight path and angle of attack, which cannot readily be determined only from experimental data, and to discuss the relationship between peak overpressure and aerodynamic performance. Satisfactory agreement between the experimental and numerical results at a flight Mach number of 1.66±0.02 and important insights related to rear boom strength are obtained.

  2. Experimental realization of fluence field modulated CT using digital beam attenuation

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, T. P.; Mistretta, C. A.

    2014-03-01

    Tailoring CT scan acquisition parameters to individual patients is a topic of much research in the CT imaging community. It is now common place to find automatically adjusted tube current options for modern CT scanners. In addition, the use of beam shaping filters, commonly called bowtie filters, is available on most CT systems and allows for different body regions to receive different incident x-ray fluence distributions. However, no method currently exists which allows for the form of the incident x-ray fluence distribution to change as a function of the view angle. This study represents the first experimental realization of fluence field modulated CT (FFMCT) for a c-arm geometry CT scan. X-ray fluence modulation is accomplished using a digital beam attenuator (DBA). The device is composed of ten iron wedge pairs that modulate the thickness of iron, the x-rays must traverse before reaching a patient. Using this device, experimental data was taken using a Siemens Zeego c-arm scanner. Scans were performed on a cylindrical polyethylene phantom and on two different sections of an anthropomorphic phantom. The DBA was used to equalize the x-ray fluence striking the detector for each scan. Non DBA, or ‘flat field’ scans were also acquired of the same phantom objects for comparison. In addition, a scan was performed in which the DBA was used to enable volume of interest (VOI) imaging. In VOI, only a small sub-volume within a patient receives full dose and the rest of the patient receives a much lower dose. Data corrections unique to using a piece-wise constant modulator were also developed. The feasibility of FFMCT implemented using a DBA device has been demonstrated. Initial results suggest dose reductions of up to 3.6 times relative to ‘flat field’ CT. In addition to dose reduction, the DBA enables a large improvement in image noise uniformity and the ability to provide regionally enhanced signal to noise using VOI imaging techniques. The results presented in

  3. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    SciTech Connect

    Smets, Quentin Verreck, Devin; Heyns, Marc M.; Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron; Raskin, Jean-Pierre

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

  4. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis

    SciTech Connect

    Tenforde, T.S.; Gaffey, C.T.; Moyer, B.R.; Budinger, T.F.

    1983-01-01

    Simultaneous measurements were made of the electrocardiogram (ECG) and the intraarterial blood pressure of adult male Macaca monkeys during acute exposure to homogeneous stationary magnetic fields ranging in strength up to 1.5 tesla. An instantaneous, field strength-dependent increase in the ECG signal amplitude at the locus of the T wave was observed in fields greater than 0.1 tesla. The temporal sequence of this signal in the ECG record and its reversibility following termination of the magnetic field exposure are consistent with an earlier suggestion that it arises from a magnetically induced aortic blood flow potential superimposed on the native T-wave signal. No measurable alterations in blood pressure resulted from exposure to fields up to 1.5 tesla. This experimental finding is in agreement with theoretical calculations of the magnetohydrodynamic effect on blood flow in the major arteries of the cardiovascular system. 27 references, 1 figure, 1 table.

  5. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  6. Experimental Study of Stellar Reactions at CNS

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.; Pearson, J.

    2006-11-01

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  7. Economic principles in communication: an experimental study.

    PubMed

    De Jaegher, Kris; Rosenkranz, Stephanie; Weitzel, Utz

    2014-12-21

    This paper experimentally investigates how economic principles affect communication. In a simple sender-receiver game with common interests over payoffs, the sender can send a signal without a pre-given meaning in an infrequent or frequent state of the world. When the signal is costly, several theories (focal point theory, the intuitive criterion, evolutionary game theory) predict an efficient separating equilibrium, where the signal is sent in the infrequent state of the world (also referred to as Horn׳s rule). To analyze whether Horn׳s rule applies, and if so, which theory best explains it, we develop and test variants of the sender-receiver game where the theories generate discriminatory hypotheses. In costly signaling variants, our participants follow Horn׳s rule most of the time, in a manner that is best explained by focal point theory. In costless signaling variants, evolutionary game theory best explains our results. Here participants coordinate significantly more (less) often on a separating equilibrium where the signal is sent in the frequent state if they are primed to associate the absence of a signal with the infrequent (frequent) state of the world. We also find indications that a similar priming effect applies to costly signals. Thus, while the frequency with which participants follow Horn׳s rule in costly signaling variants is best explained by Horn׳s rule, the priming effect shows that some of our participants׳ behavior is best explained by evolutionary game theory even when signals are costly.

  8. Experimental study on HVAC sound parameters

    NASA Astrophysics Data System (ADS)

    Bujoreanu, C.; Benchea, M.

    2016-08-01

    HVAC system represent major source of buildings internal noise and therefore they are designed to provide a human acoustic comfort besides the thermal and air quality requirements. The paper experimentally investigates three types of commercial air handler units (AHU) with different ducts cross-section sizes and inlet-outlet configuration. The measurements are performed in an anechoic room. The measurements are carried out at different fan's speeds, ranging the power-charge from 30-100% while the duct air flow is slowly adjusted from full open to full closed, between 0-500 Pa. The sound pressure levels of the radiant units are rated using NR curves. Also, the supply and the outdoor ducts sound levels are compared in order to point the frequencies where the noise must be reduced. Third-octave band analysis of random noise of an air handling unit from a HVAC system is realized, using measurement procedures that agrees the requirements of the ISO 3744:2011 and ISO 5136:2010 standards. The comparatively results highlight the effects of the geometry, air flow pressure and power-charging dependencies upon the sound level. This is the start for a noise reduction strategy.

  9. Experimental and analytical studies in fluids

    NASA Technical Reports Server (NTRS)

    Goglia, Gene L.; Ibrahim, Adel

    1984-01-01

    The first objective was to analyze and design a true airspeed sensor which will replace the conventional pitot-static pressure transducer for small commercial aircraft. The second objective was to obtain a numerical solution and predict the frequency response which is generated by the vortex whistle at a certain airspeed. It was concluded flow rate measurements indicate that the vortex tube sound frequency is linearly proportional to the frequency response. The vortex tube whistle frequency is dependent upon geometrical parameters to such an extent that: an increase in vortex tube length produces a decrease in frequency response and that an increase in the exhaust nozzle length produces an increase in the frequency precession. An increase in the vortex tube diameter produces a decrease in frequency precession. An increase in swirler diameter produces a decrease in frequency. An increase in the location distance of the microphone pickup signal point from the inside edge of the exit nozzle produces an increase in frequency response. The experimental results indicate that those parameters most significantly effecting frequency are in descending order of importance microphone location, vortex tube diameter, exit nozzle length, vortex tube length, and swirler diameter.

  10. Experimental studies of a drumlike silencer.

    PubMed

    Choy, Y S; Huang, Lixi

    2002-11-01

    The theoretical finding of the broadband performance of a reactive silencer is validated experimentally. The silencer consists of two highly stretched membranes lining part of the duct and backed by two long and shallow cavities. The test rig was built with a small square duct of 5 cm in dimension, and each cavity is 5 cm deep and 25 cm long. Two types of metal foils, stainless steel and copper, were used, and the lowest membrane-to-air mass ratio was 1.3. A transmission loss in excess of 10 dB was achieved over more than one octave band. For one configuration close to the optimal parameters, the predicted ratio of the frequency band limits is 2.47, while the experiment gave 2.35. Three spectral peaks were found in the stopband, as predicted, but the peaks were broader than prediction, indicating the presence of significant sound energy dissipation mechanisms. Comparison with theoretical simulation shows that the cavity damping dominates over membrane friction. Tests using heavier membranes and membrane with different levels of tension also agree with predictions. Issues of practical implementation of the concept as a flow-through silencer are also addressed.

  11. Experimental studies of a drumlike silencer

    NASA Astrophysics Data System (ADS)

    Choy, Y. S.; Huang, Lixi

    2002-11-01

    The theoretical finding of the broadband performance of a reactive silencer is validated experimentally. The silencer consists of two highly stretched membranes lining part of the duct and backed by two long and shallow cavities. The test rig was built with a small square duct of 5 cm in dimension, and each cavity is 5 cm deep and 25 cm long. Two types of metal foils, stainless steel and copper, were used, and the lowest membrane-to-air mass ratio was 1.3. A transmission loss in excess of 10 dB was achieved over more than one octave band. For one configuration close to the optimal parameters, the predicted ratio of the frequency band limits is 2.47, while the experiment gave 2.35. Three spectral peaks were found in the stopband, as predicted, but the peaks were broader than prediction, indicating the presence of significant sound energy dissipation mechanisms. Comparison with theoretical simulation shows that the cavity damping dominates over membrane friction. Tests using heavier membranes and membrane with different levels of tension also agree with predictions. Issues of practical implementation of the concept as a flow-through silencer are also addressed. copyright 2002 Acoustical Society of America.

  12. Music Performance As an Experimental Approach to Hyperscanning Studies

    PubMed Central

    Acquadro, Michaël A. S.; Congedo, Marco; De Riddeer, Dirk

    2016-01-01

    Humans are fundamentally social and tend to create emergent organizations when interacting with each other; from dyads to families, small groups, large groups, societies, and civilizations. The study of the neuronal substrate of human social behavior is currently gaining momentum in the young field of social neuroscience. Hyperscanning is a neuroimaging technique by which we can study two or more brains simultaneously while participants interact with each other. The aim of this article is to discuss several factors that we deem important in designing hyperscanning experiments. We first review hyperscanning studies performed by means of electroencephalography (EEG) that have been relying on a continuous interaction paradigm. Then, we provide arguments for favoring ecological paradigms, for studying the emotional component of social interactions and for performing longitudinal studies, the last two aspects being largely neglected so far in the hyperscanning literature despite their paramount importance in social sciences. Based on these premises, we argue that music performance is a suitable experimental setting for hyperscanning and that for such studies EEG is an appropriate choice as neuroimaging modality. PMID:27252641

  13. Music Performance As an Experimental Approach to Hyperscanning Studies.

    PubMed

    Acquadro, Michaël A S; Congedo, Marco; De Riddeer, Dirk

    2016-01-01

    Humans are fundamentally social and tend to create emergent organizations when interacting with each other; from dyads to families, small groups, large groups, societies, and civilizations. The study of the neuronal substrate of human social behavior is currently gaining momentum in the young field of social neuroscience. Hyperscanning is a neuroimaging technique by which we can study two or more brains simultaneously while participants interact with each other. The aim of this article is to discuss several factors that we deem important in designing hyperscanning experiments. We first review hyperscanning studies performed by means of electroencephalography (EEG) that have been relying on a continuous interaction paradigm. Then, we provide arguments for favoring ecological paradigms, for studying the emotional component of social interactions and for performing longitudinal studies, the last two aspects being largely neglected so far in the hyperscanning literature despite their paramount importance in social sciences. Based on these premises, we argue that music performance is a suitable experimental setting for hyperscanning and that for such studies EEG is an appropriate choice as neuroimaging modality.

  14. Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies

    NASA Astrophysics Data System (ADS)

    Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann

    2012-11-01

    Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the Smithsonian Institute, School for Field Studies and Earthwatch. Control student teams worked from single research goals and sets of methods, while experimental teams varied goals, methods, and collaborative activities in Kenya, Costa Rica, Panama, and Ecuador. Results from studies indicate that students who conducted local pilot studies, collaborative symposia, and ongoing, long-term fieldwork generated significantly more data than did control groups. Research reports of the experimental groups were ranked highest by experts, and contributed the most data to international science journals. Data and anecdotal information in this report indicate that structured collaboration in local long-term studies using apprenticeships may increase the potential for students' academic field studies contribution of new information to science.

  15. Experimental setup for laser spectroscopy of molecules in a high magnetic field

    NASA Astrophysics Data System (ADS)

    Takazawa, Yasuyuki Kimura; Ken

    2011-01-01

    An experimental setup to measure the effects of a high magnetic field on the structure and decay dynamics of molecules is designed and constructed. A vacuum chamber is mounted in the bore of a superconducting magnet. A molecular beam passes in the chamber. Pulsed laser light excites the molecules in the field. The parent or fragment ions are extracted by an electric field parallel to the magnetic field. They are detected by a microchannel plate. Their mass and charge are determined by the time-of-flight method. The performance of the setup was examined using resonance-enhanced two-photon ionization through the X2 Pi- A2Σ + transition of nitric oxide (NO) molecules. The ions were detected with sufficient mass resolution to discriminate the species in a field of up to 10 T. This is the first experiment to succeed in the mass-selective detection of ions by the time-of-flight method in a high magnetic field. By measuring NO+ ion current as a function of the laser frequency, the X2Pi- A2 Σ + rotational transition lines, separated clearly from the background noise, were observed in fields of up to 10 T. From the relative strengths of the transition lines, the ion detection efficiency was determined as a function of the magnetic field strength. This setup was shown to be applicable in a field higher than 10 T. The Landau levels of molecules were successfully observed to demonstrate the setup.

  16. Experimental Vertical Stability Studies for ITER Performance and Design Guidance

    SciTech Connect

    Humphreys, D A; Casper, T A; Eidietis, N; Ferrera, M; Gates, D A; Hutchinson, I H; Jackson, G L; Kolemen, E; Leuer, J A; Lister, J; LoDestro, L L; Meyer, W H; Pearlstein, L D; Sartori, F; Walker, M L; Welander, A S; Wolfe, S M

    2008-10-13

    Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modeling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses some of the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be very severe. The present work describes results of multi-machine studies performed under a joint ITPA experiment on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV, and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement which can challenge the vertical control loop are assessed and analyzed.

  17. Experimental study of resonance crossing with a Paul trap

    NASA Astrophysics Data System (ADS)

    Takeuchi, H.; Fukushima, K.; Ito, K.; Moriya, K.; Okamoto, H.; Sugimoto, H.

    2012-07-01

    The effect of resonance crossing on beam stability is studied systematically by employing a novel tabletop experimental tool and a multiparticle simulation code. A large number of ions are confined in a compact linear Paul trap to reproduce the collective beam behavior. We can prove that the ion plasma in the trap is physically equivalent to a charged-particle beam propagating through a strong focusing channel. The plasma confinement force is quickly ramped such that the trap operating point traverses linear and nonlinear resonance stop bands. Assuming a nonscaling fixed field alternating gradient accelerator composed of many identical FODO cells, we measure how much ion losses occur under diverse conditions. It is experimentally and numerically demonstrated that too slow resonance crossing leads to significant ion losses as expected. Particular attention must be paid to the linear coherent resonance excited at a quarter-integer tune. When the beam intensity is high, this type of linear stop band can seriously affect the beam quality even for rather fast resonance crossing. A scaling law is given of the emittance growth caused by the quarter-integer resonance crossing.

  18. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    DOE PAGES

    G. Ciovati; Myneni, G.; Stevie, F.; Maheshwari, P.; Griffis, D.

    2010-02-22

    Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less

  19. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    SciTech Connect

    G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis

    2010-02-01

    The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  20. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    SciTech Connect

    G. Ciovati; Myneni, G.; Stevie, F.; Maheshwari, P.; Griffis, D.

    2010-02-22

    Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  1. Theoretical and experimental comparisons of nearfield electrogalvanic fields due to nonlinear polarization layers

    NASA Astrophysics Data System (ADS)

    Kasper, R. G.

    1985-02-01

    Based on completed experimental electric-field scans and the corresponding finite-element field predictions, it appears that the finite-element numerical technique presents a strong analytical tool in calculating the nearfield (within 650 micrometers electric-field distributions about active microcells. This was analytically achieved with the new double membrane finite-element configuration representing nonlinear polarization and by using a local tangent slope (impedance) definition dependent on the local potential difference. The experimental determination of the normal current was realized with a newly developed scanning vibrating electrode technique. The finite-element model utilizes a priori measured uncoupled polarization curves for pure iron and pure copper. The current densities and the electric field intensity was calculated for all the grid points within the electrolyte and on its boundaries. Results appear to indicate that first order anodic mass loss can be predicted using finite-element predicted current density distributions on the anodic surface and the imposition of Faraday's law. The electric-field correlation established for the normal current-density vector provides the confidence to proceed in the evaluation of electric fields associated with pitting and crevice corrosion.

  2. Experimental studies of ITER demonstration discharges

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.; C-Mod Team; ASDEX Upgrade Team; DIII-D Team; JET EFDA Contributors

    2009-08-01

    Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23-0.33 V m-1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4-4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <=1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

  3. Experimental Study of Shale Rock Self-Heating

    NASA Astrophysics Data System (ADS)

    Restuccia, Francesco; Ptak, Nicolas; Rein, Guillermo

    2016-04-01

    Self-heating phenomena due to spontaneous exothermic reactions in oxidative environments are common for many porous materials, even at low temperatures. Combustion of shale outcrop formations has been reported in recent years, with self-heating a potential initiating cause. This work studies experimentally and for the first time the self-heating behavior of shale rock, a porous sedimentary rock. Using field samples collected from shale outcrop at Kimmeridge Bay (UK) and the Frank-Kamenetskii theory of criticality, we determine effective kinetic parameters and thermal properties for different shale particle size distributions and upscale the results to field formations of different thicknesses. We show that for fine particle sizes, with diameter below 2mm, spontaneous ignition is possible for rock formations of thickness between 25m and 5.4m at ambient temperatures between 16°C and 44°C. For the same temperature range, the required thickness is between 375km and 15km for coarse particles of diameter below 17mm. This shows that shale rock is reactive, with reactivity highly dependent on particle diameter, and self-ignition is possible for small particles in outcrops or formations accidentally exposed to oxygen.

  4. Experimental and theoretical studies of subsonic fan noise

    NASA Technical Reports Server (NTRS)

    Mani, R.; Berkofske, K.

    1976-01-01

    The noise generated by inlet turbulence impinging on a subsonic axial flow fan was studied as a function of tip speed, flow coefficient, and intensity and scale of turbulence was carried out. Both turbulence and far field acoustic measurements were made. The new elements introduced in the theoretical analysis were accounting for blade loading dependent noise mechanisms and consideration of anisotropic turbulence impinging on the rotor because of inlet flow contraction effects. Experimentally an unexplained increase of noise at about 1/2 and 1 1/2 times blade passsing frequency was observed at low flow coefficients even though there was no evidence of compressor surge. In the final version the theory does a fair job of predicting variations of noise with blade loading and tip speed. Alteration of inlet turbulence length scales produced some but not very pronounced changes in the far field PWL spectra. Some degree of eddy contraction and resulting anisotropy were essential to explain the concentration of energy around blade passing frequencies.

  5. Numerical and experimental study of dispersion dynamics in isotachophoresis

    NASA Astrophysics Data System (ADS)

    Garcia, Giancarlo; Bercovici, Moran; Santiago, Juan G.

    2009-11-01

    Isotachophoresis (ITP) is a separation and preconcentration technique used in a variety of life science and analytical chemistry applications. Under ideal ITP conditions, sample ions focus in a narrow interface region (1-10 μm) between leading and terminating electrolytes. In practice, however, the associated electric field gradients at this interface give rise to non-uniform electroosmotic flow (EOF) and associated strong internal pressure gradients. Conductivity gradients also couple with electric fields to yield electrohydrodynamic body forces. Together, these forces disperse the ITP interface and reduce the sensitivity and resolution of ITP-based assays. Despite its importance in ITP, there has been surprisingly little research into the underlying physical mechanisms of dispersion. We performed a numerical and experimental study of dispersion dynamics in ITP using two-dimensional (axi-symmetric), time-dependent simulations of fluid flow, diffusion, and electromigration. We validated our models with controlled experiments in circular capillaries and used simulations to develop general scaling relationships. We observe localized focusing of the analyte in either near-axis or near-wall regions; and the degree to which these conditions are favored is a strong function of the axial location of the ITP interface. Our goal is to develop an area-averaged model for rapid prediction of the effects of EOF in experiments.

  6. Experimental studies on the kinematics of cutting in granular materials

    NASA Astrophysics Data System (ADS)

    Murthy, T. G.; Saldana, C.; Yadav, S.; Du, F.

    2013-06-01

    Slow flow in granular materials is characterized by high solid fraction and sustained inter-particle interaction. The kinematics of trawling or cutting is encountered in processes such as locomotion of organisms in sand; trawl gear movement on a soil deposit; plow movement; movement of rovers, earth moving equipment etc. Additionally, this configuration is very akin to shallow drilling configuration encountered in the mining and petroleum industries. An experimental study has been made in order to understand velocity and deformation fields in cutting of a model rounded sand. Under nominal plane strain conditions, sand is subjected to orthogonal cutting at different tool-rake angles. High-resolution optical images of the region of cutting were obtained during the flow of the granular ensemble around the tool. Interesting kinematics underlying the formation of a chip and the evolution of the deformation field is seen in these experiments. These images are also analyzed using a PIV algorithm and detailed information of the deformation parameters such as velocity, strain rate and volume change is obtained.

  7. Experimental studies of actinides in molten salts

    SciTech Connect

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  8. An experimental study of subaqueous slipface deposition.

    USGS Publications Warehouse

    Hunter, R.E.; Kocurek, G.

    1986-01-01

    A flume study indicates that grainflow on slipfaces accounts for most cross-strata formed in unidirectional, shallow-water flows. The slipfaces studied were on small megaripples and delta-like steps (0.06-0.28 m high). During intermittent avalanching, at relatively low flow velocities, periods between avalanches were marked by grainfall onto the slipface, the intensity of which was greatest near the brink of the slipface and increased with current velocity. The lee eddy proved very significant in slipface processes by redistributing grainfall sediments and both promoting and impeding grainflow. -from Authors

  9. Experimental Studies of Lava Dome Fracture

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P. R.; Kilburn, C. R.

    2005-12-01

    Renewed extrusion at andesitic to dacitic lava domes and collapses of these domes are usually preceded by fracturing and frictional sliding of material in and around the lava dome and magma conduit. This is observed through the occurrence of shallow high frequency earthquakes. Samples of andesite from Mount Shasta in the Cascades, a typical material for both lava domes and shallow underlying country rock, have been deformed in compression and tension, at temperatures of up to 900°C, and under confining pressures of up to 70MPa. During these tests the axial load, sample deformation and acoustic emissions were recorded, in order to compare the results with field observations of deformation and short period seismicity at lava domes. Typical strengths at room temperature and pressure were 6MPa in tension, and 100MPa in compression. Increased temperatures increased the tensile strength, but reduced the compressive strength, whereas both strengths increased with increasing confining pressure. There were ~10 times more acoustic emissions at room temperature than at maximum test temperatures, indicating that increased temperatures favour ductile, rather than brittle, failure. These results suggest that young, hot lava domes may collapse or erupt with little precursory short period seismicity, whilst older, cooler domes are likely to exhibit stronger short period seismic precursors. However, hotter material is likely to exhibit more recognisable deformation precursors. This is consistent with the seismicity observed after the 18 May 1980 climactic eruption at Mount St Helens, where there was ~100 times more seismicity prior to eruptions in 1985 and 1986 than there was prior to eruptions in 1980 and 1981. During these later eruptions, the interior of the dome would still have been ductile due to its temperature and the overburden weight acting as a confining pressure, but the large amount of pre-failure deformation in this zone could drive fracturing of the cooler outer

  10. Calculating rheologic properties of magmas from field observations combined with experimental data

    NASA Astrophysics Data System (ADS)

    Verberne, R.; Ulmer, P.; Muntener, O.

    2010-12-01

    In order to investigate the emplacement processes that occur in shallow level plutonic magma reservoirs, we try to relate phase assemblages and mineral composition to the emplacement history of a particular rock suite by combining field and experimental approaches to understand the physical, rheological and temporal evolution of crystallizing batholiths. Here we present a case study of the Listino Ring Structure of the Adamello Batholith, N-Italy, where processes of interaction between felsic and mafic magmas, such as mafic dike injection in partly crystallized silicic magmas, dike disaggregation, enclave formation, and near-solidus shearing were studied in glacier-polished outcrops. Most of these phenomena are generally assigned to fluid dynamic processes operating in a magma reservoir (Turner & Campbell, 1986), where rheological barriers (e.g. viscosity contrast) inhibit chemical mixing of mafic magmas with crystal-rich silicic magmas (Sparks & Marshall, 1986; Blundy & Sparks, 1992). Our approach centers around the determination of mineral assemblages and crystal fractions present at the time of the process under investigation. The mineral assemblage at the time of injection of mafic magmas, can be determined from the observation that minerals from the host magma are being mechanically incorporated as phenocrysts into the mafic enclaves before quenching occurs. In the case of synmagmatic deformation, the crystals present during deformation can possibly be identified by determining the crystal fraction displaying plastic deformation. Having determined the modal mineralogy and composition of phases, combining with whole rock chemistry of both magmas and a pressure estimate obtained from Al-in-Hornblende barometry by Blundy & Caddick (unpublished), allows us to constrain the temperature and H2O-content of the host magma. The melt fraction and composition of the host magma can then be calculated from available experimental data, and the melt composition can be

  11. New experimental techniques for studying root herbivores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively less is known about belowground ground herbivores than their aboveground counterparts . This is largely because root-feeding herbivores live in the soil, an opaque, tri-phasic medium, which makes them harder to study and perhaps less perceptible as key components of many terrestrial ecosy...

  12. Dorm 8: An Experimental Social Study.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    A study of the social environment in special schools for the deaf is reported in this publication. The problem was to deinstitutionalize the dormitory environment, and to stimulate an involvement in the surroundings and a sense of personal pride in the children. Research was carried out at the Ontario School for the Deaf, Belleville, with a group…

  13. Ethnic Heritage Studies: Cultural Pluralism. Experimental Unit.

    ERIC Educational Resources Information Center

    Redford, Dale

    A variety of individual and group activities which require students to examine their ethnic background and their personal values related to cultural pluralism are included in this teaching guide. The unit is part of the Louisville Area Ethnic Heritage Studies Project described in ED 150 043. The project materials are designed to foster…

  14. Experimental study of photonic crystal triangular lattices

    NASA Astrophysics Data System (ADS)

    Qin, Ruhu; Qin, Bo; Jin, Chongjun

    1999-06-01

    Triangular lattice photonic crystal behaving in the electromagnetic zones constructed from fused silica cylinders in styrofoam is fabricated. The transmission spectra of the photonic crystal with and without defects are measured. On this basis, the defect modes of photonic crystal were studied, and the potential applications of the photonic crystal are discussed.

  15. Can We Study Intelligence Using the Experimental Method?

    ERIC Educational Resources Information Center

    Eysenck, Hans J.

    1995-01-01

    It is argued that the study of one important aspect of intelligence, creativity, can be furthered by the introduction of causal theories and their experimental study. Purely correlational investigations are a useful beginning, but psychology can only acquire true scientific stature by combining correlational and experimental approaches. (SLD)

  16. Lessons from a Dominican Republic Field Study

    ERIC Educational Resources Information Center

    Gunter, Michael M., Jr.

    2010-01-01

    Utilizing student-centered pedagogy, this case study explores an increasingly prominent and instructive addition to traditional academic coursework--the field study experience. This is particularly true in the arena of environmental education where students learn best by experiencing environmental problems first-hand and then interacting with…

  17. Indigenous Studies as an International Field.

    ERIC Educational Resources Information Center

    Pino-Robles, Rodolfo

    This paper proposes the development of Indigenous Studies as an international field, both in the sense of advancing the discipline internationally, wherever there are Indigenous peoples, and in the sense of incorporating international perspectives into curricula. In Canada, Indigenous Studies has been and is still treated as something to be done…

  18. Experimental study on artificially triggered lightning using high power lasers

    SciTech Connect

    Uchida, S.; Shimada, Y.; Yasuda, H.; Yamanaka, C.; Fujita, H.; Izawa, Y.; Yamanaka, T.; Wang, D.; Kawasaki, Z.; Matsu-ura, K.; Ishikubo, Y.; Adachi, M.

    1996-05-01

    A series of laboratory experiments has been conducted to investigate the initiating effects of laser plasma channel on electrical discharge. It was confirmed that the plasma channels reduce the required electrical field strength for electrical discharges to occur by a factor of 6. A field experimental site targeting natural lightning is being prepared. The thunderstorm monitoring system and the laser and optical systems have been developed and tested against various weather conditions. The results from the laboratory experiments and field experiments will be discussed. {copyright} {ital 1996 American Institute of Physics.}

  19. Experimental Study of Flow in a Bifurcation

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2003-11-01

    An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.

  20. Experimental study of highly viscous impinging jets

    SciTech Connect

    Gomon, M.

    1998-12-01

    The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.

  1. Stressing biological samples with pulsed magnetic fields: physical aspects and experimental results

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Specchia, V.; D'Attis, S.; Giuffreda, E.; Quarta, G.; Calcagnile, L.; Bozzetti, M. P.; Nassisi, V.

    2016-05-01

    Magnetic field effects are diffused among living organisms. They are mainly studied with static or extremely low frequency fields, while scarce information is available for pulsed fields. This work is devoted to the study of the interaction between Drosophila melanogaster, both adults and larvae, and pulsed magnetic fields. We exposed the organisms to a peak field of 0.4 T, lasting for about 2 μ s, within an ad hoc designed copper coil. Adult individuals didn't present any deregulation of repetitive sequences in the germ line of Drosophila. Instead, we noticed a marked magnetic field effect in larvae. Polytene chromosomes coming from treated individuals showed the presence of heat shock puffs; the same organisms revealed also an upregulation of the genes encoding for the Hsp70 protein. These observations suggest that the larvae underwent an oxidative stress caused by the modulation of free radicals' yield induced by the magnetic field through a radical pair mechanism.

  2. A Computational and Experimental Study of Resonators in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ju, H.; Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.

    2009-01-01

    In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits.

  3. Experimental study of a solar still

    NASA Astrophysics Data System (ADS)

    Hassoun, Z. Sari; Aliane, K.; Berrezoug, H. I.

    2016-07-01

    This work concerns the study of a solar distiller. Particular attention is paid to the different operating characteristics such as: temperature, global and internal efficiency, performance and the performance factor during the distillation process. We have also established the overall heat balance in transition. A series of tests was carried out during the summer under the sea water to see the evolution of different parameters of the distiller. The daily output of solar still is 1.8litre / day. All the dissolved solids (TDS), conductivity and pH of the water were measured.

  4. Experimental study of isovector spin sum rules

    SciTech Connect

    Alexandre Deur; Peter Bosted; Volker Burkert; Donald Crabb; Kahanawita Dharmawardane; Gail Dodge; Tony Forest; Keith Griffioen; Sebastian Kuhn; Ralph Minehart; Yelena Prok

    2008-02-04

    We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for $0.05<2.92$ GeV$^2$. The integral is fit to extract the twist-4 element $f_{2}^{p-n}$ which is large and negative. Systematic studies of this higher twist analysis establish its legitimacy at $Q^{2}$ around 1 GeV$^{2}$. We also extracted the isovector part of the generalized forward spin polarizability $\\gamma_{0}$. Although this quantity provides a robust test of Chiral Perturbation Theory, our data disagree with the calculations.

  5. Experimental implementation of a strong two-color asymmetric laser field in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Danakas, S.; Kotsina, N.; Kosmidis, C.

    2016-05-01

    We report the experimental implementation of a strong two-color (ω/2ω) asymmetric laser field in the mid-infrared regime (MIR) consisting of a fs pulse centered at 1400 nm and its second harmonic (700 nm). Control of the temporal delay between the two pulses with sub-cycle accuracy and, therefore, the two-color field phase is based on the use of a birefringent calcite plate. The experimental methodology is described in detail for the 1400/700 nm case, while its applicability is discussed for a broader wavelength range, nowadays accessible by optical parametric amplifiers. The validity of the proposed methodology is further supported by the application of the asymmetric 1400/700 nm field on the dissociative ionization of carbon monoxide, which is considered to be a benchmark target in the field of coherent control of strong laser-matter interaction. It is demonstrated that efficient control on the directional emission of the CO ionic fragments is achieved by varying the relative phase of the 1400 and 700 nm field components.

  6. Experimental implementation of a strong two-color asymmetric laser field in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Danakas, S.; Kotsina, N.; Kosmidis, C.

    2016-05-01

    We report the experimental implementation of a strong two-color (ω/2ω) asymmetric laser field in the mid-infrared regime (MIR) consisting of a fs pulse centered at 1400 nm and its second harmonic (700 nm). Control of the temporal delay between the two pulses with sub-cycle accuracy and, therefore, the two-color field phase is based on the use of a birefringent calcite plate. The experimental methodology is described in detail for the 1400/700 nm case, while its applicability is discussed for a broader wavelength range, nowadays accessible by optical parametric amplifiers. The validity of the proposed methodology is further supported by the application of the asymmetric 1400/700 nm field on the dissociative ionization of carbon monoxide, which is considered to be a benchmark target in the field of coherent control of strong laser‑matter interaction. It is demonstrated that efficient control on the directional emission of the CO ionic fragments is achieved by varying the relative phase of the 1400 and 700 nm field components.

  7. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  8. Theoretical and experimental study of thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Raspet, Richard; Bass, Henry E.; Arnott, W. P.

    1992-12-01

    A three year study of thermoacoustic engines operating as prime movers and refrigerators was completed. The major thrust of this effort was the use and theoretical description of ceramic honeycomb structures as the active element in thermoacoustic engines. An air-filled demonstration prime mover was constructed and demonstrated at Acoustical Society of America and IEE meetings. A helium-filled test prime mover was designed and built an is being employed in studies of the threshold of oscillation as a function of temperature difference and pressure. In addition, acoustically based theories of the thermoacoustic engine have been developed and tested for a parallel plate stack at the Naval Postgraduate School and for a honeycomb stack at the University of Mississippi. Most of this work is described in detail in the attached publications. In this report we will give an overview of the research completed to date and its relationship to work performed at the Naval Postgraduate School and to future work at the University of Mississippi.

  9. Acrolein and embryogenesis: an experimental study

    SciTech Connect

    Chhibber, G.; Cilani, S.H.

    1986-01-01

    The effects of acrolein were studied on the chick embryos of 48 and 72 hr of incubation. Acrolein was dissolved in physiological saline and injected into the air sacs of the eggs at doses ranging from 0.001 to 0.1 mg per egg. The controls received and equal amount of saline only (0.1 ml per egg). All the embryos including controls were examined at Day 13. In all, 600 eggs were utilized for this investigation. At 48 hr incubation, the percentage survival ranged from 80 to 0 as the dosage of acrolein was increased. Embryonic mortality following 72 hr incubation did not increase significantly at any dose level. Gross malformations such as short and twisted limbs, everted viscera, microphthalmia, short and twisted neck, and hemorrhage over the body were observed. The frequency and the types of gross abnormalities did not vary much in the 48- or 72-hr-treated groups. The incidence of malformation in the controls was low. The results of this study indicates that acrolein is embryotoxic at higher doses and moderately teratogenic to chick embryogenesis.

  10. Field studies on pesticides and birds: Unexpected and unique relations

    USGS Publications Warehouse

    Blus, L.J.; Henny, Charles J.

    1997-01-01

    We review the advantages and disadvantages of experimental and field studies for determining effects of pesticides on birds. Important problems or principles initially discovered in the field include effects of DDT (through its metabolite DDE) on eggshell thickness, reproductive success, and population stability; trophic-level bioaccumulation of the lipid-soluble organochlorine pesticides; indirect effects on productivity and survival through reductions in the food supply and cover by herbicides and insecticides; unexpected toxic effects and routes of exposure of organophosphorus compounds such as famphur and dimethoate; effects related to simultaneous application at full strength of several pesticides of different classes; and others. Also, potentially serious bird problems with dicofol, based on laboratory studies, later proved negligible in the field. In refining field tests of pesticides, the selection of a species or group of species to study is important, because exposure routes may vary greatly, and 10-fold interspecific differences in sensitivity to pesticides are relatively common. Although there are limitations with field investigations, particularly uncontrollable variables that must be addressed, the value of a well-designed field study far outweighs its shortcomings.

  11. Field studies on pesticides and birds: unexpected and unique relations

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.

    1997-01-01

    We review the advantages and disadvantages of experimental and field studies for determining effects of pesticides on birds. Important problems or principles initially discovered in the field include effects of DDT (through its metabolite DDE) on eggshell thickness, reproductive success, and population stability; trophic-level bioaccumulation of the lipid-soluble organochlorine pesticides; indirect effects on productivity and survival through reductions in the food supply and cover by herbicides and insecticides; unexpected toxic effects and routes of exposure of organophosphorus compounds such as famphur and dimethoate; effects related to simultaneous application at full strength of several pesticides of different classes; and others. Also, potentially serious bird problems with dicofol, based on laboratory studies, later proved negligible in the field. In refining field tests of pesticides, the selection of a species or group of species to study is important, because exposure routes may vary greatly, and 10-fold interspecific differences in sensitivity to pesticides are relatively common. Although there are limitations with field investigations, particularly uncontrollable variables that must be addressed, the value of a well-designed field study far outweighs its shortcomings

  12. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  13. Experimental evidence of transport of pesticides through field soils - a review

    SciTech Connect

    Flury, M.

    1996-01-01

    Much information is available in the literature about pesticide transport through soils at the field scale. The purpose of this study is to review the literature with a focus on pesticide leaching to groundwater. The literature was compiled and discussed with respect to different factors that influence pesticide leaching. Pesticide leaching below the root zone has been demonstrated in sandy as well as in loamy soils. Particularly in loamy soils, there is evidence that even strongly adsorbing chemicals can move along preferential flow pathways and that the travel times of pesticides are comparable to those of conservative solutes. The amounts of pesticides leached below the root zone by worst case rainfall events depend on the chemical properties and can reach up to 5% of the applied mass. When there is no heavy rainfall shortly following application of chemicals, the mass annually leached below the root zone is in the range of <0.1 to 1%, occasionally it can reach up to 4%. Although a direct comparison cannot be made, the mass lost by leaching seems generally to be smaller than that lost by runoff, depending of course on the slope of the fields. Several factors that affect pesticide leaching, such as surface preparation, soil structure, soil water content, type of irrigation, pesticide formulation, time of application and rainfall events, are discussed with support of experimental evidence. While some factors showed inconsistent effects, others show promise in controlling leaching mechanisms. These latter factors include initial water content, surface preparation, and time of pesticide application. Based on the reviewed literature recommendations were made for future research activities. 172 refs., 1 fig., 7 tabs.

  14. An experimental study of dense aerosol aggregations

    NASA Astrophysics Data System (ADS)

    Dhaubhadel, Rajan

    We demonstrated that an aerosol can gel. This gelation was then used for a one-step method to produce an ultralow density porous carbon or silica material. This material was named an aerosol gel because it was made via gelation of particles in the aerosol phase. The carbon and silica aerosol gels had high specific surface area (200--350 sq m2/g for carbon and 300--500 sq m2/g for silica) and an extremely low density (2.5--6.0 mg/cm3), properties similar to conventional aerogels. Key aspects to form a gel from an aerosol are large volume fraction, ca. 10-4 or greater, and small primary particle size, 50 nm or smaller, so that the gel time is fast compared to other characteristic times. Next we report the results of a study of the cluster morphology and kinetics of a dense aggregating aerosol system using the small angle light scattering technique. The soot particles started as individual monomers, ca. 38 nm radius, grew to bigger clusters with time and finally stopped evolving after spanning a network across the whole system volume. This spanning is aerosol gelation. The gelled system showed a hybrid morphology with a lower fractal dimension at length scales of a micron or smaller and a higher fractal dimension at length scales greater than a micron. The study of the kinetics of the aggregating system showed that when the system gelled, the aggregation kernel homogeneity lambda attained a value 0.4 or higher. The magnitude of the aggregation kernel showed an increase with increasing volume fraction. We also used image analysis technique to study the cluster morphology. From the digitized pictures of soot clusters the cluster morphology was determined by two different methods: structure factor and perimeter analysis. We find a hybrid, superaggregate morphology characterized by a fractal dimension of Df ≈ to 1.8 between the monomer size, ca. 50 nm, and 1 mum micron and Df ≈ to 2.6 at larger length scales up to ˜ 10 mum. The superaggregate morphology is a

  15. An experimental study of memory fault latency

    NASA Technical Reports Server (NTRS)

    Chillarege, Ram; Iyer, Ravi K.

    1989-01-01

    The difficulty with the measurement of fault latency is due to the lack of observability of the fault occurrence and error generation instants in a production environment. The authors describe an experiment, using data from a VAX 11/780 under real workload, to study fault latency in the memory subsystem accurately. Fault latency distributions are generated for stuck-at-zero (s-a-0) and stuck-at-one (s-a-1) permanent fault models. The results show that the mean fault latency of an s-a-0 fault is nearly five times that of the s-a-1 fault. An analysis of variance is performed to quantify the relative influence of different workload measures on the evaluated latency.

  16. Experimental study on sludge reduction by ultrasound.

    PubMed

    Cao, X Q; Chen, J; Cao, Y L; Zhu, J Y; Hao, X D

    2006-01-01

    In recent years, considerable impetus emerges to develop strategies for reducing excess sludge produced in biological wastewater treatment (BWT) systems. In this study, an experiment on sludge reduction by ultrasound treatment was conducted. The influences of sonication on observed yield, sludge reduction, effluent quality, sludge settleability and stability were extensively evaluated. It was found that ultrasound had an impressive potential to reduce sludge production. Moreover, it was also concluded that a treatment time of 10 minutes was more cost-effective for sludge reduction, and a reduction by 44% was reached with an ultrasonic intensity of 0.25 w/ml. The reduction could be mainly attributed to disintegration of bio-flocs and cryptic growth. In addition, sonication time seemed to be more effective to reduce sludge production compared with ultrasonic intensity. Slight deterioration of the effluent quality and some variations of the sludge settleability and stability were observed after ultrasound treatment.

  17. A study of the electric field induced by magnetic clouds

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2011-02-01

    Starting from our magnetic field model for magnetic clouds (MCs), which topologically considers them as cylinders with elliptical cross sections, we present a first attempt in the study of the electric field induced by the movements of magnetic clouds in the interplanetary medium and the expansions of their cross sections. These expansions are included in the model assuming linear time dependence in all the components of the plasma current density. In a previous paper we already determined the magnetic field and current density of our MCs model, and in its development we established that to get it physically consistent, the induced electric field has to be independent of time. In the present work we calculate the expressions for the components of this electric field and fit them to the corresponding experimental data determined from the measurements of the plasma velocity and magnetic field components through the expression $\\vec E$ = -$\\vec v$SW × $\\vec B$. To test the model, we have selected three intense and well-defined magnetic clouds observed in July 2000, November 2003, and May 2005. Until now we think it is one of the first attempts to incorporate this induced electric field in the context of analytical models for the study of MCs.

  18. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  19. A phase-field model for ductile fracture at finite strains and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ambati, Marreddy; Kruse, Roland; De Lorenzis, Laura

    2016-01-01

    In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

  20. Species-specific photosynthetic responses of four coniferous seedlings to open-field experimental warming

    NASA Astrophysics Data System (ADS)

    Han, S.; Yoon, S. J.; Yoon, T. K.; Han, S. H.; Lee, J.; Lee, D.; Kim, S.; Hwang, J.; Cho, M.; Son, Y.

    2014-12-01

    Temperature increase under climate change is expected to affect photosynthesis of tree species. Biochemical models generally suggest that the elevated temperature increases the photosynthetic carbon fixation, however, many opposing results were reported as well. We aimed to examine the photosynthetic responses of four coniferous seedlings to projected future temperature increase, by conducting an open-field warming experiment. Experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to be consistently 3oC higher than that of control plots. The seeds of Abies holophylla (AH), A. koreana (AK), Pinus densiflora (PD), and P. koraiensis (PK) were planted in each 1 m × 1 m plot (n=3) in April, 2012. Monthly net photosynthetic rates (Pn; μmol CO2 m-2 s-1) of 1-year-old seedlings (n=9) from June to November, 2013 were measured using CIRAS-2 (PP-Systems, UK) and photosynthetic parameters (the apparent quantum yield; ф; µmol CO2 mol-1, the dark respiration rate; Rd; µmol CO2 mol-1, and the light compensation point; LCP; µmol mol-1 s-1) were also calculated from the light-response curve of photosynthesis in August, 2013. Chlorophyll contents were measured using DMSO extraction method. Monthly Pn was generally higher for PD and decreased for AK in warmed plots than in control plots (Fig. 1). Pn of AK and PK did not show any significant difference, however, Pn of PK in October and November increased by experimental warming. Pn of PD also showed the highest increase in November and this distinct increase of Pn in autumn might be caused by delayed cessation of photosynthesis by temperature elevation. ф and Rd in warmed plots were higher for PD and lower for AK, while LCP did not significantly differ by treatments for all species. Because ф is considered to be related to the efficiency of harvesting and using light, the change in ф might have caused the response of Pn to warming in this study. Decreases

  1. Experimental study of infrared filaments under different initial conditions

    NASA Astrophysics Data System (ADS)

    Mirell, Daniel Joseph

    In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light

  2. Quantitative analysis in field-flow fractionation using ultraviolet-visible detectors: an experimental design for absolute measurements

    PubMed

    Zattoni; Melucci; Torsi; Reschiglian

    2000-03-01

    In previous works, it has been shown that a standard ultraviolet-visible detection system can be used for quantitative analysis of heterogeneous systems (dispersed supermicron particles) in field-flow fractionation (FFF) by single peak area measurements. Such an analysis method was shown to require either experimental measurements (standardless analysis) or an accurate model (absolute analysis) to determine the extinction efficiency of the particulate samples. In this work, an experimental design to assess absolute analysis in FFF through prediction of particles' optical extinction is presented. Prediction derives from the semiempirical approach by van de Hulst and Walstra. Special emphasis is given to the restriction of the experimental domain of instrumental conditions within which absolute analysis is allowed. Validation by statistical analysis and a practical application to real sample recovery studies are also given.

  3. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  4. Hypertonicity: Pathophysiologic Concept and Experimental Studies

    PubMed Central

    Argyropoulos, Christos; Rondon-Berrios, Helbert; Raj, Dominic S; Malhotra, Deepak; Agaba, Emmanuel I; Rohrscheib, Mark; Khitan, Zeid; Murata, Glen H; Shapiro, Joseph I.

    2016-01-01

    Disturbances in tonicity (effective osmolarity) are the major clinical disorders affecting cell volume. Cell shrinking secondary to hypertonicity causes severe clinical manifestations and even death. Quantitative management of hypertonic disorders is based on formulas computing the volume of hypotonic fluids required to correct a given level of hypertonicity. These formulas have limitations. The major limitation of the predictive formulas is that they represent closed system calculations and have been tested in anuric animals. Consequently, the formulas do not account for ongoing fluid losses during development or treatment of the hypertonic disorders. In addition, early comparisons of serum osmolality changes predicted by these formulas and observed in animals infused with hypertonic solutions clearly demonstrated that hypertonicity creates new intracellular solutes causing rises in serum osmolality higher than those predicted by the formulas. The mechanisms and types of intracellular solutes generated by hypertonicity and the effects of the solutes have been studied extensively in recent times. The solutes accumulated intracellularly in hypertonic states have potentially major adverse effects on the outcomes of treatment of these states. When hypertonicity was produced by the infusion of hypertonic sodium chloride solutions, the predicted and observed changes in serum sodium concentration were equal. This finding justifies the use of the predictive formulas in the management of hypernatremic states. PMID:27382523

  5. Direct intrahepatic portacaval shunt: An experimental study

    PubMed Central

    Luo, Jian-Jun; Yan, Zhi-Ping; Zhou, Kang-Rong; Qian, Sheng

    2003-01-01

    AIM: To determine the feasibility of creating direct intrahepatic portacaval shunt (DIPS) in swine with puncture under sonographic guidance. METHODS: DIPS was created in 10 domestic swine under sonographic guidance. Liver function, blood ammonia level and portosystemic gradient (PSG) were compared before and after the procedure. Patency of shunt was followed by portography every 7 d after DIPS. RESULTS: DIPS was successfully established in all 10 swine without any complications. One day after procedure the alanine aminotransferase (ALT), aspartate aminotransferase (AST), and blood ammonia level (BAL) of swine rose from 5.40 ± 0.69, 16.00 ± 0.79 and 35.66 ± 4.10 to 34.20 ± 3.46, 59.70 ± 2.22 and 66.94 ± 3.44 respectively (P < 0.05). The PSG decreased from 0.59 ± 0.20 kPa to 0.24 ± 0.11 kPa after DIPS (P < 0.05). The shunt of 10 swine was kept patent from 7-28 d (median patency time was 14 d). CONCLUSION: This initial experience demonstrated that creating intrahepatic portacaval shunt from retrohepatic segment of IVC to portal vein with puncture under sonographic guidance in swine is safe and feasible. Further studies are necessary to perform DIPS in cirrhosis patients. PMID:12532459

  6. Hypertonicity: Pathophysiologic Concept and Experimental Studies.

    PubMed

    Argyropoulos, Christos; Rondon-Berrios, Helbert; Raj, Dominic S; Malhotra, Deepak; Agaba, Emmanuel I; Rohrscheib, Mark; Khitan, Zeid; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2016-01-01

    Disturbances in tonicity (effective osmolarity) are the major clinical disorders affecting cell volume. Cell shrinking secondary to hypertonicity causes severe clinical manifestations and even death. Quantitative management of hypertonic disorders is based on formulas computing the volume of hypotonic fluids required to correct a given level of hypertonicity. These formulas have limitations. The major limitation of the predictive formulas is that they represent closed system calculations and have been tested in anuric animals. Consequently, the formulas do not account for ongoing fluid losses during development or treatment of the hypertonic disorders. In addition, early comparisons of serum osmolality changes predicted by these formulas and observed in animals infused with hypertonic solutions clearly demonstrated that hypertonicity creates new intracellular solutes causing rises in serum osmolality higher than those predicted by the formulas. The mechanisms and types of intracellular solutes generated by hypertonicity and the effects of the solutes have been studied extensively in recent times. The solutes accumulated intracellularly in hypertonic states have potentially major adverse effects on the outcomes of treatment of these states. When hypertonicity was produced by the infusion of hypertonic sodium chloride solutions, the predicted and observed changes in serum sodium concentration were equal. This finding justifies the use of the predictive formulas in the management of hypernatremic states. PMID:27382523

  7. Depth distribution of (137)Cs in anthrosol from the experimental field "Radmilovac" near Belgrade, Serbia.

    PubMed

    Vukašinović, Ivana; Todorović, Dragana; Dorđević, Aleksandar; Rajković, Miloš B; Pavlović, Vladimir B

    2013-09-01

    This is a preliminary study of the depth distribution of (137)Cs radionuclides in cultivated anthrosol soil of a 15-year old peach tree plantation at the experimental field "Radmilovac" near Belgrade. Before planting, the soil was ploughed at the depth of 1 m. The soil had not been annually ploughed, irrigated and treated with mineral fertilizers for three years before sampling. Activity concentration for (137)Cs ranged from 1.8 Bq kg(-1) to 35 Bq kg(-1). Along the soil depth it varied highly, reaching as high a total variation coefficient as 83 %. Radiocaesium distribution patterns depended on the extent of soil mixing in the plough layer, as it was mechanically transferred from the surface to the lower soil layers during cultivation. (137)Cs was associated with humus content and fixation to clay fractions in the soil. Our results single out soil's hygroscopic water as a valuable parameter for (137)Cs behaviour that could be used commonly if the measurement is standardised. PMID:24084351

  8. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  9. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  10. A temperature regulating circuit for experimental localized current field hyperthermia systems.

    PubMed

    Astrahan, M A; George, F W

    1980-01-01

    Interest in localized current field (LCF) hyperthermia tumor therapy is rapidly increasing. As yet, however, there is no integral LCF system commercially available. An experimental LCF system may be readily assembled from discrete, general purpose components, except for the tumor temperature regulating circuitry. In this article we present an LCF system designed around general purpose components and a simple circuit for temperature regulation. Comments on system safety, calibration, and performance are also included.

  11. Markets and morals: an experimental survey study.

    PubMed

    Elias, Julio J; Lacetera, Nicola; Macis, Mario

    2015-01-01

    Most societies prohibit some market transactions based on moral concerns, even when the exchanges would benefit the parties involved and would not create negative externalities. A prominent example is given by payments for human organs for transplantation, banned virtually everywhere despite long waiting lists and many deaths of patients who cannot find a donor. Recent research, however, has shown that individuals significantly increase their stated support for a regulated market for human organs when provided with information about the organ shortage and the potential beneficial effects a price mechanism. In this study we focused on payments for human organs and on another "repugnant" transaction, indoor prostitution, to address two questions: (A) Does providing general information on the welfare properties of prices and markets modify attitudes toward repugnant trades? (B) Does additional knowledge on the benefits of a price mechanism in a specific context affect attitudes toward price-based transactions in another context? By answering these questions, we can assess whether eliciting a market-oriented approach may lead to a relaxation of moral opposition to markets, and whether there is a cross-effect of information, in particular for morally controversial activities that, although different, share a reference to the "commercialization" of the human body. Relying on an online survey experiment with 5,324 U.S. residents, we found no effect of general information about market efficiency, consistent with morally controversial markets being accepted only when they are seen as a solution to a specific problem. We also found some cross-effects of information about a transaction on the acceptance of the other; however, the responses were mediated by the gender and (to a lesser extent) religiosity of the respondent--in particular, women exposed to information about legalizing prostitution reduced their stated support for regulated organ payments. We relate these

  12. Markets and Morals: An Experimental Survey Study

    PubMed Central

    Elias, Julio J.; Lacetera, Nicola; Macis, Mario

    2015-01-01

    Most societies prohibit some market transactions based on moral concerns, even when the exchanges would benefit the parties involved and would not create negative externalities. A prominent example is given by payments for human organs for transplantation, banned virtually everywhere despite long waiting lists and many deaths of patients who cannot find a donor. Recent research, however, has shown that individuals significantly increase their stated support for a regulated market for human organs when provided with information about the organ shortage and the potential beneficial effects a price mechanism. In this study we focused on payments for human organs and on another “repugnant” transaction, indoor prostitution, to address two questions: (A) Does providing general information on the welfare properties of prices and markets modify attitudes toward repugnant trades? (B) Does additional knowledge on the benefits of a price mechanism in a specific context affect attitudes toward price-based transactions in another context? By answering these questions, we can assess whether eliciting a market-oriented approach may lead to a relaxation of moral opposition to markets, and whether there is a cross-effect of information, in particular for morally controversial activities that, although different, share a reference to the “commercialization” of the human body. Relying on an online survey experiment with 5,324 U.S. residents, we found no effect of general information about market efficiency, consistent with morally controversial markets being accepted only when they are seen as a solution to a specific problem. We also found some cross-effects of information about a transaction on the acceptance of the other; however, the responses were mediated by the gender and (to a lesser extent) religiosity of the respondent—in particular, women exposed to information about legalizing prostitution reduced their stated support for regulated organ payments. We relate

  13. Medical waste to energy: experimental study

    PubMed Central

    ARCURI, C.; LUCIANI, F.; PIVA, P.; BARTULI, F.N.; OTTRIA, L.; MECHERI, B.; LICOCCIA, S.

    2013-01-01

    SUMMARY Objective. Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Materials and methods. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. Results. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Conclusions. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room. PMID:24971161

  14. Comparison between theoretical footprint models and experimental measurements of intra-field spatial variability scalar fluxes over different sites

    NASA Astrophysics Data System (ADS)

    Masseroni, D.; Corbari, C.; Ceppi, A.; Milleo, G.; Mancini, M.

    2012-04-01

    Not many experimental data about intra-field spatial variability of scalar flux densities are presented in literature. In this work theoretical footprint models and experimental intra-field turbulent fluxes of latent, sensible heat and CO2 were compared. The experimental data were obtained using a mobile eddy covariance station moving it from a discontinuity point, represented by the field edge, to the centre of the field where a fixed eddy covariance station was placed. The experimental fields were in Landriano (PV) in the Po Valley, Italy and Barrax (Albacete) in Spain. Simple analytical footprint models that describe the representative source area for turbulent fluxes were compared with the experimental data. Mathematical relationship between footprint models and gamma function was explained. Energy balance closure was calculated starting from fixed tower measurements. Aerodynamic roughness and gamma distribution parameters were estimated for these specific fields.

  15. An experimental study on pump clogging

    NASA Astrophysics Data System (ADS)

    Isono, M.; Nohmi, M.; Uchida, H.; Kawai, M.; Kudo, H.; Kawahara, T.; Miyagawa, K.; Saito, S.

    2014-03-01

    For sewage pump that various foreign substance is flowed into, anti-clogging performance is a factor as important as pump efficiency in order to avoid clogging trouble by foreign substance. Many investigations about pump inner flow and pump efficiency estimation have been carried out conventionally in order to realize coexistence with anti-clogging performance and pump performance. And these results have been reflected in construction of the running water section design method. As a index of anti-clogging performance, "impeller passage diameter" which is diameter of spherical solid that can pass through the pump is used widely. And there are various type of the sewage pump which have large impeller passage diameter. However real cause of clog is not a solid, and it is fibrous material such as towel and clothes, vinyl and paper diaper. In most case these material accumulate in the pump, so that clog is occurred. In this study, for the purpose of quantification of anti-clogging performance against fibrous materials, the factor that affect to clogging of pump was investigated by pump model test using a string. The test is done based on Taguchi method. In this test, type of the pump model, diameter of the string, material of the string, length of the string and flow rate are selected for the factor, and the effect that they have on the clogging of the pump was investigated. As a result of this test, it was made clear that length of the string has a strong influence on the clogging of the pump. And from the result of this test, evaluation method of anti-clogging performance of the pump against fibrous material by using string was considered. According to the result of above test based on Taguchi method, it was assumed that quantification of anti-clogging performance against fibrous materials is possible by flowing plural strings into the pump and calculating the probability of passing. Plurality sewage pumps of different types were evaluated based on this assumption

  16. Uremic pruritus. Clinical and experimental studies.

    PubMed

    Ståhle-Bäckdahl, M

    1989-01-01

    The aim of the study was to investigate clinical aspects of pruritus in maintenance hemodialysis patients and to evaluate factors of putative pathogenic importance. 60-65% of the patients in a maintenance hemodialysis program during a two-year period suffered from itching. Patients with pruritus tended to have been on dialysis treatment longer than those without pruritus (p = 0.05), otherwise there was no difference in clinical data or routine laboratory tests. Measurement of itch intensity continuously over one week in 28 patients using a computerized method showed that itching peaked at night after two days without dialysis, was relatively high during treatment and lowest during the day following dialysis. Our results suggest that the accumulation of pruritogens between dialysis sessions influences the intensity of itching. Most patients had "dry" skin. Recording of the stratum corneum water content by measurement of electrical capacitance, in 31 patients (19 with pruritus) and 12 controls, disclosed no significant difference between dialysis patients and controls, but a tendency that pruritic patients had a lower water content than the other subjects. In different body areas, there was a positive correlation in all groups between the clinical estimation of xerosis and hydration. Serum concentrations of parathyroid hormone (PTH) were significantly higher in dialysis patients with pruritus than in those without, but there was no correlation between the degree of symptoms and the PTH level. Indirect immunohistochemistry revealed no immunoreactivity for different parts of the PTH molecule in skin biopsies from uremic patients. Intradermal injections of PTH fragments did not evoke itching or other cutaneous reactions in patients or controls. Our results do not support PTH as a peripheral mediator of uremic itching. Flare reactions induced by intradermal histamine injections were significantly smaller in 26 dialysis patients (18 with pruritus) than in 9 healthy

  17. Effects of small-scale chemical reactions between supercritical CO2 and arkosic sandstone on large-scale permeability fields: An experimental study with implications for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Ding, K.; Saar, M. O.; Seyfried, W. E.

    2011-12-01

    During geologic carbon sequestration, small, pore-scale changes in mineralogy due to dissolution and precipitation reactions can modify bulk porosity. Porosity/permeability relationships are then typically used to infer large-scale permeability field changes. However, these relationships have limited use because they do not account for changes in pore geometry. Therefore, in connection with a DOE sponsored program, involving CO2 sequestration with geothermal energy usage, we constructed a novel hydrothermal flow system that allows simultaneous determination of changes in fluid chemistry and associated changes in permeability at elevated temperatures and high CO2 pressure. Initial experiments were conducted with an arkosic sandstone core of the Eau Claire Formation from southeastern Minnesota. The core was disaggregated and then wet sieved to yield a grain size distribution of 90-120 μm that was used to fill the Teflon sleeve held within the stainless steel pressure vessel. Initial water chemistry consisted of CO2 dissolved in deionized water. Outlet pressure was set to 11 MPa, and confinement pressure was 20 MPa. Flow rates produced inlet pressures between these two extremes, allowing CO2 solubility up to 1.1 mol/kg water. Rates of fluid flow ranged from 0.04 to 1.5 mL/min at a temperature of 21°C over the course of 33 days. Based on these data, the in-situ permeability of ~1E-14 to 9E-14 m2 for the arkosic sandstone was calculated. The reaction cell temperature was then increased to 50°C, and eventually 100°C. Each temperature step was associated with a sharp decrease in permeability, such that at 100°C the permeability had decreased by approximately three orders of magnitude from the starting condition. Fluid samples indicate release of dissolved Na, Ca, Mg, K, Al, SiO2, and Cl from minerals in the core, suggesting dissolution of primary mineral components. Charge balance constraints indicate a pH of approximately 4.2 at the highest temperature run condition

  18. Schmallenberg virus infection in South American camelids: Field and experimental investigations.

    PubMed

    Schulz, Claudia; Beer, Martin; Hoffmann, Bernd

    2015-11-18

    During the first epizootic wave of the novel, teratogenic Schmallenberg virus (SBV, Orthobunyavirus) in ruminants in Northern Europe, serological evidence of a previous SBV-infection demonstrated that South American camelids (SAC) are also susceptible to SBV. However, their potential role in SBV spread remains unknown. To investigate the prevalence and course of SBV-infection in SAC, a German field study and an animal trial with three llamas and three alpacas were conducted. From September 2012 to December 2013, 313 of 502 SAC (62.35%) were found SBV seropositive, but negative for SBV-RNA. The estimated between-district (94.23% of 52) and median within-district (71.43%) and herd (73.13%) SBV seroprevalence in German SAC was similar to the seroprevalence reported in cattle herds and sheep flocks at the time. An age of >1 year was found a statistically significant risk factor for SBV-infection, which could be explained by the spatio-temporal spread of SBV in Germany during the study period. No clinical signs or an increase of abortion and congenital malformation associated with SBV-infection in SAC were reported by the study participants. Similar to SBV-infected ruminants, SBV-RNAemia in experimentally SBV-infected SAC was detected for a short time between days 3 and 7 after infection (dpi), and seroconversion occurred between 9 and 21 dpi. Despite the similar virological and serological results, the lack of clinical signs and congenital malformation associated with SBV-infection suggests that SBV causes subclinical infection in SAC. However, their role as reservoirs in the spread of SBV has to be further investigated.

  19. Experimental Observation of a Metal-insulator Transition in 2D at Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kravchenko, S. V.

    1996-03-01

    The scaling theory of Abrahams et al. ^1 has had considerable success in describing many features of metal-insulator transitions. Within this theory, which was developed for non-interacting electrons, no such transition is possible in two-dimensional electron systems (2DES) in the absence of a magnetic field. However, we show experimentally that an ultra-high-mobility 2DES on the surface of silicon does exhibit the signature of a true metal-insulator phase transition at zero magnetic field at a critical electron density n_c ~10^11 cm-2. The energy of electron-electron interactions, ignored in the scaling theory,^1 is the dominant parameter in this 2DES. The resistivity, ρ, is empirically found to scale near the critical point both with temperature T and electric field E so that it can be represented by the form ρ(T,n_s)=ρ(T/T_0(n_s)) as Earrow0 or ρ(E,n_s)=ρ(E/E_0(n_s)) as Tarrow0. At the transition, the resistivity is close to 3h/e^2. Both scaling parameters, T0 and E_0, show power law behavior at the critical point. This is characteristic of a true phase transition and strongly resembles, in particular, the superconductor-insulator transition in disordered thin films,^2 as well as the transition between quantum Hall liquid and insulator.^3 Many high-mobility samples from two different sources (Institute for Metrological Service, Russia, and Siemens AG, Germany) with different oxide thicknesses and gate materials have been studied and similar results were found. Work done in collaboration with J. E. Furneaux, Whitney Mason, V. M. Pudalov, and M. D'Iorio, supported by NSF. ^1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). ^2 Y. Liu, K. A. McGreer, B. Nease, D. B. Haviland, G. Martinez, J. W. Halley, and A. M. Goldman, Phys. Rev. Lett. 67, 2068 (1991). ^3 T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994).

  20. Marine and Environmental Studies Field Manual.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    This laboratory manual was developed for a field-oriented high school oceanology program. The organization of the units includes a selection of supplementary activities to allow students to explore ocean studies in more depth. Included are 19 units. The units include biological oceanography, physical oceanography, and some social science topics. A…

  1. Jupiter Environmental Research & Field Studies Academy.

    ERIC Educational Resources Information Center

    Huttemeyer, Bob

    1996-01-01

    Describes the development and workings of the Jupiter Environmental Research and Field Studies Academy that focuses on enabling both teachers and students to participate in real-life learning experiences. Discusses qualifications for admittance, curriculum, location, ongoing projects, students, academics, preparation for life, problem solving, and…

  2. Outdoor Education, Junior Biology Field Studies.

    ERIC Educational Resources Information Center

    Aikman, John H.; And Others

    Field studies for grade nine and ten biology students are developed in this teacher and student guide for outdoor education. A small section is devoted to teacher pre-planning and final sections are concerned with equipment, audio-visual resources, and a large booklist. Twenty-three investigations related to earth science and biology topics are…

  3. Theoretical and Experimental Study of Bimetal-Pipe Hydroforming.

    PubMed

    Dezhi, Zeng; Kuanhai, Deng; Taihe, Shi; Yuanhua, Lin; Hongjun, Zhu; Tianlei, Li; Yongxing, Sun

    2014-12-01

    The corrosion of oil country tubular goods (OCTG) gets more and more serious especially in the acidic environment. So, it is very important to develop a perfect anticorrosion technology for exploring sour oil and gas fields economically and safely. Analysis indicates that the bimetal-pipe (BP) which consists of the base layer of low carbon steel and a corrosion resistant alloy (CRA) cladding layer is an economic and reliable anticorrosion technology and has broad application prospects in the transportation of acid medium. However, theoretical study of hydraulic expansion mechanism for BP is not enough. In this paper, the deformation compatibility condition of BP was obtained by studying the deformation rule of the (CRA) liner and the outer pipe of carbon steel in the forming process; the mechanical model which can compute the hydroforming pressure of BP has been established based on the nonlinear kinematic hardening characteristics of material; furthermore, based on the stress strain curve of inner pipe simultaneously, the calculation method of the plastic hardening stress has been proposed. Thus, the accurate method for computing the forming pressure was obtained. The experimental data show that results are consistent with results of the proposed model. It indicates that the model can be used to provide theoretical guidance for the design and production as well as use of BP.

  4. Theoretical and Experimental Study of Bimetal-Pipe Hydroforming.

    PubMed

    Dezhi, Zeng; Kuanhai, Deng; Taihe, Shi; Yuanhua, Lin; Hongjun, Zhu; Tianlei, Li; Yongxing, Sun

    2014-12-01

    The corrosion of oil country tubular goods (OCTG) gets more and more serious especially in the acidic environment. So, it is very important to develop a perfect anticorrosion technology for exploring sour oil and gas fields economically and safely. Analysis indicates that the bimetal-pipe (BP) which consists of the base layer of low carbon steel and a corrosion resistant alloy (CRA) cladding layer is an economic and reliable anticorrosion technology and has broad application prospects in the transportation of acid medium. However, theoretical study of hydraulic expansion mechanism for BP is not enough. In this paper, the deformation compatibility condition of BP was obtained by studying the deformation rule of the (CRA) liner and the outer pipe of carbon steel in the forming process; the mechanical model which can compute the hydroforming pressure of BP has been established based on the nonlinear kinematic hardening characteristics of material; furthermore, based on the stress strain curve of inner pipe simultaneously, the calculation method of the plastic hardening stress has been proposed. Thus, the accurate method for computing the forming pressure was obtained. The experimental data show that results are consistent with results of the proposed model. It indicates that the model can be used to provide theoretical guidance for the design and production as well as use of BP. PMID:25349461

  5. Understanding Electric Interactions in Suspensions in Gradient AC Electric Fields I:. Experimental

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Qiu, Zhiyong; Tada, Shigeru

    When neutrally buoyant poly alpha olefin particles in corn oil were exposed to a gradient ac electric field generated by a spatially periodic electrode array, these particles experienced the negative dielectrophoresis and instability in all the suspensions of concentration range from 0.01% to 5% (v/v). One critical particle concentration was experimentally determined as 1% (v/v) below which the particles in corn oil were segregated to form island-like structures in the lower electric field regions; and above which, particles only formed straight stripes. The island-like structure was suspended in the lowest electric field area. Specially designed experiments with a suspension of 1.126% (v/v) confirmed that there exists particle instability. Anisotropic properties of electric interactions are responsible for particle instability in all the suspensions of different concentrations and island-like structures were formed only in the dilute suspensions in which the particle instability has enough space to be developed.

  6. Experimental examination of strain field within GP zone in an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Bai, P. C.; Liu, F.; Hou, X. H.; Zhao, C. W.; Xing, Y. M.

    2012-11-01

    The strain field of GP zone plays a very important role in strengthening of the precipitation-hardened aluminum alloys by prohibiting movement of dislocations; however, quantitative analysis about the strain field of the GP zone in the aluminum alloys has been seldom reported elsewhere. In this paper, the microstructure of GP zone in an Al-Zn-Mg-Cu alloy was explored by using high-resolution transmission electron microscopy (HRTEM), and the displacement field of lattice planes within the GP zone was experimentally measured by geometric phase analysis (GPA) technique; then, the quantitative results about strains of the distorted lattice planes within the GP zone were also obtained. It is found that the GP zone core is convergence region of the strains, and the maximum value of the compressive strains within the GP zone is about 7.6%.

  7. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect

    Chen Zhu; William E. Seyfried

    2005-01-01

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between lab and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the first year of the project, we have successfully developed a sample preparation method and completed three batch feldspar dissolution experiments at 200 C and 300 bars. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure

  8. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  9. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements

    PubMed Central

    Zhou, Rui; Maisuradze, Gia G.; Suñol, David; Todorovski, Toni; Macias, Maria J.; Xiao, Yi; Scheraga, Harold A.; Czaplewski, Cezary; Liwo, Adam

    2014-01-01

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding. PMID:25489078

  10. Experimental determination of field factors ([Formula: see text]) for small radiotherapy beams using the daisy chain correction method.

    PubMed

    Lárraga-Gutiérrez, José Manuel

    2015-08-01

    Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%-with the exception of the IBA-PFD-for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated [Formula: see text] is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work. PMID:26161448

  11. Experimental design based on field spectrometry for characterization of fire-affected soils.

    NASA Astrophysics Data System (ADS)

    Rosero, Olga; Vlassova, Lidia; Montorio Llovería, Raquel; Pérez-Cabello, Fernando

    2014-05-01

    Wildfires can modify physical and chemical properties of soils (Mataix-Solera et al., 2011; Badía et al., 2014). These disturbances involve changes in soil spectral properties, which can be analyzed by using field spectrometry (VIS-SWIR) (Montorio et al., 2008; Guerrero et al., 2010). The aim of this study is to present an experimental design for hyperspectral characterization of fire affected soils in laboratory conditions. We analyzed soil samples from Montes de Zuera area (Aragón, Spain) repeatedly affected by wildfires in the period of 1979-2008. Fourteen samples, seven from the burned zones and the corresponding control samples were collected in spring of 2013. Spectral analysis was performed on subsamples of around 130 g (fine fraction, particle size < 2 mm), previously dried in a stove at 105°C during 36 hours, and placed in crystal petri dishes (90 mm x 15 mm). The spectra were obtained using spectroradiometer ASD FieldSpec® 4 (spectral range from 350 nm to 2500 nm) combined with a Contact Probe ensuring homogeneity of observation and illumination conditions. Spectralon reference panel Labsphere® was used for conversion to reflectance values. The resulting reflectance is an average of the measurements corresponding to five random points of the subsample, each of them representing a mean value of 10 spectra. The averaging of spectra improves the signal to noise ratio and, at the same time, it minimizes the variations caused by the samples surface roughness. Statistically significant differences have been detected between burned and control soils. Reflectance increase of 12% (average for the whole spectrum) was observed in 70% of the samples: 16%, 15% and 10% increase in visible, NIR and SWIR respectively. Therefore regardless of the wildfire date, an increase of reflectance is observed in burned soils due to changes on soil properties. A detailed analysis of physical, chemical and biological properties of soils will be used in further research to

  12. Experimental study on heat transfer of the magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Yildirim, Gokhan; Genc, Seval

    2013-08-01

    Thermal conductivity of magnetorheological suspensions synthesized with iron powder and silicone oil is experimentally investigated for varying particle volume fractions (5, 20, and 40 vol%) of two different grades of iron (Fe) and magnetic field strengths. In order to determine the temperature range at which the thermal conductivity of MR fluids is more effective for different heat transfer applications, the experiments are done for three different temperature intervals in three different temperature ranges: from -20 to 0  ° C, from 0 to 50  ° C, and from 50 to 100 ° C. In this study, ISO 8301 ‘Thermal insulation—determination of steady state thermal resistance and related properties—heat flow meter apparatus’ is used. The thermal conductivity of the MR fluids shows an increase with increasing magnetic field and volume fraction in the temperature intervals from 0 to 50 ° C and from 50 to 100 ° C. In particular, there is a substantial enhancement in the thermal conductivity for the 50-100 ° C temperature interval (enhancement ratio by almost 134% for 40SM at H = 150 G). However, the thermal conductivity shows a decrease in the lower temperature interval from -20 to 0 ° C (a decrease by 42% for 40SM at 150 G), which could be due the effect of the thermal conductivity of silicone oil at lower temperatures. Although the heat transfer coefficient is higher for higher particle concentrations, the percentage increase is more pronounced for lower particle concentrations, especially in the 0 to 50 ° C temperature interval (for the 40SM sample at 150 G 18% an enhancement for a 20 K temperature difference is observed, whereas for the 20% MR fluid sample, the enhancement is 34%).

  13. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  14. Analytical and experimental investigation of flow fields of annular jets with and without swirling flow

    NASA Technical Reports Server (NTRS)

    Simonson, M. R.; Smith, E. G.; Uhl, W. R.

    1974-01-01

    Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.

  15. Water erosion monitoring and experimentation for global change studies

    SciTech Connect

    Poesen, J.W.; Boardman, J.; Wilcox, B.

    1996-09-01

    This report describes the need for monitoring the effects of climatic change on soil erosion. The importance of monitoring not only runoff, but monitoring and experimental studies at the larger scale of hillslope and catchments is stressed.

  16. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  17. An experimental and computational study of pulse detonation engines

    NASA Astrophysics Data System (ADS)

    Allgood, Daniel C.

    Research studies investigating the performance optimization and fundamental physics of pulse detonation engines (PDE) were performed. Experimental and computational methods were developed and used in these studies. Four primary research tasks were established. The first research task was to obtain detailed measurements of a PDE exhaust plume for a variety of operating conditions and engine geometries. Shadowgraph visualizations in conjunction with OH* and CH* chemiluminescence imaging were performed. The PDE plume visualizations provided a means of studying the flowfield behavior associated with PDE ejectors and exhaust nozzles as well as providing explanations for the observed acoustic behavior of the PDE. The second research task was to quantify the thrust augmentation of PDE-ejectors. Significant losses in the ejector entrainment were observed when the ejector inlet was not of an aerodynamic shape. Performance measurements of axisymmetric PDE-ejector systems showed the thrust augmentation to be a strong function of the ejector length-to-diameter ratio, ejector axial placement and PDE fill-fraction. Peak thrust augmentation levels were recorded to be approximately 20% for a straight-ejector and 65% for a diverging-ejector. An increase in thrust augmentation was obtained with a reduction in fill-fraction. Performance measurements of PDE converging and diverging exhaust nozzles were also obtained at various operating conditions of the engine. At low fill-fractions, both converging and diverging exhaust nozzles were observed to adversely affect the PDE performance. At fill-fractions close to and greater than 1, the converging nozzles showed the best performance due to increased PDE blow-down time (maintaining PDE chamber pressure) and acceleration of the primarily subsonic exhaust flow. The fourth research task was to perform a detailed far-field study of PDE acoustics. The acoustic energy of the PDE blast-wave was observed to be highly directional. Very good

  18. Experimental Studies of Mitigation Materials for Blast Induced Tbi

    NASA Astrophysics Data System (ADS)

    Alley, M. D.; Son, S. F.; Christou, G.; Goel, R.; Young, L.

    2009-12-01

    The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. Our hypothesis is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were dynamically loaded using a small scale blast produced by an explosive driven shock tube housing gram-scale explosive charges. The transmitted blast profiles were analyzed for variations in impulse characteristics and frequency components as compared to standard free field profiles. The results showed a rounding effect of the transmitted blast profile for all samples with the effects of the high density fillers surpassing all others tested. These results lead to a conclusion that low porosity, high density materials offer superior attenuation by reducing air blast features and spatially distributing the transmitted wave.

  19. Experimental Studies of Mitigation Materials for Blast Induced TBI

    NASA Astrophysics Data System (ADS)

    Alley, Matthew; Son, Steven

    2009-06-01

    The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are known or expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. The theory applied to this research is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were loaded according to a small scale blast produced by an explosive driven shock tube housing gram-range charges. The transmitted blast profiles were analyzed for variations in impulse characteristics and frequency components as compared to standard free field profiles. The results showed a rounding effect of the transmitted blast profile for all samples with the effects of the low density fillers surpassing all others tested.

  20. Experimental study of drop impacts on soap films

    NASA Astrophysics Data System (ADS)

    Yawar, Ali; Basu, Saikat; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Impinging drops on flowing and static soap films demonstrate at least three distinct types of impact regimes: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow for a moving film and for static films it gets assimilated within the film, and (c) it pierces through the film. The interaction presents a unique opportunity to explore the impact of a quasi one-dimensional object on a two-dimensional fluid, much like a comet impacting on a thin atmosphere. We present a detailed experimental study of droplet impacts on soap film flow, for a number of film inclination angles and falling heights of the drop. Imaging techniques employed include sodium lamp interferometry to measure film thickness fluctuations and particle tracking velocimetry to measure the velocity field. Film thickness measures approximately 10 microns and the drop diameter is 1 mm. We mostly observe the bouncing-off regime for smaller inclination angles. However, at higher impact angles, puncturing of the film becomes a more common occurrence. We show that when the drop bounces off the film, there is a momentum transfer leading to vortex dipole shedding, along with the generation of capillary waves; an impulsive regime that may share correspondence with the locomotion of water striders.

  1. Analysis of experimental studies on gully erosion: a global review

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Gómez, Jose A.

    2015-04-01

    Research on gully erosion has increased significantly in the last decades. Despite the growing interest on the topic, relevant knowledge gaps still remain a challenge for gully erosion researchers (Poesen, 2011). Moreover, many of these studies are mainly descriptive, with little quantitative data allowing a comparison of the severity of the processes among different environments and conditions. The aim of this communication is to analyse the available experimental data in gully erosion literature involving quantitative information from the Web of Science datasets. Our objective is to investigate relevant trends of this type of erosion on the world scale. We have evaluated the role of gully erosion in the overall soil losses as well as the magnitude of the morphological variables. Also, we analysed the characteristics of image-based and field surveys regarding the technique employed, duration and data collection frequency. In this communication, we intend to provide insights on the evolution of gully erosion research up to the present moment in order to gain perspectives on the design of future efforts in the topic. References Poesen, J. 2011. Challenges in gully erosion research. Landform Analysis, Vol. 17: 5-9.

  2. Experimental study of the thermophoretic mobility of a colloidal emulsion

    NASA Astrophysics Data System (ADS)

    Hoyos, Mauricio; van Batten, Charles; Amato, Samuel; Martin, Michel

    1997-11-01

    We have studied the thermophoretic migration of a pharmaceutical oil-in-water emulsion flowing in a Hele-Shaw cell, under the effect of a thermal gradient applied perpendicularly to the flow. Under this strong thermal gradient (several thousands =B0c/cm), a small volume (20 microlitters) of emulsion, migrates toward one wall; simultaneously, a diffusive flow is created in opposite direction to drops migration, leading to the establishment of an equilibrium exponential concentration distribution in the thickness of the cell. The cloud of drops is transported all along the cell by a vector liquid (water) which has a parabolic flow velocity profile. The axial velocity of the droplets depends on their interaction with the thermal field. The parameter determined by the axial sample velocity is the Soret coefficient of the emulsion, defined by the ratio between the thermal diffusion coefficient (thermophoretic mobility) and the particle diffusion coefficient, the last given by the Stokes-Einstein relationship. We have obtained experimentally that the Soret coefficient increases with the size d of droplets as d0.6, while the thermal diffusion coefficient decreases with d as d-0.4. We have also determined by means of a thermogravitational technique that droplets migrate toward the cold wall.

  3. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  4. An advanced field experimental design to assess plant tolerance to heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Łopata, Barbara; Szarek-Łukaszewska, Grażyna; Babst-Kostecka, Alicja

    2016-04-01

    Only a limited number of vascular plant species can survive and reproduce in toxic metalliferous environments. Among these species, pseudometallophytes are particularly interesting, as their metallicolous (M) populations on metalliferous soils and non-metallicolous (NM) populations on non-metalliferous soils show very pronounced ecological differences. Pseudometallophytes thus provide excellent opportunities for multidisciplinary research to improve phytoremediation and phytomining. Numerous methods have been developed to investigate plant adaptation to metal pollution, the majority of which has been conducted under controlled laboratory conditions. Although these efforts have significantly advanced our understanding of mechanisms underlying metal tolerance in plants, populations must be reciprocally transplanted to clearly identify natural selection. Only then is it possible to test, whether the fitness of native plants is higher than that of nonnative populations and thereby prove local adaptation. Here, we present an enhanced field experimental design aimed at verification of local adaptation to habitats with different levels of heavy metal soil contamination. At two M and two NM sites, we established a total of 12 plots (4 sites x 3 plots each), removed the existing local vegetation, and collected soil samples for chemical analyses (5 samples per plot). Plant collection (N= 480) from all four selected populations was established under laboratory conditions prior to the transplant experiment. Genotypes were randomly distributed within each plot (240 x 270 cm) and planted along a regulary spaced grid (30x30cm cell size) in spring 2015. Measurements will start in spring 2016, by which time plants are expected to have acclimatized to the local conditions. For the two subsiquent years, growth, survival, fitness, life cycle and herbivory consumption will be monitored for each transplant. On a weekly basis, we will record: 1) pictures of each transplant to determine

  5. Experimental measurement of the near tip strain field in an iron-silicon single crystal

    NASA Astrophysics Data System (ADS)

    Shield, T. W.; Kim, K.-S.

    1994-05-01

    EXPERIMENTAL RESULTS are presented for the plastic deformation field near a crack (200 μm wide notch) tip in an iron-3% silicon single crystal. The specimen was loaded in four point bending and the measurements were made at zero load after extensive plastic deformation had occurred. Results are given for a crack on the (011) plane with its tip along the [01|T] direction. The surface deformation field was measured using moire microscopy and a grating on the specimen surface. The in-plane Almansi strain components have been obtained by digitally processing the moire fringes. A well-structured asymptotic field has been found at a distance of 350-500 μm from the notch tip, where the maximum plastic strain is about 9%. The asymptotic field is observed to be composed of many distinct angular sectors. Three (six symmetric) of these sectors are found to have approximately constant strains. In a fourth (two symmetric) sector, the surface strains are approximately 1/ r singular. Between these sectors there are interconnecting transition sectors. The location of the stress state on the yield surface and the active slip systems in each sector are identified by assuming that the plastic strain rates are normal to a Schmid law yield surface. The slip systems identified in this manner show excellent agreement with direct observations of the slip texture on the surface and dislocation etch pits in the interior of the specimen. The experimental strain measurements also show that the constant strain sectors are regions in which unloading occurs. Because of this unloading, the crack tip stress and deformation state is substantially different from an HRR type field which assumes proportional loading. This strong nonproportional loading is thought to be caused by the presence of material anisotropy. The nonproportional loading also provides a large amount of crack tip shielding that is evidence of a toughening mechanism that results from the presence of material anisotropy.

  6. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  7. Experimental Investigation of Porous-floor Effects on Cavity Flow Fields at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1990-01-01

    An experimental investigation was conducted to determine the effectiveness of a passive-venting system to modify the flow field characteristics of a rectangular-box cavity at supersonic speeds. The passive-venting system consists of a porous floor with a vent chamber beneath the floor. For certain cavity length-to-height ratios, this configuration allowed high-pressure air at the rear of the cavity to vent to the forward part of the cavity, thereby modifying the cavity flow field. The wind-tunnel model consisted of a flat plate that housed a cavity mounted on a balance such that only the cavity drag was measured. The cavity height remained constant, and the length varied with rectangular-block inserts. Both solid-and porous-floor cavities were tested for comparison at Mach numbers of 1.60, 1.90, 2.16, and 2.86. These results showed that the passive-venting system did modify the cavity flow field. In order to determine the type flow field which existed for the porous-floor configuration, pressures were measured inside the cavity at the same conditions and for the same configurations as those used in the drag tests. Pressure data were also obtained with stores mounted in the cavity. These results, along with Schlieren photographs and the tabulated data, are presented to document the porous-floor cavity flow field.

  8. Evolution of an Experimental Population of Phytophthora capsici in the Field.

    PubMed

    Dunn, Amara R; Bruening, Stephen R; Grünwald, Niklaus J; Smart, Christine D

    2014-10-01

    Populations of the vegetable pathogen Phytophthora capsici are often highly diverse, with limited gene flow between fields. To investigate the structure of a newly established, experimental population, an uninfested research field was inoculated with two single-zoospore isolates of P. capsici in September 2008. From 2009 through 2012, ≈50 isolates of P. capsici were collected from the field each year and genotyped using five microsatellite loci. The same two isolates were also crossed in the lab. High levels of diversity were detected in the research field, with 26 to 37 unique multilocus genotypes detected each year. Through 2012, genotypic diversity did not decline and no evidence of genetic drift was observed. However, during the 2011 and 2012 growing seasons, four new alleles not present in either parental isolate were observed in the field. Selfing (but not apomixis) was observed at low frequency among in vitro progeny. In addition, evidence for loss of heterozygosity was observed in half of the in vitro progeny. These results suggest that recombination, mutation, and loss of heterozygosity can affect the genetic structure observed in P. capsici populations. PMID:24702666

  9. Microbial field pilot study. Final report

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m{sup 3}) of tertiary oil have been recovered. Microbial activity has increased CO{sub 2} content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  10. Simon Fraser University Videodisc Project: Part Two: Field Testing an Experimental Videodisc with Elementary School Children.

    ERIC Educational Resources Information Center

    Kirchner, Glenn; And Others

    1983-01-01

    Describes a study conducted to determine training needed by teachers and upper elementary children to operate videodisc player and remote control unit, assess appropriateness of an experimental videodisc, and determine teachers' and children's attitudes. Also describes an observational study of four classes using the videodisc in a laboratory…

  11. Alfven Wave Generation by a Rotating Magnetic Field Source: Theory, Modeling and Experimental Results

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Karavaev, A. V.; Gumerov, N.; Shao, X.; Papadopoulos, K.; Gekelman, W.; Wang, Y.; Vincena, S.; Pribyl, P.

    2010-11-01

    Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within ˜1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.

  12. Alfven Wave Generation by a Rotating Magnetic Field Source: Theory, Modeling and Experimental Results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Karavaev, A. V.; Gumerov, N.; Sharma, A. S.; Papadopoulos, K.; Gekelman, W. N.; Wang, Y.; Vincena, S. T.; Pribyl, P.

    2010-12-01

    Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within 1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.

  13. Experimental Validation of FE/BEM Dynamic Strain Model Under Diffuse Acoustic Field Loading

    NASA Technical Reports Server (NTRS)

    Tsoi, W. Ben; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    Structural finite element (FE) models naturally output displacement or acceleration response data. However, they can also be used to compute stress, internal forces, and strain response. When coupled with a boundary element model (BEM) of the fluid surrounding the structure, a fully coupled analysis can be performed. Modeling a diffuse acoustic field in the BEM fluid provides an excitation like that found when the structure is placed in a reverberation chamber. Fully coupling the structural FE model to the acoustic BEM model provides a means to predict not only the acceleration response of the panel to diffuse field loading, but also the ability to predict the dynamic stress and strain response. This type of model has been available with current predictive tools, but experimental validation of the prediction of dynamic stress or strain is difficult to find. An aluminum panel was instrumented with accelerometers and strain gages and hung in a reverberation room and subjected to a diffuse acoustic field. This paper presents the comparison of the experimental and predicted results.

  14. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  15. Experimental Measurement of Asymmetric Fluctuations of Poloidal Magnetic Field in Damavand Tokomak at Different Plasma Currents

    NASA Astrophysics Data System (ADS)

    Moslehi-Fard, Mahmoud; Alinejad, Naser; Rasouli, Chapar; Sadigzadeh, Asghar

    2012-08-01

    Toroidal and Poloidal magnetic fields have an important effect on the tokomak topology. Damavand Tokomak is a small size tokomak characterized with k = 1.2, B t = 1T, R 0 = 36 cm, maximum plasma current is about 35 KA with a discharge time of 21 ms. In this experimental work, the variation of poloidal magnetic field on the torodial cross section is measured and analyzed. In order to measure the polodial magnetic field, 18 probes were installed on the edge of tokomak plasma with ∆θ = 18°, while a limiter was installed inside the torus. Plasma current, I p, induces a polodial magnetic field, B p, smaller than the torodial magnetic field B t. Magnetic lines B produced as a combination of B t and B p, are localized on the nested toroidal magnetic surfaces. The presence of polodial magnetic field is necessary for particles confinement. Mirnov oscillations are the fluctuations of polodial magnetic field, detected by magnetic probes. Disrupted instability in Tokomak typically starts with mirnov oscillations which appear as fluctuations of polodial magnetic field and is detected by magnetic probes. Minor disruptions inside the plasma can contain principal magnetic islands and their satellites can cause the annihilation of plasma confinement. Production of thin layer of turbulent magnetic field lines cause minor disruption. Magnetic limiter may cause the deformation of symmetric equilibrium configuration and chaotic magnetic islands reveal in plasma occurring in thin region of chaotic field lines close to their separatrix. The width of this chaotic layer in the right side of poloidal profile of Damavand Tokomak is smaller than the width in the left side profile because of Shafranov displacement. Ergodic region in the left side of profile develops a perturbation on the magnetic polodial field lines, B p, that are greater in magnitude than that in the right side, although the values of B p on the left side are smaller than that on the right side of the profile. The Left

  16. Treatment of tunnel phobia: an experimental field study.

    PubMed

    Gotestam, K Gunnar; Svebak, Sven

    2009-01-01

    The opening of the deepest undersea tunnel in the world (264 m below sea level, 5600 m in length) replaced the ferry from the island of Hitra to the mainland in Norway. This event provoked phobic anxiety for traveling through the undersea tunnel in a number of individuals in the area. A treatment program for tunnel phobia was designed to test whether such a phobia could be mitigated by procedures previously proven effective in the treatment of other phobias. The program was presented to 18 persons with a specific phobia for tunnels and included a general discussion on the construction of undersea tunnels, given by an engineer from the tunnel construction company, and on phobic anxiety. It further consisted of gradual exposure to the tunnel in situ. Treatment effects were strong. All patients were able to travel on their own by car through the tunnel after the treatment. Their somatic complaints and phobic thoughts related to the tunnel were substantially reduced, and their mastery of tunnel driving was convincingly increased compared with the wait-list reference group. PMID:19440895

  17. Treatment of tunnel phobia: an experimental field study.

    PubMed

    Gotestam, K Gunnar; Svebak, Sven

    2009-01-01

    The opening of the deepest undersea tunnel in the world (264 m below sea level, 5600 m in length) replaced the ferry from the island of Hitra to the mainland in Norway. This event provoked phobic anxiety for traveling through the undersea tunnel in a number of individuals in the area. A treatment program for tunnel phobia was designed to test whether such a phobia could be mitigated by procedures previously proven effective in the treatment of other phobias. The program was presented to 18 persons with a specific phobia for tunnels and included a general discussion on the construction of undersea tunnels, given by an engineer from the tunnel construction company, and on phobic anxiety. It further consisted of gradual exposure to the tunnel in situ. Treatment effects were strong. All patients were able to travel on their own by car through the tunnel after the treatment. Their somatic complaints and phobic thoughts related to the tunnel were substantially reduced, and their mastery of tunnel driving was convincingly increased compared with the wait-list reference group.

  18. Deposition of laminated shale: A field and experimental study

    NASA Astrophysics Data System (ADS)

    Carey, Daniel L.; Roy, David C.

    1985-03-01

    Intermittently laminated shale of the Jemtland Formation in Maine is characterized by thin lenticular silt segregations interlaced with argillaceous and organic material (including graptolites). This shale is thinly interbedded with nonlaminated shale, siltstone, and thicker turbidite graywacke beds. Experiments suggest that the intermittently laminated shale was deposited by silt/clay-laden currents and may have been part of an upward turbidite progression from parallel-laminated silt (>60% silt), through intermittently laminated mud (40 to 60% silt), to nonlaminated mud (20 to 40% silt). Intermittently laminated mud may be produced from silt/clay flows that are: decelerating at a constant silt content, losing silt at constant velocity; or both decelerating and losing silt.

  19. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C. A.; Min, K.

    2015-04-01

    Discerning why some soil organic matter (SOM) leaves soil profiles relatively quickly while other compounds, especially at depth, can be retained for decades to millennia is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified substrate-enzyme reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified substrate-enzyme systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM

  20. Magnetic Field Enhancement and Hydromagnetic Dynamics in an Experimental Model of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Stone, D.; Liu, Q.; Zimmerman, D. S.; Triana, S. A.; Nataf, H. C.; Lathrop, D. P.

    2014-12-01

    Magnetic field amplification and hydromagnetic dynamics relevant to the earth's outer core are studied in the University of Maryland Three Meter Geodynamo, a rapidly rotating spherical Couette experiment that is geometrically similar to the earth's core and filled with liquid sodium. Turbulent flow is driven in the sodium by differential rotation of the inner and outer spherical shells, while an external coil applies a magnetic field in order to study hydromagnetic effects such as dynamo action. An array of 31 external Hall sensors measures the Gauss coefficients of the resulting field. The flow state is strongly dependent on Rossby number Ro = (ΩI - ΩO)/ΩO, where ΩI and ΩO are the inner and outer sphere rotation frequencies. The flow state is inferred from the torque required to drive the inner sphere. The generation of internal toroidal magnetic field through the Omega effect is measured by a Hall probe inserted into the sodium. A self-sustaining dynamo has not yet been observed at rotation speeds up to about half of the design maximum. However, continuous dipole amplification up to ~12% of a small applied field has been observed at Ro = -17.7 while bursts of dipole field have been observed up to 15% of a large external applied field at Ro = +6.0 and up to ~20% of a small applied field at Ro = +2.15.

  1. Phase diagrams of diblock copolymers in electric fields: a self-consistent field theory study.

    PubMed

    Wu, Ji; Wang, Xianghong; Ji, Yongyun; He, Linli; Li, Shiben

    2016-04-21

    We investigated the phase diagrams of diblock copolymers in external electrostatic fields by using real-space self-consistent field theory. The lamella, cylinder, sphere, and ellipsoid structures were observed and analyzed by their segment distributions, which were arranged to two types of phase diagrams to examine the phase behavior in weak and strong electric fields. One type was constructed on the basis of Flory-Huggins interaction parameter and volume fraction. We identified an ellipsoid structure with a body-centered cuboid arrangement as a stable phase and discussed the shift of phase boundaries in the electric fields. The other type of phase diagrams was established on the basis of the dielectric constants of two blocks in the electric fields. We then determined the regions of ellipsoid phase in the phase diagrams to examine the influence of dielectric constants on the phase transition between ellipsoidal and hexagonally packed cylinder phases. A general agreement was obtained by comparing our results with those described in previous experimental and theoretical studies. PMID:27020849

  2. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1991-01-01

    The accomplishments achieved over the past year are detailed with emphasis on the interpretation or auroral emissions and studies of potential spacecraft-induced contamination effects. Accordingly, the research was divided into two tasks. The first task is designed to add to the understanding of space vehicle induced external contamination. An experimental facility for simulation of the external environment for a spacecraft in low earth orbit was developed. The facility was used to make laboratory measurements of important phenomena required for improving the understanding of the space vehicle induced external environment and its effect on measurement of auroral emissions from space-based platforms. A workshop was sponsored to provide a forum for presentation of the latest research by nationally recognized experts on space vehicle contamination and to discuss the impact of this research on future missions involving space-based platforms. The second task is to add an ab initio auroral calculation to the extant ionospheric/thermospheric global modeling capabilities. Once the addition of the code was complete, the combined model was to be used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Such studies are essential to an understanding of the types of vacuum ultraviolet (VUV) auroral images which are expected to be available within two years with the successful deployment of the Ultraviolet Imager (UVI) on the ISTP POLAR spacecraft. In anticipation of this, the second task includes support for meetings of the science working group for the UVI to discuss operational and data analysis needs. Taken together, the proposed tasks outline a course of study designed to make significant contributions to the field of space-based auroral imaging.

  3. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  4. Experimental investigations of the role of laser field fluctuations in non-linear optical absorption processes

    SciTech Connect

    Smith, S.J.

    1985-01-01

    In the experimental program described, we deliberately broaden a well-stabilized single mode laser beam by introducing fluctuations to the laser frequency, in order to synthesize laser power spectra for which the fluctuations are well-characterized to all orders in a statistical sense. With this technique we are able to produce single mode laser fields which have nearly Lorentzian power spectra at one limit, essentially Gaussian power spectra at the other limit, and which may be varied continuously between these two limits. 16 refs., 6 figs.

  5. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    Personnel from NASA Ames Research Center presented a paper on establishing a benchmark experimental data base for generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. The need for this capability is based on a requirement for extensive hypersonic data to fully validate CFD codes to be used for NASP and other hypersonic vehicles. The use of wind tunnel models in the Ames 3.5-ft Hypersonic Wind Tunnel to obtain pertinent surface and flow-field data over a broad range of test conditions is described.

  6. Experimental and Calculated Flow Fields Produced by Airplanes Flying at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Smith, Harriet J.

    1960-01-01

    Results are presented of a flight investigation conducted to survey the flow field generated by airplanes flying a t supersonic speeds. The pressure signatures of an F-100, an F-104, and a B-58 airplane, representing widely varying configurations, a t distances from 120 t o 425 f e e from the generating aircraft and at Mach numbers from 1.2 t o 1.8 are shown. Calculations were made by using Whitham's method and were compared with the experimental results.

  7. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields

    NASA Astrophysics Data System (ADS)

    Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban

    2014-09-01

    Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation.

  8. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields.

    PubMed

    Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban

    2014-11-01

    Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation.

  9. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields

    NASA Astrophysics Data System (ADS)

    Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban

    2014-11-01

    Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation.

  10. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields.

    PubMed

    Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban

    2014-11-01

    Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation. PMID:25267469

  11. Experimental studies in explicitly paradoxical interventions: results and implications.

    PubMed

    Strong, S R

    1984-09-01

    A dozen experimental studies have assessed the effectiveness of paradoxical interventions with agoraphobia, depression, insomnia and procrastination. The studies suggest that paradoxical interventions are more effective than no treatment and placebo treatment and are as effective and, in some instances, more effective than other behavioral interventions. Several studies show that the wording of paradoxical interventions affects their impact.

  12. A theoretical and experimental study of coplanar waveguide shunt stubs

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Ponchak, George E.; Katehi, Linda P. B.

    1993-01-01

    A comprehensive theoretical and experimental study of straight and bent coplanar waveguide (CPW) shunt stubs is presented. In the theoretical analysis, the CPW is assumed to be inside a cavity while, the experiments are performed on open structures. For the analysis of CPW discontinuities with air-bridges, a hybrid technique was developed which was validated through extensive theoretical and experimental comparisons. The effect of the cavity resonances on the behavior of the stubs with and without air-bridges is investigated. In addition, the encountered radiation loss due to the discontinuities is evaluated experimentally.

  13. Experimental and Numerical Investigation of Guest Molecule Exchange Kinetics based on the 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.

    2015-12-01

    In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.

  14. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    rate of Pu transport. Currently, the role of colloids in facilitating the transport of low-solubility radionuclides is not understood well enough to effectively model contaminant transport. A fundamental understanding of the role that colloids may or may not play in the transport of low-solubility radionuclides is needed in order to predict contaminant transport, design remediation strategies and provide risk assessments. Ryan and Elimelech (1996) have argued that in order to evaluate the potential for colloids to transport radionuclides, several criteria must be met: (1) colloids must exist and be stable, (2) radionuclides must have a high sorption affinity for the colloids, and (3) colloids must be transported. Only then can we understand the conditions where colloids can and will facilitate transport of radionuclides. In this report we compile the results from a series of field, laboratory and modeling studies funded by the UGTA program in order to evaluate the potential for colloids to transport low-solubility radionuclides at the NTS. The studies presented in this report fall under three general areas of investigation: Characterization of natural colloids in groundwater at NTS, Pu sorption/desorption experiments on colloid minerals identified in NTS groundwater, and Transport of Pu-doped colloids through fractured rock core. Chapter 1 is a background review of our current understanding of colloids and their role in facilitating contaminant transport. Chapters 2, and 3 are field studies that focused on characterizing natural colloids at different hydrologic environments at the NTS and address Ryan and Elimelech's (1996) first criteria regarding the existence and stability of colloids. Chapters 4, 5 and 6 are laboratory experimental studies that investigate the sorption/desorption behavior of Pu and other low-solubility radionuclides on colloid minerals observed in NTS groundwater. These studies evaluate Ryan and Elimelech's (1996) second criteria that the affinity

  15. Experimental study of burnout in channels with twisted fuel rods

    NASA Astrophysics Data System (ADS)

    Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.

    2007-05-01

    The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.

  16. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  17. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 5. Effects of High Electric Fields on Animals

    NASA Astrophysics Data System (ADS)

    Isaka, Katsuo

    The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.

  18. Cellular studies and interaction mechanisms of extremely low frequency fields

    NASA Astrophysics Data System (ADS)

    Liburdy, Robert P.

    1995-01-01

    ) or the magnetic (B) field, or if combinations of static B and time-varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of experimental evidence indicates that an induced E field according to Faraday's law of induction during magnetic field exposures elicits cellular effects. An E-field-mediated interaction has interesting consequences for microdosimetry at the cellular level and is mechanistically consistent with an interaction at the cell surface, since the E field does not penetrate beyond the cell membrane. Recently, several studies have suggested that an ELF B field by itself or in combination with a static B field may elicit cellular effects. Thus in addition to E-field-mediated effects, other interaction mechanisms as yet not fully understood may operate at the cellular level; this complexity is in contrast to the case for ionizing radiation. In addition to the question of an exposure field metric, the biological state of the target cell is important in ELF interactions. Biological factors such as cell type, cell cycle, cell activation, age of donor animal, passage number of cell line, presence of specific growth/mitogenic factors, temperature, shape, and cell density/packing during exposures have been shown to play a role in mediating ELF interactions with cells. Most recently, reports of single-cell studies usher in a new direction for research that can be termed microbioelectromagnetics. Single-cell digital microscopy introduces a new approach to answer the above questions with potential for real-time microdosimetry and bioeffects limited only by the spatial resolution of state-of-the-art microscopy, which is approximately 0.1 /μm. Digital imaging microscopy should therefore permit the quantitative assessment of spatial and temporal features of ELF field interactions within living

  19. Experimental Study of Surface Erosion by Granular Flows

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Dietrich, W. E.

    2004-12-01

    Field studies suggest that in steep landscapes mass flows of coarse grained material may be the primary agents responsible for cutting canyons. No process-based theory for bedrock incision by such flows exists, and the infrequency of such events makes them impractical to study in the field. Stock (2003, Ph.D. UC Berkeley) has suggested that in the case of debris flows, the wear rate arises primarily from particle collisions with the bed. Therefore, the stresses on the bed should be correlated with the inertial stresses in the flow. Here, we explore the relationship between wear rate of synthetic bedrock and inertial stresses in granular flows by making measurements in a 60 cm diameter, 15 cm wide vertically rotating (horizontal axis) drum. The debris composition consists of varying amounts of gravel, water, and fines, from dry granular flows to muddy slurries. The shear rate is estimated from the difference between the surface and bottom velocities of the flow divided by the flow depth. We estimate Bagnold and Savage numbers for each experimental material and conditions range from inertially dominated to more viscous states. We measure erosion by differencing the initial and final mass of the imbedded erodible rock sample. For no-slip conditions, we observe that erosion rate increases with higher shear rates and larger grain diameters. Experiments with observable slip at the bed have a lower shear rate, but high erosion rates. To explore this further, we vary boundary roughness, affecting the amount of sliding that occurs at the bed of the flow. For no-slip conditions, the wear appears to occur at the front of the flow, when the faster-moving surface particles overtake the flow front and impact the bed. These results suggest that inertial stresses, which scale with shear rate and grain diameter, are correlated with erosion, but any sliding will alter the amount of wear. Consequently, bed roughness and its effect on bottom slip significantly affects bedrock wear

  20. Experimental observations and modeling of ponding and overland flow in flat, permeable soil fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn; Bogaart, Patrick; van der Zee, Sjoerd

    2015-04-01

    In flat well-drained agricultural terrain, overland flow is a relatively rare phenomenon, yet still a potentially important driver of sediment and nutrient transport. Under these conditions, periods of intense rainfall, shallow groundwater dynamics and local combinations of meso- and microtopography control whether water in ponds will become connected to streams and ditches. Combining overland flow measurements at agricultural fields with a new modeling approach, we explored: (i) what rainfall conditions relate to overland flow and (ii) how does flow route connectivity develop for various types of runoff generation and meso/microtopography? For this purpose, we assessed overland flow at two field sites in flat, lowland catchments in the sandy part of the Netherlands and developed a dynamic model (FAST-runoff) to simulate redistribution of water over a heterogeneous surface with infiltration and soil water storage. Experimentally, it appeared that most overland flow occurred as saturation excess runoff during long wet periods, though infiltration excess runoff generation may have played a role during snowmelt periods that generated small amounts of runoff. For both fields, the contributing area during the saturation excess events was large and flow paths long, irrespective of the profoundly different microtopographies. We explored this behaviour with our FAST-Runoff model and found that under saturation excess conditions, mesotopographic features, such as natural depressions or those caused by tillage, gain importance at the expense of the spatial organization of microtopography. The surface topographies of our experimental fields were equal in terms of standard topographic analytical measures such as Curvature, Convergence Index, and Topographic Wetness Index. However, the fields could be distinguished when analysed with a quantitative indicator of flow for hydrological connectivity. Also, the fields had different dynamics related to the runoff generating mechanism

  1. Developments in the field of allergy in 2009 through the eyes of Clinical and Experimental Allergy

    PubMed Central

    Chu, H. W.; Lloyd, C. M.; Karmaus, W.; Maestrelli, P.; Mason, P.; Salcedo, G.; Thaikoottathil, J.; Wardlaw, A. J.

    2012-01-01

    Summary In 2009 the journal published in the region of 200 papers including reviews, editorials, opinion pieces and original papers that ran the full gamut of allergic disease. It is instructive to take stock of this output to determine patterns of interest and where the cutting edge lies. We have surveyed the field of allergic disease as seen through the pages of Clinical and Experimental Allergy (CEA) highlighting trends, emphasizing notable observations and placing discoveries in the context of other key papers published during the year. The review is divided into similar sections as the journal. In the field of Asthma and Rhinitis CEA has contributed significantly to the debate about asthma phenotypes and expressed opinions about the cause of intrinsic asthma. It has also added its halfpennyworth to the hunt for meaningful biomarkers. In Mechanisms the considerable interest in T cell subsets including Th17 and T regulatory cells continues apace and the discipline of Epidemiology continues to invoke a steady stream of papers on risk factors for asthma with investigators still trying to explain the post-second world war epidemic of allergic disease. Experimental Models continue to make important contributions to our understanding of pathogenesis of allergic disease and in the Clinical Allergy section various angles on immunotherapy are explored. New allergens continue to be described in the allergens section to make those allergen chips even more complicated. A rich and vibrant year helpfully summarized by some of our associate editors. PMID:21039970

  2. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    SciTech Connect

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H; Sayukov, Igor M; Schultz, Larry J; Urbaitis, Algis V; Volegov, Petr L; Wurden, Caroline J

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.

  3. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison.

    PubMed

    Matlashov, Andrei N; Schultz, Larry J; Espy, Michelle A; Kraus, Robert H; Savukov, Igor M; Volegov, Petr L; Wurden, Caroline J

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  4. Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation.

    PubMed Central

    Korpimäki, Erkki; Norrdahl, Kai; Klemola, Tero; Pettersen, Terje; Stenseth, Nils Chr

    2002-01-01

    Mechanisms generating the well-known 3-5 year cyclic fluctuations in densities of northern small rodents (voles and lemmings) have remained an ecological puzzle for decades. The hypothesis that these fluctuations are caused by delayed density-dependent impacts of predators was tested by replicated field experimentation in western Finland. We reduced densities of all main mammalian and avian predators through a 3 year vole cycle and compared vole abundances between four reduction and four control areas (each 2.5-3 km(2)). The reduction of predator densities increased the autumn density of voles fourfold in the low phase, accelerated the increase twofold, increased the autumn density of voles twofold in the peak phase, and retarded the initiation of decline of the vole cycle. Extrapolating these experimental results to their expected long-term dynamic effects through a demographic model produces changes from regular multiannual cycles to annual fluctuations with declining densities of specialist predators. This supports the findings of the field experiment and is in agreement with the predation hypothesis. We conclude that predators may indeed generate the cyclic population fluctuations of voles observed in northern Europe. PMID:12028754

  5. Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Gallo, A.; Marconato, N.; Serianni, G.; Nakano, H.; Takeiri, Y.; Tsumori, K.

    2011-09-26

    For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.

  6. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  7. Evaluation of Experimental Concentration of Studies in Upper Secondary School.

    ERIC Educational Resources Information Center

    Marklund, Inger, Ed.; Carlsson, Marianne, Ed.

    1985-01-01

    Experimental schemes of concentrated studies have been in progress for some years at a number of upper secondary schools in Sweden. Concentrated studies involve concentrating the number of periods devoted during an upper secondary school course to the teaching of one subject within a shorter period of time than is laid down by the regular time…

  8. Experimental Studies on Electronic Portfolios in Turkey: A Literature Review

    ERIC Educational Resources Information Center

    Alan, Selahattin; Sünbül, Ali Murat

    2015-01-01

    In this study, a literature review was conducted about an individual's selected efforts, products stored in electronic format, and electronic portfolios that reflect the development and capacity of multimedia systems. In this context, relevant experimental studies performed in Turkey are collected to show e-portfolio application forms, their…

  9. Host specificity of North American Rhabdias spp. (Nematoda: Rhabdiasidae): combining field data and experimental infections with a molecular phylogeny.

    PubMed

    Langford, Gabriel J; Janovy, John

    2013-04-01

    Lungworms of the cosmopolitan genus Rhabdias are among the most common parasites of amphibians and squamate reptiles. The present study used experimental infections, field studies, and a molecular phylogeny to determine the host specificity of 6 Rhabdias spp. that infect snakes and anurans from North America. The molecular phylogeny suggests Rhabdias ranae from Nebraska and Mississippi may represent separate, cryptic species. In addition, the phylogeny strongly supports separate clades for anuran and snake lungworms. Field studies and experimental infections indicate that snake lungworms are generalist snake parasites; however, laboratory experiments also suggest that lizards can be infected under some environmental conditions. Lungworms from anurans were found not to infect salamanders or reptiles, in nature or in the laboratory; anuran lungworm species ranged from strict host specificity, e.g., R. ranae from Nebraska, to relative generalist, e.g., Rhabdias joaquinensis from Nebraska. Overall, host specificity for species of Rhabdias does not provide support for the evolution of progressive specialization over time. For most species of lungworms, host specificity in nature appears to be limited by both ecological and physiological factors, which vary between species and their hosts. Furthermore, some lungworms, e.g., Rhabdias bakeri from Missouri, appear to be tracking host resources instead of host phylogenies, an example of ecological fitting. PMID:22988815

  10. Field studies in geophysical diffraction tomography

    SciTech Connect

    Witten, A.J.; Stevens, S.S.; King, W.C.; Ursic, J.R.

    1992-07-01

    Geophysical diffraction tomography (GDT) is a quantitative, high- resolution technique for subsurface imaging. This method has been used in a number of shallow applications to image buried waste, trenches, soil strata, tunnels, synthetic magma chambers, and the buried skeletal remains of seismosaurus, the longest dinosaur ever discovered. The theory associated with the GDT inversion and implementing software have been developed for acoustic and scalar electromagnetic waves for bistatic and monostatic measurements in cross-borehole, offset vertical seismic profiling and reflection geometries. This paper presents an overview of some signal processing algorithms, a description of the instrumentation used in field studies, and selected imaging results.

  11. Field studies in geophysical diffraction tomography

    SciTech Connect

    Witten, A.J.; Stevens, S.S. ); King, W.C. . Dept. of Geography and Environmental Engineering); Ursic, J.R. . Region V)

    1992-01-01

    Geophysical diffraction tomography (GDT) is a quantitative, high- resolution technique for subsurface imaging. This method has been used in a number of shallow applications to image buried waste, trenches, soil strata, tunnels, synthetic magma chambers, and the buried skeletal remains of seismosaurus, the longest dinosaur ever discovered. The theory associated with the GDT inversion and implementing software have been developed for acoustic and scalar electromagnetic waves for bistatic and monostatic measurements in cross-borehole, offset vertical seismic profiling and reflection geometries. This paper presents an overview of some signal processing algorithms, a description of the instrumentation used in field studies, and selected imaging results.

  12. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  13. Planetary geomorphology field studies: Iceland and Antarctica

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.

  14. Planetary geomorphology field studies: Washington and Alaska

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.

  15. The Field Trip Book: Study Travel Experiences in Social Studies

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2010-01-01

    Looking for social studies adventures to help students find connections to democratic citizenship? Look no further! This book provides just the answer teachers need for engaging students in field trips as researching learners with emphasis on interdisciplinary social studies plus skills in collecting and reporting data gathered from field…

  16. Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice

    SciTech Connect

    Aidelsburger, M.; Atala, M.; Trotzky, S.; Chen, Y.-A.; Bloch, I.; Nascimbene, S.

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

  17. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  18. Studies of the Martian Magnetic Field

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    This report covers two awards: the first NAGW-2573 was awarded to enable participation in the Mars 94 mission that slipped to become the Mars 96 mission. Upon the unfortunate failure of Mars 96 to achieve its intended trajectory, the second grant was awarded to closeout the Mars 96 activities. Our initial efforts concentrated on assisting our colleagues: W. Riedler, K. Schwingenschuh, K. Gringanz, M. Verigin and Ye. Yeroshenko with advice on the development of the magnetic field portion of the investigation and to help them with test activities. We also worked with them to properly analyze the Phobos magnetic field and plasma data in order to optimize the return from the Mars 94/96 mission. This activity resulted in 18 papers on Mars scientific topics, and two on the instrumentation. One of these latter two papers was the last of the papers written, and speaks to the value of the closeout award. These 20 papers are listed in the attached bibliography. Because we had previously studied Venus and Titan and since it was becoming evident that the magnetic field was very weak, we compared the various properties of the Martian interaction with those of the analogous interactions at Venus and Titan while other papers simply analyzed the properties of the interaction as Phobos 2 observed them. One very interesting observation was the identification of ions picked up in the solar wind, originating in Mars neutral atmosphere. These had been predicted by our earlier observation of cyclotron waves at the proton gyrofrequency in the region upstream from Mars in the solar wind. Of course, the key question we addressed was that of the intrinsic or induced nature of the Martian magnetic field. We found little evidence for the former and much for the latter point of view. We also discussed the instrumentation planned for the Mars balloon and the instrumentation on the orbiter. In all these studies were very rewarding despite the short span of the Phobos data. Although they did not

  19. Parameterization of a process-based soil erosion model by means of experimental field measurements

    NASA Astrophysics Data System (ADS)

    Butzen, Verena; Seeger, Manuel; Scherer, Ulrike; Casper, Markus; Ries, Johannes B.

    2010-05-01

    The physically-based hydrological and soil erosion model CATFLOW-SED has been developed with data from a loess area in Germany (Maurer, 1997; Scherer, 2008) and covers the principal processes detachment, transport and deposition. The catchment is divided into slopes on the basis of topography as well as soil and land-use maps. The slopes are further divided into slope segments and the flow-routing is abstractly modeled as slope cross sections connected by a drainage network. In many process-based soil erosion models, soil erosion is calculated by an interaction of the forces of flowing water and rainfall. In CATFLOW-SED the detachment process is divided into the pulse current of precipitation and the sheer stress of flowing water. The most important parameter concerning detachment is the erosion resistance parameter fcrit. The described model is parameterized for a small catchment in the Central Spanish Pyrenees with experimental field data from this study area. The mean annual precipitation amount of 1120 mm is rather high but as it is typical of a Mediterranean climate the summer months show a deficit in water balance. Accordingly, a seasonal variation in dominating overland flow generation and soil erosion processes, can be observed particularly for wetland areas that regularly dry out in summer. The spatial and temporal pattern of overland-flow generation and erosion processes and their intensity in the study area is assessed by means of small plot-scale rainfall experiments in the field. The gained data are the amounts of overland flow and eroded material for intervals of five minutes duration. The gained results are used for the parameterization of the soil specific parameter fcrit in CATFLOW-SED. In order to cover the seasonal variation in dominating runoff processes, rainfall simulations that were carried out under dry soil moisture conditions in September as well as measurements that were done under moist conditions in March are used for parameterization

  20. Experimental Research on the Capture of Fine Particles in a High-voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Li, Shuiqing

    2015-11-01

    Mechanisms for capturing of fine particles through a high-voltage electric field were examined using the electrostatic precipitator (ESP) as an example system. The dimensionless equations governing particle transport were solved and a laboratory-scale ESP was experimentally examined. The analysis indicates that particles in the size range of 0.1-1 μm have the lowest electric migration velocity and there is a capture-effective zone in the middle of the ESP for fine particles. Subsequent increase in length had little effect for grade efficiency because of the influence of electrohydrodynamic (EHD) flow. In the particle boundary layer zone, dipole-dipole force and VDW force play crucial roles in capturing fine particles. The packing structure of fine particles on the collecting plate is investigated by digital microscopy technology. The effects of pre-charging, pre-polarization and external electric field on packing morphologies are discussed. It is found that the dipole-dipole force between particles causes the formation of long particle chains and the maximum length of particle dendrites during the packing is dependent on both the density of external field and deposit structure.

  1. Experimental study on confined two-phase jets

    SciTech Connect

    Levy, Y.; Albagli, D. )

    1991-09-01

    The basic mixing phenomena in confined, coaxial, particle-laden turbulent flows are studied within the scope of ram combustor research activities. Cold-flow experiments in a relatively simple configuration of confined, coaxial two-phase jets provided both qualitative and quantitative insight on the multiphase mixing process. Pressure, tracer gas concentration, and two-phase velocity measurements revealed that unacceptably long ram combustors are needed for complete confined jet mixing. Comparison of the experimental results with a previous numerical simulation displayed a very good agreement, indicating the potential of the experimental facility for validation of computational parametric studies. 38 refs.

  2. Safety Problems of Electric and Magnetic Fields and Experimental Magnetic Fusion Facilities 5.Electromagnetic Fields in the Workplace

    NASA Astrophysics Data System (ADS)

    Jonai, Hiroshi; Villanueva, Maria Beatriz G.

    The review addresses the concerns related to extremely low frequency electromagnetic fields (ELF/EMF) in workplaces. The exposure levels and epidemiological studies on cancer, the health effects of working with VDTs (visual display terminals), and the malfunction of cardiac pacemakers are described. The association of EMF exposure and cancer or disorders from VDT work cannot be considered conclusive. The information on the exposure level and effect of EMF on cardiac pacemakers should be disseminated in workplaces. Risk communication program on EMF is urgent for countermeasures against worker anxiety.

  3. Geometrical study of nanoscale field effect diodes

    NASA Astrophysics Data System (ADS)

    Manavizadeh, Negin; Raissi, Farshid; Asl Soleimani, Ebrahim; Pourfath, Mahdi

    2012-04-01

    In this paper, the previously proposed side-contacted field effect diode (FED) is carefully studied and its characteristic is compared against that of a modified FED and a metal oxide semiconductor field effect transistor (MOSFET). The influences of the body thickness, each gate length and access resistance are investigated. The figures of merit including intrinsic gate delay time and energy-delay product, which represent the speed and switching energy of the device, respectively, are studied. Our results highlight that FEDs are good candidates for obtaining a high Ion/Ioff ratio with a relatively short delay time compared to conventional FEDs and MOSFETs. We show that by a careful scaling of the source-drain region, the access resistance can be optimized. We demonstrate that a well-tempered device with a high switching response and a lower energy consumption can be achieved with a 30 nm body thickness, 85 nm source-drain length and a drain gate length longer than the source gate length.

  4. Robotic Exploration and Science in Pits and Caves: Results from Three Years and Counting of Analog Field Experimentation

    NASA Astrophysics Data System (ADS)

    Wong, U. Y.; Whittaker, W. L.

    2015-10-01

    Robots are poised to access, investigate, and model planetary caves. We present the results of a multi-year campaign to develop robotic technologies for this domain, anchored by the most comprehensive analog field experimentation to date.

  5. Colour vision experimental studies in teaching of optometry

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Ikaunieks, Gatis; Fomins, Sergejs

    2005-10-01

    Following aspects related to human colour vision are included in experimental lessons for optometry students of University of Latvia. Characteristics of coloured stimuli (emitting and reflective), determination their coordinates in different colour spaces. Objective characteristics of transmitting of colour stimuli through the optical system of eye together with various types of appliances (lenses, prisms, Fresnel prisms). Psychophysical determination of mono- and polychromatic stimuli perception taking into account physiology of eye, retinal colour photoreceptor topography and spectral sensitivity, spatial and temporal characteristics of retinal receptive fields. Ergonomics of visual perception, influence of illumination and glare effects, testing of colour vision deficiencies.

  6. An Experimental and CFD Study of a Supersonic Coaxial Jet

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; White, J. A.

    2001-01-01

    A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model

  7. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C.; Min, K.

    2014-12-01

    Investigators of soil organic matter (SOM) transformations struggle with a deceptively simple-sounding question: "Why does some SOM leave the soil profile relatively quickly, while other compounds, especially those at depth, appear to be retained on timescales ranging from the decadal to the millennial?" This question is important on both practical and academic levels, but addressing it is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially-mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified enzyme-substrate reaction kinetics can be used to advance recent

  8. TU-F-BRE-05: Experimental Determination of K Factor in Small Field Dosimetry

    SciTech Connect

    Das, I; Akino, Y; Francescon, P

    2014-06-15

    Purpose: Small-field dosimetry is challenging due to charged-particle disequilibrium, source occlusion and more importantly finite size of detectors. IAEA/AAPM has published approach to convert detector readings to dose by k factor. Manufacturers have been trying to provide various types of micro-detectors that could be used in small fields. However k factors depends on detector perturbations and are derived using Monte Carlo simulation. PTW has introduced a microDiamond for small-field dosimetry. An experimental approach is presented to derive the k factor for this detector. Methods: PTW microDiamond is a small volume detector with 1.1 mm radius and 1.0 micron thick synthetic diamond. Output factors were measured from 1×1cm2 to 12×12 cm2 on a Varian machine at various depths using various micro-detectors with published k factors. Dose is calculated as reading * K. Assuming k factor is accurate, output factor should be identical with every micro-detectors. Hence published k values (Francescon et al Med Phys 35, 504-513,2008) were used to covert readings and then output factors were computed. Based on the converged curve from other detectors, k factor for microDiamond was computed versus field size. Results: Traditional output factors as ratio of readings normalized to 10×10 cm2 differ significantly for micro-detectors for fields smaller than 3×3 cm2 which are now being used extensively. When readings are converted to dose, the output factor is independent of detector. Based on this method, k factor for microDiamond was estimated to be nearly constant 0.993±0.007 over varied field sizes. Conclusion: Our method provides a unique opportunity to determine the k factor for any unknown detector. It is shown that even though k factor depends on machine type due to focal spot, however for fields ≥1×1 cm2 this method provides accurate evaluation of k factor. Additionally microDiamond could be used with assumption that k factor is nearly unity.

  9. Field testing plan for unsaturated zone monitoring and field studies

    SciTech Connect

    Young, M.H.; Wierenga, P.J.; Warrick, A.W.

    1996-10-01

    The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

  10. Theoretical and experimental studies on air gap membrane distillation

    NASA Astrophysics Data System (ADS)

    Liu, G. L.; Zhu, C.; Cheung, C. S.; Leung, C. W.

    Air gap membrane distillation (AGMD) is an innovative membrane separation technique for pure water extraction from aqueous solutions. In this study, both theoretical and experimental investigations are carried out on AGMD of different aqueous solutions, namely, tap water, salted water, dyed solutions, acid solutions, and alkali solutions. A simple mechanistic model of heat and mass transfer associated with AGMD is developed. Simple relationships of permeate flux, total heating or cooling load and thermal efficiency of AGMD with respect to the membrane distillation temperature difference are obtained. Effects of solution concentration and the width of the air gap in AGMD are analyzed. In the experimental study, the experiments were conducted using 1m PTFE membrane with a membrane distillation temperature difference up to 55∘C. The AGMD system yields a permeate flux of pure water of up to 28kg/m2h. Direct comparison of the experimental results with the proposed modeling predictions shows a fairly good match.

  11. Experimental investigation on butane diffusion flames under the influence of magnetic field by using digital speckle pattern interferometry.

    PubMed

    Kumar, Manoj; Agarwal, Shilpi; Kumar, Varun; Khan, Gufran S; Shakher, Chandra

    2015-03-20

    In this paper, the effect of magnetic fields on the temperature and temperature profile of a diffusion flame obtained from a butane torch burner are investigated experimentally by using digital speckle pattern interferometry (DSPI). Experiments were conducted on a diffusion flame generated by a butane torch burner in the absence of a magnetic field and in the presence of uniform and nonuniform magnetic fields. A single DSPI fringe pattern was used to extract phase by using a Riesz transform and monogenic signal. Temperature inside the flame was determined experimentally both in the absence and in the presence of magnetic fields. Experimental results reveal that the maximum temperature of the flame is increased under the influence of an upward-decreasing magnetic gradient and decreased under an upward-increasing magnetic gradient while a negligible effect on temperature in a uniform magnetic field was observed. PMID:25968534

  12. Identification of unknown experimental parameters from noisy apertureless scanning near-field optical microscope data with an evolutionary procedure.

    PubMed

    Macías, D; Barchiesi, D

    2005-10-01

    We determine a set of experimental parameters through the application of an evolutionary inversion procedure. The input to the algorithm is experimental apertureless scanning near-field optical microscope data. The performance of our inversion procedure is assessed by means of a comparison with a nonevolutionary technique.

  13. Experimental study and numerical simulations of a plasma relativistic microwave amplifier

    SciTech Connect

    Bogdankevich, I. L.; Ivanov, I. E.; Strelkov, P. S.

    2010-09-15

    The dependences of the radiation parameters of a plasma relativistic microwave amplifier on the external factors have been studied both experimentally and numerically. The calculated dependences are found to agree qualitatively with the measured ones. In contrast to experimental studies, numerical simulations make it possible to examine physical processes occurring inside the plasma waveguide. Good agreement between the measured and calculated dependences of the radiation parameters on the external factors shows that information provided by numerical simulations of the processes occurring inside the plasma waveguide can be considered quite reliable. The electromagnetic field structure and electron beam dynamics inside the plasma waveguide have been investigated.

  14. Dual rover human habitation field study

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Thompson, Shelby G.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    For the last 3 years, the National Aeronautics and Space Administration (NASA) has been testing a pressurized rover prototype in the deserts of Arizona to obtain human-in-the-loop performance data. This year's field trial consisted of operating two rovers simultaneously while embarking on two 7-day flight-like exploration missions. During the 2010 Desert Research and Technology Studies (DRATS) at Black Point Lava Flow and SP Mountain in Arizona, NASA human factors investigators, in cooperation with other engineers and scientists, collected data on both the daily living and working within and around the Space Exploration Vehicle (SEV). Both objective and subjective data were collected using standard human factors metrics. Over 305 h of crew habitability data were recorded during the field trial with 65 elements of habitation examined. Acceptability of the vehicles over the course of the missions was considered satisfactory by the majority of the crews. As with previous testing, habitation was considered acceptable by the crews, but some issues concerning stowage, Waste Containment System (WCS) volume, and sleep curtains need to be considered for redesign for the next generation vehicle.

  15. Experimental dynamics in magnetic field-driven flows compared to thermoconvective convection.

    PubMed

    Cortés-Domínguez, I; Burguete, J; Mancini, H L

    2015-12-13

    We compare the dynamics obtained in two intermediate aspect ratio (diameter over height) experiments. These systems have rotational symmetry and consist of fluid layers that are destabilized using two different methods. The first one is a classical Bénard-Marangoni experiment, where the destabilizing forces, buoyancy and surface tension, are created by temperature gradients. The second system consists of a large drop of liquid metal destabilized using oscillating magnetic fields. In this configuration, the instability is generated by a radial Lorentz force acting on the conducting fluid. Although there are many important differences between the two configurations, the dynamics are quite similar: the patterns break the rotational symmetry, and different azimuthal and radial wavenumbers appear depending on the experimental control parameters. These patterns in most cases are stationary, but for some parameters they exhibit different dynamical behaviours: rotations, transitions between different solutions or cyclic connections between different patterns.

  16. Experimental and theoretical study on benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Świsłocka, R.; Regulska, E.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    Benzoic (BA), p-hydroxybenzoic (HBA), m-methoxybenzoic (MBA), vanillic (VA) and syringic (SGA) acids were studied using both experimental and theoretical tools. The vibrational (FT-IR, FT-Raman) and 1H and 13C NMR spectra of benzoic acid derivatives were recorded. Characteristic shifts and changes in intensities of bands along the studied series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied compounds were observed too. Optimized geometrical structures of studied compounds were obtained by B3LYP method using 6-31++G**, 6-311+G** and 6-311++G** basis sets. Aromaticity indices, atomic charges, dipole moments and energies were calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to experimental characteristic of studied compounds.

  17. SMS as a Learning Tool: An Experimental Study

    ERIC Educational Resources Information Center

    Plana, Mar Gutiérrez-Colon; Torrano, Pere Gallardo; Grova, M. Elisa

    2012-01-01

    The aim of this experimental study was to find out the potential of using mobile phones in teaching English as a foreign language (EFL), specifically the use of Short Message Service (SMS) as a support tool in the EFL class. The research questions formulated for this project are the following: (1) Is using SMS messages via a mobile phone an…

  18. Experimental study of the longitudinal instability for beam transport

    SciTech Connect

    Reiser, M.; Wang, J.G.; Guo, W.M.; Wang, D.X.

    1990-01-01

    Theoretical model for beam longitudinal instability in a transport pipe with general wall impedance is considered. The result shows that a capacitive wall tends to stabilize the beam. The experimental study of the instability for a pure resistive-wall is presented, including the design parameters, setup and components for the experiment. 6 refs., 3 figs.

  19. MOOSES: Multiple Option Observation System for Experimental Studies.

    ERIC Educational Resources Information Center

    Tapp, Jon; Wehby, Joseph

    The Multiple Option Observation System for Experimental Studies (MOOSES) is a flexible data collection and analysis package for applied behavioral research that addresses the needs of researchers interested in live coding of observational data. MOOSES allows the researcher to design a coding system for a particular research question. General types…

  20. Electronic Texts or Learning through Textbooks: An Experimental Study

    ERIC Educational Resources Information Center

    Cartes-Enriquez, Ninette; Rodriguez, M. I. Solar; Letelier, R. Quintana

    2004-01-01

    This is an experimental study in the area of Didactics applied to the learning of English as a foreign language and complemented by CALL. The main objective of this work is to know the degree of incidence existing between two groups of students: one, based on conference-style classes where students, guided by the teacher, have to search for…