Bijou, Sidney W.; Peterson, Robert F.; Ault, Marion H.
1968-01-01
It is the thesis of this paper that data from descriptive and experimental field studies can be interrelated at the level of data and empirical concepts if both sets are derived from frequency-of-occurrence measures. The methodology proposed for a descriptive field study is predicated on three assumptions: (1) The primary data of psychology are the observable interactions of a biological organism and environmental events, past and present. (2) Theoretical concepts and laws are derived from empirical concepts and laws, which in turn are derived from the raw data. (3) Descriptive field studies describe interactions between behavioral and environmental events; experimental field studies provide information on their functional relationships. The ingredients of a descriptive field investigation using frequency measures consist of: (1) specifying in objective terms the situation in which the study is conducted, (2) defining and recording behavioral and environmental events in observable terms, and (3) measuring observer reliability. Field descriptive studies following the procedures suggested here would reveal interesting new relationships in the usual ecological settings and would also provide provocative cues for experimental studies. On the other hand, field-experimental studies using frequency measures would probably yield findings that would suggest the need for describing new interactions in specific natural situations. PMID:16795175
Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus
NASA Astrophysics Data System (ADS)
Smith, Derek A.
Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.
Experimental Study of Impinging Jets Flow-Fields
2016-07-27
1 Grant # N000141410830 Experimental Study of Impinging Jet Flow-Fields Final Report for Period: Jun 15, 2014 – Jun 14, 2016 PI: Dennis K...impinging jet model in the absence of any jet heating. The results of the computations had been compared with the experimental data produced in the...of the validity of the computations, and also of the experimental approach. Figure 12a. Initial single
Age 60 Study. Part 1. Bibliographic Database
1994-10-01
seven of these aircraft types participated in a spectacle design study. Experimental spectacles were designed for each pilot and evaluated for...observation flight administered by observers who were uninformed of the details of the experimental design . Students and instructors also completed a critique...intraindividual lability in field-dependence-field independence, and (4) various measurement, sampling, and experimental design concerns associated
Spatial encoding using the nonlinear field perturbations from magnetic materials.
Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H
2014-08-01
A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
NASA Astrophysics Data System (ADS)
Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.
2016-02-01
A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.
Scalar transport in inline mixers with spatially periodic flows
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.
2017-01-01
Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.
Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology.
Michaud, J-P; Schoenly, Kenneth G; Moreau, G
2012-01-01
Forensic entomology is an inferential science because postmortem interval estimates are based on the extrapolation of results obtained in field or laboratory settings. Although enormous gains in scientific understanding and methodological practice have been made in forensic entomology over the last few decades, a majority of the field studies we reviewed do not meet the standards for inference, which are 1) adequate replication, 2) independence of experimental units, and 3) experimental conditions that capture a representative range of natural variability. Using a mock case-study approach, we identify design flaws in field and lab experiments and suggest methodological solutions for increasing inference strength that can inform future casework. Suggestions for improving data reporting in future field studies are also proposed.
DOT National Transportation Integrated Search
1979-01-01
The objective of this study was to investigate the resistance of field concretes containing fly ash to damage from cycles of freezing and thawing as evidenced by scaling, based upon a reevaluation of a field project. In 1955 and 1956 an experimental ...
2016-06-02
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio
A far-field radio-frequency experimental exposure system with unrestrained mice.
Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L
2015-01-01
Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies.
Understanding behavioral responses of fish to pheromones in natural freshwater environments
Johnson, Nicholas S.; Li, Weiming
2010-01-01
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.
Resistive wall modes in the EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.
2003-10-01
Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.
Experimental investigation of the critical magnetic fields of transition metal superconductors
NASA Technical Reports Server (NTRS)
Mcevoy, J. P.
1973-01-01
The isothermal magnetic transitions of a type 2 superconductor have been studied by AC susceptibility techniques as a function of the amplitude and frequency of the exciting field. The field variation of the complex susceptibility was used to determine the critical fields. The research was planned to clarify the determination (both experimentally and theoretically) of the maximum field at which the superconductive phase spontaneously nucleates in the bulk and on the surface of the metal.
USDA-ARS?s Scientific Manuscript database
Selection of experimental design can markedly influence efficiency of field research. This study used Monte Carlo simulations to compare the ability of different field experimental designs to distinguish defined treatment differences, and the paper concludes with a section on practical use of the in...
Lee side flow for slender delta wings of finite thickness
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.
Education in the Field Influences Children's Ideas and Interest toward Science
NASA Astrophysics Data System (ADS)
Zoldosova, Kristina; Prokop, Pavol
2006-10-01
This paper explores the idea of informal science education in scientific field laboratory (The Science Field Centre). The experimental group of pupils ( N = 153) was experienced with approximately 5-day lasting field trips and experiments in the Field Centre in Slovakia. After finishing the course, two different research methods were used to discover their interest and ideas toward science. Pupils from the experimental group showed significant differences from those that did not experience education in the Field Centre (control group, N = 365). In comparison to the control group, pupils of the experimental group highly preferred book titles that were related to their program in the Field Centre. There were differences between the drawings of ideal school environment from both pupils groups. In the drawings of the experimental group, we found significantly more items connected with the educational environment of the Field Centre (e.g. laboratory equipment, live animals). We suppose field science education would be one of the most effective ways to increase interest of pupils to study science and to invaluable intrinsic motivation at the expense extrinsic motivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, E. V., E-mail: e.aksenova@spbu.ru; Karetnikov, A. A.; Karetnikov, N. A.
2016-05-15
The electric field-induced reorientation of a nematic liquid crystal in cells with a planar helicoidal or a homeoplanar structure of a director field is studied theoretically and experimentally. The dependences of the capacitances of these systems on the voltage in an applied electric field below and above the Fréedericksz threshold are experimentally obtained and numerically calculated. The calculations use the director distribution in volume that is obtained by direct minimization of free energy at various voltages. The inhomogeneity of the electric field inside a cell is taken into account. The calculation results are shown to agree with the experimental data.
NASA Astrophysics Data System (ADS)
Zhao, Changhao; Hou, Dong; Chung, Ching-Chang; Yu, Yingying; Liu, Wenfeng; Li, Shengtao; Jones, Jacob L.
2017-11-01
The local structural behavior of PbZr0.5Ti0.5O3 (PZT 50/50) ceramics during application of an electric field was investigated using pair distribution function (PDF) analysis. In situ synchrotron total scattering was conducted, and the PDFs were calculated from the Fourier transform of the total scattering data. The PDF refinement of the zero-field data suggests a local-structure model with [001] Ti-displacement and negligible Zr-displacement. The directional PDFs at different field amplitudes indicate the bond-length distribution of the nearest Pb-B (B = Zr/Ti) pair changes significantly with the field. The radial distribution functions (RDFs) of a model for polarization rotation were calculated. The calculated and the experimental RDFs are consistent. This result suggests the changes in Pb-B bond-length distribution could be dominantly caused by polarization rotation. Peak fitting of the experimental RDFs was also conducted. The peak position trends with increasing field are mostly in agreement with the calculation result of the polarization rotation model. The area ratio of the peaks in the experimental RDFs also changed with field amplitude, indicating that Zr atoms have a detectable displacement driven by the electric field. Our study provides an experimental observation of the behaviors of PZT 50/50 under field at a local scale which supports the polarization rotation mechanism.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
[Application of variable magnetic fields in medicine--15 years experience].
Sieroń, Aleksander; Cieślar, Grzegorz
2003-01-01
The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson's disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed.
Analyzing neural responses with vector fields.
Buneo, Christopher A
2011-04-15
Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames. Copyright © 2011 Elsevier B.V. All rights reserved.
Manipulative field experiments are used in ecology to study biotic interactions in populations and communities. In benthic suspension-feeding organisms, these interactions can occur over multiple spatial scales, but this has rarely received experimental attention. A field experim...
An Experimental Study of the Ising Chain Statistics under the Magnetic Field
NASA Astrophysics Data System (ADS)
Takeda, Kazuyoshi; Wada, Masaru
1981-11-01
The first experimental study of the statistics of a quasi-one-dimensional Ising system under the magnetic field Hα, described by the Hamiltonian \\includegraphics{dummy.eps} has been performed, where J1 and J2 are the intra- and the inter-chain exchange constants, respectively. A single crystal of the compound (CH3)3NHCoCl3\\cdot2H2O has been used as a model sample of the ferromagnetic system with J1/kB{=}14.2 K and J2/kB{=}0.20 K. It has been revealed that the experimental values of the magnetic heat capacity under the field Hα>2J2/gzμB (≈0.8 kOe) applied along the spin preferential axis are excellently reproduced by the values calculated for the isolated Ising chain under the longitudinal field (α{=}z; gz{=}6.54). For the temperature higher than 7 K (≈J1/2kB), the experimental values of the magnetic heat capacity under the field along the spin hard axis have also agreed with the theoretical values for the isolated Ising chain under the transverse field (α{=}y; gy{=}3.90).
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.
Fonner, John M; Schmidt, Christine E; Ren, Pengyu
2010-10-01
Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.
Simulation studies of nucleation of ferroelectric polarization reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecka, Geoffrey L.; Winchester, Benjamin Michael
2014-08-01
Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less
NASA Technical Reports Server (NTRS)
Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.
1990-01-01
Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.
The Effects of Magnetic Nozzle Configurations on Plasma Thrusters
NASA Technical Reports Server (NTRS)
Turchi, P. J.
1997-01-01
Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn
2017-06-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo
2017-01-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984
Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.Y.
1991-07-01
Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less
Magneto-optic dynamics in a ferromagnetic nematic liquid crystal
NASA Astrophysics Data System (ADS)
Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel
2018-01-01
We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.
Cracking mechanism of shale cracks during fracturing
NASA Astrophysics Data System (ADS)
Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.
2018-06-01
In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.
2014-01-01
We experimentally studied the magneto-photocurrents generated by direct interband transition in InAs/GaSb type II superlattice. By varying the magnetic field direction, we observed that an in-plane magnetic field induces a photocurrent linearly proportional to the magnetic field; however, a magnetic field tilted to the sample plane induces a photocurrent presenting quadratic magnetic field dependence. The magneto-photocurrents in both conditions are insensitive to the polarization state of the incident light. Theoretical models involving excitation, relaxation and Hall effect are utilized to explain the experimental results. PMID:24936166
Video Game-Based Methodology for Business Research
ERIC Educational Resources Information Center
Lawson, Larry L.; Lawson, Catherine L.
2010-01-01
Experimental research in business and economics has exploded in recent years in both laboratory and field settings. The generality of findings from field experiments is limited by the specificity of the experimental environment. Laboratory studies, on the other hand, are criticized for being devoid of the contextual cues that may indicate to…
Alsaggaf, Rotana; O'Hara, Lyndsay M; Stafford, Kristen A; Leekha, Surbhi; Harris, Anthony D
2018-02-01
OBJECTIVE A systematic review of quasi-experimental studies in the field of infectious diseases was published in 2005. The aim of this study was to assess improvements in the design and reporting of quasi-experiments 10 years after the initial review. We also aimed to report the statistical methods used to analyze quasi-experimental data. DESIGN Systematic review of articles published from January 1, 2013, to December 31, 2014, in 4 major infectious disease journals. METHODS Quasi-experimental studies focused on infection control and antibiotic resistance were identified and classified based on 4 criteria: (1) type of quasi-experimental design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. RESULTS Of 2,600 articles, 173 (7%) featured a quasi-experimental design, compared to 73 of 2,320 articles (3%) in the previous review (P<.01). Moreover, 21 articles (12%) utilized a study design with a control group; 6 (3.5%) justified the use of a quasi-experimental design; and 68 (39%) identified their design using the correct nomenclature. In addition, 2-group statistical tests were used in 75 studies (43%); 58 studies (34%) used standard regression analysis; 18 (10%) used segmented regression analysis; 7 (4%) used standard time-series analysis; 5 (3%) used segmented time-series analysis; and 10 (6%) did not utilize statistical methods for comparisons. CONCLUSIONS While some progress occurred over the decade, it is crucial to continue improving the design and reporting of quasi-experimental studies in the fields of infection control and antibiotic resistance to better evaluate the effectiveness of important interventions. Infect Control Hosp Epidemiol 2018;39:170-176.
de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria
2013-11-01
Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.
Tracer tomography: design concepts and field experiments using heat as a tracer.
Doro, Kennedy O; Cirpka, Olaf A; Leven, Carsten
2015-04-01
Numerical and laboratory studies have provided evidence that combining hydraulic tomography with tomographic tracer tests could improve the estimation of hydraulic conductivity compared with using hydraulic data alone. Field demonstrations, however, have been lacking so far, which we attribute to experimental difficulties. In this study, we present a conceptual design and experimental applications of tracer tomography at the field scale using heat as a tracer. In our experimental design, we improve active heat tracer testing by minimizing possible effects of heat losses, buoyancy, viscosity, and changing boundary conditions. We also utilize a cost-effective approach of measuring temperature changes in situ at high resolution. We apply the presented method to the 8 m thick heterogeneous, sandy gravel, alluvial aquifer at the Lauswiesen Hydrogeological Research Site in Tübingen, Germany. Results of our tomographic heat-tracer experiments are in line with earlier work on characterizing the aquifer at the test site. We demonstrate from the experimental perspective that tracer tomography is applicable and suitable at the field scale using heat as a tracer. The experimental results also demonstrate the potential of heat-tracer tomography as a cost-effective means for characterizing aquifer heterogeneity. © 2014, National Ground Water Association.
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2018-05-01
In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
NASA Astrophysics Data System (ADS)
Kozuka, Teruyuki; Yasui, Kyuichi; Tuziuti, Toru; Towata, Atsuya; Lee, Judy; Iida, Yasuo
2009-07-01
Using a standing-wave field generated between a sound source and a reflector, it is possible to trap small objects at nodes of the sound pressure distribution in air. In this study, a sound field generated under a flat or concave reflector was studied by both experimental measurement and numerical calculation. The calculated result agrees well with the experimental data. The maximum force generated between a sound source of 25.0 mm diameter and a concave reflector is 0.8 mN in the experiment. A steel ball of 2.0 mm in diameter was levitated in the sound field in air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.
2015-12-28
Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less
Boundaries of the critical state stability in a hard superconductor Nb3Al in the H-T plane
NASA Astrophysics Data System (ADS)
Chabanenko, V. V.; Vasiliev, S. V.; Nabiałek, A.; Shishmakov, A. S.; Pérez-Rodríguez, F.; Rusakov, V. F.; Szewczyk, A.; Kodess, B. N.; Gutowska, M.; Wieckowski, J.; Szymczak, H.
2013-04-01
The instability of the critical state in a type-II superconductor Nb3Al is studied for the first time for simultaneous consideration of real dependences of thermal and conductive properties of the material on temperature T and magnetic field He. To do this the dependences of specific heat C(T,Hе), magnetization M(T,He) and magnetostriction ΔL(T,He) of the superconductor were investigated experimentally in a strong magnetic field (up to 12 T). The gap width, the coefficient of the linear term, which determines the electronic contribution to the specific heat, the Debye temperature, and other parameters were found using experimental data on the heat capacity in a wide range of temperatures and magnetic fields Hc1 ≤ He ≤ Hc2. From experimental studies of magnetization the dependences of the critical current of the superconductor, Jc(T,He), were reconstructed. The hysteresis loops of magnetization and magnetostriction were calculated using experimental data for temperature and field dependences of the thermal and conductive properties.
Experimental results for a hypersonic nozzle/afterbody flow field
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.
1995-01-01
This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan
2013-01-01
Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan
Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less
Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies
NASA Astrophysics Data System (ADS)
Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann
2012-11-01
Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the Smithsonian Institute, School for Field Studies and Earthwatch. Control student teams worked from single research goals and sets of methods, while experimental teams varied goals, methods, and collaborative activities in Kenya, Costa Rica, Panama, and Ecuador. Results from studies indicate that students who conducted local pilot studies, collaborative symposia, and ongoing, long-term fieldwork generated significantly more data than did control groups. Research reports of the experimental groups were ranked highest by experts, and contributed the most data to international science journals. Data and anecdotal information in this report indicate that structured collaboration in local long-term studies using apprenticeships may increase the potential for students' academic field studies contribution of new information to science.
NASA Astrophysics Data System (ADS)
Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel
2017-10-01
In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.
NASA Astrophysics Data System (ADS)
Knappenberger, Naomi
This dissertation examines factors which may affect the educational effectiveness of science exhibits. Exhibit effectiveness is the result of a complex interaction among exhibit features, cognitive characteristics of the museum visitor, and educational outcomes. The purpose of this study was to determine the relative proportions of field-dependent and field-independent visitors in the museum audience, and to ascertain if the cognitive style of visitors interacted with instructional strategies to affect the educational outcomes for a computer-based science exhibit. Cognitive style refers to the self-consistent modes of selecting and processing information that an individual employs throughout his or her perceptual and intellectual activities. It has a broad influence on many aspects of personality and behavior, including perception, memory, problem solving, interest, and even social behaviors and self-concept. As such, it constitutes essential dimensions of individual differences among museum visitors and has important implications for instructional design in the museum. The study was conducted in the spring of 1998 at the Adler Planetarium and Astronomy Museum in Chicago. Two experimental treatments of a computer-based exhibit were tested in the study. The first experimental treatment utilized strategies designed for field-dependent visitors that limited the text and provided more structure and cueing than the baseline treatment of the computer program. The other experimental treatment utilized strategies designed for field-independent visitors that provided hypothesis-testing and more contextual information. Approximately two-thirds of the visitors were field-independent. The results of a multiple regression analysis indicated that there was a significant interaction between cognitive style and instructional strategy that affected visitors' posttest scores on a multiple-choice test of the content. Field-independent visitors out- performed the field-dependent visitors in the control, baseline, and both experimental treatments. Both field-dependent and field-independent visitor posttest scores increased in the field-dependent experimental treatment and in the field-independent treatment. The most effective treatment for all visitors was the field-independent treatment. Criteria for designing a computer-based exhibit to meet the needs of all visitors were recommended. These included organized, concise text; a structured, rather than exploratory design; and cueing in the form of questions, bold fonts, underlining of important words and concepts, and captioned images.
Relation between experimental and non-experimental study designs. HB vaccines: a case study.
Jefferson, T; Demicheli, V
1999-01-01
To examine the relation between experimental and non-experimental study design in vaccinology. Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.
NASA Technical Reports Server (NTRS)
Holland, Scott Douglas
1991-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.
NASA Technical Reports Server (NTRS)
Kochel, R. Craig
1988-01-01
An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.
Experimental far-field imaging properties of a ~5-μm diameter spherical lens.
Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu
2013-06-01
Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.
Optimizing Experimental Designs: Finding Hidden Treasure.
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
The effects of magnetic nozzle configurations on plasma thrusters
NASA Technical Reports Server (NTRS)
York, Thomas M.
1989-01-01
Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.
Experimental Investigation of Free Field and Shock-Initiated Implosion of Composite Structures
2017-02-06
From- To) 06 - 02 - 2017 Final Report Nov . 2013 - De c . 2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Experimental I nvestigation of Free Fie l d...of experimental studies is perfor med to study the implos i on behavior of a variety of different composite structures under varying loading...Introduction Materials Experimental Procedure DIC Technique Collapse Pressure Predictions Specific and Total Impulse
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
NASA Astrophysics Data System (ADS)
Testik, Firat Yener
An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical objects was investigated. Different scour regimes were identified experimentally and explained theoretically. Proper physical parameterizations on the time evolution and equilibrium scour characteristics were proposed and verified experimentally.
Magnetic effect on dancing bees
NASA Technical Reports Server (NTRS)
Lindauer, M.; Martin, H.
1972-01-01
Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.
Relation between experimental and non-experimental study designs. HB vaccines: a case study
Jefferson, T.; Demicheli, V.
1999-01-01
STUDY OBJECTIVE: To examine the relation between experimental and non- experimental study design in vaccinology. DESIGN: Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. SETTING: Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. RESULTS: Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size. PMID:10326054
Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.
Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F
2012-02-14
Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.
Characterization of hypersonic roughness-induced boundary-layer transition
NASA Astrophysics Data System (ADS)
Tirtey, S. C.; Chazot, O.; Walpot, L.
2011-02-01
The flow-field structure in the vicinity and in the wake of an isolated 3D roughness element has been studied. Different experimental techniques have been coupled and supported by CFD simulation for a good understanding of the flow-field topology. The results have shown strong flow-field similarities for different roughness elements. A model describing the flow structure and interaction mechanisms has been proposed. This model is in good agreement with experimental and CFD results as well as the literature.
Two-electrons quantum dot in plasmas under the external fields
NASA Astrophysics Data System (ADS)
Bahar, M. K.; Soylu, A.
2018-02-01
In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.
Systematic Analysis of Theses in the Field of Emergency Medicine in Turkey.
Cevik, Erdem; Karakus Yilmaz, Banu; Acar, Yahya Ayhan; Dokur, Mehmet
2015-03-01
The aim of this study is to systematically evaluate the theses in the field of emergency medicine in Turkey and to determine whether they were published as a scientific paper. This is a retrospective observational study. Theses in the field of emergency medicine between 1998 and 2013 were browsed from the internet database of National Thesis Center (Council of Higher Education). Study type, both if it was in the field of emergency, or if it was published and the journal's scope of published studies were assessed and recorded in the study chart. 579 theses were included in the study. 27.1% of them were published and 14.9% of them were published in SCI/SCI-E journals. Advisors of theses were emergency medicine specialists in 67.6% of theses and 493 (85.1%) of them were in the field of emergency medicine. 77.4% of theses were observational and 20.9% were experimental study. Most of the experimental studies (72.7%, n=88) were animal studies. It was concluded that very few theses in the field of emergency medicine were published in journals that were indexed in SCI/SCI-E.
Study of curved and planar frequency-selective surfaces with nonplanar illumination
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Webb, Kevin J.
1991-01-01
A locally planar technique (LPT) is investigated for determining the forward-scattered field from a generally shaped inductive frequency-selective surface (FSS) with nonplanar illumination. The results of an experimental study are presented to assess the LPT accuracy. The effects of a nonplanar incident field are determined by comparing the LPT numerical results with a series of experiments with the feed source placed at varying distances from the planar FSS. The limitations of the LPT model due to surface curvature are investigated in an experimental study of the scattered fields from a set of hyperbolic cylinders of different curvatures. From these comparisons, guidelines for applying the locally planar technique are developed.
ERIC Educational Resources Information Center
Gilstrap, Livia L.
2004-01-01
Despite suggestibility researchers' focus on adult behaviors that distort children's reports, whether behaviors examined in experimental work are used in the field is unknown. The current study presents a mutually exclusive and exhaustive hierarchical coding system that reflects interview questioning behaviors of concern in experimental work. The…
Numerical Models for Sound Propagation in Long Spaces
NASA Astrophysics Data System (ADS)
Lai, Chenly Yuen Cheung
Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was constructed which was subsequent used for experimental studies. In additional, a theoretical model was developed for predicting dipole sound fields. The theoretical model can be used to study the effect of a dipole source on the speech intelligibility in long enclosures.
Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.
Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M
2004-10-15
The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.
Study of polarization properties of fiber-optics probes with use of a binary phase plate.
Alferov, S V; Khonina, S N; Karpeev, S V
2014-04-01
We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.
Studies of the Stability and Dynamics of Levitated Drops
NASA Technical Reports Server (NTRS)
Anikumar, A.; Lee, Chun Ping; Wang, T. G.
1996-01-01
This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.
Field study of a shredded-tire embankment.
DOT National Transportation Integrated Search
1994-01-01
This report presents interim data from the ongoing field study of an experimental shredded-tire embankment constructed near Williamsburg, Virginia. Approximately 1.7 million tires were used. This constitutes the largest reported use to date of waste ...
Experimental observation of Lorenz chaos in the Quincke rotor dynamics.
Peters, François; Lobry, Laurent; Lemaire, Elisabeth
2005-03-01
In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.
Experimental observation of Lorenz chaos in the Quincke rotor dynamics
NASA Astrophysics Data System (ADS)
Peters, François; Lobry, Laurent; Lemaire, Elisabeth
2005-03-01
In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.
Alabovskiĭ, V V; Gotovskiĭ, M Iu; Vinokurov, A A; Maslov, O V
2013-01-01
The results of analysis of the literature publications suggest the necessity of experimental studies aimed at investigation of modulating effect of low-frequency magnetic fields on endocrine organs. The present study was carried out using 200 outbred white male rats (body weight 200-220 g). Corticosterone was measured in blood sera following the application of a low-frequency magnetic field (20 and 53 Hz with induction from 0.4 to 6 mT) generated by a Mini-Expert-T apparatus for induction magnetic therapy during 30 minutes. It was shown that the application of the alternating magnetic field to the adrenal region of the rats in the selected frequency and induction ranges caused a significant increase in the serum corticosterone levels. The results of the present study on the hormonal activity of rat adrenals give reason to consider the influence of the alternating magnetic fields as being modulatory. Analysis of the data thus obtained has demonstrated the non-linear dependence of glucocorticoid activity of the rat adrenal glands on the induction strength of the alternating magnetic field.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.
Experimental vibroacoustic testing of plane panels using synthesized random pressure fields.
Robin, Olivier; Berry, Alain; Moreau, Stéphane
2014-06-01
The experimental reproduction of random pressure fields on a plane panel and corresponding induced vibrations is studied. An open-loop reproduction strategy is proposed that uses the synthetic array concept, for which a small array element is moved to create a large array by post-processing. Three possible approaches are suggested to define the complex amplitudes to be imposed to the reproduction sources distributed on a virtual plane facing the panel to be tested. Using a single acoustic monopole, a scanning laser vibrometer and a baffled simply supported aluminum panel, experimental vibroacoustic indicators such as the Transmission Loss for Diffuse Acoustic Field, high-speed subsonic and supersonic Turbulent Boundary Layer excitations are obtained. Comparisons with simulation results obtained using a commercial software show that the Transmission Loss estimation is possible under both excitations. Moreover and as a complement to frequency domain indicators, the vibroacoustic behavior of the panel can be studied in the wave number domain.
Mialdun, A; Ryzhkov, I I; Melnikov, D E; Shevtsova, V
2008-08-22
We report experimental evidence of convection caused by translational vibration of nonuniformly heated fluid in low gravity. The theory of vibrational convection in weightlessness is well developed but direct experimental proof has been missing. An innovative point of the experiment is the observation of a temperature field in the front and side views of the cubic cell. In addition, particle tracing is employed. The evolution of this field is studied systematically in a wide range of frequencies and amplitudes. The flow structures reported in previous numerical studies are confirmed. The transition from four-vortex flow to the pattern with three vortices is observed in the transient state.
Experimental study of the polymer powder film thickness uniformity produced by the corona discharge
NASA Astrophysics Data System (ADS)
Fazlyyyakhmatov, Marsel
2017-01-01
The results of an experimental study of the polymer powder film thickness uniformity are presented. Polymer powder films are produced by the electrostatic field of corona discharge. Epoxy and epoxy-polyester powder films with thickness in the range of 30-120 microns are studied. Experimentally confirmed possibility of using these coatings as protective matching layer of piezoceramic transducers at frequencies of 0.5-15 MHz.
Plant Taxonomy as a Field Study
ERIC Educational Resources Information Center
Dalby, D. H.
1970-01-01
Suggests methods of teaching plant identification and taxonomic theory using keys, statistical analyses, and biometrics. Population variation, genotype- environment interaction and experimental taxonomy are used in laboratory and field. (AL)
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Force fields and scoring functions for carbohydrate simulation.
Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye
2015-01-12
Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV
NASA Technical Reports Server (NTRS)
Malak, M. F.; Hamed, A.; Tabakoff, W.
1986-01-01
The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.
Analytical and experimental study of axisymmetric truncated plug nozzle flow fields
NASA Technical Reports Server (NTRS)
Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.
1972-01-01
Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.
Taylor, Lisa; Poland, Fiona; Harrison, Peter; Stephenson, Richard
2011-01-01
To evaluate a systematic treatment programme developed by the researcher that targeted aspects of visual functioning affected by visual field deficits following stroke. The study design was a non-equivalent control (conventional) group pretest-posttest quasi-experimental feasibility design, using multisite data collection methods at specified stages. The study was undertaken within three acute hospital settings as outpatient follow-up sessions. Individuals who had visual field deficits three months post stroke were studied. A treatment group received routine occupational therapy and an experimental group received, in addition, a systematic treatment programme. The treatment phase of both groups lasted six weeks. The Nottingham Adjustment Scale, a measure developed specifically for visual impairment, was used as the primary outcome measure. The change in Nottingham Adjustment Scale score was compared between the experimental (n = 7) and conventional (n = 8) treatment groups using the Wilcoxon signed ranks test. The result of Z = -2.028 (P = 0.043) showed that there was a statistically significant difference between the change in Nottingham Adjustment Scale score between both groups. The introduction of the systematic treatment programme resulted in a statistically significant change in the scores of the Nottingham Adjustment Scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu
2016-07-15
Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reportedmore » here.« less
Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Keener, Earl R.
1993-01-01
This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.
Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1995-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.
Design and Experimental Study of an Over-Under TBCC Exhaust System.
Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan
2014-01-01
Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.
In pursuit of a science of agriculture: the role of statistics in field experiments.
Parolini, Giuditta
2015-09-01
Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.
Real versus Simulated Mobile Phone Exposures in Experimental Studies
Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.
2015-01-01
We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets. PMID:26346766
2012-07-01
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 12 July 2012 2. REPORT TYPE Final Report 3. DATES COVERED...From – To) 1 October 2008 – 31 January 2012 4. TITLE AND SUBTITLE Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a
Experimental investigation of discharge plasma magnetic confinement in the NSTASR ion thruster
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Fitzgerald, Dennis; Owens, Al
2005-01-01
Magnetic confinement studies were performed on the state-of-the-art NSTAR ion thruster. The goal of the experimental studies was determine the dependence of plasma confinement and plasma uniformity on the strength and shape of the imposed ring-cusp magnetic field.
T- P Phase Diagram of Nitrogen at High Pressures
NASA Astrophysics Data System (ADS)
Algul, G.; Enginer, Y.; Yurtseven, H.
2018-05-01
By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis
The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed atmore » understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
G. Ciovati; Myneni, G.; Stevie, F.; ...
2010-02-22
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati; Myneni, G.; Stevie, F.
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
Computational and Experimental Approaches to Visual Aesthetics
Brachmann, Anselm; Redies, Christoph
2017-01-01
Aesthetics has been the subject of long-standing debates by philosophers and psychologists alike. In psychology, it is generally agreed that aesthetic experience results from an interaction between perception, cognition, and emotion. By experimental means, this triad has been studied in the field of experimental aesthetics, which aims to gain a better understanding of how aesthetic experience relates to fundamental principles of human visual perception and brain processes. Recently, researchers in computer vision have also gained interest in the topic, giving rise to the field of computational aesthetics. With computing hardware and methodology developing at a high pace, the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we present an overview of recent developments in computational aesthetics and how they relate to experimental studies. In the first part, we cover topics such as the prediction of ratings, style and artist identification as well as computational methods in art history, such as the detection of influences among artists or forgeries. We also describe currently used computational algorithms, such as classifiers and deep neural networks. In the second part, we summarize results from the field of experimental aesthetics and cover several isolated image properties that are believed to have a effect on the aesthetic appeal of visual stimuli. Their relation to each other and to findings from computational aesthetics are discussed. Moreover, we compare the strategies in the two fields of research and suggest that both fields would greatly profit from a joined research effort. We hope to encourage researchers from both disciplines to work more closely together in order to understand visual aesthetics from an integrated point of view. PMID:29184491
Computational and Experimental Approaches to Visual Aesthetics.
Brachmann, Anselm; Redies, Christoph
2017-01-01
Aesthetics has been the subject of long-standing debates by philosophers and psychologists alike. In psychology, it is generally agreed that aesthetic experience results from an interaction between perception, cognition, and emotion. By experimental means, this triad has been studied in the field of experimental aesthetics , which aims to gain a better understanding of how aesthetic experience relates to fundamental principles of human visual perception and brain processes. Recently, researchers in computer vision have also gained interest in the topic, giving rise to the field of computational aesthetics . With computing hardware and methodology developing at a high pace, the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we present an overview of recent developments in computational aesthetics and how they relate to experimental studies. In the first part, we cover topics such as the prediction of ratings, style and artist identification as well as computational methods in art history, such as the detection of influences among artists or forgeries. We also describe currently used computational algorithms, such as classifiers and deep neural networks. In the second part, we summarize results from the field of experimental aesthetics and cover several isolated image properties that are believed to have a effect on the aesthetic appeal of visual stimuli. Their relation to each other and to findings from computational aesthetics are discussed. Moreover, we compare the strategies in the two fields of research and suggest that both fields would greatly profit from a joined research effort. We hope to encourage researchers from both disciplines to work more closely together in order to understand visual aesthetics from an integrated point of view.
Phase transition studies of BiMnO3: Mean field theory approximations
NASA Astrophysics Data System (ADS)
Priya K. B, Lakshmi; Natesan, Baskaran
2015-06-01
We studied the phase transition and magneto-electric coupling effect of BiMnO3 by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO3, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO3.
A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)
NASA Astrophysics Data System (ADS)
Garbacz, Piotr; Fischer, Peer; Krämer, Steffen
2016-09-01
Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.
Students' Views about the Nature of Experimental Physics
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive…
Proceedings of the Twelfth NASA Propagation Experimenters Meeting (NAPEX 12)
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1988-01-01
The NASA Propagation Experimenters Meeting was convened on June 9 and 10, 1988. Pilot Field Experiments propagation studies, mobile communication systems, signal fading, communication satellites rain gauge network measurements, atmospheric attenuation studies, optical communication through the atmosphere, and digital beacon receivers were among the topics discussed.
Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chodzko, R.A.; Cross, E.F.; Durran, D.A.
1976-05-03
A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)
Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J
2010-04-22
Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.
USDA-ARS?s Scientific Manuscript database
Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1977-01-01
Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.
Publication Trends of Doctoral Students in Three Fields from 1965-1995.
ERIC Educational Resources Information Center
Lee, Wade M.
2000-01-01
Describes a study that investigated the publication rates of successful doctoral students in the fields of analytical chemistry, experimental psychology, and American literature. Data analysis, including linear regression analysis, revealed differences in publication rates and in solo authorship that mirrored differences between the fields as a…
Design and analysis of field studies with bees: A critical review of the draft EFSA guidance.
Bakker, Frank
2016-07-01
The specific protection goal, primary assessment endpoints, acceptable effect thresholds, and experimental design proposed in the European Food Safety Authority (EFSA) update of the bee guidance document are subjected to critical review. It is concluded that the negligible effect criteria were established without sufficient regulatory definition and without convincing scientific argumentation. For the assessment endpoints, effects on hive strength lack temporal definition and the reduction to numbers of bees is inappropriate to evaluate effects. Restricting mortality assessments to homing failure is not theoretically justified and specific criteria were incorrectly derived. The combination of acute effect estimates with models for chronic stressors is biased risk assessment and a temporal basis for the acceptability of effects is missing. Effects on overwintering success cannot be experimentally assessed using the proposed criteria. The experimental methodology proposed is inappropriate and the logistical consequences, in particular those related to replication and land use are such that field studies are no longer a feasible option for the risk assessment. It may be necessary to explore new lines of thought for the set-up of field studies and to clearly separate experimentation from monitoring. Integr Environ Assess Manag 2016;12:422-428. © 2015 SETAC. © 2015 SETAC.
Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)
NASA Astrophysics Data System (ADS)
Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.
2007-11-01
Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.
All-optical signatures of strong-field QED in the vacuum emission picture
NASA Astrophysics Data System (ADS)
Gies, Holger; Karbstein, Felix; Kohlfürst, Christian
2018-02-01
We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3 +1 -dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.
USDA-ARS?s Scientific Manuscript database
Most water quality studies are conducted at the plot, field, or watershed scale; however, studies that integrate the three scales provide information to scale results obtained at one scale to a greater area. The objective of this study was to analyze runoff and water quality measured (1997-2001) fr...
Reality, locality and all that: "experimental metaphysics" and the quantum foundations
NASA Astrophysics Data System (ADS)
Cavalcanti, Eric G.
2008-10-01
In recent decades there has been a resurge of interest in the foundations of quantum theory, partly motivated by new experimental techniques, partly by the emerging field of quantum information science. Old questions, asked since the seminal article by Einstein, Podolsky and Rosen (EPR), are being revisited. The work of John Bell has changed the direction of investigation by recognising that those fundamental philosophical questions can have, after all, input from experiment. Abner Shimony has aptly termed this new field of enquiry "experimental metaphysics". The objective of this Thesis is to contribute to that body of research, by formalising old concepts, proposing new ones, and finding new results in well-studied areas. Without losing from sight that the appeal of experimental metaphysics comes from the adjective, every major result is followed by clear experimental proposals for quantum-atom optical setups.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.
2017-10-01
The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.
NASA Astrophysics Data System (ADS)
Hou, Fang
With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.
Yuzhen Li
2009-01-01
Previous studies have shown a high correspondence between tree height measurements acquired from airborne LiDAR and that those measured using conventional field techniques. Though these results are very promising, most of the studies were conducted over small experimental areas and tree height was measured carefully or using expensive instruments in the field, which is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Holloway, L
Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less
Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy
2013-10-17
When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.
Phase transition studies of BiMnO{sub 3}: Mean field theory approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmi Priya, K. B.; Natesan, Baskaran, E-mail: nbaski@nitt.edu
We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports.more » Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Zhu, Y.; Zhong, H.
2009-08-01
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less
USDA-ARS?s Scientific Manuscript database
Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...
An Experimental Analysis of the Relation between Assigned Grades and Instructor Evaluations
ERIC Educational Resources Information Center
Smith, Dale L.; Cook, Patrick; Buskist, William
2011-01-01
The perceived relation between assigned student grades and instructor evaluations of teaching has been the subject of much debate, though few laboratory studies have been conducted with adequate controls. Marsh and Roche suggested that experimental field studies may be a particularly promising avenue for further analyses of this relation. The…
Space Weather Studies Using Ground-based Experimental Complex in Kazakhstan
NASA Astrophysics Data System (ADS)
Kryakunova, O.; Yakovets, A.; Monstein, C.; Nikolayevskiy, N.; Zhumabayev, B.; Gordienko, G.; Andreyev, A.; Malimbayev, A.; Levin, Yu.; Salikhov, N.; Sokolova, O.; Tsepakina, I.
2015-12-01
Kazakhstan ground-based experimental complex for space weather study is situated near Almaty. Results of space environment monitoring are accessible via Internet on the web-site of the Institute of Ionosphere (http://www.ionos.kz/?q=en/node/21) in real time. There is a complex database with hourly data of cosmic ray intensity, geomagnetic field intensity, and solar radio flux at 10.7 cm and 27.8 cm wavelengths. Several studies using those data are reported. They are an estimation of speed of a coronal mass ejection, a study of large scale traveling distrubances, an analysis of geomagnetically induced currents using the geomagnetic field data, and a solar energetic proton event on 27 January 2012.
Novelli, Andréa; Vieira, Bruna Horvath; Braun, Andréa Simone; Mendes, Lucas Bueno; Daam, Michiel Adriaan; Espíndola, Evaldo Luiz Gaeta
2016-02-01
Edge-of-field waterbodies in tropical agroecosystems have been reported to be especially prone to pesticide contamination through runoff resulting from intensive irrigation practices and tropical rainfall. In the present study, the effects of runoff from an experimental agricultural field applied with Vertimec(®) 18EC (active ingredient: abamectin) on zebrafish were evaluated. To this end, the experimental field was applied with the Vertimec(®) 18EC dose recommended for strawberry crop in Brazil, whereas another field was treated with water only to serve as control. No effects of runoff water from either plot were recorded on survival. Water from the treated field led to increased growth and gill alterations. In general, these alterations were of the first and second degree, including proliferation of cells between the secondary lamellae, dilation at the lamellar apex, detachment of the respiratory epithelium and aneurism. These results confirm the high toxic potential of Vertimec(®) 18EC and provide evidence that environmental risks are likely to occur in areas subject to runoff containing this pesticide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.
Strelkov, V V; Ganeev, R A
2017-09-04
We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.
Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinschberger, Y.; Hervieux, P.-A.
2015-12-28
We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trendsmore » and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.
1980-02-01
The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
NASA Astrophysics Data System (ADS)
Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.
2017-12-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
NASA Astrophysics Data System (ADS)
Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael
2017-11-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Simplified TiO2 force fields for studies of its interaction with biomolecules
NASA Astrophysics Data System (ADS)
Luan, Binquan; Huynh, Tien; Zhou, Ruhong
2015-06-01
Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.
Predictive and postdictive analysis of forage yield trials
USDA-ARS?s Scientific Manuscript database
Classical experimental design theory, the predominant treatment in most textbooks, promotes the use of blocking designs for control of spatial variability in field studies and other situations in which there is significant variation among heterogeneity among experimental units. Many blocking design...
Experimental and Theoretical Study of Flow Fields Around Ducted-Nacelle Models
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1998-01-01
The flow field near four small-scale ducted-nacelle bodies of revolution has been analytically and experimentally studied to determine exterior and interior mass-flow characteristics, and to measure flow-field overpressures generated by the nacelle's forebody shape. Four nacelle models with the same profile, but of different sizes, were used in the study. Shadowgraph pictures showed inlet shocks attached to the cowl lip (indicating unchoked flow) on all four models, at all the test Mach numbers, through an angle of attack range of 0.0 to 6.0 degrees. Pressure signatures measured in the flow field of the largest of the four nacelle models were compared with those predicted by corrected and uncorrected Whitham theory. At separation distances greater than 3.0 to 4.0 inlet diameters, good agreement was found. Poorer agreement was found at extreme near-field separation distances, but this was attributed to pressure-gage limitations and probe-flow field interactions. The overall favorable results supported a conclusion that corrected Whitham theory was sufficiently accurate to make the nacelle-wing interference-lift code useful for sonic-boom analysis and the preliminary design of supersonic-cruise conceptual aircraft.
NASA Astrophysics Data System (ADS)
Patel, Sandeep; Brooks, Charles L.
2005-01-01
We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66±1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense is roughly equivalent to the underlying fixed-charge CHARMM22 force field.
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Zarenia, M.; Peeters, F. M.
2018-02-01
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
Colloquium: Strong-field phenomena in periodic systems
NASA Astrophysics Data System (ADS)
Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.
2018-04-01
The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.
Alonso-González, P; Albella, P; Neubrech, F; Huck, C; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R
2013-05-17
Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.
The Impact of an Inquiry-Based Geoscience Field Course on Pre-Service Teachers
ERIC Educational Resources Information Center
Nugent, Gwen; Toland, Michael D.; Levy, Richard; Kunz, Gina; Harwood, David; Green, Denise; Kitts, Kathy
2012-01-01
The purpose of this quasi-experimental study was to determine the effects of a field-based, inquiry-focused course on pre-service teachers' geoscience content knowledge, attitude toward science, confidence in teaching science, and inquiry understanding and skills. The field-based course was designed to provide students with opportunities to…
A field study of wind over a simulated block building
NASA Technical Reports Server (NTRS)
Frost, W.; Shahabi, A. M.
1977-01-01
A full-scale field study of the wind over a simulated two-dimensional building is reported. The study develops an experiment to investigate the structure and magnitude of the wind fields. A description of the experimental arrangement, the type and expected accuracy of the data, and the range of the data are given. The data are expected to provide a fundamental understanding of mean wind and turbulence structure of the wind field around the bluff body. Preliminary analysis of the data demonstrates the reliability and completeness of the data in this regard.
Numerical simulation of magnetic interactions in polycrystalline YFeO 3
NASA Astrophysics Data System (ADS)
Lima, E.; Martins, T. B.; Rechenberg, H. R.; Goya, G. F.; Cavelius, C.; Rapalaviciute, R.; Hao, S.; Mathur, S.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO 3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M( H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field ( HE=5590 kOe), anisotropy field ( HA=0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field ( HD=149 kOe) are in good agreement with previous reports on this system.
Field study of a pedestrian bridge of reinforced plastic.
DOT National Transportation Integrated Search
1985-01-01
A discussion of the behavior of the superstructure of a pedestrian bridge fabricated with glass-reinforced plastic under a field load test is presented. Experimental measurements of elastic vertical deflections were 1.8 times greater than those predi...
Experimental realization of open magnetic shielding
NASA Astrophysics Data System (ADS)
Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.
2017-05-01
The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.
Experimental realization of dynamo action: present status and prospects
NASA Astrophysics Data System (ADS)
Giesecke, André; Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Nore, Caroline; Léorat, Jacques
2013-07-01
In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasova, E. A.; Obolenskaya, E. S., E-mail: obolensk@rf.unn.ru; Hananova, A. V.
The sensitivity of classical n{sup +}/n{sup –} GaAs and AlGaN/GaN structures with a 2D electron gas (HEMT) and field-effect transistors based on these structures to γ-neutron exposure is studied. The levels of their radiation hardness were determined. A method for experimental study of the structures on the basis of a differential analysis of their current–voltage characteristics is developed. This method makes it possible to determine the structure of the layers in which radiation-induced defects accumulate. A procedure taking into account changes in the plate area of the experimentally measured barrier-contact capacitance associated with the emergence of clusters of radiation-induced defectsmore » that form dielectric inclusions in the 2D-electron-gas layer is presented for the first time.« less
Experimental Investigation of Effectiveness of Magnetic Field on Food Freezing Process
NASA Astrophysics Data System (ADS)
Suzuki, Toru; Takeuchi, Yuri; Masuda, Kazunori; Watanabe, Manabu; Shirakashi, Ryo; Fukuda, Yutaka; Tsuruta, Takaharu; Yamamoto, Kazutaka; Koga, Nobumitsu; Hiruma, Naoya; Ichioka, Jun; Takai, Kiyoshi
Recently, several food refrigeration equipments that utilize magnetic field have attracted much attention from food production companies, consumers and mass media. However, the effectiveness of the freezers is not scientifically examined. Therefore, the effectiveness should be clarified by experiments or theoretical considerations. In this study, the effect of weak magnetic field (about 0.0005 T) on freezing process of several kinds of foods was investigated by using a specially designed freezer facilitated with magnetic field generator. The investigation included the comparison of freezing curves, drip amount, physicochemical evaluations on color and texture, observation of microstructure, and sensory evaluation. From the results of the control experiments, it can be concluded that weak magnetic field around 0.0005 T provided no significant difference on temperature history during freezing and on the qualities of frozen foods, within our experimental conditions.
NASA Astrophysics Data System (ADS)
Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.
2017-06-01
We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin
2016-03-25
Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less
Experimental Design for Evaluating the Safety Benefits of Railroad Advance Warning Signs
DOT National Transportation Integrated Search
1979-04-01
The report presents the findings and conclusions of a study to develop an experimental design and analysis plan for field testing and evaluation of the accident reduction potential of a proposed new railroad grade crossing advance warning sign. Sever...
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
Ozdemir, Vural; Williams-Jones, Bryn; Graham, Janice E; Preskorn, Sheldon H; Gripeos, Dimitrios; Glatt, Stephen J; Friis, Robert H; Reist, Christopher; Szabo, Sandor; Lohr, James B; Someya, Toshiyuki
2007-04-01
Pharmacogenomics is a hybrid field of experimental science at the intersection of human disease genetics and clinical pharmacology sharing applications of the new genomic technologies. But this hybrid field is not yet stable or fully integrated, nor is science policy in pharmacogenomics fully equipped to resolve the challenges of this emerging hybrid field. The disciplines of human disease genetics and clinical pharmacology contain significant differences in their scientific practices. Whereas clinical pharmacology originates as an experimental science, human disease genetics is primarily observational in nature. The result is a significant asymmetry in scientific method that can differentially impact the degree to which gene-environment interactions are discerned and, by extension, the study sample size required in each discipline. Because the number of subjects enrolled in observational genetic studies of diseases is characteristically viewed as an important criterion of scientific validity and reliability, failure to recognize discipline-specific requirements for sample size may lead to inappropriate dismissal or silencing of meritorious, although smaller-scale, craft-based pharmacogenomic investigations using an experimental study design. Importantly, the recognition that pharmacogenomics is an experimental science creates an avenue for systematic policy response to the ethical imperative to prospectively pursue genetically customized therapies before regulatory approval of pharmaceuticals. To this end, we discuss the critical role of interdisciplinary engagement between medical sciences, policy, and social science. We emphasize the need for development of shared standards across scientific, methodologic, and socioethical epistemologic divides in the hybrid field of pharmacogenomics to best serve the interests of public health.
Flux-trapping during the formation of field-reversed configurations
NASA Astrophysics Data System (ADS)
Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.
1981-10-01
Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.
The Centrifugal Simulation of Blast Parameters.
1983-12-01
a is to be experimentally evaluated. The terms that remain in Equation (1) are not nondimensional; that is, they are not true i-terms. This does not...If necessary and identify by block number This study is concerned with the use oT a centrifuge as an experimental device on which free-field blast...5 SIMILITUDE. .. .. ..... ...... ...... ... 9 Ill. EXPERIMENTAL PROCEDURES .. .. ... ...... ........13 INTRODUCTION
McLeod, K A; Scascitelli, M; Vellend, M
2012-08-01
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection's ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype-environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype-environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Moosavi, S. Amin; Montakhab, Afshin
2015-11-01
Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.
Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın
2012-01-01
The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.
Social Learning and Culture in Child and Chimpanzee.
Whiten, Andrew
2017-01-03
A few decades ago, we knew next to nothing about the behavior of our closest animal relative, the chimpanzee, but long-term field studies have since revealed an undreamed-of richness in the diversity of their cultural traditions across Africa. These discoveries have been complemented by a substantial suite of experimental studies, now bridging to the wild through field experiments. These field and experimental studies, particularly those in which direct chimpanzee-child comparisons have been made, delineate a growing set of commonalities between the phenomena of social learning and culture in the lives of chimpanzees and humans. These commonalities in social learning inform our understanding of the evolutionary roots of the cultural propensities the species share. At the same time, such comparisons throw into clearer relief the unique features of the distinctive human capacity for cumulative cultural evolution, and new research has begun to probe the key psychological attributes that may explain it.
The influence of low-frequency magnetic field on plasma antioxidant capacity and heart rate.
Ciejka, Elzbieta B; Goraca, Anna
2009-01-01
Low-frequency magnetic field is widely applied as magnetotherapy in physiotherapeutic treatment. Recognition of positive and negative effects of the magnetic field has been the subject of numerous studies. Experimental studies concern, among others, the effect of this field on the heart rate and plasma antioxidant capacity. The aim of the study was to check whether a time-variable magnetic field of constant frequency and induction affects the heart rate and plasma antioxidant capacity. The tests were performed on Spraque-Dawley rats exposed to the magnetic field of the following parameters: frequency - 40 Hz, induction - 7 mT, time of exposure - 30 and 60 minutes. The measurements of ECG and plasma antioxidant capacity expressed in the number of reduced iron ions were performed on experimental animals: before, after a single exposure and after 14 days of exposure. A significant decrease of the heart rate was observed after 14 days of exposure. A variable magnetic field of the parameters: frequency - 40 Hz, induction - 7 mT and exposure time of 14 days caused an increase of the organism antioxidant defence, whereas a variable magnetic field of the frequency of 40 Hz, induction - 7 mT and exposure time 60 minutes for 14 days caused a significant decrease of the organism antioxidant defence. The exposure time affects heart rate, plasma antioxidant capacity and the organism defense ability against free radicals.
NASA Technical Reports Server (NTRS)
Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.
1987-01-01
The sound field diffracted by a single smooth hill of finite impedance is studied both analytically, within the context of the theory of Matched Asymptotic Expansions (MAE), and experimentally, under laboratory scale modeling conditions. Special attention is given to the sound field on the diffracting surface and throughout the transition region between the illuminated and the shadow zones. The MAE theory yields integral equations that are amenable to numerical computations. Experimental results are obtained with a spark source producing a pulse of 42 microsec duration and about 130 Pa at 1 m. The insertion loss of the hill is inferred from measurements of the acoustic signals at two locations in the field, with subsequent Fourier analysis on an IBM PC/AT. In general, experimental results support the predictions of the MAE theory, and provide a basis for the analysis of more complicated geometries.
Modeling aspects of human memory for scientific study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Thomas P.; Watson, Patrick; McDaniel, Mark A.
Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closermore » to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.« less
First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz
2017-03-01
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
An experimental investigation of sound radiation from a duct with a circumferentially varying liner
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Silcox, R. J.
1983-01-01
The radiation of sound from an asymmetrically lined duct is experimentally studied for various hard-walled standing mode sources. Measurements were made of the directivity of the radiated field and amplitude reflection coefficients in the hard-walled source section. These measurements are compared with baseline hardwall and uniformly lined duct data. The dependence of these characteristics on mode number and angular location of the source is investigated. A comparison between previous theoretical calculations and the experimentally measured results is made and in general good agreement is obtained. For the several cases presented an asymmetry in the liner impedance distribution was found to produce related asymmetries in the radiated acoustic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.
2017-03-15
The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.
Women in Academic Science: Experimental Findings from Hiring Studies
ERIC Educational Resources Information Center
Ceci, Stephen J.
2018-01-01
Although women are underrepresented in the most mathematically intensive fields, the gender gap in these fields has narrowed over the past 2 decades. In my E. L. Thorndike address I summarized the temporal trends in sex differences for 8 fields and considered factors that drive both the underrepresentation of women and its recent narrowing. I…
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan
2018-05-16
Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review. Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria. The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon. Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.
Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A
2012-03-07
The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.
Light field otoscope design for 3D in vivo imaging of the middle ear
Bedard, Noah; Shope, Timothy; Hoberman, Alejandro; Haralam, Mary Ann; Shaikh, Nader; Kovačević, Jelena; Balram, Nikhil; Tošić, Ivana
2016-01-01
We present a light field digital otoscope designed to measure three-dimensional shape of the tympanic membrane. This paper describes the optical and anatomical considerations we used to develop the prototype, along with the simulation and experimental measurements of vignetting, field curvature, and lateral resolution. Using an experimental evaluation procedure, we have determined depth accuracy and depth precision of our system to be 0.05–0.07 mm and 0.21–0.44 mm, respectively. To demonstrate the application of our light field otoscope, we present the first three-dimensional reconstructions of tympanic membranes in normal and otitis media conditions, acquired from children who participated in a feasibility study at the Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center. PMID:28101416
Investigation of Acoustical Shielding by a Wedge-Shaped Airframe
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John
2006-01-01
Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.
Investigation of Acoustical Shielding by a Wedge-Shaped Airframe
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John
2004-01-01
Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.
Satisfied IUD acceptors as family planning motivators in Sri Lanka.
Fisher, A A; de Silva, V
1986-01-01
In this study, government midwives were teamed with currently satisfied IUD acceptors to strengthen field motivational and recruitment efforts. The objective was to increase the number of new IUD acceptors. In the experimental study areas, a total of 3,019 new IUD acceptors were recruited. Time series regression analysis revealed a significant difference between the experimental and comparison areas that was over and above what might be expected on the basis of the past history of differences between these two areas. These and other findings suggest that teaming currently satisfied acceptors with government field-workers can have a substantial impact on the recruitment of new family planning users.
Experimental artifacts influencing polarization sensitive magneto-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Thirunavukkuarasu, K.; Lu, Z.; Su, L.; Yu, Y.; Cao, L.; Ballotin, M. V.; Christianen, P. C. M.; Zhang, Y.; Smirnov, D.
Since the discovery of graphene, there has been an explosion of research on 2D layered materials such as transition metal dichalcogenides (TMDs). Among several experimental techniques utilized for studying these materials, Raman spectroscopy has proven to be a very powerful tool due to it's sensitivity to layer numbers, interlayer coupling etc. Layered MoS2, member of TMD family, is a typical example with promising applications in nano-optoelectronics. A recent magneto-Raman investigations on MoS2 published by J. Ji etal reported an observation of giant magneto-optical effect. In this work, the intensity of Raman modes exhibited dramatic change in intensities and was attributed to field-induced broken symmetry on Raman scattering cross-section. Due to the ambiguous nature of the interpretation presented in this publication, we performed further Raman studies on MoS2 at high magnetic fields to illustrate the experimental factors overlooked by the previous study. It is highly important to consider the magnetic field-induced rotation of the polarization of the light and its effect on the Raman active phonon modes in anisotropic materials. A detailed report of our magneto-Raman experiments and their outcomes will be presented.
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.
Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.
2015-11-01
Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.
Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting
2016-01-01
Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757
Experimental studies of rock fracture behavior related to hydraulic fracture
NASA Astrophysics Data System (ADS)
Ma, Zifeng
The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.
Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.
2016-12-15
Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically andmore » experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y. J.; Yang, H. Z.; Leong, S. H.
2014-10-20
We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The averagemore » percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sumita; Volk, Trudi; Lumpe, Andrew
2009-06-01
This study examined the effects of an extensive inquiry-based field experience on pre service elementary teachers’ personal agency beliefs, a composite measure of context beliefs and capability beliefs related to teaching science. The research combined quantitative and qualitative approaches and included an experimental group that utilized the inquiry method and a control group that used traditional teaching methods. Pre- and post-test scores for the experimental and control groups were compared. The context beliefs of both groups showed no significant change as a result of the experience. However, the control group’s capability belief scores, lower than those of the experimental group to start with, declined significantly; the experimental group’s scores remained unchanged. Thus, the inquiry-based field experience led to an increase in personal agency beliefs. The qualitative data suggested a new hypothesis that there is a spiral relationship among teachers’ ability to establish communicative relationships with students, desire for personal growth and improvement, ability to implement multiple instructional strategies, and possession of substantive content knowledge. The study concludes that inquiry-based student teaching should be encouraged in the training of elementary school science teachers. However, the meaning and practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom.
Sounding rocket research Aries/Firewheel, series 22, issue 15
NASA Technical Reports Server (NTRS)
Mozer, F. S.
1981-01-01
Rocket experiments in ionospheric particle and field research flow in seven programs during the last decade are summarized. Experimental techniques were developed and are discussed including the double-probe field technique. The auroral zone, polar cap, and equatorial spread F were studied.
Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.
2004-12-01
Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.
Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.
2016-01-01
Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128
Dermol, Janja; Miklavčič, Damijan
2014-12-01
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
The short range anion-H interaction is the driving force for crystal formation of ions in water.
Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre
2009-05-07
The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Reiners, S. J.
1975-01-01
A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.
Radiation dominated acoustophoresis driven by surface acoustic waves.
Guo, Jinhong; Kang, Yuejun; Ai, Ye
2015-10-01
Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.
2017-09-01
The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
The secret lives of experiments: methods reporting in the fMRI literature.
Carp, Joshua
2012-10-15
Replication of research findings is critical to the progress of scientific understanding. Accordingly, most scientific journals require authors to report experimental procedures in sufficient detail for independent researchers to replicate their work. To what extent do research reports in the functional neuroimaging literature live up to this standard? The present study evaluated methods reporting and methodological choices across 241 recent fMRI articles. Many studies did not report critical methodological details with regard to experimental design, data acquisition, and analysis. Further, many studies were underpowered to detect any but the largest statistical effects. Finally, data collection and analysis methods were highly flexible across studies, with nearly as many unique analysis pipelines as there were studies in the sample. Because the rate of false positive results is thought to increase with the flexibility of experimental designs, the field of functional neuroimaging may be particularly vulnerable to false positives. In sum, the present study documented significant gaps in methods reporting among fMRI studies. Improved methodological descriptions in research reports would yield significant benefits for the field. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keskin, Mustafa; Ertaş, Mehmet
2018-04-01
Dynamic magnetic properties of the Ising bilayer system consisting of the mixed (3/2, 5/2) Ising spins with a crystal-field interaction in an oscillating field on a two-layer square lattice is studied by the use of dynamic mean-field theory based on the Glauber-type stochastic. Dynamic phase transition temperatures are obtained and dynamic phase diagrams are presented in three different planes. The frequency dependence of dynamic hysteresis loops is also investigated in detail. We compare the results with some available theoretical and experimental works and observe a quantitatively good agreement with some theoretical and experimental results.
Electrically induced microflows probed by fluorescence correlation spectroscopy.
Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L
2005-03-01
We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.
ELF communications system ecological monitoring program: Pollinating insect studies
NASA Astrophysics Data System (ADS)
Strickler, Karen; Schriber, J. Mark
1994-11-01
High voltage transmission lines and the earth's and other magnetic fields have been shown to affect honeybee reproduction, survival, orientation, and nest structure. ELY EM fields could have similar effects on native megachilid bees. Two species in the genus Megachile were abundant in artificial nests at experimental and control areas in Dickinson and Iron Counties in Michigan. Data on their nest architecture, nest activity, and emergence/mortality were collected between 1983 and 1993. Eight hypotheses concerning the possible effects of ELY EM fields were considered using these data. The ELY antenna has been fully operational since the summer of 1989. Tests of the hypotheses compare control vs. experimental areas before and after the ELY antenna became fully operational.
Self-organization of granular media in airborne ultrasonic fields
NASA Astrophysics Data System (ADS)
Bobrovskaya, A. I.; Stepanenko, D. A.; Minchenya, V. T.
2012-05-01
The article presents results of experimental and theoretical studies of behaviour of granular media (powder materials) in airborne ultrasonic field created by flexurally-vibrating ring-shaped waveguide with resonant frequency in the range 20-40 kHz. Experiments show that action of acoustic radiation forces results in formation of ordered structures in the form of ultrathin walls (monolayers) with number corresponding to the number of ring nodal points. Action of secondary radiation forces (König forces) results in formation of collateral (secondary) walls situated nearby primary walls. Experimental observations are compared with results of modelling of acoustic radiation force field inside the ring by means of COMSOL Multiphysics and MathCad software. Results of the studies can be used in development of devices for ultrasonic separation and concentration of particles as well as for formation of ordered monolayers from spherical particles.
Experimental study of the rotational magnetocaloric effect in KTm(MoO4)2
NASA Astrophysics Data System (ADS)
Tarasenko, Róbert; Tkáč, Vladimír; Orendáčová, Alžbeta; Orendáč, Martin; Feher, Alexander
2018-06-01
An experimental study is presented of the rotational magnetocaloric effect in a KTm(MoO4)2 single crystal at temperatures above 2 K associated with the rotation of a single crystal between the magnetic easy and hard axis in constant magnetic fields up to 5 T. The magnetocaloric properties of KTm(MoO4)2 single crystals are investigated by isothermal magnetization measurements. The maximal rotational entropy change -ΔSR ≈ 9.8 J/(kgK) is achieved at 10 K in a magnetic field of 5 T. The adiabatic rotation of a single crystal in a field of 5 T at an initial temperature of 4.2 K causes cooling of the sample down to 0.5 K, which indicates an interesting possibility of using this material for cooling processes at low temperatures.
Garg, Akhil R; Obermayer, Klaus; Bhaumik, Basabi
2005-01-01
Recent experimental studies of hetero-synaptic interactions in various systems have shown the role of signaling in the plasticity, challenging the conventional understanding of Hebb's rule. It has also been found that activity plays a major role in plasticity, with neurotrophins acting as molecular signals translating activity into structural changes. Furthermore, role of synaptic efficacy in biasing the outcome of competition has also been revealed recently. Motivated by these experimental findings we present a model for the development of simple cell receptive field structure based on the competitive hetero-synaptic interactions for neurotrophins combined with cooperative hetero-synaptic interactions in the spatial domain. We find that with proper balance in competition and cooperation, the inputs from two populations (ON/OFF) of LGN cells segregate starting from the homogeneous state. We obtain segregated ON and OFF regions in simple cell receptive field. Our modeling study supports the experimental findings, suggesting the role of synaptic efficacy and the role of spatial signaling. We find that using this model we obtain simple cell RF, even for positively correlated activity of ON/OFF cells. We also compare different mechanism of finding the response of cortical cell and study their possible role in the sharpening of orientation selectivity. We find that degree of selectivity improvement in individual cells varies from case to case depending upon the structure of RF field and type of sharpening mechanism.
NASA Astrophysics Data System (ADS)
Nir, A.; Doughty, C.; Tsang, C. F.
Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.
Neil H. Berg
1990-01-01
The 10 experimental forests and ranges in California administered by the Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, are described. The purposes of these facilities, and how to request their use for approved scientific study are given, and the natural resource base, data bases, studies, and general features of each are also...
USDA-ARS?s Scientific Manuscript database
Research to measure soil erosion rates in the United States from natural rainfall runoff plots began in the early 1900’s. In Brazil, the first experimental study at the plot-scale was conducted in the 1940’s; however, the monitoring process and the creation of new experimental field plots have not c...
NASA Astrophysics Data System (ADS)
Adhikary, B.; Kulkarni, S.; Carmichael, G. R.; Tang, Y.; Dallura, A.; Mena, M.; Streets, D.; Zhang, Q.
2007-12-01
The Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) was conducted over the Pacific Ocean during the 2006 North American spring season. One of the scientific objectives of the INTEX-B field campaign was to quantify the transport and chemical evolution/aging of Asian air pollution into North America. The field campaign deployed multiple experimental platforms such as satellites, aircrafts and surface measurements stations to study the pollution outflow to North America. Three dimensional chemical transport models were used to provide chemical weather forecasts and assist in flight planning during the mission. The Sulfur Transport and dEposition Model (STEM) is a regional chemical transport model developed at the University of Iowa. The STEM model was involved in providing chemical weather forecasts and assist in flight planning during the INTEX-B intensive field campaign. In this study we will report the STEM model performance of aerosols and trace gases in its ability to capture the pollutant plume with experimental observations obtained from the field campaign. The study will then relate the emissions of trace gases and aerosols to atmospheric composition, sources and sinks using the newly developed emissions inventory for the INTEX-B field campaign.
NASA Astrophysics Data System (ADS)
Safir, Abdelilah; Mudd, David; Yazdanpanah, Mehdi; Dobrokhotov, Vladimir; Sumanasekera, Gamini; Cohn, Robert
2008-03-01
In this work, we report a recent experimental study of high emission current densities exceeding 10mA/cm^2 and breakdown electric field lower than 5Volts/μm from novel cold cathodes such as conical shaped carbon nanopipettes (CNP). CNP were grown by CVD on Pt wire and have apex as sharp as 10nm with length between 3-6μm. The emission experiments were conducted under vacuum in a scanning electron microscope for individual CNP and in a dedicated chamber for bulk samples. CNP's conical bases and low density contribute significantly to the reduction of the screening effect and to the field emission enhancement. The experimental value for the field enhancement factor, γ, was about 867. Comparing emission results taken from CNP and aligned multiwall carbon nanotubes (MWNT) show that the ratio between γCNP and γMWNT is ˜1.6 which contributes to the reduction of screening effect. The emission from multilayers of graphene was also studied. High emission current (20μA) demonstrates promising emission properties of graphene.
The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies.
Van den Berg, Cornelis A T; Bartels, Lambertus W; van den Bergen, Bob; Kroeze, Hugo; de Leeuw, Astrid A C; Van de Kamer, Jeroen B; Lagendijk, Jan J W
2006-10-07
In this study, MR B(+)(1) imaging is employed to experimentally verify the validity of FDTD simulations of electromagnetic field patterns in human anatomies. Measurements and FDTD simulations of the B(+)(1) field induced by a 3 T MR body coil in a human corpse were performed. It was found that MR B(+)(1) imaging is a sensitive method to measure the radiofrequency (RF) magnetic field inside a human anatomy with a precision of approximately 3.5%. A good correlation was found between the B(+)(1) measurements and FDTD simulations. The measured B(+)(1) pattern for a human pelvis consisted of a global, diagonal modulation pattern plus local B(+)(1) heterogeneties. It is believed that these local B(+)(1) field variations are the result of peaks in the induced electric currents, which could not be resolved by the FDTD simulations on a 5 mm(3) simulation grid. The findings from this study demonstrate that B(+)(1) imaging is a valuable experimental technique to gain more knowledge about the dielectric interaction of RF fields with the human anatomy.
Influence of effective stress and dry density on the permeability of municipal solid waste.
Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi
2018-05-01
A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.
USDA-ARS?s Scientific Manuscript database
Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...
Improving precision of forage yield trials: A case study
USDA-ARS?s Scientific Manuscript database
Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to several facto...
Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts
DOT National Transportation Integrated Search
2017-06-30
Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branitsky, A. V.; Grabovski, E. V.; Dzhangobegov, V. V.
The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength onmore » the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.« less
Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.
Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L
2018-06-25
Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.
NASA Astrophysics Data System (ADS)
Akaki, Mitsuru; Yoshizawa, Daichi; Okutani, Akira; Kida, Takanori; Romhányi, Judit; Penc, Karlo; Hagiwara, Masayuki
2017-12-01
Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be manipulated with the use of light or electric field and can be captured by means of conventional experimental techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light, but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly isotropic nature of Sr2CoGe2O7 , we identify this excitation as a purely spin-quadrupolar two-magnon mode.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
ERIC Educational Resources Information Center
Rees, Alan M; Schultz, Douglas G.
An empirical study of the nature and variability of the relevance judgment process was conducted from July 1, 1965 to September 30, 1967. Volume I of the final report presents a literature review and statement of the theoretical framework of the study, a discussion of the experimental design and a summary of data analyses. The study had two…
Hafizi, Leili; Sazgarnia, Ameneh; Mousavifar, Nezhat; Karimi, Mohammad; Ghorbani, Saleh; Kazemi, Mohammad Reza; Emami Meibodi, Neda; Hosseini, Golkoo; Mostafavi Toroghi, Hesam
2014-01-01
The effects of exposure to electromagnetic fields (EMF) on reproduction systems have been widely debated. In this study, we aimed to investigate whether low frequency EMF could ameliorate the in vitro fertilization success rate in Naval medical research institute (NMRI) Mice. In this randomized comparative animal study, ten NMRI mice were randomly divided into 2 equal groups (control and experimental). 10 IU of human chorionic gonadotropin (hCG) was injected intraperitoneally to both groups in order to stimulate ovulating, and ovums were then aspirated and kept in KSOM (modified version of sequential simplex optimization medium with a higher K(+) concentration) culture medium. Metaphase II ovums were separated, and sperms obtained by "swim out" method were added to metaphase II ovums in the culture medium. The experimental group was exposed to 1.3 millitesla pulsed electromagnetic field at 4 kilohertz frequency for 5 hours. To assess the efficacy, we considered the identification of two-pronuclear zygote (2PN) under microscope as fertilizing criterion. Total number of collected ovums in the control and experimental groups was 191 and 173, respectively, from which 58 (30.05%) and 52 (30.36%) ovums were collected from metaphase II, respectively. In vitro fertilization (IVF) success rate was 77% in extremely low frequency- pulsed electromagnetic field (ELFPEMF) for exposed group (experimental), whereas the rate was 68% for control group. Despite increased percentile of IVF success rate in exposed group, there was no statistically significant difference between 2 groups, but this hypothesis has still been stated as a question. Further studies with larger sample sizes and different EMF designs are suggested.
NASA Astrophysics Data System (ADS)
Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.
2017-09-01
AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.
Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L
2011-09-01
This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.
ERIC Educational Resources Information Center
Cavus, Nadire; Ibrahim, Dogan
2007-01-01
The development of collaborative studies in learning has led to a renewed interest in the field of Web-based education. In this experimental study a highly interactive and collaborative virtual teaching environment has been created by supporting Moodle LMS with collaborative learning tool GREWPtool. The aim of this experimental study has been to…
NASA Astrophysics Data System (ADS)
Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.
2014-12-01
Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.
2017-10-01
We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with
EXPERIMENTAL INVESTIGATIONS OF FINE PARTICLE CHARGING BY UNIPOLAR IONS: A REVIEW
The paper gives results of a study relating experimental data to many theories that have been offered in attempts to describe accurately the rate of charge accumulation of fine particles in a unipolar field. The data are reviewed and compiled, and additional particle charging exp...
Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...
Rat Phantom Depth Dose Studies in Electron, X-ray, Gamma-Ray, and Reactor Radiation Fields
1986-12-01
i©™D©/^ ^1[P@^T Rat phantom depth dose studies in electron , Xrayf gamma-ray, and reactor radiation fields M. Dooley D. M. Eagleson G. H. Zeman...energy electrons , bremsstrahlung, and mixed neutron/gamma radiation fields are sometimes used in radiobiological experiments employing rats. This report...have revealed differing sensitivities of experimental animals that have been exposed to cobalt-60 photons, high-energy electrons , high-energy X rays
NASA Astrophysics Data System (ADS)
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
NASA Technical Reports Server (NTRS)
Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.
1978-01-01
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.
NASA Technical Reports Server (NTRS)
Grasza, K.; Palosz, W.; Trivedi, S. B.
1998-01-01
The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.
Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji
2016-10-03
Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.
Experimental Study of Shock Generated Compressible Vortex Ring
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu
2000-11-01
Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.
ERIC Educational Resources Information Center
Gray, Ron
2014-01-01
Inquiry experiences in secondary science classrooms are heavily weighted toward experimentation. We know, however, that many fields of science (e.g., evolutionary biology, cosmology, and paleontology), while they may utilize experiments, are not justified by experimental methodologies. With the focus on experimentation in schools, these fields of…
On the measurement of magnetic viscosity
NASA Astrophysics Data System (ADS)
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
May, Douglas R; Reed, Kendra; Schwoerer, Catherine E; Potter, Paul
2004-04-01
A naturally occurring quasi-experimental longitudinal field study of 87 municipal employees using pretest and posttest measures investigated the effects of an office workstation ergonomics intervention program on employees' perceptions of their workstation characteristics, levels of persistent pain, eyestrain, and workstation satisfaction. The study examined whether reactions differed between younger and older employees. Results revealed that workstation improvements were associated with enhanced perceptions of the workstation's ergonomic qualities, less upper back pain, and greater workstation satisfaction. Among those experiencing an improvement, the perceptions of workstation ergonomic qualities increased more for younger than older employees, supporting the "impressionable years" framework in the psychological literature on aging. Implications for human resources managers are discussed.
Experimental studies in fluid mechanics and materials science using acoustic levitation
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Robey, J.; Arce, A.; Gaspar, M.
1987-01-01
Ground-based and short-duration low gravity experiments have been carried out with the use of ultrasonic levitators to study the dynamics of freely suspended liquid drops under the influence of predominantly capillary and acoustic radiation forces. Some of the effects of the levitating field on the shape as well as the fluid flow fields within the drop have been determined. The development and refinement of measurement techniques using levitated drops with size on the order of 2 mm in diameter have yielded methods having direct application to experiments in microgravity. In addition, containerless melting, undercooling, and freezing of organic materials as well as low melting metals have provided experimental data and observations on the application of acoustic positioning techniques to materials studies.
Experimental and Numerical Study of Drift Alfv'en Waves in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett; Popovich, P.; Carter, T. A.; Auerbach, D.; Schaffner, D.
2009-11-01
We present a study of drift Alfv'en waves in linear geometry using experiments in the Large Plasma Device (LAPD) at UCLA and simulations from the Boundary Turbulence code (BOUT). BOUT solves the 3D time evolution of plasma parameters and turbulence using Braginskii fluid equations. First, we present a verification study of linear drift Alfven wave physics in BOUT, which has been modified to simulate the cylindrical geometry of LAPD. Second, we present measurements of density and magnetic field fluctuations in the LAPD plasma and the correlation of these fluctuations as a function of plasma parameters, including strength of the background field and discharge current. We also compare the measurements to nonlinear BOUT calculations using experimental LAPD profiles.
An analysis of neural receptive field plasticity by point process adaptive filtering
Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor
2001-01-01
Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043
Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
Bornschein, Jörg; Henniges, Marc; Lücke, Jörg
2013-01-01
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938
A laboratory investigation of the variability of cloud reflected radiance fields
NASA Technical Reports Server (NTRS)
Mckee, T. B.; Cox, S. K.
1986-01-01
A method to determine the radiative properties of complex cloud fields was developed. A Cloud field optical simulator (CFOS) was constructed to simulate the interaction of cloud fields with visible radiation. The CFOS was verified by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model. A software library was developed to process, reduce, and display CFOS data. The CFSOS was utilized to study the reflected radiane patterns from simulated cloud fields.
Experimental and computational fluid dynamics studies of mixing of complex oral health products
NASA Astrophysics Data System (ADS)
Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team
2017-11-01
Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).
Numerical and experimental study on a pulsed-dc plasma jet
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Pei, X. K.; Lu, X. P.; Liu, D. W.
2014-06-01
A numerical and experimental study of plasma jet propagation in a low-temperature, atmospheric-pressure, helium jet in ambient air is presented. A self-consistent, multi-species, two-dimensional axially symmetric plasma model with detailed finite-rate chemistry of helium-air mixture composition is used to provide insights into the propagation of the plasma jet. The obtained simulation results suggest that the sheath forms near the dielectric tube inner surface and shields the plasma channel from the tube surface. The strong electric field at the edge of the dielectric field enhances the ionization in the air mixing layer; therefore, the streamer head becomes ring-shaped when the streamer runs out of the tube. The avalanche-to-streamer transition is the main mechanism of streamer advancement. Penning ionization dominates the ionization reactions and increases the electrical conductivity of the plasma channel. The simulation results are supported by experimental observations under similar discharge conditions.
Carbon nanotube emitters and field emission triode
NASA Astrophysics Data System (ADS)
Fan, Zhiqin; Zhang, Binglin; Yao, Ning; Zhang, Lan; Ma, Huizhong; Deng, Jicai
2006-05-01
Based on our study on field emission from multi-walled carbon nanotubes (MWNTs), we experimentally manufactured field emission display (FED) triode with a MWNTs cold cathode, and demonstrated an excellent performance of MWNTs as field emitters. The measured luminance of the phosphor screens was 1.8*10^(3) cd/m2 for green light. The emission is stable with a fluctuation of only 1.5% at an average current of 260 'mu'A.
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, J. D.; Beasley, W. D.
1961-01-01
A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Experimental gravitation in space - Is there a future?
NASA Astrophysics Data System (ADS)
Wharton, R. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M.
Experimental gravitation enters the 1990s with a past full of successes, but with a future full of uncertainties. Intellectually, the field is as vigorous as ever, with major thrusts in three main areas: the search for gravitational radiation, the study of post and post-post Newtonian effects, and the detection of hypothetical feeble new interactions. It is the only branch of space research involved in fundamental physics. But politically and financially, the future is uncertain. Competition for funding and for flight opportunities will be stiff for the foreseeable future, both with other disciplines such as astrophysics, planetary science and the military, and within experimental gravitation itself. Difficult choices lie ahead. This paper reviews the current state of the field and attempts to peer into the future.
Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivarajah, I.; Goodman, D. S.; Wells, J. E.
Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trapmore » and with the amplitude of the off-resonance external ac field.« less
Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.
Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue
2012-10-08
We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.
EXPERIMENTAL DESIGN AND INSTRUMENTATION FOR A FIELD EXPERIMENT
This report concerns the design of a field experiment for a military setting in which the effects of carbon monoxide on neurobehavioral variables are to be studied. ield experiment is distinguished from a survey by the fact that independent variables are manipulated, just as in t...
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Experimental and AI-based numerical modeling of contaminant transport in porous media
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.
Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements.
Akdag, M Zulkuf; Dasdag, Suleyman; Aksen, Feyzan; Isik, Birgul; Yilmaz, Fahri
2006-11-01
Some epidemiological and laboratory studies suggest a possible connection between extremely low-frequency (ELF) magnetic fields and certain illnesses, such as cancer, immune suppression, as well as reproductive toxic effects and abnormalities. Therefore, the aim of this study was to investigate the effects of ELF magnetic fields (1.35 mT) on sperm count, malondialdehyde concentration, the histology of such organs as the testes, brain, liver, and kidney tissues, p53 immunoreactivity of bone marrow, and the serum concentrations of Cu2+, Zn2+, Mn2+, and Fe3+ in rats. Sixteen Sprague-Dawley male rats were divided into two groups. The rats in the experimental group were exposed to an ELF magnetic field 2 hr/day for 2 months (7 days a week). The rats in the control group were not exposed to the ELF magnetic field. The exposure was performed in a Faraday cage (130 x 65 x 80 cm) with grounded shielding against the electric component. The Mann-Whitney U-test was used for the statistical analysis of the data. Magnetic field measurements showed that, under the experimental conditions, the magnetic field-exposure system produced a stable flux density of 1.35+/-0.018 mT and a stable frequency of 50 Hz, with negligible harmonics and no transients. However, no statistically significant alteration was observed in the parameters measured in this study except in Mn2+ concentrations (p<0.001). The present study found no evidence of an adverse effect of ELF magnetic fields on the measured parameters except for significantly increased Mn2+ concentrations (p<0.001).
ERIC Educational Resources Information Center
ERICKSEN, GERALD L.; RYAN, JAMES J.
A REPORT IS GIVEN OF THE FIRST 3 YEARS OF A FIELD STUDY CONDUCTED TO DETERMINE THE EFFECTIVENESS OF SEVERAL PROTOTYPE, SECONDARY MATHEMATICS PROGRAMS THAT WERE PRODUCED BY DIFFERENT CURRICULUM DEVELOPMENT GROUPS. MATHEMATICS TEACHERS WHO HAD NO PREVIOUS EXPERIENCE WITH "MODERN" OR EXPERIMENTAL APPROACHES TO MATHEMATICS TAUGHT A SELECTED…
NASA Astrophysics Data System (ADS)
Kallergi, Maria; Heine, John J.; Wollin, Ernest
2015-03-01
A new technique is proposed and experimentally validated for breast cancer detection and diagnosis. The technique combines magnetic resonance with electrical impedance measurements and has the potential to increase the specificity of magnetic resonance mammography (MRM) thereby reducing false positive biopsy rates. The new magnetic resonance electrical impedance mammography (MREIM) adds a time varying electric field during a supplementary sequence to a standard MRM examination with an apparatus that is "invisible" to the patient. The applied electric field produces a current that creates an additional magnetic field with a component aligned with the bore magnetic field that can alter the native signal in areas of higher electrical conductivity. The justification for adding the electric field is that the electrical conductivity of cancerous breast tissue is approximately 3-40 times higher than normal breast tissue and, hence, conductivity of malignant tissue represents a known clinical disease biomarker. In a pilot study with custom-made phantoms and experimental protocols, it was demonstrated that MREIM can produce, as theoretically predicted, a detectable differential signal in areas of higher electrical conductivity (tumor surrogate regions); the evidence indicates that the differential signal is produced by the confluence of two different effects at full image resolution without gadolinium chelate contrast agent injection, without extraneous reconstruction techniques, and without cumbersome multi-positioned patient electrode configurations. This paper describes the theoretical model that predicts and explains the observed experimental results that were also confirmed by simulation studies.
NASA Astrophysics Data System (ADS)
Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu
2014-11-01
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.
Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...
2015-08-31
The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
The Impact of Farmer Field Schools on Human and Social Capital: A Case Study from Ghana
ERIC Educational Resources Information Center
David, Soniia; Asamoah, Christopher
2011-01-01
Based on a case study of Ghanaian cocoa farmers who attended farmer field schools (FFS), this paper explores the impact of the FFS methodology on farmers' technical knowledge, experimentation, knowledge diffusion, group formation and social skills as a way of assessing whether the relatively high costs associated with the method is justified. We…
Thermodynamic properties for applications in chemical industry via classical force fields.
Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran
2012-01-01
Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.
NASA Astrophysics Data System (ADS)
Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern
2017-04-01
Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.
NASA Astrophysics Data System (ADS)
Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand
2016-09-01
We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.
NASA Astrophysics Data System (ADS)
Tamaki, S.; Sato, F.; Murata, I.
2017-10-01
Boron neutron capture therapy (BNCT) is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established, and many researchers are making efforts to improve the spectrometers used. In the present study, we developed a prototype of a new neutron spectrometer that can measure the neutron spectra more accurately and precisely. The spectrometer is based on the same theory as that of the Bonner sphere spectrometer, and it uses a liquid moderator and an absorber. By carrying out an experimental test of the developed spectrometer, we finally revealed the problems and necessary conditions of the prototype detector.
NASA Astrophysics Data System (ADS)
Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan
Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.
NASA Astrophysics Data System (ADS)
Lee, Jong-Chul; Kim, Woo-Young
In this study, we have measured the dielectric breakdown voltage of transformer oil-based nanofluids in accordance with IEC 156 standard and have investigated the dielectric breakdown performance with the application of an external magnetic field and different volume concentrations of magnetic nanoparticles. It is confirmed that the dielectric breakdown voltage of pure transformer oil is about 10 kV with a gap distance of 1 mm between electrodes. In the case of our transformer oil-based nanofluids with 0.08% < Φ < 0.39% (Φ means the volume concentration of magnetic nanoparticles in the fluid), the dielectric breakdown voltage is three times higher than that of pure transformer oil. Furthermore, when the external magnetic field is applied under the experimental vessel, the dielectric breakdown voltage of the nanofluids is above 40 kV, which is 30% higher than that without the external magnetic field.
Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part
NASA Technical Reports Server (NTRS)
Sadhal, S. S.; Trinh, Eugene H.
1997-01-01
The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.
Portelli, Lucas A; Falldorf, Karsten; Thuróczy, György; Cuppen, Jan
2018-04-01
Experiments on cell cultures exposed to extremely low frequency (ELF, 3-300 Hz) magnetic fields are often subject to multiple sources of uncertainty associated with specific electric and magnetic field exposure conditions. Here we systemically quantify these uncertainties based on exposure conditions described in a group of bioelectromagnetic experimental reports for a representative sampling of the existing literature. The resulting uncertainties, stemming from insufficient, ambiguous, or erroneous description, design, implementation, or validation of the experimental methods and systems, were often substantial enough to potentially make any successful reproduction of the original experimental conditions difficult or impossible. Without making any assumption about the true biological relevance of ELF electric and magnetic fields, these findings suggest another contributing factor which may add to the overall variability and irreproducibility traditionally associated with experimental results of in vitro exposures to low-level ELF magnetic fields. Bioelectromagnetics. 39:231-243, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet
NASA Astrophysics Data System (ADS)
Sretenović, Goran B.; Guaitella, Olivier; Sobota, Ana; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.
2017-03-01
The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5-11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 4 × 1011 cm-3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.
NASA Astrophysics Data System (ADS)
Vilensky, M. A.; Semyachkina-Glushkovskaya, O. V.; Timoshina, P. A.; Berdnikova, V. A.; Kuznetsova, Y. V.; Semyachkin-Glushkovsky, I. A.; Agafonov, D. N.; Tuchin, V. V.
2012-06-01
This paper presents the results of experimental study of full field laser speckle imaging due to cortex microcirculation state monitoring for laboratory rats under conditions of stroke and the introduction of agents. Three groups of experimental animals from five animals in each group were studied. The behavior of blood flow, studied by speckle imaging technique, matched the expected physiological response to an impact.
ERIC Educational Resources Information Center
CARTER, ROY E.; AND OTHERS
THE POTENTIAL ROLE OF CHILDREN IN STIMULATING FAMILY USE OF EDUCATIONAL TELEVISION DURING EVENING HOURS WAS STUDIED. FOUR EXPERIMENTAL CONDITIONS WERE CREATED AMONG TENTH-GRADE SOCIAL STUDIES TEACHERS AND THEIR CLASSES--(1) A DISCUSSION PROCEDURE WAS USED TO STIMULATE VIEWING OF A PUBLIC AFFAIRS SERIES ON THE AREA'S EDUCATIONAL TELEVISION STATION,…
A coupled CFD and wake model simulation of helicopter rotor in hover
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
NASA Technical Reports Server (NTRS)
Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.
1979-01-01
'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.
Physical and mathematical modelling of ladle metallurgy operations. [steelmaking
NASA Technical Reports Server (NTRS)
El-Kaddah, N.; Szekely, J.
1982-01-01
Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.
NASA Technical Reports Server (NTRS)
Everhart, Joel Lee
1988-01-01
A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.
NASA Astrophysics Data System (ADS)
Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu
2009-03-01
Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other papers of the proceedings are published in Journal of Physics: Conference Series. Tournier and Beaugnon review experimental texturing in metallic melts by cooling in magnetic fields, which is modeled in detail in a study by Tournier. Wang et al provide further experimental results on the solidification of Mn-90.4 wt % Sb alloy in magnetic fields. The orientations of grains and particles induced by magnetic fields is reported by Horii et al (rare-earth-doped cuprates), Tanaka et al (barium-bismuth titanate ceramics), Liu and Schwartz (Bi2Sr2CaCu2Ox/AgMg wires) and Tsuda and Sakka (carbon nanotubes). Gielen et al present a model of how to quantify a molecular alignment using magnetic birefringence, and Ando et al simulate the movement of feeble particles in magnetic fields. Hirota et al report the experimental control of the lattice constant in a triangular lattice of feeble magnetic particles. The size separation of diamagnetic particles by magnetic fields is experimentally studied by Tarn et al and theoretically studied by Fukui et al. A setup measuring x-ray diffraction patterns in magnetic fields up to 5 T and temperatures above 200 oC has been developed by Mitsui et al. We hope that this focus issue will help readers to understand several aspects of materials analysis and processing in magnetic fields at the frontier of the science.
NASA Astrophysics Data System (ADS)
Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander
2016-04-01
Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.
We conducted a field experiment in Lake Waccamaw, North Carolina, to elucidate the responses of two unionids (Elliptio waccamawensis and Leptodea ochracea) to varying population densities. Field enclosures at two depths maintained each species in low, mixed culture, and high den...
Development of an improved capability for predicting the response of highway bridges : final report.
DOT National Transportation Integrated Search
1986-01-01
This study compared experimental and analytical stress and deflection response of a simply-supported highway bridge as measured from a field test and as predicted from a finite-element analysis. The field test was conducted on one span of a six-span ...
NASA Astrophysics Data System (ADS)
Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang
2018-05-01
The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.
Reference Stands for Silvicultural Research: A Maine Perspective
Laura S. Kenefic; Alan S. White; Andrew R. Cutko; Shawn Fraver
2005-01-01
Silvicultural experiments should have untreated stand replicates in which development can be tracked over time. Unfortunately, field studies are seldom ideal. This article is one of six in this issue addressing experimental controls. Our focus is the Penobscot Experimental Forest (PEF) in Maine, where a 55-year-old experiment in northern conifer silviculture has an...
NASA Astrophysics Data System (ADS)
Jacquemot, S.
2017-10-01
This paper provides an overview of the results presented at the 26th IAEA Fusion Energy Conference in the field of inertial confinement fusion for energy, covering its various experimental, numerical/theoretical and technological facets, as well as the different paths towards ignition that are currently followed worldwide.
Influence of field dependent critical current density on flux profiles in high Tc superconductors
NASA Technical Reports Server (NTRS)
Takacs, S.
1990-01-01
The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.
Altun, Idiris; Yuksel, Kasim Zafer; Mert, Tufan
2017-01-01
To investigate whether programmable cerebrospinal fluid (CSF) shunts are influenced by exposure to the magnetic field and to compare the effects of magnetic field in 4 different brands of programmable CSF shunts. This experimental study was performed in the laboratory using a novel design of magnetic field. Four types of programmable CSF shunts (Miethke®, Medtronic®, Sophysa® and Codman®Hakim®) were exposed to the magnetic field generated by an apparatus consisting of Helmholtz coil for 5 minutes. In every CSF shunt, initial pressures were adjusted to 110 mm H2O and pressures after exposure to magnetic field were noted. These measurements were implemented at frequencies of 5 Hz, 20 Hz, 30 Hz, 40 Hz, 60 Hz and 80 Hz. In each type, three shunts were utilized and evaluations were made twice for every shunt. At 5, 30, 40 and 60 Hz, Groups 1, 2 and 3 had significantly higher average pressures than Group 4. At 20 and 80 Hz, Groups 1 and 2 had notably different pressure values than Groups 3 and 4. Group 3 displayed the highest pressure, while Group 4 demonstrated the lowest pressure. Exposure to magnetic fields may affect the pressures of programmable CSF shunts. However, further controlled, clinical trials are warranted to elucidate the in-vivo effects of magnetic field exposure.
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun
2013-09-01
The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.
Oscillating plasma bubble and its associated nonlinear studies in presence of low magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megalingam, Mariammal; Sarma, Bornali; Mitra, Vramori
Oscillating plasma bubbles have been created around a cylindrical mesh grid of 75% optical transparency in a DC plasma system with a low magnetic field. Plasma bubbles are created by developing ion density gradient around a cylindrical grid of 20 cm in diameter and 25 cm in height, inserted into the plasma. Relaxation and contraction of the plasma bubbles in the presence of external conditions, such as magnetic field and pressure, have been studied. A Langmuir probe has been used to detect the plasma floating potential fluctuations at different imposed experimental conditions. Nonlinear behavior of the system has been characterized by adoptingmore » nonlinear techniques such as Fast Fourier Transform, Phase Space Plot, and Recurrence Plot. It shows that the system creates highly nonlinear phenomena associated with the plasma bubble under the imposed experimental conditions. A theoretical and numerical model has also been developed to satisfy the observed experimental analysis. Moreover, observations are extended further to study the growth of instability associated with the plasma bubbles. The intention of the present work is to correlate the findings about plasma bubbles and their related instability with the one existing in the equatorial F-region of the ionosphere.« less
Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst
2008-12-01
The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
Corvalán Moya, Carolina; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; Wartenbe, Mark; Rosa, Priscila F. S.; Betts, Jonathan B.; Crooker, Scott A.; Daou, Ramzy
2017-01-01
In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10−8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies. PMID:29117137
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions.
Jaime, Marcelo; Corvalán Moya, Carolina; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F; Wartenbe, Mark; Rosa, Priscila F S; Betts, Jonathan B; Rodriguez, George; Crooker, Scott A; Daou, Ramzy
2017-11-08
In this work, we review single mode SiO₂ fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity ( ΔL/L ) as low as a few parts in one hundred million (≈10 -8 ). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber's index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.
An experimental study of the mechanism of failure of rocks under borehole jack loading
NASA Technical Reports Server (NTRS)
Van, T. K.; Goodman, R. E.
1971-01-01
Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.
NASA Astrophysics Data System (ADS)
Schneider, Jens; Holzer, Frank; Rabe, Carsten; Häupl, Tilmann; Kopinke, Frank-Dieter; Roland, Ulf
2013-04-01
Applying a new experimental design with a capillary glass reactor and plate electrodes outside of the reactor allowed the initiation of discharges in aqueous electrolytes under the influence of a radio-frequency (RF) electromagnetic field. This study focused on the mechanism leading to the initiation of such discharges in the restriction of a glass tube. The light emission correlated with discharges was analysed with optical emission spectroscopy. Electrons with energies between 20 and 45 eV were responsible for the dissociation of water molecules into (excited) OH, H and O radicals. Current-voltage characteristics were measured before and under discharge conditions. Modelling of the experimental setup and simulation of electrical field strength distribution support the hypothesis of the origin of discharges in general and experimental findings such as ring-shaped discharges and a minimum solution conductivity of about 1 S m-1 required for discharge initiation with RF voltages of 2 kV.
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
Jaime, Marcelo; Corvalán Moya, Carolina; Weickert, Franziska; ...
2017-11-08
In this work, we review single mode SiO 2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10 -8). Themore » impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.« less
Experimental observation of Bethe strings
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, N. V., E-mail: nnikit@mail.cern.ch; Sotnikov, V.P., E-mail: sotnikov@physics.msu.ru; Toms, K. S., E-mail: ktoms@mail.cern.ch
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelatedmore » spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.« less
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Astrophysics Data System (ADS)
Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.
2016-06-01
The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.
Plot-scale field experiment of surface hydrologic processes with EOS implications
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.
1992-01-01
Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.
The Fresnel Zone Light Field Spectral Imager
2017-03-23
Marciniak Member AFIT-ENP-MS-17-M-095 Abstract This thesis provides a computational model and the first experimental demonstration of a Fresnel zone...Fresnel propagation. It was validated experimentally and provides excellent demonstration of system capabilities. The experimentally demonstrated system...in the measured light fields, they did not degrade the system’s performance. Experimental demonstration also showed the capability to resolve between
Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer
NASA Astrophysics Data System (ADS)
Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan
2018-01-01
Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.
Domenici, Valentina; Marini, Alberto; Veracini, Carlo Alberto; Zhang, Jing; Dong, Ronald Y
2007-12-21
We present a theoretical and experimental (2)H NMR study of the effect of external magnetic fields on the supramolecular organization of chiral smectic liquid-crystalline mesophases, such as SmC* and re-entrant SmC*. Three experimental cases in which the supramolecular helical structure of the smectic C* phase is unwound by a magnetic field (H), parallel to the helical axes of this phase, are discussed in detail. Unwinding of the helical structure is described by using a theoretical model based on the Landau-de Gennes theory, which allows us to explain the transition temperatures among the SmA, SmC*, and uSmC* phases. The energy-density behavior in the vicinity of the transitions and the value of the critical magnetic field H(C) for unwinding the helical structure are discussed by applying this model to three ferroelectric smectogens (MBHB, 11EB1M7, ZLL7/*), which are studied by (2)H NMR spectroscopy at different magnetic fields (from 2.4 to 9.4 Tesla). Furthermore, the tilt angle of the three smectogens in the SmC* phase has been directly evaluated, for the first time, by comparing the quadrupolar splittings at different magnetic fields. In one case, (2)H NMR angular measurements are used to obtain the tilt angle in the re-entrant smectic C phase.
Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu
2011-10-10
We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken
2007-11-01
Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.
Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study
NASA Technical Reports Server (NTRS)
Paterson, R. W.
1982-01-01
An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
NASA Astrophysics Data System (ADS)
H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong
2005-02-01
Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-05-03
We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.
An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatsu, Yuichiro; Fujita, Norihito; Kato, Yoshihito
Non-isothermal miscible displacements in a radial Hele-Shaw cell were experimentally investigated using a scheme in which room temperature liquids of relatively high viscosity were displaced by high-temperature (80 C), less-viscous liquids. Fundamental characteristics have been presented regarding how the effect of a non-isothermal field on miscible displacement patterns varies in terms of factors such as the viscosity ratio of the more- and less-viscous liquids at 20 C, M{sub 20}, the rate of an increase in the pattern's area, R, and the gap width of the cell, b. The concept of area density was used to quantitatively evaluate the effect ofmore » the non-isothermal fields on the patterns. We have found that the effect of the non-isothermal field on the patterns does not monotonically vary with M{sub 20} and b. In contrast, it increases with R in the present experimental condition. The experimental results can be explained by introducing an assumption in which heat is transferred mainly to the plates of the cell, in other words, the temperature of the more-viscous liquid remains constant, whereas that of the less-viscous liquid spatiotemporally decreases and the viscosity of it increases along with the temperature decrease. Visualization of non-isothermal field in the cell has been done by means of a thermo sheet and the results support the assumption mentioned above. (author)« less
Simulations of DNA stretching by flow field in microchannels with complex geometry.
Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen
2014-01-01
Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.
Shao, Qiang; Shi, Jiye; Zhu, Weiliang
2012-09-28
The ability of molecular dynamics simulation to capturing the transient states within the folding pathway of protein is important to the understanding of protein folding mechanism. In the present study, the integrated-tempering-sampling molecular dynamics (ITS-MD) simulation was performed to investigate the transient states including intermediate and unfolded ones in the folding pathway of a miniprotein, Trp-cage. Three force fields (FF03, FF99SB, and FF96) were tested, and both intermediate and unfolded states with their characteristics in good agreement with experiments were observed during the simulations, which supports the hypothesis that observable intermediates might present in the folding pathway of small polypeptides. In addition, it was demonstrated that FF03 force field as combined with ITS-MD is in overall a more proper force field than the others in reproducing experimentally recorded properties in UVRS, ECD, and NMR, Photo-CIDNP NMR, and IR T-jump experiments, and the folding∕unfolding thermodynamics parameters, such as ΔG(U), ΔC(p), and ΔH(U) (T(m)). In summary, the present study showed that using suitable force field and energy sampling method, molecular dynamics simulation could capture the transient states within the folding pathway of protein which are consistent with the experimental measurements, and thus provide information of protein folding mechanism and thermodynamics.
Gradient magnetometer system balloons
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Tsvetkov, Yury
2005-08-01
Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.
Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Lim, Yeunhwan; Holt, Jeremy W.; Ko, Che Ming
2018-02-01
We construct a new Skyrme interaction Skχm* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48Ca, 68Ni, 120Sn, and 208Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48Ca and 208Pb, and they are found to be consistent with the experimental data.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
Forman, Jason L; Lopez-Valdes, Francisco J; Duprey, Sonia; Bose, Dipan; Del Pozo de Dios, Eduardo; Subit, Damien; Gillispie, Tim; Crandall, Jeff R; Segui-Gomez, Maria
2015-07-01
Road traffic injuries account for 1.3 million deaths per year world-wide. Mitigating both fatalities and injuries requires a detailed understanding of the tolerance of the human body to external load. To identify research priorities, it is necessary to periodically compare trends in injury tolerance research to the characteristics of injuries occurring in the field. This study sought to perform a systematic review on the last twenty years of experimental injury tolerance research, and to evaluate those results relative to available epidemiologic data. Four hundred and eight experimental injury tolerance studies from 1990-2009 were identified from a reference index of over 68,000 papers. Examined variables included the body regions, ages, and genders studied; and the experimental models used. Most (20%) of the publications studied injury to the spine. There has also been a substantial volume of biomechanical research focused on upper and lower extremity injury, thoracic injury, and injury to the elderly - although these injury types still occur with regularity in the field. In contrast, information on pediatric injury and physiological injury (especially in the central nervous system) remains lacking. Given their frequency of injury in the field, future efforts should also include improving our understanding of tolerances and protection of vulnerable road users (e.g., motorcyclists, pedestrians). Copyright © 2015 Elsevier Ltd. All rights reserved.
Systematic Study of Pyroelectricity. Light Scattering and Pyroelectricity in Ferroelectrics
1976-04-01
6 compares the experimental X(Z:)X spectrum near 430 cm with the prediction of Eq. (2) to which a slowly varying background has been...Molecular field theory, Triglycine sulfate, Potassium niobate, Raman scattering, vidicons 20. ABSTRACT (Continue on reverie tide II neceeeary and...ray and neutron scattering studies and which provides the starting point for the generalized molecular field theory of ferroelectricity proposed
Reconstruction of the static magnetic field of a magnetron
NASA Astrophysics Data System (ADS)
Krüger, Dennis; Köhn, Kevin; Gallian, Sara; Brinkmann, Ralf Peter
2018-06-01
The simulation of magnetron discharges requires a quantitatively correct mathematical model of the magnetic field structure. This study presents a method to construct such a model on the basis of a spatially restricted set of experimental data and a plausible a priori assumption on the magnetic field configuration. The example in focus is that of a planar circular magnetron. The experimental data are Hall probe measurements of the magnetic flux density in an accessible region above the magnetron plane [P. D. Machura et al., Plasma Sources Sci. Technol. 23, 065043 (2014)]. The a priori assumption reflects the actual design of the device, and it takes the magnetic field emerging from a center magnet of strength m C and vertical position d C and a ring magnet of strength m R , vertical position d R , and radius R. An analytical representation of the assumed field configuration can be formulated in terms of generalized hypergeometric functions. Fitting the ansatz to the experimental data with a least square method results in a fully specified analytical field model that agrees well with the data inside the accessible region and, moreover, is physically plausible in the regions outside of it. The outcome proves superior to the result of an alternative approach which starts from a multimode solution of the vacuum field problem formulated in terms of polar Bessel functions and vertical exponentials. As a first application of the obtained field model, typical electron and ion Larmor radii and the gradient and curvature drift velocities of the electron guiding center are calculated.
Influence of scale interaction on the transport of a passive scalar in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Dawson, Scott; McKeon, Beverley
2017-11-01
A mildly heated turbulent boundary layer is experimentally studied using particle image velocimetry to measure the velocity field and a Malley probe (Malley et al., 1992; Gordeyev et al., 2014) to measure the passive scalar field. Strong gradients in the passive scalar field are observed to be correlated to the interaction of specific velocity scales, illuminating an effect of scale interaction on the passive scalar field. A resolvent analysis performed on the fluctuating velocity and passive scalar equations of motion is used to identify the most amplified velocity and scalar mode shapes at particular wavenumbers. The superposition of a small number of these modes is shown to reproduce the velocity scale interaction phenomenon observed experimentally, as well as the corresponding strong gradient in the scalar field. This work was made possible through the support of United States Air Force Grants FA9550-16-1-0361 and FA9550-16-1-0232 as well as a National Defense Science and Engineering Graduate (NDSEG) fellowship.
Effect of error field correction coils on W7-X limiter loads
NASA Astrophysics Data System (ADS)
Bozhenkov, S. A.; Jakubowski, M. W.; Niemann, H.; Lazerson, S. A.; Wurden, G. A.; Biedermann, C.; Kocsis, G.; König, R.; Pisano, F.; Stephey, L.; Szepesi, T.; Wenzel, U.; Pedersen, T. S.; Wolf, R. C.; W7-X Team
2017-12-01
In the first campaign Wendelstein 7-X was operated with five poloidal graphite limiters installed stellarator symmetrically. In an ideal situation the power losses would be equally distributed between the limiters. The limiter shape was designed to smoothly distribute the heat flux over two strike lines. Vertically the strike lines are not uniform because of different connection lengths. In this paper it is demonstrated both numerically and experimentally that the heat flux distribution can be significantly changed by non-resonant n=1 perturbation field of the order of 10-4 . Numerical studies are performed with field line tracing. In experiments perturbation fields are excited with five error field trim coils. The limiters are diagnosed with infrared cameras, neutral gas pressure gauges, thermocouples and spectroscopic diagnostics. Experimental results are qualitatively consistent with the simulations. With a suitable choice of the phase and amplitude of the perturbation a more symmetric plasma-limiter interaction can be potentially achieved. These results are also of interest for the later W7-X divertor operation.
NASA Astrophysics Data System (ADS)
Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.
2017-10-01
Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
Dispersive elastic properties of Dzyaloshinskii domain walls
NASA Astrophysics Data System (ADS)
Pellegren, James; Lau, Derek; Sokalski, Vincent
Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.
A novel approach to neutron dosimetry.
Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C
2016-11-01
Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-02-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.
Zhou, Rui; Maisuradze, Gia G.; Suñol, David; Todorovski, Toni; Macias, Maria J.; Xiao, Yi; Scheraga, Harold A.; Czaplewski, Cezary; Liwo, Adam
2014-01-01
To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding. PMID:25489078
Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam
2014-12-23
To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.
Jahandideh, Samad; Abdolmaleki, Parviz; Movahedi, Mohammad Mehdi
2010-02-01
Various studies have been reported on the bioeffects of magnetic field exposure; however, no consensus or guideline is available for experimental designs relating to exposure conditions as yet. In this study, logistic regression (LR) and artificial neural networks (ANNs) were used in order to analyze and predict the melatonin excretion patterns in the rat exposed to extremely low frequency magnetic fields (ELF-MF). Subsequently, on a database containing 33 experiments, performances of LR and ANNs were compared through resubstitution and jackknife tests. Predictor variables were more effective parameters and included frequency, polarization, exposure duration, and strength of magnetic fields. Also, five performance measures including accuracy, sensitivity, specificity, Matthew's Correlation Coefficient (MCC) and normalized percentage, better than random (S) were used to evaluate the performance of models. The LR as a conventional model obtained poor prediction performance. Nonetheless, LR distinguished the duration of magnetic fields as a statistically significant parameter. Also, horizontal polarization of magnetic fields with the highest logit coefficient (or parameter estimate) with negative sign was found to be the strongest indicator for experimental designs relating to exposure conditions. This means that each experiment with horizontal polarization of magnetic fields has a higher probability to result in "not changed melatonin level" pattern. On the other hand, ANNs, a more powerful model which has not been introduced in predicting melatonin excretion patterns in the rat exposed to ELF-MF, showed high performance measure values and higher reliability, especially obtaining 0.55 value of MCC through jackknife tests. Obtained results showed that such predictor models are promising and may play a useful role in defining guidelines for experimental designs relating to exposure conditions. In conclusion, analysis of the bioelectromagnetic data could result in finding a relationship between electromagnetic fields and different biological processes. (c) 2009 Wiley-Liss, Inc.
An improved DNA force field for ssDNA interactions with gold nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiankai; Huai, Ping; Fan, Chunhai
The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones “protecting” hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thusmore » the “protection” by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.« less
An improved DNA force field for ssDNA interactions with gold nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo
2014-06-01
The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.
An improved DNA force field for ssDNA interactions with gold nanoparticles.
Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo
2014-06-21
The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.
NASA Astrophysics Data System (ADS)
Delpueyo, D.; Balandraud, X.; Grédiac, M.
2013-09-01
The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.
Non-linear processes in the Earth atmosphere boundary layer
NASA Astrophysics Data System (ADS)
Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay
2013-04-01
The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components in the form of PAS instruments of processes of geophysical and man-triggered nature; to predict the presence of the features of geophysical nature in the electromagnetic field of the atmosphere boundary surface layer; to study dynamics the analyzed signals coming from the geophysical and man-triggered sources in the electrical and magnetic fields of the atmosphere boundary surface layer; to expose changes of the investigated time series in the periods preceding the appearance of the predicted phenomena; to form clusters of the time series being the features of the predicted events. On the base of the exposed clusters of the time series there have been built the predicting rules allowing to coordinate the probability of appearing the groups of the occurred events. The work is carried out with supporting of Program FPP #14.B37.210668, FPP #5.2071.2011, RFBR #11-05-97518.
Experimental Mathematics and Computational Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Borwein, Jonathan M.
2009-04-30
The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.
Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2018-03-01
We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.
Lee, Jiho; Park, Dongkeun; Michael, Philip C; Noguchi, So; Bascuñán, Juan; Iwasa, Yukikazu
2018-04-01
In this paper, we present experimental results, of a small-model study, from which we plan to develop and apply a full-scale field-shaking system to reduce the screening current-induced field (SCF) in the 800-MHz HTS Insert (H800) of the MIT 1.3-GHz LTS/HTS NMR magnet (1.3G) currently under construction-the H800 is composed of 3 nested coils, each a stack of no-insulation (NI) REBCO double-pancakes. In 1.3G, H800 is the chief source of a large error field generated by its own SCF. To study the effectiveness of the field-shaking technique, we used two NI REBCO double-pancakes, one from Coil 2 (HCoil2) and one from Coil 3 (HCoil3) of the 3 H800 coils, and placed them in the bore of a 5-T/300-mm room-temperature bore low-temperature superconducting (LTS) background magnet. The background magnet is used not only to induce the SCF in the double-pancakes but also to reduce it by the field-shaking technique. For each run, we induced the SCF in the double-pancakes at an axial location where the external radial field Br > 0, then for the field-shaking, moved them to another location where the external axial field Bz ≫ B R . Due to the geometry of H800 and L500, top double-pancakes of 3 H800 coils will experience the considerable radial magnetic field perpendicular to the REBCO tape surface. To examine the effect of the field-shaking on the SCF, we tested each NI REBCO DP in the absence or presence of a radial field. In this paper, we report 77-K experimental results and analysis of the effect and a few significant remarks of the field-shaking.
About soil cover heterogeneity of agricultural research stations' experimental fields
NASA Astrophysics Data System (ADS)
Rannik, Kaire; Kõlli, Raimo; Kukk, Liia
2013-04-01
Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area, which landscape is characterized by till and limestone plains with thin Quaternary cover, the soil cover is more heterogeneous than in previous area. Kuusiku soil cover is more variegated by the soil texture and as well as by the genesis of soils. In addition to Cambisols, Leptosols, Gleysols and Luvisols may be found here as well. The dominating soils in Olustvere research area, which is situated on wavy upland plateau, are Albeluvisols.
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
NASA Astrophysics Data System (ADS)
Poddubnyi, I. I.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V.; Leshukov, A. Yu.; Aleskovskiy, K. V.; Obukhov, D. M.
2016-12-01
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru; Pyatnitskaya, N. Yu.; Razuvanov, N. G.
2016-12-15
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in themore » majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.« less
Evolution of an experimental population of Phytophthora capsici in the field
USDA-ARS?s Scientific Manuscript database
Populations of the vegetable pathogen Phytophthora capsici are often highly diverse, with limited gene flow between fields. To investigate the structure of a newly established, experimental population, an uninfested research field was inoculated with two single zoospore isolates of P. capsici in Sep...
Magnetic Field Suppression of Flow in Semiconductor Melt
NASA Technical Reports Server (NTRS)
Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.
2000-01-01
One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.
More from the Horse's Mouth: What Scientists Say about Science as a Social Practice
ERIC Educational Resources Information Center
Wong, Siu Ling; Hodson, Derek
2010-01-01
This research study sought to identify prominent features of the nature of science (NOS) embedded in authentic scientific inquiry. Fourteen well-established scientists from different parts of the world, working in experimental or theoretical research, in both traditional fields such as astrophysics and rapidly growing research fields such as…
From the Horse's Mouth: What Scientists Say about Scientific Investigation and Scientific Knowledge
ERIC Educational Resources Information Center
Wong, Siu Ling; Hodson, Derek
2009-01-01
This study sought to identify prominent features of the nature of science (NOS) embedded in authentic scientific inquiry. Thirteen well-established scientists from different parts of the world, working in experimental or theoretical research, in both traditional fields such as astrophysics and rapidly growing research fields such as molecular…
USDA-ARS?s Scientific Manuscript database
The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Therefore, these stations are located along field boundaries or in non-representative sites with regards to so...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I.
The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for themore » existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.« less
REBCO tape performance under high magnetic field
NASA Astrophysics Data System (ADS)
Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal
2017-08-01
New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Quasi-experimental evaluation without regression analysis.
Rohrer, James E
2009-01-01
Evaluators of public health programs in field settings cannot always randomize subjects into experimental or control groups. By default, they may choose to employ the weakest study design available: the pretest, posttest approach without a comparison group. This essay argues that natural experiments involving comparison groups are within reach of public health program managers. Methods for analyzing natural experiments are discussed.
Verb Form Indicates Discourse Segment Type in Biological Research Papers: Experimental Evidence
ERIC Educational Resources Information Center
de Waard, Anita; Maat, Henk Pander
2012-01-01
Corpus studies suggest that verb tense is a differentiating feature between, on the one hand, text pertaining to experimental results (involving methods and results) and on the other hand, text pertaining to more abstract concepts (i.e. regarding background knowledge in a field, hypotheses, problems or claims). In this paper, we describe a user…
ERIC Educational Resources Information Center
Bünning, Frank
2013-01-01
Pedagogic approaches to TVET offer a limited range of teaching strategies which make use of experimental learning. Thus experiments were developed for teachers of structural engineering and timber processing technologies and were subject to empirical evaluation by a researcher at the Otto-von-Guericke-University Magdeburg and Kassel University.…
Starkey experimental forest and range.
Valerie. Rapp
2004-01-01
The Starkey Experimental Forest and Range. (Starkey) is a one-of-a-kind, world class research facility, located in the Blue Mountains of northeastern Oregon. Starkey is the primary field location for scientific study of the effects of deer, elk, and cattle on ecosystems. Most of the 28,000-acre forest and range is enclosed by a game-proof fence.The research...
Unique Power Electronics and Drives Experimental Bench (PEDEB) to Facilitate Learning and Research
ERIC Educational Resources Information Center
Anand, S.; Farswan, R. S.; Fernandes, B. G.
2012-01-01
Experimentation is important for learning and research in the field of power electronics and drives. However, a great deal of equipment is required to study the various topologies, controllers, and functionalities. Thus, the cost of establishing good laboratories and research centers is high. To address this problem, the authors have developed a…
Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng
2011-09-01
Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Dagan, Yuval; Ghoniem, Ahmed
2017-11-01
Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.
Modeling place field activity with hierarchical slow feature analysis
Schönfeld, Fabian; Wiskott, Laurenz
2015-01-01
What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279
Murase, Kenya; Konishi, Takashi; Takeuchi, Yuki; Takata, Hiroshige; Saito, Shigeyoshi
2013-07-01
Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.
Experimental and AI-based numerical modeling of contaminant transport in porous media.
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively. Copyright © 2017. Published by Elsevier B.V.
Progressive Failure Studies of Stiffened Panels Subjected to Shear Loading
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Hilburger, Mark W.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Experimental and analytical results are presented for progressive failure of stiffened composite panels with and without a notch and subjected to in plane shear loading well into their postbuckling regime. Initial geometric imperfections are included in the finite element models. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Experimental results from the test include strain field data from video image correlation in three dimensions in addition to other strain and displacement measurements. Results from nonlinear finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for the stitched stiffened composite panels studied.
Simulated imaging properties of a series of magnetic electron lenses
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1995-01-01
The paraxial lens data were determined for a series of symmetrical magnetic lenses of equal lens diameter but variable air gap width for a wide range of lens excitations using the three-dimensional electrodynamic computer code MAFIA. The results are compared with a similar study done by Liebman and Grad wherein the field distributions within the lenses were measured experimentally with a resistance network analogue. Using these fields the lens data were obtained through numerical trajectory tracing. The utility of using MAFIA, instead of experimental methods for lens design is shown by the excellent agreement of the simulated results compared to experiment. Also demonstrated is the capability of using MAFIA to investigate aberration sources such as higher order off-axis magnetic field and space-charge effects.
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
The experimental study of heat transfer around molds inside a model autoclave
NASA Astrophysics Data System (ADS)
Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent
2018-05-01
The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application for broadcast station to conduct field strength measurements and for experimental operation. 1.544 Section 1.544 Telecommunication... General Filing Requirements § 1.544 Application for broadcast station to conduct field strength...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroccia, H; Olguin, E; Culberson, W
2016-06-15
Purpose: Innovations in radiotherapy treatments, such as dynamic IMRT, VMAT, and SBRT/SRS, result in larger proportions of low-dose regions where normal tissues are exposed to low doses levels. Low doses of radiation have been linked to secondary cancers and cardiac toxicities. The AAPM TG Committee No.158 entitled, ‘Measurements and Calculations of Doses outside the Treatment Volume from External-Beam Radiation Therapy’, has been formed to review the dosimetry of non-target and out-of-field exposures using experimental and computational approaches. Studies on historical patients can provide comprehensive information about secondary effects from out-of-field doses when combined with long-term patient follow-up, thus providing significantmore » insight into projecting future outcomes of patients undergoing modern-day treatments. Methods: We present a Monte Carlo model of a Theratron-1000 cobalt-60 teletherapy unit, which historically treated patients at the University of Florida, as a means of determining doses located outside the primary beam. Experimental data for a similar Theratron-1000 was obtained at the University of Wisconsin’s ADCL to benchmark the model for out-of-field dosimetry. An Exradin A12 ion chamber and TLD100 chips were used to measure doses in an extended water phantom to 60 cm outside the primary field at 5 and 10 cm depths. Results: Comparison between simulated and experimental measurements of PDDs and lateral profiles show good agreement for in-field and out-of-field doses. At 10 cm away from the edge of a 6×6, 10×10, and 20×20 cm2 field, relative out-of-field doses were measured in the range of 0.5% to 3% of the dose measured at 5 cm depth along the CAX. Conclusion: Out-of-field doses can be as high as 90 to 180 cGy assuming historical prescription doses of 30 to 60 Gy and should be considered when correlating late effects with normal tissue dose.« less
Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy
NASA Astrophysics Data System (ADS)
Devolder, Thibaut; Schumacher, Hans Werner; Chappert, Claude
This review describes the evolution of the magnetization of uniaxial thin magnets when subjected to fast-rising magnetic-field pulses. We report detailed "all-electrical" experimental investigations of precessional switching on soft uniaxial micrometer-sized thin magnets, and we discuss them using a comprehensive, mostly analytical framework. General criteria are derived for the analytical assessment of the switching ability of any arbitrary set of experimental parameters. For this, we start from the Landau-Lifshitz equation and first consider the precessional switching in a much idealized macrospin, easy-plane loss-free system. We then test the main outputs of this model with time-resolved experiments on advanced Magnetic Random Access Memories (MRAM) cells. Using applied fields above the anisotropy field H k , we prove the quasiperiodic nature of the magnetization trajectory and we demonstrate experimental conditions ensuring a sub-200 ps ballistic magnetization reversal. We then upgrade our model accuracy by taking into account the uniaxial anisotropy and the behavior in hard-axis fields of the order of H k . We derive a simple though reliable estimate of the switching speed; its limiting factors highlight the experimental poor switching reproducibility when close to the minimal hard-axis reversal field H k /2. The latter field does not correspond to the minimal energy cost of the reversal, whose prospective evolution in the future generations of MRAM is predicted. Small departures from the macrospin state are discussed. The effect of damping is modeled using perturbation theory. Finite damping alters the precessional motion periodicity and puts some constraints on the field rise time. A special focus is dedicated to the relaxation-dominated precessional switching: the minimal hard-axis field triggering the switching is shown to be above H k /2 by an extra field cost linked to the damping constant times the square root of M S H k . Finally, the selective addressing and the direct-write of a magnetic cell with combined easy-axis and hard-axis fields are studied. We introduce the concept of bounce and revisit the dynamical astroid to derive the related characteristic reversal durations and their margins. We propose a field timing that is immune to the delay jitter between the combined addressing fields. We finish by investigating briefly the challenges and the promises of the "precessional" strategy for future MRAM generations.
NASA Astrophysics Data System (ADS)
Ünal, A.; Okur, M.
2017-02-01
The possible four stable rotational isomers of 4-phenylbutylamine (4PBA) molecule were experimentally and theoretically studied by vibrational spectroscopy. The FT-IR (4000-400 cm-1) and Raman (3700-60 cm-1) spectra of 4PBA were recorded at room temperature in liquid phase. The complete vibrational wavenumbers and corresponding vibrational assignments of 4PBA molecule were discussed assisted with B3LYP/6-311++G(d,p) level of theory along with scaled quantum mechanics force field (SQM-FF) method. Results from experimental and theoretical data the most stable form of 4PBA molecule was obtained.
2013-01-01
experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a
Experimental and computational results from a large low-speed centrifugal impeller
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.
1993-01-01
An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.
A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement
NASA Astrophysics Data System (ADS)
Mueanploy, Wannapa
2016-04-01
This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.
Magnetorheological effect in the magnetic field oriented along the vorticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.
2014-11-01
In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR responsemore » in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.« less
Assessing the significance of pedobarographic signals using random field theory.
Pataky, Todd C
2008-08-07
Traditional pedobarographic statistical analyses are conducted over discrete regions. Recent studies have demonstrated that regionalization can corrupt pedobarographic field data through conflation when arbitrary dividing lines inappropriately delineate smooth field processes. An alternative is to register images such that homologous structures optimally overlap and then conduct statistical tests at each pixel to generate statistical parametric maps (SPMs). The significance of SPM processes may be assessed within the framework of random field theory (RFT). RFT is ideally suited to pedobarographic image analysis because its fundamental data unit is a lattice sampling of a smooth and continuous spatial field. To correct for the vast number of multiple comparisons inherent in such data, recent pedobarographic studies have employed a Bonferroni correction to retain a constant family-wise error rate. This approach unfortunately neglects the spatial correlation of neighbouring pixels, so provides an overly conservative (albeit valid) statistical threshold. RFT generally relaxes the threshold depending on field smoothness and on the geometry of the search area, but it also provides a framework for assigning p values to suprathreshold clusters based on their spatial extent. The current paper provides an overview of basic RFT concepts and uses simulated and experimental data to validate both RFT-relevant field smoothness estimations and RFT predictions regarding the topological characteristics of random pedobarographic fields. Finally, previously published experimental data are re-analysed using RFT inference procedures to demonstrate how RFT yields easily understandable statistical results that may be incorporated into routine clinical and laboratory analyses.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
Effect of flow field on the performance of an all-vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Kumar, S.; Jayanti, S.
2016-03-01
A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianwei; State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062; Zhang, John Z. H.
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. Inmore » this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.« less
a Study of the Interaction of Atoms with Strong Laser Fields.
NASA Astrophysics Data System (ADS)
Edwards, Mark
1984-02-01
In this thesis three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks which corresponded to the absorption of more than the minimum number of photons required to ionize the atom. The effective orders of nonlinearity, furthermore, showed a striking uniformity. These effects were investigated using a model approximation consisting of a single bound state and m continua. Simple analytic expressions were obtained for the quantities measured in the experiment and the limit m (--->) (INFIN) was obtained. The results showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis. When experimental conditions were varied slightly, strong field turn-on effects were observed in the resonance fluorescence spectrum from a two-level atom (TLA). This experimental result led to the present study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a TLA. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The experimental result was not explained by this result, however. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) which attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. The present study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm('-2).
Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.
2018-05-01
A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
Challis, Jonathan K; Hanson, Mark L; Friesen, Ken J; Wong, Charles S
2014-04-01
This work presents a critical assessment of the state and quality of knowledge around the aquatic photochemistry of human- and veterinary-use pharmaceuticals from laboratory experiments and field observations. A standardized scoring rubric was used to assess relevant studies within four categories: experimental design, laboratory-based direct and indirect photolysis, and field/solar photolysis. Specific metrics for each category are defined to evaluate various aspects of experimental design (e.g., higher scores are given for more appropriate characterization of light source wavelength distribution). This weight of evidence-style approach allowed for identification of knowledge strengths and gaps covering three areas: first, the general extent of photochemical data for specific pharmaceuticals and classes; second, the overall quality of existing data (i.e., strong versus weak); and finally, trends in the photochemistry research around these specific compounds, e.g. the observation of specific and consistent oversights in experimental design. In general, those drugs that were most studied also had relatively good quality data. The four pharmaceuticals studied experimentally at least ten times in the literature had average total scores (lab and field combined) of ≥29, considered decent quality; carbamazepine (13 studies; average score of 31), diclofenac (12 studies; average score of 31), sulfamethoxazole (11 studies; average score of 34), and propranolol (11 studies; average score of 29). Major oversights and errors in data reporting and/or experimental design included: lack of measurement and reporting of incident light source intensity, lack of appropriate controls, use of organic co-solvents in irradiation solutions, and failure to consider solution pH. Consequently, a number of these experimental parameters were likely a cause of inconsistent measurements of direct photolysis rate constants and quantum yields, two photochemical properties that were highly variable in the literature. Overall, the assessment rubric provides an objective and scientifically-defensible set of metrics for assessing the quality of a study. A major recommendation is the development of a method guideline, based on this rubric, for conducting and reporting on photochemical studies that would produce consistent and reliable data for quantitative comparison across studies. Furthermore, an emphasis should be placed on conducting more dual-fate studies involving controlled photolysis experiments in natural sunlight, and whole system fate studies in either natural or artificial systems. This would provide accurate data describing the actual contribution of photolysis to the overall fate of pharmaceuticals in the environment.
Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F
2012-07-01
Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.
In situ impulse test: an experimental and analytical evaluation of data interpretation procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-08-01
Special experimental field testing and analytical studies were undertaken at Fort Lawton in Seattle, Washington, to study ''close-in'' wave propagation and evaluate data interpretation procedures for a new in situ impulse test. This test was developed to determine the shear wave velocity and dynamic modulus of soils underlying potential nuclear power plant sites. The test is different from conventional geophysical testing in that the velocity variation with strain is determined for each test. In general, strains between 10/sup -1/ and 10/sup -3/ percent are achieved. The experimental field work consisted of performing special tests in a large test sand fillmore » to obtain detailed ''close-in'' data. Six recording transducers were placed at various points on the energy source, while approximately 37 different transducers were installed within the soil fill, all within 7 feet of the energy source. Velocity measurements were then taken simultaneously under controlled test conditions to study shear wave propagation phenomenology and help evaluate data interpretation procedures. Typical test data are presented along with detailed descriptions of the results.« less
Microfluidics in microbiology: putting a magnifying glass on microbes.
Siddiqui, Sanya; Tufenkji, Nathalie; Moraes, Christopher
2016-09-12
Microfluidic technologies enable unique studies in the field of microbiology to facilitate our understanding of microorganisms. Using miniaturized and high-throughput experimental capabilities in microfluidics, devices with controlled microenvironments can be created for microbial studies in research fields such as healthcare and green energy. In this research highlight, we describe recently developed tools for diagnostic assays, high-throughput mutant screening, and the study of human disease development as well as a future outlook on microbes for renewable energy.
Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System
Hu, Xueqi; Wang, Jingang; Wei, Gang; Deng, Xudong
2016-01-01
In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field. PMID:27754340
Passive Facebook usage undermines affective well-being: Experimental and longitudinal evidence.
Verduyn, Philippe; Lee, David Seungjae; Park, Jiyoung; Shablack, Holly; Orvell, Ariana; Bayer, Joseph; Ybarra, Oscar; Jonides, John; Kross, Ethan
2015-04-01
Prior research indicates that Facebook usage predicts declines in subjective well-being over time. How does this come about? We examined this issue in 2 studies using experimental and field methods. In Study 1, cueing people in the laboratory to use Facebook passively (rather than actively) led to declines in affective well-being over time. Study 2 replicated these findings in the field using experience-sampling techniques. It also demonstrated how passive Facebook usage leads to declines in affective well-being: by increasing envy. Critically, the relationship between passive Facebook usage and changes in affective well-being remained significant when controlling for active Facebook use, non-Facebook online social network usage, and direct social interactions, highlighting the specificity of this result. These findings demonstrate that passive Facebook usage undermines affective well-being. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating
Tang, Xiaoduan; Xu, Shen; Wang, Xinwei
2013-01-01
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566
ERIC Educational Resources Information Center
Stull, James B.
1986-01-01
Reports on a study measuring foreign-born employees' perceptions of supervisors' acceptance of and openness to "open" messages from the employee. Suggests ways to improve supervisory demonstrations of empathy. (MS)
1983-02-01
blow-off stability and fractional conversion was evaluated for design of an experimental study of these phenomena. The apparatus designed will be...the development of an array of experimental methods and test strategies designed to unravel a complex process that is very difficult to observe directly...this effort of lead field theoretic analysis as a design basis has made that possible. The experimental phase of the effort has three major
1981-08-01
electro - optic effect is investigated both theoretically and experimentally. The theoretical approach is based upon W.A. Harrison’s ’Bond-Orbital Model’. The separate electronic and lattice contributions to the second-order, electro - optic susceptibility are examined within the context of this model and formulae which can accommodate any crystal structure are presented. In addition, a method for estimating the lattice response to a low frequency (dc) electric field is outlined. Finally, experimental measurements of the electro -
Modeling and experimental study on near-field acoustic levitation by flexural mode.
Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu
2009-12-01
Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.
A compact microwave patch applicator for hyperthermia treatment of cancer.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2014-01-01
Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.
NASA Astrophysics Data System (ADS)
Ma, Nan; Jena, Debdeep
2015-03-01
In this work, the consequence of the high band-edge density of states on the carrier statistics and quantum capacitance in transition metal dichalcogenide two-dimensional semiconductor devices is explored. The study questions the validity of commonly used expressions for extracting carrier densities and field-effect mobilities from the transfer characteristics of transistors with such channel materials. By comparison to experimental data, a new method for the accurate extraction of carrier densities and mobilities is outlined. The work thus highlights a fundamental difference between these materials and traditional semiconductors that must be considered in future experimental measurements.
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2007-08-01
This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.
2010-01-01
The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390
Experimental procedures characterizing firebrand generation in wildland fires
Mohamad El Houssami; Eric Mueller; Alexander Filkov; Jan C Thomas; Nicholas Skowronski; Michael R Gallagher; Ken Clark; Robert Kremens; Albert Simeoni
2016-01-01
This study aims to develop a series of robust and efficient methodologies, which can be applied to understand and estimate firebrand generation and to evaluate firebrand showers close to a fire front. A field scale high intensity prescribed fire was conducted in the New Jersey Pine Barrens in March 2013. Vegetation was characterised with field and remotely sensed data...
ERIC Educational Resources Information Center
Metallinos, Nikos
This paper suggests specific experimental designs, criteria measures, and testing procedures for the empirical study of various field forces operative in the structure of the television picture. The purpose of the paper is twofold: first, to illustrate, through selected videotapes, the various field forces and, second, to provide specific…
A novel platform to study magnetized high-velocity collisionless shocks
Higginson, D. P.; Korneev, Ph; Béard, J.; ...
2014-12-13
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
A novel platform to study magnetized high-velocity collisionless shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, D. P.; Korneev, Ph; Béard, J.
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
Thompson, Joe David
2016-08-03
Experimental results presented during the 2016 International Conference on Strongly Correlated Electron Systems (SECS2016) not only reflect the breadth of topics being explored in the field of strongly correlated systems but also the remarkable progress in discovery and understanding that is being made from their study. Lastly, this brief summary highlights just a few of the exciting experimental developments discussed at SCES2016.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2017-04-22
signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear
The San Dimas experimental forest: 50 years of research
Paul H. Dunn; Susan C. Barro; Wade G. Wells; Mark A Poth; Peter M. Wohlgemuth; Charles G. Colver
1988-01-01
The San Dimas Experimental Forest serves as a field laboratory for studies of chaparral and related ecosystems, and has been recognized by national and international organizations. It covers 6,945 ha (17,153 acres) in the foothills of the San Gabriel Mountains northeast of Los Angeles, and has a typical Mediterranean-type climate. The Forest encompasses the San Dimas...
Viewing Forests Through a Historical Lens
Noreen Parks; Eric [< em> featured scientist< /em> ] Knapp
2009-01-01
Past records on fire-resilient, biodiverse stands could offer models for the future. This year marks the centennial of the Forest Serviceâs nationwide network of 80 experimental forests and ranges, which serve as field laboratories for long-term studies on the science and management of national forests. At the Stanislaus-Tuolumne Experimental Forest in the central...
Changing Peer Perceptions and Victimization through Classroom Arrangements: A Field Experiment
ERIC Educational Resources Information Center
van den Berg, Yvonne H. M.; Segers, Eliane; Cillessen, Antonius H. N.
2012-01-01
The purpose of this study was to determine the effect of an experimental manipulation of distance between classmates on peer affiliations and classroom climate. Participants were 651 10-to-12 year-old children (48% boys) from 27 Grade 5 and Grade 6 classrooms of 23 schools, who were assigned to an experimental or a control condition. Peer…
Dukkipati, S Shekar; Chihi, Aouatef; Wang, Yiwen; Elbasiouny, Sherif M
2017-01-01
The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic ( G93A ) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.
Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor
2018-03-01
The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.
Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark
2015-11-18
Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut station make it a suitable site for Phase II experimental hut evaluations of novel vector control products, which aim for improved efficacy against pyrethroid-resistant malaria vectors to WHOPES standards. The resistance genes identified can be used as markers for further studies investigating the resistance management potential of novel mixture LLIN and IRS products tested at the site.
Hickling, Susannah; Lei, Hao; Hobson, Maritza; Léger, Pierre; Wang, Xueding; El Naqa, Issam
2017-02-01
The aim of this work was to experimentally demonstrate the feasibility of x-ray acoustic computed tomography (XACT) as a dosimetry tool in a clinical radiotherapy environment. The acoustic waves induced following a single pulse of linear accelerator irradiation in a water tank were detected with an immersion ultrasound transducer. By rotating the collimator and keeping the transducer stationary, acoustic signals at varying angles surrounding the field were detected and reconstructed to form an XACT image. Simulated XACT images were obtained using a previously developed simulation workflow. Profiles extracted from experimental and simulated XACT images were compared to profiles measured with an ion chamber. A variety of radiation field sizes and shapes were investigated. XACT images resembling the geometry of the delivered radiation field were obtained for fields ranging from simple squares to more complex shapes. When comparing profiles extracted from simulated and experimental XACT images of a 4 cm × 4 cm field, 97% of points were found to pass a 3%/3 mm gamma test. Agreement between simulated and experimental XACT images worsened when comparing fields with fine details. Profiles extracted from experimental XACT images were compared to profiles obtained through clinical ion chamber measurements, confirming that the intensity of XACT images is related to deposited radiation dose. Seventy-seven percent of the points in a profile extracted from an experimental XACT image of a 4 cm × 4 cm field passed a 7%/4 mm gamma test when compared to an ion chamber measured profile. In a complicated puzzle-piece shaped field, 86% of the points in an XACT extracted profile passed a 7%/4 mm gamma test. XACT images with intensity related to the spatial distribution of deposited dose in a water tank were formed for a variety of field sizes and shapes. XACT has the potential to be a useful tool for absolute, relative and in vivo dosimetry. © 2016 American Association of Physicists in Medicine.
Adams, Ryan F.; Morrow, William S.
2015-09-03
The July 2013 study consisted of three scenarios: fish behavior, single gun assessment, and experimental barrier evaluation. The fish behavior scenario simulated the pond conditions from previous studies. Two 80-in3 water guns were fired in the south end of the testing pond. Pressures essentially doubled from the testing of the single 80-in3 water gun. The single gun assessment scenario sought to replicate the setup of the 80-in3 scenario in September 2012, but with additional sensors to better define the pressure field. The 5-lb/in2 target pressure field continued to show a radius ranging from 40 to 45 feet, dependent on the pressure of the input air. The final scenario, the experimental barrier evaluation, showed that a two-dimensional continuous plane of 5 lb/in2 can be created between two 80-in3 water guns to a separation of 99 feet and a depth of 6.5 feet with 1,500 lb/in2 of input air.
Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T
2012-07-01
In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-01-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc. PMID:23818175
NASA Astrophysics Data System (ADS)
Dudin, S. M.; Novitskiy, D. V.
2018-05-01
The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han
2018-01-01
In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.
Detection of internal fields in double-metal terahertz resonators
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...
2017-02-06
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.
NASA Astrophysics Data System (ADS)
Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.
The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' 09°10'00''N, 70°13'49'' 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 36, respectively, for the five-month experiment, and by a factor 30 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.
2018-02-01
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.
NASA Astrophysics Data System (ADS)
Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-01-01
In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.
An Indexing Coverage Study of Toxicological Literature
ERIC Educational Resources Information Center
Montgomery, Ruth Reinke
1973-01-01
The goal of this study was an appraisal of indexing coverage for the interdisciplinary field of toxicology. Information of research significance was limited to primary literature, defined as published documents containing original data from experimental work or case studies. (6 references) (Author/NH)
Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.-W.; Liao, W.-T.; Peters, Thorsten
We study the creation of stationary light pulses (SLPs), i.e., light pulses without motion, based on the effect of electromagnetically induced transparency with two counterpropagating coupling fields in cold atoms. We show that the Raman excitations created by counterpropagating probe and coupling fields prohibit the formation of SLPs in media of cold and stationary atoms such as laser-cooled atom clouds, Bose condensates or color-center crystals. A method is experimentally demonstrated to suppress these Raman excitations and SLPs are realized in laser-cooled atoms. Furthermore, we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg gratingmore » can be established. Our work advances the understanding of SLPs and opens a new avenue to SLP studies for few-photon nonlinear interactions.« less
Yin, Yu-Feng; Lin, Yen-Chen; Tsai, Tsung-Han; Shen, Yi-Chun; Huang, Jianjang
2013-01-15
In recent years, researchers have demonstrated negative refraction theoretically and experimentally by pumping optical power into photonic crystal (PhC) or waveguide structures. The concept of negative refraction can be used to create a perfect lens that focuses an object smaller than the wavelength. By inserting two-dimensional PhCs into the peripheral of a semiconductor light emitting structure, this study presents an electroluminescent device with negative refraction in the visible wavelength range. This approach produces polarization dependent collimation behavior in far-field radiation patterns. The modal dispersion of negative refraction results in strong group velocity modulation, and self-focusing and -defocusing behaviors are apparent from light extraction. This study further verifies experimental results by using theoretic calculations based on equifrequency contours.
Physical phenomena in mercury ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1979-01-01
Experimental tests results demonstrating that reductions in screen grid thickness enhance the performance of ion thruster grids are presented. Shaping of the screen hole cross section is shown on the other hand not to affect performance substantially. The effect of the magnetic field in the vicinity of the hollow cathode on cathode performance is studied and test results are presented that show reductions in keeper voltages of a few volts can be realized by judicious applications of fields on the order of 100 gauss. The plasma downstream of a SERT 2 thruster operating without high voltage is studied. A model describing electron escape from the thruster under these conditions is discussed. A model defining the performance of the baffle aperture of an ion thruster is refined and experimental verification of the model is undertaken.
A theoretical study of interaction effects on the remanence curves of particulate dispersions
NASA Astrophysics Data System (ADS)
Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.
1990-05-01
The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.
Effect of scale on the behavior of atrazine in surface waters
Capel, P.D.; Larson, S.J.
2001-01-01
Field runoff is an important transport mechanism by which agricultural pesticides, including atrazine, move into the hydrologic environment. Atrazine is chosen because it is widely used, is transported in runoff relatively easily, is widely observed in surface waters, and has relatively little loss in the stream network. Data on runoff of atrazine from experimental plot and field studies is combined with annual estimates of load in numerous streams and rivers, resulting in a data set with 408 observations that span 14 orders of magnitude in area. The load as a percent of use (LAPU) on an annual basis is the parameter that is compared among the studies. There is no difference in the mean or range of LAPU values for areas from the size of experimental field plots (???0.000023 ha) and small watersheds (<100 000 ha). The relatively invariant LAPU value observed across a large range of watershed areas implies that the characteristics of atrazine itself (application method and chemical properties) are important in determining the extent of runoff. The variable influences on the extent of runoff from individual watershed characteristics and weather events are superimposed on the relatively invariant LAPU value observed across the range of watershed areas. The results from this study establish the direct relevance for agricultural field plot studies to watershed studies across the full range of scale.
High temperature microelectrophoresis studies of the solid oxide/water interface
NASA Astrophysics Data System (ADS)
Fedkin, Mark Valentinovich
Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.
Half wavelength dipole antennas over stratified media
NASA Technical Reports Server (NTRS)
Latorraca, G. A.
1972-01-01
Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Strong fields and neutral particle magnetic moment dynamics
NASA Astrophysics Data System (ADS)
Formanek, Martin; Evans, Stefan; Rafelski, Johann; Steinmetz, Andrew; Yang, Cheng-Tao
2018-07-01
Interaction of magnetic moment of point particles with external electromagnetic fields experiences unresolved theoretical and experimental discrepancies. In this work we point out several issues within relativistic quantum mechanics and QED and we describe effects related to a new covariant classical model of magnetic moment dynamics. Using this framework we explore the invariant acceleration experienced by neutral particles coupled to an external plane wave field through the magnetic moment: we study the case of ultrarelativistic Dirac neutrinos with magnetic moment in the range of 10‑11 to 10‑20 μ B; and we address the case of slowly moving neutrons. We explore how critical accelerations for neutrinos can be experimentally achieved in laser pulse interactions. The radiation of accelerated neutrinos can serve as an important test distinguishing between Majorana and Dirac nature of neutrinos.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
Experimental Investigations on Two Potential Sound Diffuseness Measures in Enclosures
NASA Astrophysics Data System (ADS)
Bai, Xin
This study investigates two different approaches to measure sound field diffuseness in enclosures from monophonic room impulse responses. One approach quantifies sound field diffuseness in enclosures by calculating the kurtosis of the pressure samples of room impulse responses. Kurtosis is a statistical measure that is known to describe the peakedness or tailedness of the distribution of a set of data. High kurtosis indicates low diffuseness of the sound field of interest. The other one relies on multifractal detrended fluctuation analysis which is a way to evaluate the statistical self-affinity of a signal to measure diffuseness. To test these two approaches, room impulse responses are obtained under varied room-acoustic diffuseness configurations, achieved by using varied degrees of diffusely reflecting interior surfaces. This paper will analyze experimentally measured monophonic room impulse responses, and discuss results from these two approaches.
NASA Astrophysics Data System (ADS)
Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.
2015-12-01
In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.
Ciejka, Elżbieta; Kowalczyk, Agata; Gorąca, Anna
2014-01-01
Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency mag- netic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (1L.F-MF) on the concentration ofsullhydryl groups (-SH) and proteins in liver tissues of experimental animals de- pending on the time of exposure to the field. Twenty one Sprague-D)awley male rats, aged 3-4 months were randomly divided into 3 experimental groups (each containing 7 animals): controls (group I), the rats exposed to IEI.F-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy), 30 min/day for 2 weeks (group II) and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III). The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of-SH groups and total protein levels in the liver tissues. The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure.
Ye, Hui; Steiger, Amanda
2015-08-12
In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural basis of cell-field interaction as well as the biological effects of electric stimulation.
Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aguanno, G.; Mattiucci, N.; C. M. Bowden Facility, Building 7804, RDECOM, Redstone Arsenal, Alabama 35898
2010-01-15
We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play anmore » essential role.« less
Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas
2016-01-01
Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the mechanisms of pathogenicity of avian malaria parasites and their influence on bird populations. PMID:27434058
Formation of the Dayside Magnetopause and Its Boundary Layers Under the Radial IMF
NASA Astrophysics Data System (ADS)
Pi, Gilbert; Němeček, Zdeněk.; Å afránková, Jana; Grygorov, Kostiantyn; Shue, Jih-Hong
2018-05-01
The global structure of magnetopause boundary layers under the radial interplanetary magnetic field (IMF) conditions is studied by a comparison of experimental and simulation results. In magnetohydrodynamic simulations, the hemispherical asymmetry of the reconnection locations was found. The draped field adjacent to the magnetopause points northward in the Northern Hemisphere, but it is oriented southward in the Southern Hemisphere at the beginning of the simulation for negative IMF Bx. The magnetopause region affected by the positive IMF Bz component enlarges over time, and the density profile exhibit a north-south asymmetry near the magnetopause. The experimental part of the study uses the Time History of Events and Macroscale Interactions during Substorm data. We analyze profiles of the plasma parameters and magnetic field as well as the ion pitch-angle distributions. The nonsimultaneous appearance of parallel and antiparallel aligned flows suggests two spatially separated sources of these flows. We have identified (1) the inner part of the low-latitude boundary layer (LLBL) on closed magnetic field lines; (2) the outer LLBL on open field lines; (3) the inner part of the magnetosheath boundary layer (MSBL) formed by dayside reconnection in the Southern Hemisphere; and (4) the outer MSBL resulting from lobe reconnection in the Northern Hemisphere.
Do dielectric nanostructures turn metallic in high-electric dc fields?
Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A
2014-11-12
Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.
Effects of low-frequency magnetic fields on embryonic development and pregnancy.
Juutilainen, J
1991-06-01
Experimental and epidemiologic studies on the effects of low-frequency magnetic fields on pregnancy are reviewed. The literature suggests that these fields have adverse effects on chick embryo development. The interaction mechanism is not known. The results of experiments with mammals are inconsistent. There is more evidence of effects on mice than on rats, and the data suggest that fetal loss might be increased rather than malformations. Most of the epidemiologic studies related to pregnancy and low-frequency magnetic fields have concerned operators of a video display terminal (VDT). The results do not provide evidence for an association between adverse pregnancy outcome and use of a VDT. Other (stronger) sources of low-frequency magnetic fields have been addressed in only a few studies. It is not yet possible to conclude whether occupational or residential exposure to low-frequency magnetic fields affects human prenatal development. There is an apparent need for further investigation.
NASA Astrophysics Data System (ADS)
Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang
2014-01-01
Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.
NASA Astrophysics Data System (ADS)
Gilson, Erik; Caspary, Kyle; Ebrahimi, Fatima; Goodman, Jeremy; Ji, Hantao; Nuñez, Tahiri; Wei, Xing
2016-10-01
The liquid metal magnetorotational instability experiment at PPPL is designed to search for the MRI in a controlled laboratory setup. MRI is thought to be the primary mechanism behind turbulence in accretion disks, leading to an enhanced effective viscosity that can explain observed fast accretion rates. The apparatus has several key differences from an accretion disk. The top and bottom surfaces of the vessel exert stresses on the surfaces of the working fluid. There are no surface stresses on an accretion disk, but rather a free-surface. To interpret experimental results, the Spectral Finite Element Maxwell and Navier Stokes (SFEMaNS) code (Guermond et al., 2009) has been used to simulate experiments in the MRI apparatus and study MRI onset in the presence of residual flows induced by the boundaries. These Ekman flows lead to the generation of radial magnetic fields that can obfuscate the MRI signal. Simulation results are presented that show the full spatial distribution of the velocity field and the magnetic field over a range of experimental operating parameters, including both above and below the expected MRI threshold. Both the residual flow and the radial magnetic field at the location of the diagnostics are computed for comparisons with experimental results. This research is supported by DOE, NSF, and NASA.
Field emission characteristics of a small number of carbon fiber emitters
NASA Astrophysics Data System (ADS)
Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim
2016-09-01
This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.
Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites
NASA Astrophysics Data System (ADS)
Kao, A.; Gao, J.; Pericleous, K.
2018-01-01
In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator
NASA Astrophysics Data System (ADS)
Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi
2009-08-01
The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.
Qin, Frank G F; Mawson, John; Zeng, Xin An
2011-05-30
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied.
Qin, Frank G. F.; Mawson, John; Zeng, Xin An
2011-01-01
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied. PMID:24957615
NASA Astrophysics Data System (ADS)
Giraudeau, A.; Pierron, F.
2010-06-01
The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.
Japan's research on particle clouds and sprays
NASA Technical Reports Server (NTRS)
Sato, Jun'ichi
1995-01-01
Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.
Field gradients can control the alignment of nanorods.
Ooi, Chinchun; Yellen, Benjamin B
2008-08-19
This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.
Experimental optimization of directed field ionization
NASA Astrophysics Data System (ADS)
Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.
On matching the anode ring with the magnetic field in an ATON-type Hall effect thruster
NASA Astrophysics Data System (ADS)
Liu, Jinwen; Li, Hong; Zhang, Xu; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang
2018-06-01
In an ATON-type Hall effect thruster, a ring-shaped anode and a cusped magnetic field intersect the match between the anode shape and the field topology thus must be clarified to optimize the electron transport to the anode and consequently the design of a high-efficiency thruster. By changing the match pattern with both the change in the length of the anode ring and the axial displacement of the cusp magnetic field, this study experimentally investigated the influence of the match pattern on the discharge characteristics of an ATON-type thruster—P100—under the condition of a moderate discharge voltage. The experimental results show that there is a match pattern that always optimizes the performance of the P100 thruster. At the rated operation parameters (300 V of discharge voltage and 5 mg/s of propellant mass flow rate) and the rated magnetic field strength, the observed improvements on thrust (˜79 mN to ˜85 mN) and anode efficiency (˜46% to ˜55%) are significant. Through further theoretical analysis, this study revealed that the change in the characteristics of electron momentum and energy transfer in the near-anode region, induced by the change of the match pattern, is the basic reason. The findings of this work are instructive for both understanding the electron motion in a cusp magnetic field and guiding the design of the anode ring intersecting with a cusp magnetic field in an ATON-type Hall effect thruster.
Observation of Polarization Vortices in Momentum Space
NASA Astrophysics Data System (ADS)
Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian
2018-05-01
The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.
NASA Astrophysics Data System (ADS)
Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.
Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less
Observation of Polarization Vortices in Momentum Space.
Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian
2018-05-04
The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.
Tzeferacos, Petros; Rigby, A.; Bott, A.; ...
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputermore » at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. As a result, we validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.« less
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Roberts, G; Boyle, R; Bryce, P J; Crane, J; Hogan, S P; Saglani, S; Wickman, M; Woodfolk, J A
2016-10-01
In the first of two papers we described the development in the field of allergy mechanisms as described by Clinical and Experimental Allergy in 2015. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered. A second paper will cover clinical aspects. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Fatyga, M.; Norbury, John W.
1992-01-01
An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.
Gender and family influences on Spanish students' aspirations and values in stem fields
NASA Astrophysics Data System (ADS)
Sáinz, Milagros; Müller, Jörg
2018-01-01
Drawing on expectancy-value theory, this study examines gender and family influences on students' career aspirations and attached values. 796 secondary Spanish students (M age = 16 years old, S.D. = 0.81) participated. 53% were boys. The results show that boys and students with mothers who have completed intermediate level education were more interested in science, technology, engineering and mathematics (STEM) architecture and technology. Girls and students with highly educated mothers born in Spain were more likely to aspire to STEM health and experimental studies. Furthermore, boys and students planning to pursue STEM-technology studies attached higher extrinsic values to these studies. On the contrary, girls and participants with interest in experimental and health studies attached less extrinsic values to these studies. Moreover, students with highly educated mothers and interested in STEM architecture and technology reported higher extrinsic values. Understanding the interaction of gender and family factors shaping adolescents' career aspirations in STEM fields seems to be crucial to designing significant and effective school and family grounded interventions.
NASA Astrophysics Data System (ADS)
Lárraga-Gutiérrez, José Manuel
2015-08-01
Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%—with the exception of the IBA-PFD—for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated k{{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}} is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.
NASA Astrophysics Data System (ADS)
Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.
2017-11-01
This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.
NASA Astrophysics Data System (ADS)
Tommasino, F.
2016-03-01
This review will summarize results obtained in the recent years applying the Local Effect Model (LEM) approach to the study of basic radiobiological aspects, as for instance DNA damage induction and repair, and charged particle track structure. The promising results obtained using different experimental techniques and looking at different biological end points, support the relevance of the LEM approach for the description of radiation effects induced by both low- and high-LET radiation. Furthermore, they suggest that nowadays the appropriate combination of experimental and modelling tools can lead to advances in the understanding of several open issues in the field of radiation biology.
NASA Astrophysics Data System (ADS)
Tseng, C.; Lin, Y.
2013-12-01
Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.
NASA Technical Reports Server (NTRS)
Simonson, M. R.; Smith, E. G.; Uhl, W. R.
1974-01-01
Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.
Subterranean termite control examinations on current and former experimental forests and ranges
T. G. Shelton; T. L. Wagner; C. J Peterson; J. E. Mulrooney
2014-01-01
For more than 70 years, the USDA Forest Serviceâs Termite Team has engaged in research to extend the life of wood in service by studying chemical (and a few nonchemical) subterranean termite control products. These efficacy data are produced in distinct field trials on experimental forests across the USA, and are used by industry cooperators to register their products...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, Giorgio; Wood, Kathryn; Perelson, Alan S.
This Research Topic provides a venue for stimulating these interdisciplinary conversations in the context of transplantation. The articles collected under this Research Topic introduce new theoretical and experimental studies that describe novel techniques and methods for understanding the interactions between the immune response and transplants and for establishing more effective strategies of diagnosis and intervention that will promote transplant tolerance.
The Scientific Program of the U.S. Naval Research Laboratory
1958-07-01
systems, using mock-ups and simulated inputs. (2) Experimental determination of the quantitative parameters of systems, such as data-handling ability, time...naval service of equipment on ships, planes, and mis- siles are recorded, analyzed, and simulated . Methods are developed for the improve- ment of...H01 - NUCLEAR CONSTITUENTS AND STRUCTURE Theoretical and experimental studies concerned with elementary particles , field theory, nuclear structure
Radio-frequency and microwave energies, magnetic and electric fields
NASA Technical Reports Server (NTRS)
Michaelson, S. M.
1975-01-01
The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.
ERIC Educational Resources Information Center
Higgins, Monica; Ishimaru, Ann; Holcombe, Rebecca; Fowler, Amy
2012-01-01
This study draws upon theory and methods from the field of organizational behavior to examine organizational learning (OL) in the context of a large urban US school district. We build upon prior literature on OL from the field of organizational behavior to introduce and validate three subscales that assess key dimensions of organizational learning…
A theoretical and experimental study of wood planer noise and its control
NASA Technical Reports Server (NTRS)
Stewart, J. S.
1972-01-01
A combined analytical and experimental study of wood planer noise is made and the results applied to the development of practical noise control techniques. The dominant mechanisms of sound generation are identified and an analysis is presented which accurately predicts the governing levels of noise emission. Planing operations in which the length of the board is much greater than the width are considered. The dominant source of planer noise is identified as the board being surfaced, which is set into vibration by the impact of cutterhead knives. This is determined from studies made both in the laboratory and in the field concerning the effect of board width on the resulting noise, which indicate a six decibel increase in noise level for each doubling of board width. The theoretical development of a model for board vibration defines the vibrational field set up in the board and serves as a guide for cutterhead redesign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, G. E., E-mail: geyakovlev@etu.ru; Frolov, D. S.; Zubkova, A. V.
2016-03-15
The method of electrochemical capacitance–voltage profiling is used to study boron-implanted silicon structures for CCD matrices with backside illumination. A series of specially prepared structures with different energies and doses of ion implantation and also with various materials used for the coating layers (aluminum, silicon oxide, and their combinations) is studied. The profiles of the depth distribution of majority charge carriers of the studied structures are obtained experimentally. Also, using the Poisson equation and the Fredholm equation of the first kind, the distributions of the charge-carrier concentration and of the electric field in the structures are calculated. On the basismore » of the analysis and comparison of theoretical and experimental concentration profiles, recommendations concerning optimization of the structures’ parameters in order to increase the value of the pulling field and decrease the effect of the surface potential on the transport of charge carriers are suggested.« less
DIRECT operational field test evaluation natural use study. Part 1, Subject stated response
DOT National Transportation Integrated Search
1998-08-01
This report presents evaluation results from the Subject Stated Response portion (Part I) of the Natural Use Study of the DIRECT (Driver Information Radio using Experimental Communication : Technologies) operational test sponsored by the Michigan Dep...
COPPER CORROSION AND SOLUBILITY RESEARCH
This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...
Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events
NASA Astrophysics Data System (ADS)
Mitchell, M. F.; Moore, R. C.
2012-12-01
Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.
Theoretical and experimental studies of the structure and vibrational spectra of NTO
NASA Astrophysics Data System (ADS)
Sorescu, Dan C.; Sutton, Teressa R. L.; Thompson, Donald L.; Beardall, David; Wight, Charles A.
1996-10-01
The structure and vibrational spectra of the high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) have been determined by ab initio molecular orbital calculations at the Hartree-Fock and second-order Møller-Plesset levels and by density functional theory (B3LYP). Experimental frequencies for the molecule have been determined from infrared spectra of pure NTO films and NTO molecules isolated in an argon matrix at 21 K. A force field for gas phase NTO has been obtained based on calculated results at the MP2/6-311G∗∗ level. In addition, a force field for solid state NTO has been constructed using the experimental vibrational frequencies for NTO films and scaled ab initio vibrational frequencies. Differences between the solid state and gas phase results indicate that the environment and preparation procedure exert a marked influence on the spectral characteristics of the NTO molecule.
[Hans Selye, the grandmaster of creativity and originality].
Somogyi, Árpád
2015-08-30
Hans Selye, the father of the stress concept, was a giant of science of the twentieth century. Beyond his best-known work on stress, he also made several discoveries on various other fields of experimental medicine. He described and characterized various pluricausal diseases. In addition, he made pivotal contributions to the broad field of endocrinology, especially to the classification of steroids and to our better understanding of their mode of action. He developed surgical technics and experimental animal models suitable for studying the pathogenesis and prevention of human diseases. Selye was an extremely well educated, highly intelligent and disciplined individual, an original and creative scientist, an outstanding teacher, a philosopher, a prolific author, a fabulous communicator and a gifted organizer successfully establishing, developing and managing a major academic research institution, the word-famous Institute of Experimental Medicine and Surgery of the University of Montreal.
NASA Astrophysics Data System (ADS)
Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David
2017-04-01
Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.
Cardon, Thomas B; Tiburu, Elvis K; Lorigan, Gary A
2003-03-01
Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).
Ensign, Daniel L; Webb, Lauren J
2011-12-01
Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.
Complete magnetic field dependence of SABRE-derived polarization.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-07-01
Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H 2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value. Copyright © 2017 John Wiley & Sons, Ltd.
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J
2015-01-01
Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect. Copyright © 2014 Elsevier Inc. All rights reserved.
UIUC concrete tie and fastener field testing at TTC.
DOT National Transportation Integrated Search
2014-07-01
In July 2012, the University of Illinois at Urbana-Champaign (UIUC) began an extensive : experimental program at the Transportation : Technology Center (TTC) in Pueblo, CO. The : field experimentation program was part of a : larger research program f...
NASA Astrophysics Data System (ADS)
Persinger, M. A.; McKay, B. E.; O'Donovan, C. A.; Koren, S. A.
2005-03-01
To test the hypothesis that sudden unexplained death (SUD) in some epileptic patients is related to geomagnetic activity we exposed rats in which limbic epilepsy had been induced to experimentally produced magnetic fields designed to simulate sudden storm commencements (SSCs). Prior studies with rats had shown that sudden death in groups of rats in which epilepsy had been induced months earlier was associated with the occurrence of SSCs and increased geomagnetic activity during the previous night. Schnabel et al. [(2000) Neurology 54:903 908) found no relationship between SUD in human patients and geomagnetic activity. A total of 96 rats were exposed to either 500, 50, 10 40 nT or sham (less than 10 nT) magnetic fields for 6 min every hour between midnight and 0800 hours (local time) for three successive nights. The shape of the complex, amplitude-modulated magnetic fields simulated the shape and structure of an average SSC. The rats were then seized with lithium and pilocarpine and the mortality was monitored. Whereas 10% of the rats that had been exposed to the sham field died within 24 h, 60% of the rats that had been exposed to the experimental magnetic fields simulating natural geomagnetic activity died (P<.001) during this period. These results suggest that correlational analyses between SUD in epileptic patients and increased geomagnetic activity can be simulated experimentally in epileptic rats and that potential mechanisms might be testable directly.
Environmental Monitoring of a Titan 34D 5 1/2 Segment Solid Rocket Motor Static Firing.
1988-03-01
concentrations. The sampling scheme called for three near - field sampling sites (AFAL Experimental Areas 1-90, 1-100, and the Receiving, Inspection and Storage...regeneration from acidic rainout. 4. Field -testing the Aerospace and AFESC/LLNL experimental HCI monitors. The firing was first attempted on 4 June...was designed to take advantage of the specified wind corridor, and provided for both near - field and far- field sampling of ground-level HCI
Field evaporation of ZnO: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.
2015-07-14
With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less
Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties
NASA Astrophysics Data System (ADS)
Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.
2013-05-01
Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.
NASA Astrophysics Data System (ADS)
Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer
2017-04-01
The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.
NASA Astrophysics Data System (ADS)
Boscaino, V.; Cipriani, G.; Di Dio, V.; Corpora, M.; Curto, D.; Franzitta, V.; Trapanese, M.
2017-05-01
An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
NASA Technical Reports Server (NTRS)
Jones, B. G.; Planchon, H. P., Jr.
1973-01-01
Work during the period of this report has been in three areas: (1) pressure transducer error analysis, (2) fluctuating velocity and pressure measurements in the NASA Lewis 6-inch diameter quiet jet facility, and (3) measurement analysis. A theory was developed and experimentally verified to quantify the pressure transducer velocity interference error. The theory and supporting experimental evidence show that the errors are a function of the velocity field's turbulent structure. It is shown that near the mixing layer center the errors are negligible. Turbulent velocity and pressure measurements were made in the NASA Lewis quiet jet facility. Some preliminary results are included.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao; ...
2017-11-21
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
NASA Astrophysics Data System (ADS)
Chen, G. Y.; Lan, C. W.
2017-09-01
Adaptive phase field modeling is used in order to model the formation mechanism of a silicon faceted interface in three dimensions. We investigate the faceting condition for equilibrium shapes and dynamic situations. In this study, we propose a new anisotropic function of surface energy for the phase-field simulations in three-dimension, and negative stiffness is further considered. The morphological evolutions are presented and compare well with experimental findings. The growth mechanism is further discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.
1985-03-01
The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results.
Field studies on pesticides and birds: Unexpected and unique relations
Blus, L.J.; Henny, Charles J.
1997-01-01
We review the advantages and disadvantages of experimental and field studies for determining effects of pesticides on birds. Important problems or principles initially discovered in the field include effects of DDT (through its metabolite DDE) on eggshell thickness, reproductive success, and population stability; trophic-level bioaccumulation of the lipid-soluble organochlorine pesticides; indirect effects on productivity and survival through reductions in the food supply and cover by herbicides and insecticides; unexpected toxic effects and routes of exposure of organophosphorus compounds such as famphur and dimethoate; effects related to simultaneous application at full strength of several pesticides of different classes; and others. Also, potentially serious bird problems with dicofol, based on laboratory studies, later proved negligible in the field. In refining field tests of pesticides, the selection of a species or group of species to study is important, because exposure routes may vary greatly, and 10-fold interspecific differences in sensitivity to pesticides are relatively common. Although there are limitations with field investigations, particularly uncontrollable variables that must be addressed, the value of a well-designed field study far outweighs its shortcomings.
Field studies on pesticides and birds: unexpected and unique relations
Blus, L.J.; Henny, C.J.
1997-01-01
We review the advantages and disadvantages of experimental and field studies for determining effects of pesticides on birds. Important problems or principles initially discovered in the field include effects of DDT (through its metabolite DDE) on eggshell thickness, reproductive success, and population stability; trophic-level bioaccumulation of the lipid-soluble organochlorine pesticides; indirect effects on productivity and survival through reductions in the food supply and cover by herbicides and insecticides; unexpected toxic effects and routes of exposure of organophosphorus compounds such as famphur and dimethoate; effects related to simultaneous application at full strength of several pesticides of different classes; and others. Also, potentially serious bird problems with dicofol, based on laboratory studies, later proved negligible in the field. In refining field tests of pesticides, the selection of a species or group of species to study is important, because exposure routes may vary greatly, and 10-fold interspecific differences in sensitivity to pesticides are relatively common. Although there are limitations with field investigations, particularly uncontrollable variables that must be addressed, the value of a well-designed field study far outweighs its shortcomings
Experimental study and simulation of space charge stimulated discharge
NASA Astrophysics Data System (ADS)
Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.
2002-11-01
The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.
Investigating Gaze of Children with ASD in Naturalistic Settings
Noris, Basilio; Nadel, Jacqueline; Barker, Mandy; Hadjikhani, Nouchine; Billard, Aude
2012-01-01
Background Visual behavior is known to be atypical in Autism Spectrum Disorders (ASD). Monitor-based eye-tracking studies have measured several of these atypicalities in individuals with Autism. While atypical behaviors are known to be accentuated during natural interactions, few studies have been made on gaze behavior in natural interactions. In this study we focused on i) whether the findings done in laboratory settings are also visible in a naturalistic interaction; ii) whether new atypical elements appear when studying visual behavior across the whole field of view. Methodology/Principal Findings Ten children with ASD and ten typically developing children participated in a dyadic interaction with an experimenter administering items from the Early Social Communication Scale (ESCS). The children wore a novel head-mounted eye-tracker, measuring gaze direction and presence of faces across the child's field of view. The analysis of gaze episodes to faces revealed that children with ASD looked significantly less and for shorter lapses of time at the experimenter. The analysis of gaze patterns across the child's field of view revealed that children with ASD looked downwards and made more extensive use of their lateral field of view when exploring the environment. Conclusions/Significance The data gathered in naturalistic settings confirm findings previously obtained only in monitor-based studies. Moreover, the study allowed to observe a generalized strategy of lateral gaze in children with ASD when they were looking at the objects in their environment. PMID:23028494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Flaherty, Julia E.
2007-08-01
This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to providemore » the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.« less
Theory of intermediate- and high-field mobility in dilute nitride alloys
NASA Astrophysics Data System (ADS)
Seifikar, Masoud; O'Reilly, Eoin P.; Fahy, Stephen
2011-10-01
We have solved the steady-state Boltzmann transport equation in bulk GaAs1-xNx. Two different models of the conduction band structure have been studied to investigate the behavior of electrons with increasing electric field in these alloys: (1) carriers in parabolic Γ and L bands are scattered by resonant nitrogen substitutional defect states, polar optic and acoustic phonons, and intervalley optical phonons; (2) carriers, constrained in the lower band of the band-anticrossing (BAC) model, are scattered by phonons and by nitrogen states. We consider scattering both by isolated N atoms and also by a full distribution of N states. We find that it is necessary to include the full distribution of levels in order to account for the small low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Model 2 breaks down at intermediate and high field, due to the unphysical constraint of limiting carriers to the lower BAC band. For model 1, carrier scattering into the L bands is reduced at intermediate electric fields but is comparable at high fields to that observed in GaAs, with the calculated high-field mobility and carrier distribution then also being comparable to GaAs. Overall the results account well for a wide range of experimental data.
Domain wall dynamics driven by spin transfer torque and the spin-orbit field.
Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo
2012-01-18
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.
NASA Astrophysics Data System (ADS)
Omiste, Juan J.; González-Férez, Rosario
2016-12-01
We present a theoretical study of the mixed-field-orientation of asymmetric-top molecules in tilted static electric field and nonresonant linearly polarized laser pulse by solving the time-dependent Schrödinger equation. Within this framework, we compute the mixed-field orientation of a state-selected molecular beam of benzonitrile (C7H5N ) and compare with the experimental observations [J. L. Hansen et al., Phys. Rev. A 83, 023406 (2011), 10.1103/PhysRevA.83.023406] and with our previous time-independent descriptions [J. J. Omiste et al., Phys. Chem. Chem. Phys. 13, 18815 (2011), 10.1039/c1cp21195a]. For an excited rotational state, we investigate the field-dressed dynamics for several field configurations as those used in the mixed-field experiments. The nonadiabatic phenomena and their consequences on the rotational dynamics are analyzed in detail.
ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
TURNER, JOSEPH A.
2005-11-30
The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less
Probing magnetic order in CuFeO2 through nuclear forward scattering in high magnetic fields
NASA Astrophysics Data System (ADS)
Strohm, C.; Lummen, T. T. A.; Handayani, I. P.; Roth, T.; Detlefs, C.; van der Linden, P. J. E. M.; van Loosdrecht, P. H. M.
2013-08-01
Determining the magnetic order of solids in high magnetic fields is technologically challenging. Here we probe the cascade of magnetic phase transitions in frustrated multiferroic CuFeO2 using nuclear forward scattering (NFS) in pulsed magnetic fields up to 30 T. Our results are in excellent agreement with detailed neutron diffraction experiments, currently limited to 15 T, while providing experimental confirmation of the proposed higher field phases for both H∥c and H⊥c. We thus establish NFS as a valuable tool for spin structure studies in very high fields, both complementing and expanding on the applicability of existing techniques.
Magnetic-field-induced delocalized to localized transformation in GaAs:N.
Alberi, K; Crooker, S A; Fluegel, B; Beaton, D A; Ptak, A J; Mascarenhas, A
2013-04-12
The use of a high magnetic field (57 T) to study the formation and evolution of nitrogen (N) cluster and supercluster states in GaAs:N is demonstrated. A magnetic field is used to lift the conduction band edge and expose resonant N cluster states so that they can be directly experimentally investigated. The reduction of the exciton Bohr radius also results in the fragmentation of N supercluster states, enabling a magnetic field induced delocalized to localized transition. The application of very high magnetic fields thus presents a powerful way to probe percolation phenomena in semiconductors with bound and resonant isoelectronic cluster states.