2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.
Varga, Matthew J; Schwartz, Steven D
2016-04-12
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seapan, M.; Crynes, B.L.; Dale, S.
The objectives of this study were to analyze alternate crudes kinetic hydrotreatment data in the literature, develop a mathematical model for interpretation of these data, develop an experimental procedure and apparatus to collect accurate kinetic data, and finally, to combine the model and experimental data to develop a general model which, with a few experimental parameters, could be used in design of future hydrotreatment processes. These objectives were to cover a four year program (1980 to 1984) and were subjective to sufficient funding. Only partial funding has been available thus far to cover activities for two years. A hydrotreatment datamore » base is developed which contains over 2000 citations, stored in a microcomputer. About 50% of these are reviewed, classified and can be identified by feedstock, catalyst, reactor type and other process characteristics. Tests of published hydrodesulfurization data indicate the problems with simple n-th order, global kinetic models, and point to the value of developing intrinsic reaction kinetic models to describe the reaction processes. A Langmuir-Hinshelwood kinetic model coupled with a plug flow reactor design equation has been developed and used for published data evaluation. An experimental system and procedure have been designed and constructed, which can be used for kinetic studies. 30 references, 4 tables.« less
Kinetic studies of the yeast His-Asp phosphorelay signaling pathway
Kaserer, Alla O.; Andi, Babak; Cook, Paul F.; West, Ann H.
2010-01-01
For both prokaryotic and eukaryotic His-Asp phosphorelay signaling pathways, the rates of protein phosphorylation and dephosphorylation determine the stimulus-to-response time frame. Thus, kinetic studies of phosphoryl group transfer between signaling partners are important for gaining a full understanding of how the system is regulated. In many cases, the phosphotransfer reactions are too fast for rates to be determined by manual experimentation. Rapid quench flow techniques thus provide a powerful method for studying rapid reactions that occur in the millisecond time frame. In this chapter, we describe experimental design and procedures for kinetic characterization of the yeast SLN1-YPD1-SSK1 osmoregulatory phosphorelay system using a rapid quench flow kinetic instrument. PMID:20946842
The Study of a Simple Redox Reaction as an Experimental Approach to Chemical Kinetics.
ERIC Educational Resources Information Center
Elias, Horst; Zipp, Arden P.
1988-01-01
Recommends using iodide ions and peroxodisulfate ions for studying rate laws instead of the standard iodine clock for kinetic study. Presents the methodology and a discussion of the kinetics involved for a laboratory experiment for a high school or introductory college course. (ML)
The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...
Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto
2016-06-16
This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.
Distinctive features of kinetics of plasma at high specific energy deposition
NASA Astrophysics Data System (ADS)
Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana
2016-09-01
A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).
Zhou, Rui; Maisuradze, Gia G.; Suñol, David; Todorovski, Toni; Macias, Maria J.; Xiao, Yi; Scheraga, Harold A.; Czaplewski, Cezary; Liwo, Adam
2014-01-01
To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding. PMID:25489078
Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam
2014-12-23
To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.
Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2016-01-01
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagaut, P.; Reuillon, M.; Boettner, J.C.
1994-12-31
The oxidation of TR0 kerosene (jet A1 aviation fuel) was studied in a jet-stirred reactor (JSR) at pressures extending from 10 to 40 atm, in the temperature range 750--1,150 K. A large number of reaction intermediates were identified, and their concentrations were followed for reaction yields ranging from low conversion to the formation of the final products. A reference hydrocarbon, n-decane, studied under the same experimental conditions gave very similar experimental concentration profiles for the main oxidation products. Because of the strong analogy between n-decane and kerosene oxidation kinetics, a detailed chemical kinetic reaction mechanisms describing the oxidation of n-decanemore » was built to reproduce the present experimental results. This mechanisms includes 573 elementary reactions, most of them being reversible, among 90 chemical species. A reasonably good prediction of the concentrations of major species was obtained by computation, covering the whole range of temperature, pressures, and equivalence ratios of the experiments. A kinetic analysis performed to identify the dominant reaction steps of the mechanism shows that, under the conditions of the present study (intermediate temperature and high pressure), HO{sub 2} radicals are important chain carriers leading to the formation of the branching agent H{sub 2}O{sub 2}.« less
Kinetic modeling of kraft delignification of Eucalyptus globulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A.; Rodriguez, F.; Gilarranz, M.A.
1997-10-01
A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effectivemore » stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.« less
NASA Astrophysics Data System (ADS)
Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.
2011-08-01
The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.
Chemical kinetic modeling of propane oxidation behind shock waves
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Jachimowski, C. J.
1977-01-01
The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.
Chlorination kinetics of glyphosate and its by-products: modeling approach.
Brosillon, Stephan; Wolbert, Dominique; Lemasle, Marguerite; Roche, Pascal; Mehrsheikh, Akbar
2006-06-01
Chlorination reactions of glyphosate, glycine, and sodium cyanate were conducted in well-agitated reactors to generate experimental kinetic measurements for the simulation of chlorination kinetics under the conditions of industrial water purification plants. The contribution of different by-products to the overall degradation of glyphosate during chlorination has been identified. The kinetic rate constants for the chlorination of glyphosate and its main degradation products were either obtained by calculation according to experimental data or taken from published literature. The fit of the kinetic constants with experimental data allowed us to predict consistently the concentration of the majority of the transitory and terminal chlorination products identified in the course of the glyphosate chlorination process. The simulation results conducted at varying aqueous chlorine/glyphosate molar ratios have shown that glyphosate is expected to degrade in fraction of a second under industrial aqueous chlorination conditions. Glyphosate chlorination products are not stable under the conditions of drinking water chlorination and are degraded to small molecules common to the degradation of amino acids and other naturally occurring substances in raw water. The kinetic studies of the chlorination reaction of glyphosate, together with calculations based on kinetic modeling in conditions close to those at real water treatment plants, confirm the reaction mechanism that we have previously suggested for glyphosate chlorination.
Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies
NASA Astrophysics Data System (ADS)
Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.
Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P
1990-02-01
An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.
Bērziņš, Agris; Actiņš, Andris
2014-06-01
The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.
Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario
2015-01-01
A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.
Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V
2017-07-26
We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.
Cotten, Cameron; Reed, Jennifer L
2013-01-30
Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.
2013-01-01
Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254
Amyloglucosidase enzymatic reactivity inside lipid vesicles
Li, Mian; Hanford, Michael J; Kim, Jin-Woo; Peeples, Tonya L
2007-01-01
Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG) (EC 3.2.1.3) from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose) formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations. PMID:18271982
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores
NASA Astrophysics Data System (ADS)
Bian, Yukun; Wang, Zilin; Chen, Anpu; Zhao, Nanrong
2015-11-01
We have proposed a fluctuation bottleneck (FB) model to investigate the non-exponential kinetics of DNA escape from nanometer-scale pores. The basic idea is that the escape rate is proportional to the fluctuating cross-sectional area of DNA escape channel, the radius r of which undergoes a subdiffusion dynamics subjected to fractional Gaussian noise with power-law memory kernel. Such a FB model facilitates us to obtain the analytical result of the averaged survival probability as a function of time, which can be directly compared to experimental results. Particularly, we have applied our theory to address the escape kinetics of DNA through α-hemolysin nanopores. We find that our theoretical framework can reproduce the experimental results very well in the whole time range with quite reasonable estimation for the intrinsic parameters of the kinetics processes. We believe that FB model has caught some key features regarding the long time kinetics of DNA escape through a nanopore and it might provide a sound starting point to study much wider problems involving anomalous dynamics in confined fluctuating channels.
The study of zinc ions binding to casein.
Pomastowski, P; Sprynskyy, M; Buszewski, B
2014-08-01
The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.
Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.
Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M
2016-08-01
Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro
2013-01-01
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062
Supercritical water oxidation of products of human metabolism
NASA Technical Reports Server (NTRS)
Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON
1986-01-01
Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.
Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V
2009-04-01
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.
Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems
NASA Astrophysics Data System (ADS)
Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.
2016-11-01
Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.
Adsorption of bentazon on CAT and CARBOPAL activated carbon: Experimental and computational study
NASA Astrophysics Data System (ADS)
Spaltro, Agustín; Simonetti, Sandra; Torrellas, Silvia Alvarez; Rodriguez, Juan Garcia; Ruiz, Danila; Juan, Alfredo; Allegretti, Patricia
2018-03-01
Removal of the bentazon by adsorption on two different types of activated carbon was investigated under various experimental conditions.Kinetics of adsorption is followed and the adsorption isotherms of the pesticide are determined. The effects of the changes in pH, ionic strength and temperature are analyzed. Computational simulation was employed to analyze the geometry and the energy of pesticide absorption on activated carbon. Concentration of bentazon decreases while increase all the variables, from the same initial concentration. Experimental data for equilibrium was analyzed by three models: Langmuir, Freundlich and Guggenheim-Anderson-de Boer isotherms. Pseudo-first and pseudo-second-order kinetics are tested with the experimental data, and pseudo-second-order kinetics was the best for the adsorption of bentazon by CAT and CARBOPAL with coefficients of correlation R2 = 0.9996 and R2 = 0.9993, respectively. The results indicated that both CAT and CARBOPAL are very effective for the adsorption of bentazon from aqueous solutions, but CAT carbon has the greater capacity.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A
1989-01-01
We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...
2017-07-03
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
Farobie, Obie; Matsumura, Yukihiko
2017-10-01
In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.
Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite
NASA Astrophysics Data System (ADS)
Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza
2016-11-01
Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
Qiu, Zongyang; Li, Pai; Li, Zhenyu; Yang, Jinlong
2018-03-20
Epitaxial growth is a promising strategy to produce high-quality graphene samples. At the same time, this method has great flexibility for industrial scale-up. To optimize growth protocols, it is essential to understand the underlying growth mechanisms. This is, however, very challenging, as the growth process is complicated and involves many elementary steps. Experimentally, atomic-scale in situ characterization methods are generally not feasible at the high temperature of graphene growth. Therefore, kinetics is the main experimental information to study growth mechanisms. Theoretically, first-principles calculations routinely provide atomic structures and energetics but have a stringent limit on the accessible spatial and time scales. Such gap between experiment and theory can be bridged by atomistic simulations using first-principles atomic details as input and providing the overall growth kinetics, which can be directly compared with experiment, as output. Typically, system-specific approximations should be applied to make such simulations computationally feasible. By feeding kinetic Monte Carlo (kMC) simulations with first-principles parameters, we can directly simulate the graphene growth process and thus understand the growth mechanisms. Our simulations suggest that the carbon dimer is the dominant feeding species in the epitaxial growth of graphene on both Cu(111) and Cu(100) surfaces, which enables us to understand why the reaction is diffusion limited on Cu(111) but attachment limited on Cu(100). When hydrogen is explicitly considered in the simulation, the central role hydrogen plays in graphene growth is revealed, which solves the long-standing puzzle into why H 2 should be fed in the chemical vapor deposition of graphene. The simulation results can be directly compared with the experimental kinetic data, if available. Our kMC simulations reproduce the experimentally observed quintic-like behavior of graphene growth on Ir(111). By checking the simulation results, we find that such nonlinearity is caused by lattice mismatch, and the induced growth front inhomogeneity can be universally used to predict growth behaviors in other heteroepitaxial systems. Notably, although experimental kinetics usually gives useful insight into atomic mechanisms, it can sometimes be misleading. Such pitfalls can be avoided via atomistic simulations, as demonstrated in our study of the graphene etching process. Growth protocols can be designed theoretically with computational kinetic and mechanistic information. By contrasting the different activation energies involved in an atom-exchange-based carbon penetration process for monolayer and bilayer graphene, we propose a three-step strategy to grow high-quality bilayer graphene. Based on first-principles parameters, a kinetic pathway toward the high-density, ordered N doping of epitaxial graphene on Cu(111) using a C 5 NCl 5 precursor is also identified. These studies demonstrate that atomistic simulations can unambiguously produce or reproduce the kinetic information on graphene growth, which is pivotal to understanding the growth mechanism and designing better growth protocols. A similar strategy can be used in growth mechanism studies of other two-dimensional atomic crystals.
The sublimation kinetics of GeSe single crystals
NASA Technical Reports Server (NTRS)
Irene, E. A.; Wiedemeier, H.
1975-01-01
The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.
Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi
2017-03-01
This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.
Zarzycki, Piotr; Rosso, Kevin M
2009-06-16
Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.
An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Pan, Y. H.; Srinivasan, V.; Wang, C. Y.
In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.
Kinetics of conjugative gene transfer on surfaces in granular porous media
NASA Astrophysics Data System (ADS)
Massoudieh, A.; Crain, C.; Lambertini, E.; Nelson, K. E.; Barkouki, T.; L'Amoreaux, P.; Loge, F. J.; Ginn, T. R.
2010-03-01
The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic subsurface conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated Escherichiacoli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model and experimental system to quantify bacterial filtration and gene transfer in the attached state, on granular porous media. We include attachment kinetics described in Nelson et al. (2007) using the filtration theory approach of Nelson and Ginn (2001, 2005) with motility of E. coli described according to Biondi et al. (1998).
Kinetics and thermochemistry of polyatomic free radicals: New results and new understandings
NASA Technical Reports Server (NTRS)
Gutman, David; Slagle, Irene R.
1990-01-01
An experimental facility for the study of the chemical kinetics of polyatomic free radicals is described which consists of a heatable tubular reactor coupled to a photoionization mass spectrometer. Its use in different kinds of chemical kinetic studies is also discussed. Examples presented include studies of the C2H3 + O2, C2H3 + HC1, CH3 + O, and CH3 + CH3 reactions. The heat of formation of C2H3 was obtained from the results of the study of the C2H3 + HC1 reaction.
Low Temperature Kinetics of the First Steps of Water Cluster Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgalais, J.; Roussel, V.; Capron, M.
2016-03-01
We present a combined experimental and theoretical low temperature kinetic study of water cluster formation. Water cluster growth takes place in low temperature (23-69 K) supersonic flows. The observed kinetics of formation of water clusters are reproduced with a kinetic model based on theoretical predictions for the first steps of clusterization. The temperature-and pressure-dependent association and dissociation rate coefficients are predicted with an ab initio transition state theory based master equation approach over a wide range of temperatures (20-100 K) and pressures (10(-6) - 10 bar).
Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix
2011-02-01
In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Meral, Derya; Provasi, Davide; Prada-Gracia, Diego; Möller, Jan; Marino, Kristen; Lohse, Martin J; Filizola, Marta
2018-05-16
Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.
NASA Astrophysics Data System (ADS)
Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.
2014-09-01
For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.
Well-known, yet undefined, changes in the conditions and activity of palladized zerovalent iron (Fe/Pd) over an extended period of time hindered a careful study of dechlorination kinetics in long-term experiments. A short-term experimental method was, therefore, developed to stud...
The main beam correction term in kinetic energy release from metastable peaks.
Petersen, Allan Christian
2017-12-01
The correction term for the precursor ion signal width in determination of kinetic energy release is reviewed, and the correction term is formally derived. The derived correction term differs from the traditionally applied term. An experimental finding substantiates the inaccuracy in the latter. The application of the "T-value" to study kinetic energy release is found preferable to kinetic energy release distributions when the metastable peaks are slim and simple Gaussians. For electronically predissociated systems, a "borderline zero" kinetic energy release can be directly interpreted in reaction dynamics with strong curvature in the reaction coordinate. Copyright © 2017 John Wiley & Sons, Ltd.
Experimental evidence of the decrease of kinetic energy of hadrons in passing through atomic nuclei
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.
Ghanbari, F; Rowland-Yeo, K; Bloomer, J C; Clarke, S E; Lennard, M S; Tucker, G T; Rostami-Hodjegan, A
2006-04-01
The published literature on mechanism based inhibition (MBI) of CYPs was evaluated with respect to experimental design, methodology and data analysis. Significant variation was apparent in the dilution factor, ratio of preincubation to incubation times and probe substrate concentrations used, and there were some anomalies in the estimation of associated kinetic parameters (k(inact), K(I), r). The impact of the application of inaccurate values of k(inact) and K(I) when extrapolating to the extent of inhibition in vivo is likely to be greatest for those compounds of intermediate inhibitory potency, but this also depends on the fraction of the net clearance of substrate subject to MBI and the pre-systemic and systemic exposure to the inhibitor. For potent inhibitors, the experimental procedure is unlikely to have a material influence on the maximum inhibition. Nevertheless, the bias in the values of the kinetic parameters may influence the time for recovery of enzyme activity following re-synthesis of the enzyme. Careful attention to the design of in vitro experiments to obtain accurate kinetic parameters is necessary for a reliable prediction of different aspects of the in vivo consequences of MBI. The review calls for experimental studies to quantify the impact of study design in studies of MBI, with a view to better harmonisation of protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromov, K. Yu.; Vaks, V. G., E-mail: vaks@mbslab.kiae.ru; Zhuravlev, I. A.
2013-02-15
The previously developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using an improved version of the previously suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependences of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM usually describes the precipitation kinetics in good agreement with the KMCM, and using the SSM in conjunction withmore » the KMCM allows extending the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of simulation results with experiments for some multicomponent Fe-Cu-based alloys allows making certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.« less
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion
NASA Astrophysics Data System (ADS)
Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.
2018-05-01
The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.
Langdon, Steven M; Legault, Claude Y; Gravel, Michel
2015-04-03
An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.
Multicompartment models with constant fractional transfer rates have been fitted to experimental data on lead metabolism in four subjects studied by M. B. Rabinowitz, G. W. Wetherill, and J. D. Kopple (Science 182, 725-727, 1973; Environ. Health Perspect. 7, 145-153, 1974; Arch. ...
KINETICS OF TREAT USED AS A TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C.E.; Johnson, R.D.; Gasidlo, J.
1962-05-01
An analysis is presented concerning the reactor kinetics of TREAT used as a pulsed, engineering test reactor for fast reactor fuel element studies. A description of the reactor performance is given for a wide range of conditions associated with its use as a test reactor. Supplemental information on meltdown experimentation is included. (J.R.D.)
Kirtania, Kawnish; Bhattacharya, Sankar
2012-03-01
Apart from capturing carbon dioxide, fresh water algae can be used to produce biofuel. To assess the energy potential of Chlorococcum humicola, the alga's pyrolytic behavior was studied at heating rates of 5-20K/min in a thermobalance. To model the weight loss characteristics, an algorithm was developed based on the distributed activation energy model and applied to experimental data to extract the kinetics of the decomposition process. When the kinetic parameters estimated by this method were applied to another set of experimental data which were not used to estimate the parameters, the model was capable of predicting the pyrolysis behavior, in the new set of data with a R(2) value of 0.999479. The slow weight loss, that took place at the end of the pyrolysis process, was also accounted for by the proposed algorithm which is capable of predicting the pyrolysis kinetics of C. humicola at different heating rates. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Yongli; Xiao, Wenzheng
2017-06-01
A novel curing agent Thoreau modified 3, 5-Dimethyl-thioltoluenediamine was synthesized and its molecular structure was characterized by FTIR and DSC. The curing kinetics of a high toughness and low volume shrinkage ratio epoxy system (modified DMTDA/DGEBA) was studied by differential scanning calorimetry (DSC) under noni so thermal conditions. The data were fitted to an order model and autocatalytic model respectively. The results indicate that in order model deviates significantly from experimental data. Malik’s method was used to prove that the curing kinetics of the system concerned follow single-step autocatalytic model, and a “single-point model-free” approach was employed to calculate meaningful kinetic parameters. The DSC curves derived from autocatalytic model gave satisfactory agreement with that of experiment in the range 5K/min∼25K/min. As the heating rate increased, the predicted DSC curves deviated from experimental curves, and the total exothermic enthalpy declined owing to the transition of competition relationship between kinetics control and diffusion control.
Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics
Romero-Romero, M. Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.
2011-01-01
Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584
Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V
2017-03-30
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review
NASA Astrophysics Data System (ADS)
Lv, Weiqiang; He, Weidong; Wang, Xiaoning; Niu, Yinghua; Cao, Huanqi; Dickerson, James H.; Wang, Zhiguo
2014-02-01
Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly focuses on the experimental results on the oriented attachment growth. In contrast to the previous reviews, our review provides an overview of the recent theoretical advances in oriented attachment kinetics combined with experimental evidences. After a brief introduction to the van der Waals interaction and Coulombic interaction in a colloidal system, the correlation between the kinetic models of oriented attachment growth and the interactions is then our focus. The impact of in situ experimental observation techniques on the study of oriented attachment growth is examined with insightful examples. In addition, the advances in theoretical simulations mainly investigating the thermodynamic origin of these interactions at the atomic level are reviewed. This review seeks to understand the oriented attachment crystal growth from a kinetic point of view and provide a quantitative methodology to rationally design an oriented attachment system with pre-evaluated crystal growth parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
ERIC Educational Resources Information Center
Stern, Luli; Barnea, Nitza; Shauli, Sofia
2008-01-01
The objective of this study was to evaluate the effect of a dynamic software simulation on the understanding of the kinetic molecular theory by 7th graders. Students in the control group (n = 62) studied a curricular unit that addressed the differences in arrangement and motion of molecules in the three phases of matter. The experimental group (n…
NASA Astrophysics Data System (ADS)
Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.
2014-08-01
The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.
Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus
2017-12-01
Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.
A Study of Wake Development and Structure in Constant Pressure Gradients
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng
2000-01-01
Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.
Oanca, Gabriel; Stare, Jernej; Mavri, Janez
2017-12-01
This work scrutinizes kinetics of decomposition of adrenaline catalyzed by monoamine oxidase (MAO) A and B enzymes, a process controlling the levels of adrenaline in the central nervous system and other tissues. Experimental kinetic data for MAO A and B catalyzed decomposition of adrenaline are reported only in the form of the maximum reaction rate. Therefore, we estimated the experimental free energy barriers form the kinetic data of closely related systems using regression method, as was done in our previous study. By using multiscale simulation on the Empirical Valence Bond (EVB) level, we studied the chemical reactivity of the MAO A catalyzed decomposition of adrenaline and we obtained a value of activation free energy of 17.3 ± 0.4 kcal/mol. The corresponding value for MAO B is 15.7 ± 0.7 kcal/mol. Both values are in good agreement with the estimated experimental barriers of 16.6 and 16.0 kcal/mol for MAO A and MAO B, respectively. The fact that we reproduced the kinetic data and preferential catalytic effect of MAO B over MAO A gives additional support to the validity of the proposed hydride transfer mechanism. Furthermore, we demonstrate that adrenaline is preferably involved in the reaction in a neutral rather than in a protonated form due to considerably higher barriers computed for the protonated adrenaline substrate. The results are discussed in the context of chemical mechanism of MAO enzymes and possible applications of multiscale simulation to rationalize the effects of MAO activity on adrenaline level. © 2017 Wiley Periodicals, Inc.
Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato
NASA Astrophysics Data System (ADS)
Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif
2016-03-01
In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.
NASA Astrophysics Data System (ADS)
Maulidah, Rifa'atul; Purqon, Acep
2016-08-01
Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.
Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram
2013-01-01
Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu
2018-01-01
In this study, a UV/O 3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH 3 -N, under different UV and O 3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min -1 , respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O 3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH 3 -N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH 3 -N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O 3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.
Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P
2011-05-01
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB
NASA Astrophysics Data System (ADS)
Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham
2017-04-01
In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.
Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang
2016-01-01
The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums
NASA Astrophysics Data System (ADS)
Shan, L. Q.; Cai, H. B.; Zhang, W. S.; Tang, Q.; Zhang, F.; Song, Z. F.; Bi, B.; Ge, F. J.; Chen, J. B.; Liu, D. X.; Wang, W. W.; Yang, Z. H.; Qi, W.; Tian, C.; Yuan, Z. Q.; Zhang, B.; Yang, L.; Jiao, J. L.; Cui, B.; Zhou, W. M.; Cao, L. F.; Zhou, C. T.; Gu, Y. Q.; Zhang, B. H.; Zhu, S. P.; He, X. T.
2018-05-01
We present the first experimental evidence supported by simulations of kinetic effects launched in the interpenetration layer between the laser-driven hohlraum plasma bubbles and the corona plasma of the compressed pellet at the Shenguang-III prototype laser facility. Solid plastic capsules were coated with carbon-deuterium layers; as the implosion neutron yield is quenched, DD fusion yield from the corona plasma provides a direct measure of the kinetic effects inside the hohlraum. An anomalous large energy spread of the DD neutron signal (˜282 keV ) and anomalous scaling of the neutron yield with the thickness of the carbon-deuterium layers cannot be explained by the hydrodynamic mechanisms. Instead, these results can be attributed to kinetic shocks that arise in the hohlraum-wall-ablator interpenetration region, which result in efficient acceleration of the deuterons (˜28.8 J , 0.45% of the total input laser energy). These studies provide novel insight into the interactions and dynamics of a vacuum hohlraum and near-vacuum hohlraum.
Redefining the utility of the three-isotope method
NASA Astrophysics Data System (ADS)
Cao, Xiaobin; Bao, Huiming
2017-09-01
The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.
Kalistratova, V S; Zalikin, G A; Nisimov, P G; Romanova, I B
1998-01-01
The effect of Medetopect, a food additive, on the metabolic kinetics of transuranics (239Pu and 241Am) has been studied experimentally in white mongrel rats following chronic intake by ingestion. The Medetopect application has been shown to be advantageous for reduction of the 239Pu and 241Am absorption from and content of the gastrointestinal tract of the animals.
Assessment of kinetic models on Fe adsorption in groundwater using high-quality limestone
NASA Astrophysics Data System (ADS)
Akbar, N. A.; Kamil, N. A. F. Mohd; Zin, N. S. Md; Adlan, M. N.; Aziz, H. A.
2018-04-01
During the groundwater pumping process, dissolved Fe2+ is oxidized into Fe3+ and produce rust-coloured iron mineral. Adsorption kinetic models are used to evaluate the performance of limestone adsorbent and describe the mechanism of adsorption and the diffusion processes of Fe adsorption in groundwater. This work presents the best kinetic model of Fe adsorption, which was chosen based on a higher value of coefficient correlation, R2. A batch adsorption experiment was conducted for various contact times ranging from 0 to 135 minutes. From the results of the batch study, three kinetic models were analyzed for Fe removal onto limestone sorbent, including the pseudo-first order (PFO), pseudo-second order (PSO) and intra-particle diffusion (IPD) models. Results show that the adsorption kinetic models follow the sequence: PSO > PFO > IPD, where the values of R2 are 0.997 > 0.919 > 0.918. A high value of R2 (0.997) reveals better fitted experimental data. Furthermore, the value of qe cal in the PSO kinetic model is very near to qe exp rather than that in other models. This finding therefore suggests that the PSO kinetic model has the good fitted with the experimental data which involved chemisorption process of divalent Fe removal in groundwater solution. Thus, limestone adsorbent media found to be an alternative and effective treatment of Fe removal from groundwater.
Fundamental electrode kinetics
NASA Technical Reports Server (NTRS)
Elder, J. P.
1968-01-01
Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.
NASA Astrophysics Data System (ADS)
Béland, Laurent Karim; Mousseau, Normand
2012-02-01
The kinetic activation relaxation technique (kinetic ART) method, an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search,ootnotetextL. K. B'eland, P. Brommer, F. El-Mellouhi, J.-F. Joly and N. Mousseau, Phys. Rev. E 84, 046704 (2011). is used to study the relaxation of c-Si after Si^- bombardment at 3 keV. We describe the evolution of the damaged areas at room-temperature and above for periods of the order of seconds, treating long-range elastic deformations exactly. We assess the stability of the nanoscale structures formed by the damage cascade and the mechanisms that govern post-implantation annealing.
NASA Technical Reports Server (NTRS)
Bose, Kunal; Ganguly, J.
1992-01-01
As part of our continued program of study on the volatile bearing phases and volatile resource potential of carbonaceous chondrite, results of our experimental studies on the dehydration kinetics of talc as a function of temperature and grain size (50 to 0.5 microns), equilibrium dehydration boundary of talc to 40 kbars, calorimetric study of enthalpy of formation of both natural and synthetic talc as a function of grain size, and preliminary results on the dehydration kinetics of epsomite are reported. In addition, theoretical calculations on the gas release pattern of Murchison meteorite, which is a C2(CM) carbonaceous chondrite, were performed. The kinetic study of talc leads to a dehydration rate constant for 40-50 microns size fraction of k = (3.23 x 10(exp 4))exp(-Q/RT)/min with the activation energy Q = 376 (plus or minus 20) kJ/mole. The dehydration rate was found to increase somewhat with decreasing grain size. The enthalpy of formation of talc from elements was measured to be -5896(10) kJ/mol. There was no measurable effect of grain size on the enthalpy beyond the limits of precision of the calorimetric studies. Also the calorimetric enthalpy of both synthetic and natural talc was found to be essentially the same, within the precision of measurements, although the natural talc had a slightly larger field of stability in our phase equilibrium studies. The high pressure experimental data the dehydration equilibrium of talc (talc = enstatite + coesite + H2O) is in strong disagreement with that calculated from the available thermochemical data, which were constrained to fit the low pressure experimental results. The calculated gas release pattern of Murchison meteorite were in reasonable agreement with that determined by stepwise heating in a gas chromatograph.
On the biophysics and kinetics of toehold-mediated DNA strand displacement
Srinivas, Niranjan; Ouldridge, Thomas E.; Šulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis, Ard A.; Doye, Jonathan P. K.; Winfree, Erik
2013-01-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. PMID:24019238
On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik
2013-12-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.
2014-01-01
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611
NASA Astrophysics Data System (ADS)
Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.
2018-03-01
Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.
NASA Technical Reports Server (NTRS)
Smith, R. K.; Lofgren, G. E.
1982-01-01
Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.
Kinetic Model of Growth of Arthropoda Populations
NASA Astrophysics Data System (ADS)
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y.
A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally andmore » numerically demonstrated to be maintained as long as the ratio was constant.« less
Highly resolved fluid flows: "liquid plasmas" at the kinetic level.
Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor
2004-04-30
Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.
NASA Astrophysics Data System (ADS)
Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.
2014-06-01
The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.
Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.
López, R; Fernández, C; Martínez, O; Sánchez, M E
2015-05-01
A kinetic oxy-combustion study of a previously optimized lignocellulose blend is proposed. Kinetic and diffusion control mechanism are considered. The proposed correlations fit properly with the experimental results and diffusion effects are identified as be important enough to be taken into account. Afterwards, with the results obtained in the kinetic study, a detailed consecutive and parallel kinetic scheme is proposed for modelling the oxy-combustion of the blend. A discussion of the temperature and concentration profiles are included. Variation of products final distribution is considered. Smaller particles than 0.001 m are proposed for reducing temperature and concentration profiles and obtaining a good final product distribution. CO2-char reaction is identified as one of the most important step to be optimized for obtaining the lowest final residue. In this study, char is mainly oxidised at 950 K and this situation is attributed to an optimized blending of the bioresidues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetics of enzymatic trans-esterification of glycerides for biodiesel production.
Calabrò, Vincenza; Ricca, Emanuele; De Paola, Maria Gabriela; Curcio, Stefano; Iorio, Gabriele
2010-08-01
In this paper, the reaction of enzymatic trans-esterification of glycerides with ethanol in a reaction medium containing hexane at a temperature of 37 degrees C has been studied. The enzyme was Lipase from Mucor miehei, immobilized on ionic exchange resin, aimed at achieving high catalytic specific surface and recovering, regenerating and reusing the biocatalyst. A kinetic analysis has been carried out to identify the reaction path; the rate equation and kinetic parameters have been also calculated. The kinetic model has been validated by comparison between predicted and experimental results. Mass transport resistances estimation was undertaken in order to verify that the kinetics found was intrinsic. Model potentialities in terms of reactors design and optimization are also shown.
Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Burke, Ultan; Connolly, Jessica; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Curran, Henry J.
2013-01-01
An experimental ignition delay time study for the promising biofuel 2-methyl furan (2MF) was performed at equivalence ratios of 0.5, 1.0 and 2.0 for mixtures of 1% fuel in argon in the temperature range 1200–1800 K at atmospheric pressure. Laminar burning velocities were determined using the heat-flux method for mixtures of 2MF in air at equivalence ratios of 0.55–1.65, initial temperatures of 298–398 K and atmospheric pressure. A detailed chemical kinetic mechanism consisting of 2059 reactions and 391 species has been constructed to describe the oxidation of 2MF and is used to simulate experiment. Accurate reproduction of the experimental data has been obtained over all conditions with the developed mechanism. Rate of production and sensitivity analyses have been carried out to identify important consumption pathways of the fuel and key kinetic parameters under these conditions. The reactions of hydrogen atom with the fuel are highlighted as important under all experimental conditions studied, with abstraction by the hydrogen atom promoting reactivity and hydrogen atom addition to the furan ring inhibiting reactivity. This work, to the authors knowledge, is the first to combine theoretical and experimental work to describe the oxidation of any of the alkylated furans. The mechanism developed herein to describe 2MF combustion should also function as a sub-mechanism to describe the oxidation of 2,5-dimethyl furan whilst also providing key insights into the oxidation of this similar biofuel candidate. PMID:23814505
Effect of Extent of Supersaturation on the Evolution of Kinetic Solubility Profiles.
Han, Yi Rang; Lee, Ping I
2017-01-03
Solubility limited compounds require enabling formulations such as amorphous solid dispersions (ASDs) to increase the apparent solubility by dissolving to a concentration higher than the equilibrium solubility of the drug. This may lead to subsequent precipitation and thus the loss of the solubility advantage. Although higher supersaturation is known to result in faster precipitation, the overall effect of this faster precipitation on the bioavailability is not well understood. The objective of this study is to gain a better understanding of the impact of extent of supersaturation (i.e., dose) on the resulting kinetic solubility profiles of supersaturating dosage forms. Experimental concentration-time curves of two model compounds with different recrystallization tendencies, indomethacin (IND) and naproxen (NAP), were explored under varying sink indices (SIs) by infusing varying volumes of dissolved drug (e.g., in ethanol) into the dissolution medium. The experimental results were simulated with a mechanistic model considering classical nucleation theory and interface controlled growth on the nucleus surface. In the absence of dissolved polymer to inhibit precipitation, experimental and predicted results show that there exists a critical supersaturation below which no precipitation is observed, and due to this supersaturation maintenance, there exists an optimal dose which maximizes the area under the curve (AUC) of the kinetic solubility concentration-time profile. In the presence of dissolved polymer from ASD dissolution, similar trends were observed except the critical supersaturation was increased due to crystallization inhibition by the dissolved polymer. The importance of measuring the experimental "kinetic solubility" is emphasized. However, we show that the true solubility advantage of amorphous solids depends not on the "kinetic solubility" of amorphous dosage forms, typically arising from the balance between the rate of supersaturation generation and the precipitation kinetics, but rather on the critical supersaturation below which precipitation is not observed for a sufficiently long period.
Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.
Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik
2015-07-13
The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.
Sviatenko, Liudmyla; Kinney, Chad; Gorb, Leonid; Hill, Frances C; Bednar, Anthony J; Okovytyy, Sergiy; Leszczynski, Jerzy
2014-09-02
Combined experimental and computational techniques were used to analyze multistep chemical reactions in the alkaline hydrolysis of three nitroaromatic compounds: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and 2,4-dinitroanisole (DNAN). The study reveals common features and differences in the kinetic behavior of these compounds. The analysis of the predicted pathways includes modeling of the reactions, along with simulation of UV-vis spectra, experimental monitoring of reactions using LC/MS techniques, development of the kinetic model by designing and solving the system of differential equations, and obtaining computationally predicted kinetics for decay and accumulation of reactants and products. Obtained results suggest that DNT and DNAN are more resistant to alkaline hydrolysis than TNT. The direct substitution of a nitro group by a hydroxide represents the most favorable pathway for all considered compounds. The formation of Meisenheimer complexes leads to the kinetic first-step intermediates in the hydrolysis of TNT. Janovsky complexes can also be formed during hydrolysis of TNT and DNT but in small quantities. Methyl group abstraction is one of the suggested pathways of DNAN transformation during alkaline hydrolysis.
Kinetic physics in ICF: present understanding and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...
2018-03-19
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.
2018-06-01
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.
NASA Technical Reports Server (NTRS)
Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.
2001-01-01
Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Babu, Ramesh Balakrishnan
2015-07-01
Calcium phosphate hydroxyapatite (Ca-Hap) synthesized from CaCO3 and H3PO5, it was characterized by scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. The Ca-Hap was used for the removal of Alizarin Red S dye from its aqueous solution. The kinetics, equilibrium, and thermodynamic of the adsorption of the dye onto the Ca-Hap were investigated. The effects of contact time, initial dye concentration, pH as well as temperature on adsorption capacity of Ca-Hap were studied. Experimental data were analyzed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Sips isotherms and it was found that the data fitted well with Sips and Dubinin-Radushkevich isotherm models. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process and it was found that pseudo-second-order model best fit the data. The calculated thermodynamics parameters (∆G°, ∆H° and ∆S°) indicated that the process is spontaneous and endothermic in nature.
Experimental and modeling study on decomposition kinetics of methane hydrates in different media.
Liang, Minyan; Chen, Guangjin; Sun, Changyu; Yan, Lijun; Liu, Jiang; Ma, Qinglan
2005-10-13
The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.
Study on COD removal mechanism and reaction kinetics of oilfield wastewater.
Yin, Xian-Qing; Jing, Bo; Chen, Wen-Juan; Zhang, Jian; Liu, Qian; Chen, Wu
2017-11-01
The chemical oxygen demand (COD) removal mechanism and reaction kinetics were mainly studied in the treatment of oilfield oily sewage containing polymer by three-dimensional electrode reactor. The results proved that the residual active oxides O 3 , H 2 O 2 , •OH and active chlorine in the system of electrochemical reaction could be effectively detected, and the COD removal mechanism was co-oxidation of active oxides; Under these experimental conditions: the electrolysis current of 6 A, surface/volume ratio of 6/25(cm 2 ·L -1 ), the reaction time of 50 min, the COD cr of treated sewage was no more than 50 mg·L -1 ; the removal reaction of COD conformed to apparent second-order reaction kinetic model, the correlation coefficient R 2 was 0.9728, and the apparent reaction rate constant was k = 3.58 × 10 -4 (L·min -1 ·mg -1 ·m -2 ). To reach the goal, the COD cr was no more than 50 mg·L -1 in treated sewage, and the theory minimum processing time was 45.73 min. The verification of experimental results was consistent with kinetic equations.
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
2017-03-16
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.
2017-04-01
Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.
Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study.
Martinez Choy, S E; Lenz, J; Schweizerhof, K; Schmitter, M; Schindler, H J
2017-05-01
Although knowledge of short-range kinetic interactions between antagonistic teeth during mastication is of essential importance for ensuring interference-free fixed dental reconstructions, little information is available. In this study, the forces on and displacements of the teeth during kinetic molar biting simulating the power stroke of a chewing cycle were investigated by use of a finite-element model that included all the essential components of the human masticatory system, including an elastic food bolus. We hypothesised that the model can approximate the loading characteristics of the dentition found in previous experimental studies. The simulation was a transient analysis, that is, it considered the dynamic behaviour of the jaw. In particular, the reaction forces on the teeth and joints arose from contact, rather than nodal forces or constraints. To compute displacements of the teeth, the periodontal ligament (PDL) was modelled by use of an Ogden material model calibrated on the basis of results obtained in previous experiments. During the initial holding phase of the power stroke, bite forces were aligned with the roots of the molars until substantial deformation of the bolus occurred. The forces tilted the molars in the bucco-lingual and mesio-distal directions, but as the intrusive force increased the teeth returned to their initial configuration. The Ogden material model used for the PDL enabled accurate prediction of the displacements observed in experimental tests. In conclusion, the comprehensive kinetic finite element model reproduced the kinematic and loading characteristics of previous experimental investigations. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Polenov, Yu. V.; Egorova, E. V.; Shestakov, G. A.
2018-01-01
The kinetics of the decomposition of thiourea dioxide and the reduction of cadmium cations by thiourea dioxide in an aqueous ammonia solution are studied. The kinetic parameters of these reactions are calculated using experimental data, allowing us to adjust conditions for the synthesis of cadmium coatings on carbon fiber of grade UKN-M-12K. The presence of the metal crystalline phase on the fiber is confirmed by means of X-ray diffraction, and its amount is measured via atomic absorption spectroscopy.
Methodology for extracting local constants from petroleum cracking flows
Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.
2000-01-01
A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.
Basic dye decomposition kinetics in a photocatalytic slurry reactor.
Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming
2006-09-01
Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.
Estimation of the kinetic energy dissipation in fall-arrest system and manikin during fall impact.
Wu, John Z; Powers, John R; Harris, James R; Pan, Christopher S
2011-04-01
Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.
Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans.
van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C
2016-11-01
No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model. This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies. The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability. A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.
2017-08-01
as an official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE Form Approved OMB...processes to find a kinetic rate model that provides a high degree of correlation with experimental data. Furthermore, the use of kinetic rate... correlation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Renu B
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Thermodynamics and Kinetics of Chemical Equilibrium in Solution.
ERIC Educational Resources Information Center
Leenson, I. A.
1986-01-01
Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)
Receptor binding kinetics equations: Derivation using the Laplace transform method.
Hoare, Sam R J
Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time-dependent pharmacological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.R.; Wang, G.X.; Massarotto, P.
2007-12-15
The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2014-01-01
Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.
NASA Astrophysics Data System (ADS)
Henstridge, Martin C.; Wang, Yijun; Limon-Petersen, Juan G.; Laborda, Eduardo; Compton, Richard G.
2011-11-01
We present a comparative experimental evaluation of the Butler-Volmer and Marcus-Hush models using cyclic voltammetry at a microelectrode. Numerical simulations are used to fit experimental voltammetry of the one electron reductions of europium (III) and 2-methyl-2-nitropropane, in water and acetonitrile, respectively, at a mercury microhemisphere electrode. For Eu (III) very accurate fits to experiment were obtained over a wide range of scan rates using Butler-Volmer kinetics, whereas the Marcus-Hush model was less accurate. The reduction of 2-methyl-2-nitropropane was well simulated by both models, however Marcus-Hush required a reorganisation energy lower than expected.
NASA Astrophysics Data System (ADS)
Singh, Neetu; Balomajumder, Chandrajit
2017-10-01
In this study, simultaneous removal of phenol and cyanide by a microorganism S. odorifera (MTCC 5700) immobilized onto coconut shell activated carbon surface (CSAC) was studied in batch reactor from mono and binary component aqueous solution. Activated carbon was derived from coconut shell by chemical activation method. Ferric chloride (Fecl3), used as surface modification agents was applied to biomass. Optimum biosorption conditions were obtained as a function of biosorbent dosage, pH, temperature, contact time and initial phenol and cyanide concentration. To define the equilibrium isotherms, experimental data were analyzed by five mono component isotherm and six binary component isotherm models. The higher uptake capacity of phenol and cyanide onto CSAC biosorbent surface was 450.02 and 2.58 mg/g, respectively. Nonlinear regression analysis was used for determining the best fit model on the basis of error functions and also for calculating the parameters involved in kinetic and isotherm models. The kinetic study results revealed that Fractal-like mixed first second order model and Brouser-Weron-Sototlongo models for phenol and cyanide were capable to offer accurate explanation of biosorption kinetic. According to the experimental data results, CSAC with immobilization of bacterium S. odorifera (MTCC 5700) seems to be an alternative and effective biosorbent for the elimination of phenol and cyanide from binary component aqueous solution.
Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry
NASA Technical Reports Server (NTRS)
Sander, Stanley P.; Friedl, Randall R.
1993-01-01
Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.
Ex-situ bioremediation of crude oil in soil, a comparative kinetic analysis.
Mohajeri, Leila; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Zahed, Mohammad Ali; Mohajeri, Soraya
2010-07-01
Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
Threshold kinetics of a solar-simulator-pumped iodine laser
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Lee, Y.; Weaver, W. R.; Humes, D. H.; Lee, J. H.
1984-01-01
A model of the chemical kinetics of the n-C3F7I solar-simulator-pumped iodine laser is utilized to study the major kinetic processes associated with the threshold behavior of this experimental system. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state recombination with the alkyl radical and quenching by the parent gas control threshold at higher pressures. Treatment of the hyperfine splitting and uncertainty in the pressure broadening are important factors in fixing the threshold level. In spite of scatter in the experimental data caused by instabilities in the simulator high-pressure high-pressure arc, reasonable agreement is achieved between the model and experiment. Model parameters arrived at are within the uncertainty range of values found in the literature.
2016-10-05
of these species experimentally challenging. In these cases , TALIF is a good alternative. The energy levels used in this study are shown in Fig. 2.1...flame velocities achieved in lean mixtures (ER=0.5 in our experimental case ) can be an interesting issue for industrial applications. One of the possible...dielectric barrier discharge (nSDBD) was studied experimentally at high initial pressures P = 3 − 6 bar. The discharge was studied in different gas mixtures
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion
Sun, Wenyu; Yang, Bin; Hansen, Nils; ...
2015-12-08
Because of the absence of C–C bonds and the large oxygen content in its molecular structure, dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels. In order to understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563more » reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. Furthermore, these extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions.« less
Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2015-09-01
The objective of this work was to study the competitive adsorption/desorption of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) on two acid soils. We used the stirred flow chamber technique to obtain experimental data on rapid kinetic processes affecting the retention/release of the antibiotics. Both adsorption and desorption were higher on soil 1 (which showed the highest carbon, clay and Al and Fe oxides content) than on soil 2. Moreover, hysteresis affected the adsorption/desorption processes. Experimental data were fitted to a pseudo-first order equation, resulting qamax (adsorption maximum) values that were higher for soil 1 than for soil 2, and indicating that CTC competed with TC more intensely than OTC in soil 1. Regarding soil 2, the values corresponding to the adsorption kinetics constants (ka) and desorption kinetics constants for fast sites (kd1), followed a trend inverse to qamax and qdmax respectively. In conclusion, competition affected adsorption/desorption kinetics for the three antibiotics assayed, and thus retention/release and subsequent transport processes in soil and water environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Underwood, F L; Cadwallader, D E
1978-08-01
An automated potentiometric procedure was used for studying in vitro dissolution kinetics of acidic drugs. Theoretical considerations indicated that the pH-stat method could be used to establish approximate sink conditions or, possibly, a perfect sink. Data obtained from dissolution studies using the pH-stat method were compared with data obtained from known sink and nonsink conditions. These comparisons indicated that the pH-stat method can be used to establish a sink condition for dissolution studies. The effective diffusion layer thicknesses for benzoic and salicylic acids dissolving in water were determined, and a theoretical dissolution rate was calculated utilizing these values. The close agreement between the experimental dissolution rates obtained under pH-stat conditions and theoretical dissolution rates indicated that perfect sink conditions were established under the experimental conditions used.
NASA Astrophysics Data System (ADS)
Milani, G.; Milani, F.
A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.
Kinetic Behaviour of Failure Waves in a Filled Glass
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Bourne, N. K.
2007-12-01
Experimental stress and velocity profiles in a lead filled glass demonstrate a pronounced kinetic behaviour for failure waves in the material during shock loading. The present work summarises the experimental proofs of the kinetic behaviour obtained with stress and velocity gauges. The work describes a model for this behaviour employing a kinetic description used earlier for fracture waves in Pyrex glass. This model is part of a family of two-phase, strain-rate sensitive models describing the behaviour of damaged brittle materials. The modelling results describe well both the stress decay of the failure wave precursor in the stress profiles and main pulse attenuation in the velocity profiles. The influences of the kinetic mechanisms and wave interactions within the test assembly on the reduction of this behaviour are discussed.
Critical Evaluation of Kinetic Method Measurements: Possible Origins of Nonlinear Effects
NASA Astrophysics Data System (ADS)
Bourgoin-Voillard, Sandrine; Afonso, Carlos; Lesage, Denis; Zins, Emilie-Laure; Tabet, Jean-Claude; Armentrout, P. B.
2013-03-01
The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities ( ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.
Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)
NASA Astrophysics Data System (ADS)
Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei
2014-04-01
Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.
Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che
2008-08-01
Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.
Ga- and N-polar GaN Growths on SiC Substrate
2018-03-15
a transition process of a two-section NR are formulated and numerically studied to show the consistent results with experimental data. The relative...contributions of the VLS and VS growths in such a transition process are also numerically illustrated. Besides, the experimentally observed decrease... experimental data, a few important kinetic parameters can be determined. The anti-reflection functions of a surface nanostructure, including
Experimental Model for the Study of Periodontal Wound Healing
1991-05-01
the soft tissue over the submerged root may occur. Models that communicate with the oral cavity (i.e., experimentally produced and naturally...membranes have been successfully utilized to demonstrate regeneration of periodontal tissues . Membranes made of collagen (Pitaru etal., 1987, 1988 a & b...1988. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J Periodont Res 23:107. Isidor, F., Karring, T
Simulated maximum likelihood method for estimating kinetic rates in gene expression.
Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin
2007-01-01
Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-06-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-03-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
Hall, Damien; Minton, Allen P
2005-10-15
We report here an examination of the validity of the experimental practice of using solution turbidity to study the polymerization kinetics of microtubule formation. The investigative approach proceeds via numerical solution of model rate equations to yield the time dependence of each microtubule species, followed by the calculation of the time- and wavelength-dependent turbidity generated by the calculated distribution of rod lengths. The wavelength dependence of the turbidity along the time course is analyzed to search for generalized kinetic regimes that satisfy a constant proportionality relationship between the observed turbidity and the weight concentration of polymerized tubulin. An empirical analysis, which permits valid interpretation of turbidity data for distributions of microtubules that are not long relative to the wavelength of incident light, is proposed. The basic correctness of the simulation work is shown by the analysis of the experimental time dependence of the turbidity wavelength exponent for microtubule formation in taxol-supplemented 0.1 M Pipes buffer (1 mM GTP, 1 mM EGTA, 1 mM MgSO4, pH 6.4). We believe that the general findings and principles outlined here are applicable to studies of other fibril-forming systems that use turbidity as a marker of polymerization progress.
Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein
2015-05-01
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.
Street, Timothy O; Barrick, Doug
2009-01-01
The Notch ankyrin domain is a repeat protein whose folding has been characterized through equilibrium and kinetic measurements. In previous work, equilibrium folding free energies of truncated constructs were used to generate an experimentally determined folding energy landscape (Mello and Barrick, Proc Natl Acad Sci USA 2004;101:14102–14107). Here, this folding energy landscape is used to parameterize a kinetic model in which local transition probabilities between partly folded states are based on energy values from the landscape. The landscape-based model correctly predicts highly diverse experimentally determined folding kinetics of the Notch ankyrin domain and sequence variants. These predictions include monophasic folding and biphasic unfolding, curvature in the unfolding limb of the chevron plot, population of a transient unfolding intermediate, relative folding rates of 19 variants spanning three orders of magnitude, and a change in the folding pathway that results from C-terminal stabilization. These findings indicate that the folding pathway(s) of the Notch ankyrin domain are thermodynamically selected: the primary determinants of kinetic behavior can be simply deduced from the local stability of individual repeats. PMID:19177351
Fakour, Hoda; Lin, Tsair-Fuh
2014-01-01
Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
Barth, Aline Bergesch; de Oliveira, Gabriela Bolfe; Malesuik, Marcelo Donadel; Paim, Clésio Soldatelli; Volpato, Nadia Maria
2011-08-01
A stability-indicating liquid chromatography method for the determination of the antifungal agent butenafine hydrochloride (BTF) in a cream was developed and validated using the Plackett-Burman experimental design for robustness evaluation. Also, the drug photodegradation kinetics was determined. The analytical column was operated with acetonitrile, methanol and a solution of triethylamine 0.3% adjusted to pH 4.0 (6:3:1) at a flow rate of 1 mL/min and detection at 283 nm. BTF extraction from the cream was done with n-butyl alcohol and methanol in ultrasonic bath. The performed degradation conditions were: acid and basic media with HCl 1M and NaOH 1M, respectively, oxidation with H(2)O(2) 10%, and the exposure to UV-C light. No interference in the BTF elution was verified. Linearity was assessed (r(2) = 0.9999) and ANOVA showed non-significative linearity deviation (p > 0.05). Adequate results were obtained for repeatability, intra-day precision, and accuracy. Critical factors were selected to examine the method robustness with the two-level Plackett-Burman experimental design and no significant factors were detected (p > 0.05). The BTF photodegradation kinetics was determined for the standard and for the cream, both in methanolic solution, under UV light at 254 nm. The degradation process can be described by first-order kinetics in both cases.
Kislenko; Verlinskaya
1999-08-01
The kinetics of the adsorption of diethylene-triaminomethylated polyacrylamide on kaolin dispersed in water has been investigated. An influence of the flocculation of kaolin dispersion on polymer adsorption has been found. The kinetics of particle aggregation under the influence of dissolved polymer has been studied. Polymer adsorption and particle aggregation proceed simultaneously, accompanied by a steady decrease in the amount of adsorbed polymer per unit mass of kaolin. A mathematical model of the adsorption process, consistent with the experimental data, is described. The rate constants and their ratios have been determined. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabak, H.H.; Desai, S.; Govind, R.
1990-01-01
Electrolytic respirometry is attaining prominence in biodegradation studies and is becoming one of the more suitable experimental methods for measuring the biodegradability and the kinetics of biodegradation of toxic organic compounds by the sewage, sludge, and soil microbiota and for determining substrate inhibitory effects to microorganisms in wastewater treatment systems. The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate, ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support the development of an EPA technical guidance document on the discharge of the above organics tomore » POTWs. The paper discusses the experimental design and procedural steps for the respirometric biodegradation and toxicity testing approach for individual organics or specific industrial wastes at different concentration levels in a mineral salts medium. A developed multi-level protocol is presented for determination of the biodegradability, microbial acclimation to toxic substrates and first order kinetic parameters of biodegradation for estimation of the Monod kinetic parameter of toxic organic compounds, in order to correlate the extent and rate of biodegradation with a predictive model based on chemical properties and molecular structure of these compounds. Respirometric biodegradation/inhibition and biokinetic data are provided for representative RCRA alkyl benzene and ketone organics.« less
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Mochales, Carolina; El Briak-BenAbdeslam, Hassane; Ginebra, Maria Pau; Terol, Alain; Planell, Josep A; Boudeville, Philippe
2004-01-01
Mechanochemistry is a possible route to synthesize calcium deficient hydroxyapatite (CDHA) with an expected molar calcium-to-phosphate (Ca/P) ratio +/-0.01. To optimize the experimental conditions of CDHA preparation from dicalcium phosphate dihydrate (DCPD) and calcium oxide by dry mechanosynthesis reaction, we performed the kinetic study varying some experimental parameters. This kinetic study was carried out with two different planetary ball mills (Retsch or Fritsch Instuments). Results obtained with the two mills led to the same conclusions although the values of the rate constants of DCPD disappearance and times for complete reaction were very different. Certainly, the origin of these differences was from the mills used, thus we investigated the influence of instrumental parameters such as the mass and the surface area of the balls or the rotation velocity on the mechanochemical reaction kinetics of DCPD with CaO. Results show that the DCPD reaction rate constant and the inverse of the time for complete disappearance of CaO both vary linearly with (i) the square of the rotation velocity, (ii) the square of eccentricity of the vial on the rotating disc and (iii) the product of the mass by the surface area of the balls. These observations comply with theoretical models developed for mechanical alloying. The consideration of these four parameters allows the transposition of experimental conditions from one mill to another or the comparison between results obtained with different planetary ball mills. These instrumental parameters have to be well described in papers concerning mechanochemistry or when grinding is an important stage in a process.
NASA Astrophysics Data System (ADS)
Zularisam, A. W.; Wahida, Norul
2017-07-01
Nickel (II) is one of the most toxic contaminants recognised as a carcinogenic and mutagenic agent which needs complete removal from wastewater before disposal. In the present study, a novel adsorbent called mesoparticle graphene sand composite (MGSCaps) was synthesised from arenga palm sugar and sand by using a green, simple, low cost and efficient methodology. Subsequently, this composite was characterised and identified using field emission scanning electron microscope (FESEM), x-ray diffraction (XRD) and elemental mapping (EM). The adsorption process was investigated and optimised under the experimental parameters such as pH, contact time and bed depth. The results showed that the interaction between nickel (II) and MGSCaps was not ion to ion interaction hence removal of Ni (II) can be applied at any pH. The results were also exhibited the higher contact time and bed depth, the higher removal percentage of nickel (II) occurred. Adsorption kinetic data were modelled using Pseudo-first-order and Pseudo-second-order equation models. The experimental results indicated pseudo-second-order kinetic equation was most suitable to describe the experimental adsorption kinetics data with maximum capacity of 40% nickel (II) removal for the first hour. The equilibrium adsorption data was fitted with Langmuir, and Freundlich isotherms equations. The data suggested that the most fitted equation model is the Freundlich with correlation R2=0.9974. Based on the obtained results, it can be stated that the adsorption method using MGSCaps is an efficient, facile and reliable method for the removal of nickel (II) from waste water.
Tsipa, Argyro; Koutinas, Michalis; Usaku, Chonlatep; Mantalaris, Athanasios
2018-05-02
Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive experimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate systems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an industrially-relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene, was achieved through application of a novel experimental-modelling gene regulatory network - growth kinetic (GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model informed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics. The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental values, when compared to four commonly used models that deviated significantly from the experimental values. Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation, respectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimisation at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bioprocess design. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic approach for model-driven strain modification for synthetic biology and metabolic engineering applications. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Roosta, M.; Ghaedi, M.; Shokri, N.; Daneshfar, A.; Sahraei, R.; Asghari, A.
2014-01-01
The present study was aimed to experimental design optimization applied to removal of malachite green (MG) from aqueous solution by ultrasound-assisted removal onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as FESEM, TEM, BET, and UV-vis measurements. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time on MG removal were studied using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo -first order, pseudo-second order, Elovich and intraparticle diffusion models applicability was tested for experimental data and the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed adsorbent (0.015 g) is applicable for successful removal of MG (RE > 99%) in short time (4.4 min) with high adsorption capacity (140-172 mg g-1).
Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G
2017-10-11
This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.
Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data
2013-01-01
Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763
Cabrales, Luis E Bergues; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra
2010-10-28
Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice.
Solid State Kinetic Parameters and Chemical Mechanism of the Dehydration of CoCl2.6H2O.
ERIC Educational Resources Information Center
Ribas, Joan; And Others
1988-01-01
Presents an experimental example illustrating the most common methods for the determination of kinetic parameters. Discusses the different theories and equations to be applied and the mechanism derived from the kinetic results. (CW)
The intensity of knock in an internal combustion engine: An experimental and modeling study
NASA Astrophysics Data System (ADS)
Cowart, J. S.; Haghooie, M.; Newman, C. E.; Davis, G. C.; Pitz, W. J.; Westbrook, C. K.
1992-09-01
Experimental data have been obtained that characterize knock occurrence times and knock intensities in a spark ignition engine operating on indolene and 91 primary reference fuel, as spark timing and inlet temperature were varied. Individual, in-cylinder pressure histories measured under knocking conditions were conditioned and averaged to obtain representative pressure traces. These averaged pressure histories were used as input to a reduced and detailed chemical kinetic model. The time derivative of CO concentration and temperature were correlated with the measured knock intensity and percent cycles knocking. The goal was to evaluate the potential of using homogeneous, chemical kinetic models as predictive tools for knock intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Piotr P.; Rosso, Kevin M.
Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu
2017-07-01
Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.
Krupcík, J; Mydlová, J; Májek, P; Simon, P; Armstrong, D W
2008-04-04
In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.
A Model for Dissolution of Lime in Steelmaking Slags
NASA Astrophysics Data System (ADS)
Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu
2016-08-01
In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate in the dynamic system of LD steelmaking. In addition, with the inclusion of this submodel, significant improvement in the prediction of the slag composition during the main blow period has been observed.
Muscular Oxygen Uptake Kinetics in Aged Adults.
Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U
2016-06-01
Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.
Net growth rate of continuum heterogeneous biofilms with inhibition kinetics.
Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B
2018-01-01
Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.
Fully kinetic simulations of dense plasma focus Z-pinch devices.
Schmidt, A; Tang, V; Welch, D
2012-11-16
Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.
Recrystallization and Grain Growth Kinetics in Binary Alpha Titanium-Aluminum Alloys
NASA Astrophysics Data System (ADS)
Trump, Anna Marie
Titanium alloys are used in a variety of important naval and aerospace applications and often undergo thermomechanical processing which leads to recrystallization and grain growth. Both of these processes have a significant impact on the mechanical properties of the material. Therefore, understanding the kinetics of these processes is crucial to being able to predict the final properties. Three alloys are studied with varying concentrations of aluminum which allows for the direct quantification of the effect of aluminum content on the kinetics of recrystallization and grain growth. Aluminum is the most common alpha stabilizing alloying element used in titanium alloys, however the effect of aluminum on these processes has not been previously studied. This work is also part of a larger Integrated Computational Materials Engineering (ICME) effort whose goal is to combine both computational and experimental efforts to develop computationally efficient models that predict materials microstructure and properties based on processing history. The static recrystallization kinetics are measured using an electron backscatter diffraction (EBSD) technique and a significant retardation in the kinetics is observed with increasing aluminum concentration. An analytical model is then used to capture these results and is able to successfully predict the effect of solute concentration on the time to 50% recrystallization. The model reveals that this solute effect is due to a combination of a decrease in grain boundary mobility and a decrease in driving force with increasing aluminum concentration. The effect of microstructural inhomogeneities is also experimentally quantified and the results are validated with a phase field model for recrystallization. These microstructural inhomogeneities explain the experimentally measured Avrami exponent, which is lower than the theoretical value calculated by the JMAK model. Similar to the effect seen in recrystallization, the addition of aluminum also significantly slows downs the grain growth kinetics. This is generally attributed to the solute drag effect due to segregation of solute atoms at the grain boundaries, however aluminum segregation is not observed in these alloys. The mechanism for this result is explained and is used to validate the prediction of an existing model for solute drag.
Picart, Sébastien; Ramière, Isabelle; Mokhtari, Hamid; Jobelin, Isabelle
2010-09-02
This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelized by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model.
NASA Astrophysics Data System (ADS)
Kühbach, Markus; Brüggemann, Thiemo; Molodov, Konstantin D.; Gottstein, Günter
2015-03-01
In the current study, we detail a novel in situ X-ray diffraction-based bulk measurement technique, which allows for the continuous tracking of primary recrystallization kinetics. The approach is based on measuring the diffracted intensity that is correlated with the evolution of the volume fraction of particular texture components during annealing of a sample within a texture goniometer. The method is applied in an experimental study on a cold-rolled industrial Al-Fe-Si alloy. For comparison purposes, the macrotexture and the hardness evolution were monitored ex situ along isothermal and nonisothermal annealing. These measurements were then contrasted to the in situ obtained growth kinetics of recrystallizing grains in beta-fiber deformation and cube orientation. The results showed clearly that this method can be reliably utilized for the characterization of recrystallization kinetics in an industrial context.
Taitano, William T.; Simakov, Andrei N.; Chacon, Luis; ...
2018-04-09
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. As a result, studies of such effects are left for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taitano, William T.; Simakov, Andrei N.; Chacon, Luis
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. As a result, studies of such effects are left for future work.« less
NASA Astrophysics Data System (ADS)
Lee, Jay Min
1990-08-01
The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the course of this study, we refine knowledge of intermediate range order structural configurations and the bistabilities related to these configurations. The importance of the lone-pair orbital interactions in the chalcogenide glassy network is underscored.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.
2018-05-01
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. Studies of such effects are left for future work.
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
NASA Astrophysics Data System (ADS)
Zou, Yan-Rong; Wang, Lianyuan; Shuai, Yanhua; Peng, Ping'an
2005-08-01
A new kinetic model and an Excel © spreadsheet program for modeling the stable carbon isotope composition of natural gases is provided in this paper. The model and spreadsheet could be used to describe and predict the variances in stable carbon isotope of natural gases under both experimental and geological conditions with heating temperature or geological time. It is a user-friendly convenient tool for the modeling of isotope variation with time under experimental and geological conditions. The spreadsheet, based on experimental data, requires the input of the kinetic parameters of gaseous hydrocarbons generation. Some assumptions are made in this model: the conventional (non-isotope species) kinetic parameters represent the light isotope species; the initial isotopic value is the same for all parallel chemical reaction of gaseous hydrocarbons generation for simplicity, the re-exponential factor ratio, 13A/ 12A, is a constant, and both heavy and light isotope species have similar activation energy distribution. These assumptions are common in modeling of isotope ratios. The spreadsheet is used for searching the best kinetic parameters of the heavy isotope species to reach the minimum errors compared with experimental data, and then extrapolating isotopic changes to the thermal history of sedimentary basins. A short calculation example on the variation in δ13C values of methane is provided in this paper to show application to geological conditions.
Free-energy landscape of protein oligomerization from atomistic simulations
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele
2013-01-01
In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370
Free-energy landscape of protein oligomerization from atomistic simulations.
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K; Parrinello, Michele
2013-12-03
In the realm of protein-protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage.
Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.
2014-01-01
A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903
Kinetics of Graphite Oxidation in Reacting Flow from Imaging Fourier Transform Spectroscopy
2016-09-21
where ks i = Ai · e x p (−Ei/T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Summary of carbon oxidation studies; α, β , and n ...61 7 Summary of carbon oxidation studies; Values of A,B, n correspond to Eq. (116...O2] n exp � − β T � (18) where α, β , and n are determined through fitting of experimental data. A summary of experimental studies is shown in Table
Studies on biomass char gasification and dynamics
NASA Astrophysics Data System (ADS)
You, Zhanping; You, Shijun; Ma, Xiaoyan
2018-01-01
The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.
ERIC Educational Resources Information Center
Julien, L. M.
1984-01-01
Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)
Comparative experimental pharmacokinetics of benzimidazole derivatives.
Sergeeva, S A; Gulyaeva, I L
2008-12-01
Comparative study of experimental kinetics of distribution of benzimidazole derivatives (bemithyl, etomerzole, and thietazole) in organs and tissues was carried out after single and course treatment. The drugs intensely passed into organs and tissues from the blood after treatment by all protocols. Specific features of drug distribution were detected; for example, splenic tissue selectively accumulated thietazole during course treatment.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-03-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.
Hameed, B H; El-Khaiary, M I
2008-06-15
In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-06-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu
2016-07-15
Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less
Quasiperiodic energy dependence of exciton relaxation kinetics in the sexithiophene crystal.
Petelenz, Piotr; Zak, Emil
2014-10-16
Femtosecond kinetics of fluorescence rise in the sexithiophene crystal is studied on a microscopic model of intraband relaxation, where exciton energy is assumed to be dissipated by phonon-accompanied scattering, with the rates calculated earlier. The temporal evolution of the exciton population is described by a set of kinetic equations, solved numerically to yield the population buildup at the band bottom. Not only the time scale but also the shape of the rise curves is found to be unusually sensitive to excitation energy, exhibiting unique quasiperiodic dependence thereon, which is rationalized in terms of the underlying model. Further simulations demonstrate that the main conclusions are robust with respect to experimental factors such as finite temperature and inherent spectral broadening of the exciting pulse, while the calculated fluorescence rise times are found to be in excellent agreement with experimental data available to date. As the rise profiles are composed of a number of exponential contributions, which varies with excitation energy, the common practice of characterizing the population buildup in the emitting state by a single value of relaxation time turns out to be an oversimplification. New experiments giving further insight into the kinetics and mechanism of intraband exciton relaxation are suggested.
Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea
2016-08-11
Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.
Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard
2014-04-26
Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperaturesmore » and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.« less
Effect of Proton Radiation on the Kinetics of Phosphorescence Decay in the Ceramic Material ZnS-Cu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchakova, T.A.; Vesna, G.V.; Makara, V.A.
2004-11-01
The results of studying the dose dependences of the decay kinetics of phosphorescence excited by X-ray radiation in luminescent ZnS-Cu ceramic material before and after irradiation with 50-MeV protons are considered. An anomalous variation in the exponent of the hyperbolic phosphorescence curves was observed experimentally as the accumulated light sum increased. It is found from an analysis of the data obtained that two processes are involved in the decay: one of these is monomolecular and corresponds to the first-order kinetics; the other is bimolecular and corresponds to the second-order kinetics. Transitions of charge carriers delocalized from traps occur at themore » nonradiative-recombination centers induced by proton radiation. Recombination of these charge carriers at the emission centers in the course of decay is described by the second-order kinetics.« less
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjia; Somers, Kieran P.; Mehl, Marco
There is a dearth of experimental data which examine the fundamental low-temperature ignition (T < 900 K) behavior of toluene resulting in a lack of data for the construction, validation, and interpretation of chemical kinetic models for commercial fuels. In order to gain a better understanding of its combustion chemistry, dimethyl ether (DME) has been used as a radical initiator to induce ignition in this highly knock resistant aromatic, and its influence on the combustion of toluene ignition was studied in both shock tube and rapid compression machines as a function of temperature (624–1459 K), pressure (20–40 atm), equivalence ratiomore » (0.5–2.0), and blending ratio (100% toluene, 76% toluene (76T/24D), 58% toluene (58T/42D), 26% toluene (26T/74D) and 100% DME). We use several literature chemical kinetic models to interpret our experimental results. For mixtures containing high concentrations of toluene at low-temperatures none of these are capable of reproducing experiment. This then implies an incomplete understanding of the low-temperature oxidation pathways which control its ignition in our experimental reactors, and by extension, in spark- (SI) and compression-ignition (CI) engines, and an updated detailed chemical kinetic model is presented for engineering applications. Model analyses indicate that although the initial fate of the fuel is dominated by single-step H-atom abstraction reactions from both the benzylic and phenylic sites, the subsequent fate of the allylic and vinylic radicals formed is much more complex. Further experimental and theoretical endeavors are required to gain a holistic qualitative and quantitative chemical kinetics based understanding of the combustion of pure toluene, toluene blends, and commercial fuels containing other aromatic components, at temperatures of relevance to SI and CI engines.« less
Zhang, Yingjia; Somers, Kieran P.; Mehl, Marco; ...
2016-07-12
There is a dearth of experimental data which examine the fundamental low-temperature ignition (T < 900 K) behavior of toluene resulting in a lack of data for the construction, validation, and interpretation of chemical kinetic models for commercial fuels. In order to gain a better understanding of its combustion chemistry, dimethyl ether (DME) has been used as a radical initiator to induce ignition in this highly knock resistant aromatic, and its influence on the combustion of toluene ignition was studied in both shock tube and rapid compression machines as a function of temperature (624–1459 K), pressure (20–40 atm), equivalence ratiomore » (0.5–2.0), and blending ratio (100% toluene, 76% toluene (76T/24D), 58% toluene (58T/42D), 26% toluene (26T/74D) and 100% DME). We use several literature chemical kinetic models to interpret our experimental results. For mixtures containing high concentrations of toluene at low-temperatures none of these are capable of reproducing experiment. This then implies an incomplete understanding of the low-temperature oxidation pathways which control its ignition in our experimental reactors, and by extension, in spark- (SI) and compression-ignition (CI) engines, and an updated detailed chemical kinetic model is presented for engineering applications. Model analyses indicate that although the initial fate of the fuel is dominated by single-step H-atom abstraction reactions from both the benzylic and phenylic sites, the subsequent fate of the allylic and vinylic radicals formed is much more complex. Further experimental and theoretical endeavors are required to gain a holistic qualitative and quantitative chemical kinetics based understanding of the combustion of pure toluene, toluene blends, and commercial fuels containing other aromatic components, at temperatures of relevance to SI and CI engines.« less
A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.
Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M
2010-08-12
This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.
Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion
NASA Astrophysics Data System (ADS)
Tsankov, Tsanko V.; Czarnetzki, Uwe
2017-05-01
Non-equilibrium distribution functions of electrons and ions play an important role in plasma physics. A prominent example is the kinetic Bohm criterion. Since its first introduction it has been controversial for theoretical reasons and due to the lack of experimental data, in particular on the ion distribution function. Here we resolve the theoretical as well as the experimental difficulties by an exact solution of the kinetic Boltzmann equation including charge exchange collisions and ionization. This also allows for the first time non-invasive measurement of spatially resolved ion velocity distributions, absolute values of the ion and electron densities, temperatures, and mean energies as well as the electric field and the plasma potential in the entire plasma. The non-invasive access to the spatially resolved distribution functions of electrons and ions is applied to the problem of the kinetic Bohm criterion. Theoretically a so far missing term in the criterion is derived and shown to be of key importance. With the new term the validity of the kinetic criterion at high collisionality and its agreement with the fluid picture are restored. All findings are supported by experimental data, theory and a numerical model with excellent agreement throughout.
Kinetics of phase transformation in glass forming systems
NASA Technical Reports Server (NTRS)
Ray, Chandra S.
1994-01-01
The objectives of this research were to (1) develop computer models for realistic simulations of nucleation and crystal growth in glasses, which would also have the flexibility to accomodate the different variables related to sample characteristics and experimental conditions, and (2) design and perform nucleation and crystallization experiments using calorimetric measurements, such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) to verify these models. The variables related to sample characteristics mentioned in (1) above include size of the glass particles, nucleating agents, and the relative concentration of the surface and internal nuclei. A change in any of these variables changes the mode of the transformation (crystallization) kinetics. A variation in experimental conditions includes isothermal and nonisothermal DSC/DTA measurements. This research would lead to develop improved, more realistic methods for analysis of the DSC/DTA peak profiles to determine the kinetic parameters for nucleation and crystal growth as well as to assess the relative merits and demerits of the thermoanalytical models presently used to study the phase transformation in glasses.
Olfactory stimulation modulates the blood glucose level in rats.
Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi
2018-01-01
In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.
Rawat, Anand Prabha; Giri, Krishna; Rai, J P N
2014-03-01
Biosorption of Cu(2+), Zn(2+), and Cr(6+) from aqueous solutions by leaf biomass of Jatropha curcas was investigated as a function of biomass concentration, initial metal ion concentration, contact time, and pH of the solution systematically. The aim of this study was to optimize biosorption process and find out a suitable kinetic model for the metal removal in single and multi-metal system. The experimental data were analyzed using two sorption kinetic models, viz., pseudo-first- and pseudo-second-order equations, to determine the best fit equation for the biosorption of metal ions Cu(2+), Zn(2+), and Cr(6+) onto the leaf biomass of J. curcas in different metal systems. The experimental data fitted well the pseudo-second-order equation and provided the best correlation for the biosorption process. The findings of the present investigation revealed that J. curcas leaf biomass was an eco-friendly and cost-effective biosorbent for the removal of heavy metal ions from wastewater.
Gallifuoco, Alberto; Cantarella, Maria; Marucci, Mariagrazia
2007-01-01
A stirred tank membrane reactor is used to study the kinetics of polygalacturonic acid (PGA) enzymatic hydrolysis. The reactor operates in semicontinuous configuration: the native biopolymer is loaded at the initial time and the system is continuously fed with the buffer. The effect of retention time (from 101 to 142 min) and membrane molecular weight cutoff (from 1 to 30 kDa) on the rate of permeable oligomers production is investigated. Reaction products are clustered in two different classes, those sized below the membrane cutoff and those above. The reducing power measured in the permeate is used as an estimate of total product concentration. The characteristic breakdown times range from 40 to 100 min. The overall kinetics obeys a first-order law with a characteristic time estimated to 24 min. New mathematical data handling are developed and illustrated using the experimental data obtained. Finally, the body of the experimental results suggests useful indications (reactor productivity, breakdown induction period) for implementing the bioprocess at the industrial scale.
Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass.
Keshwani, Deepak R; Cheng, Jay J
2010-01-01
This study used two different approaches to model changes in biomass composition during microwave-based pretreatment of switchgrass: kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. In both modeling approaches, the dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors for changes in amounts of lignin, cellulose, and xylan during the pretreatment. Training and testing data sets for development and validation of the models were obtained from pretreatment experiments conducted using 1-3% w/v NaOH (sodium hydroxide) and pretreatment times ranging from 5 to 20 min. The kinetic modeling approach for lignin and xylan gave comparable results for training and testing data sets, and the differences between the predictions and experimental values were within 2%. The kinetic modeling approach for cellulose was not as effective, and the differences were within 5-7%. The time-dependent rate coefficients of the kinetic models estimated from experimental data were consistent with the heterogeneity of individual biomass components. The Mamdani-type fuzzy inference was shown to be an effective approach to model the pretreatment process and yielded predictions with less than 2% deviation from the experimental values for lignin and with less than 3% deviation from the experimental values for cellulose and xylan. The entropies of the fuzzy outputs from the Mamdani-type fuzzy inference system were calculated to quantify the uncertainty associated with the predictions. Results indicate that there is no significant difference between the entropies associated with the predictions for lignin, cellulose, and xylan. It is anticipated that these models could be used in process simulations of bioethanol production from lignocellulosic materials.
The CRDS method application for study of the gas-phase processes in the hot CVD diamond thin film.
NASA Astrophysics Data System (ADS)
Buzaianumakarov, Vladimir; Hidalgo, Arturo; Morell, Gerardo; Weiner, Brad; Buzaianu, Madalina
2006-03-01
For detailed analysis of problem related to the hot CVD carbon-containing nano-material growing, we have to detect different intermediate species forming during the growing process as well as investigate dependences of concentrations of these species on different experimental parameters (concentrations of the CJH4, H2S stable chemical compounds and distance from the filament system to the substrate surface). In the present study, the HS and CS radicals were detected using the Cavity Ring Down Spectroscopic (CRDS) method in the hot CVD diamond thin film for the CH4(0.4 %) + H2 mixture doped by H2S (400 ppm). The absolute absorption density spectra of the HS and CS radicals were obtained as a function of different experimental parameters. This study proofs that the HS and CS radicals are an intermediate, which forms during the hot filament CVD process. The kinetics approach was developed for detailed analysis of the experimental data obtained. The kinetics scheme includes homogenous and heterogenous processes as well as processes of the chemical species transport in the CVD chamber.
Voga, G P; Coelho, M G; de Lima, G M; Belchior, J C
2011-04-07
In this paper we report experimental and theoretical studies concerning the thermal behavior of some organotin-Ti(IV) oxides employed as precursors for TiO(2)/SnO(2) semiconducting based composites, with photocatalytic properties. The organotin-TiO(2) supported materials were obtained by chemical reactions of SnBu(3)Cl (Bu = butyl), TiCl(4) with NH(4)OH in ethanol, in order to impregnate organotin oxide in a TiO(2) matrix. A theoretical model was developed to support experimental procedures. The kinetics parameters: frequency factor (A), activation energy, and reaction order (n) can be estimated through artificial intelligence methods. Genetic algorithm, fuzzy logic, and Petri neural nets were used in order to determine the kinetic parameters as a function of temperature. With this in mind, three precursors were prepared in order to obtain composites with Sn/TiO(2) ratios of 0% (1), 15% (2), and 30% (3) in weight, respectively. The thermal behavior of products (1-3) was studied by thermogravimetric experiments in oxygen.
Experimental and theoretical study of diesel soot reactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcuccilli, F; Gilot, P.; Stanmore, B.
1994-12-31
In order to provide data for modelling the performance of a regenerative soot filter, a study of the oxidation kinetics of diesel soot in the temperature range from 600 C to 800 C was undertaken. Isothermal burning rates at a number of temperatures were measured in rectangular soot beds within a thermobalance. The technique was easy to use, but the combustion rate was found to depend on bed mass. The oxidation process was thus limited by mass transfer effects. A two-dimensional mathematical model of oxygen transfer was developed to extract the true kinetic rates from experimental data. The two-dimensional approachmore » was required because significant oxygen depletion occurred along both axes. Using assumed kinetic rates, oxygen concentration profiles in the gas phase above the bed and within the bed were calculated. The true kinetics at a number of temperatures were, then established by matching predicted oxygen consumption with measured consumption. Application of the model required values of the effective diffusion coefficient for oxygen within the bed. Accordingly, the structure and properties of the soot aggregates were determined. A supplements study was carried out to identify the appropriate primary reaction products. The measured kinetic rates were then used in a simpler, monodimensional model to evaluate the mean oxygen mass transfer coefficients to the surface of the bed. The results show that burning below about 730 C is in regime 1 and can be described by K = 6.9 {times} 10{sup 12} exp ({minus}207,000/RT) (s{sup {minus}1}) with R = 8.314 J/mol {times} K. Above, 730 C, there is a decrease in apparent activation energy, probably due to thermal ``annealing,`` which changes the microstructure of the carbon. As a result, the inherent reactivity declines and/or the bed becomes less accessible to oxygen.« less
Mousseau, Normand; Béland, Laurent Karim; Brommer, Peter; ...
2014-12-24
The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a desire and need, however, for methods able to handle complex materials such as alloys and disordered systems. In this paper, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful of off-lattice kineticmore » Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last few years.« less
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Sievert, J. L.
1975-01-01
The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.
Tosun, İsmail
2012-01-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177
The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors.
Barrie, Patrick J
2012-01-07
The kinetic compensation effect states that there is a linear relationship between Arrhenius parameters ln A and E for a family of related processes. It is a widely observed phenomenon in many areas of science, notably heterogeneous catalysis. This paper explores mathematical, rather than physicochemical, explanations for the compensation effect in certain situations. Three different topics are covered theoretically and illustrated by examples. Firstly, the effect of systematic errors in experimental kinetic data is explored, and it is shown that these create apparent compensation effects. Secondly, analysis of kinetic data when the Arrhenius parameters depend on another parameter is examined. In the case of temperature programmed desorption (TPD) experiments when the activation energy depends on surface coverage, it is shown that a common analysis method induces a systematic error, causing an apparent compensation effect. Thirdly, the effect of analysing the temperature dependence of an overall rate of reaction, rather than a rate constant, is investigated. It is shown that this can create an apparent compensation effect, but only under some conditions. This result is illustrated by a case study for a unimolecular reaction on a catalyst surface. Overall, the work highlights the fact that, whenever a kinetic compensation effect is observed experimentally, the possibility of it having a mathematical origin should be carefully considered before any physicochemical conclusions are drawn.
Orhon, Derin; Cokgor, Emine Ubay; Insel, Guclu; Karahan, Ozlem; Katipoglu, Tugce
2009-12-01
The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (theta(X)) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for theta(X)=10 days and 15 mg COD/L for theta(X)=2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for theta(X)=2 days and 4.1/day for theta(X)=10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
A Comprehensive Enzyme Kinetic Exercise for Biochemistry
ERIC Educational Resources Information Center
Barton, Janice S.
2011-01-01
This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…
Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.
ERIC Educational Resources Information Center
Paspek, Stephen C.; And Others
1980-01-01
Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)
Early stages of soldering reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, R.A.; Umantsev, A.
2005-09-15
An experiment on the early stages of intermetallic compound layer growth during soldering and its theoretical analysis were conducted with the intent to study the controlling factors of the process. An experimental technique based on fast dipping and pulling of a copper coupon in liquid solder followed by optical microscopy allowed the authors to study the temporal behavior of the sample on a single micrograph. The technique should be of value for different areas of metallurgy because many experiments on crystallization may be described as the growth of a layer of intermediate phase. Comparison of the experimental results with themore » theoretical calculations allowed one to identify the kinetics of dissolution as the rate-controlling mechanism on the early stages and measure the kinetic coefficient of dissolution. A popular model of intermetallic compound layer structure coarsening is discussed.« less
Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz
2015-11-01
In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.
2010-01-01
Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411
Kinetic Evidence of an Apparent Negative Activation Enthalpy in an Organocatalytic Process
Han, Xiao; Lee, Richmond; Chen, Tao; Luo, Jie; Lu, Yixin; Huang, Kuo-Wei
2013-01-01
A combined kinetic and computational study on our tryptophan-based bifunctional thiourea catalyzed asymmetric Mannich reactions reveals an apparent negative activation enthalpy. The formation of the pre-transition state complex has been unambiguously confirmed and these observations provide an experimental support for the formation of multiple hydrogen bonding network between the substrates and the catalyst. Such interactions allow the creation of a binding cavity, a key factor to install high enantioselectivity. PMID:23990028
NASA Astrophysics Data System (ADS)
Schumann, M.; Geiß, P. L.
2015-05-01
Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
Kinetics of the B1-B2 phase transition in KCl under rapid compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.
2016-01-28
Kinetics of the B1-B2 phase transition in KCl has been investigated under various compression rates (0.03–13.5 GPa/s) in a dynamic diamond anvil cell using time-resolved x-ray diffraction and fast imaging. Our experimental data show that the volume fraction across the transition generally gives sigmoidal curves as a function of pressure during rapid compression. Based upon classical nucleation and growth theories (Johnson-Mehl-Avrami-Kolmogorov theories), we propose a model that is applicable for studying kinetics for the compression rates studied. The fit of the experimental volume fraction as a function of pressure provides information on effective activation energy and average activation volume at amore » given compression rate. The resulting parameters are successfully used for interpreting several experimental observables that are compression-rate dependent, such as the transition time, grain size, and over-pressurization. The effective activation energy (Q{sub eff}) is found to decrease linearly with the logarithm of compression rate. When Q{sub eff} is applied to the Arrhenius equation, this relationship can be used to interpret the experimentally observed linear relationship between the logarithm of the transition time and logarithm of the compression rates. The decrease of Q{sub eff} with increasing compression rate results in the decrease of the nucleation rate, which is qualitatively in agreement with the observed change of the grain size with compression rate. The observed over-pressurization is also well explained by the model when an exponential relationship between the average activation volume and the compression rate is assumed.« less
Bandyopadhyay, Pradipta; Kuntz, Irwin D
2009-01-01
The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com; Taimoor, Aqeel Ahmad; Muhammad, Ayyaz
Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{submore » 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.« less
NASA Astrophysics Data System (ADS)
Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing
1991-03-01
The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.
Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.
Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya
2014-05-21
Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.
Studies on adsorption of phenol from wastewater by agricultural waste.
Girish, C R; Ramachandramurty, V
2013-07-01
In this paper, preliminary investigation of various agricultural wastes-Rice mill residue (RM), Wheat mill reside (WM), Dall mill residue (DM) and the Banana peels (BM) was carried out to study their ability to be used as adsorbents for phenol-removal from wastewater. This study reports the feasibility of employing dal mill residue waste (DM) as an adsorbent for removing phenol from wastewater. The performance of DM was compared with the commercially available activated carbon (CAC). Batch mode experiments were conducted with activated DM to study the effects of initial concentration of phenol, pH and the temperature of aqueous solution on adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models and the isotherm data fitted well to the Freundlich isotherm with monolayer adsorption capacity of 6.189 mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first order and pseudo-second- order equation. The experimental data fitted very well with the pseudo-first-order kinetic model. The FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of phenol. Finally, the DM was found to be a promising adsorbent for phenol adsorption as compared to activated carbon.
Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.
Deepanraj, B; Sivasubramanian, V; Jayaraj, S
2015-11-01
In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
Roosta, M; Ghaedi, M; Shokri, N; Daneshfar, A; Sahraei, R; Asghari, A
2014-01-24
The present study was aimed to experimental design optimization applied to removal of malachite green (MG) from aqueous solution by ultrasound-assisted removal onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as FESEM, TEM, BET, and UV-vis measurements. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time on MG removal were studied using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo -first order, pseudo-second order, Elovich and intraparticle diffusion models applicability was tested for experimental data and the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed adsorbent (0.015 g) is applicable for successful removal of MG (RE>99%) in short time (4.4 min) with high adsorption capacity (140-172 mg g(-1)). Copyright © 2013. Published by Elsevier B.V.
Modelling nifedipine photodegradation, photostability and actinometric properties.
Maafi, Wassila; Maafi, Mounir
2013-11-01
The photodegradation of drugs obeying unimolecular mechanisms such as that of nifedipine (NIF) were usually characterised in the literature by zero-, first- and second-order kinetics. This approach has been met with varying success. This paper addresses this issue and proposes a novel approach for unimolecular photodegradation kinetics. The photodegradation of the cardiovascular drug nifedipine is investigated within this framework. Experimental kinetic data of nifedipine photodegradation were obtained by continuous monochromatic irradiation and DAD analysis. Fourth-order Runge-Kutta calculated kinetic data served for the validation of the new semi-empirical integrated rate-law model proposed in this study. A new model equation has been developed and proposed which faithfully describes the kinetic behaviour of NIF in solution for non-isosbestic irradiations at wavelengths where both NIF and its photoproduct absorb. NIF absolute quantum yield values were determined and found to increase with irradiation wavelength according to a defined sigmoid relationship. The effects of increasing NIF or excipients' concentrations on NIF kinetics were successfully modelled and found to improve NIF photostability. The potential of NIF for actinometry has been explored and evaluated. A new reaction order (the so-called Φ-order) has been identified and specifically proposed for unimolecular photodegradation reactions. The semi-empirical and integrated rate-law models facilitated reliable kinetic studies of NIF photodegradation as an example of AB(1Φ) unimolecular reactions. It allowed filling a gap in kinetic studies of drugs since, thus far, thermal first-order or a combination of first- and zero- order kinetic equations were generally applied for drug photoreactions in the literature. Also, a new reaction order, the "Φ-order", has been evidenced and proposed as a specific alternative for photodegradation kinetics. Copyright © 2013 Elsevier B.V. All rights reserved.
Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo
2016-09-01
The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
1993-04-01
not to be construed as an official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE...parameter sensitivity studies, and test procedure design . An experimental system providing reaL data on the parametters relevant to the calculations has been...experimental program was designed to exploit as much of the existing capabilities of the Ventilation Kinetics group as possible while keeping in mind
NASA Astrophysics Data System (ADS)
Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.
2015-03-01
Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.
Catalytic Effect of Pd Clusters in the Poly( N-vinyl-2-pyrrolidone) Combustion
NASA Astrophysics Data System (ADS)
Schiavo, L.; De Nicola, S.; Carotenuto, G.
2018-01-01
Pd(0) is able to catalyze oxygen-involving reactions because of its capability to convert molecular oxygen to the very reactive atomic form. Consequently, the embedding of a little amount of Pd(0) clusters in polymeric phases can be technologically exploited to enhance the incineration kinetic of these polymers. The effect of nanostructuration on the Pd(0) catalytic activity in the polymer incineration reaction has been studied using poly( N-vinyl-2-pyrrolidone) ( \\overline{Mw} = 10,000 gmol-1) as polymeric model system. A change in the PVP incineration kinetic mechanism with significant increase in the reaction rate was experimentally found. The kinetic of the Pd(0)-catalyzed combustion has been studied by isothermal thermogravimetric analysis. After a short induction time, the combustion in presence of Pd(0) clusters shifted to a zero-order kinetic from a second-order kinetic control, which is operative in pure PVP combustion reaction. In addition, the activation energy resulted much lowered compared to the pure PVP incineration case (from 300 to 260 kJ/mol).
Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación
2015-01-01
Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process. PMID:26504824
Computer-Aided Construction of Chemical Kinetic Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William H.
2014-12-31
The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriatemore » refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.« less
New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda
2014-01-01
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.
Kinetic model for microbial growth and desulphurisation with Enterobacter sp.
Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin
2015-02-01
Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".
Sprynskyy, Myroslav; Krzemień-Konieczka, Iwona; Gadzała-Kopciuch, Renata; Buszewski, Bogusław
2018-01-01
The objective of the study was to examine adsorption of the aflatoxin B1 from synthetic gastric fluid and synthetic intestinal fluid by talc, raw and calcined diatomite. The kinetic and equilibrium adsorption processes were studied in the batch adsorption experiments applying high performance liquid chromatography for the aflatoxin B1 determination. The kinetic study showed a very fast adsorption of the aflatoxin B1 onto the selected adsorbents from the both physiological fluids with reaching equilibrium within 1-15min. The aflatoxin B1 was almost completely adsorbed in initial linear step of the kinetic process that can be described well by the zero-order kinetics model. The experimental data of the equilibrium adsorption were characterized using the Langmuir and Freundlich isotherm models. The high adsorption effectiveness was found in a range of 90%-100% and 60%-100% for the diatomite samples and the talc respectively at the initial concentrations of the aflatoxin B1 as 31-300ng/mL. The possible mechanisms of the aflatoxin adsorption onto the used mineral adsorbents are also discussed in the work. Copyright © 2017 Elsevier B.V. All rights reserved.
Coruh, Semra; Ergun, Osman Nuri
2010-01-15
Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.
NASA Astrophysics Data System (ADS)
Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N.
2017-01-01
Nonequilibrium flows of a two-component oxygen mixture O2/O behind a shock wave are studied with due allowance for the state-to-state vibrational and chemical kinetics. The system of gas-dynamic equations is supplemented with kinetic equations including contributions of VT (TV)-exchange and dissociation processes. A method of the numerical solution of this system with the use of the ANSYS Fluent commercial software package is proposed, which is used in a combination with the authors' code that takes into account nonequilibrium kinetics. The computed results are compared with parameters obtained by solving the problem in the shock-fitting formulation. The vibrational temperature is compared with experimental data. The numerical tool proposed in the present paper is applied to study the flow around a cylinder.
Yakan, S D; Focks, A; Klasmeier, J; Okay, O S
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Phuong T. M.; Nguyen, Van T.; Annapureddy, Harsha V. R.; Dang, Liem X.; Do, D. D.
2012-12-01
To enhance our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on the interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, a stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, which is in agreement with experimental and theoretical studies [1-4]. The kinetics of ion-pair inter-conversions was studied using the transition rate theory, along with a number of theoretical approaches such as the Kramers and Grote-Hynes theories. These kinetic results were used to predict solvent effects on dynamical features of ion-pair association, in which we have found that the dynamics of K+-formate pairs is faster than Na+-formate pairs.
Guerrero-Coronilla, Imelda; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo
2015-04-01
The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic study on removal of heavy metal ions from aqueous solution by using soil.
Lim, Soh-Fong; Lee, Agnes Yung Weng
2015-07-01
In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.
NASA Astrophysics Data System (ADS)
Carpenter, John E.; McNary, Christopher P.; Furin, April; Sweeney, Andrew F.; Armentrout, P. B.
2017-09-01
The first absolute experimental bond dissociation energies (BDEs) for the main heterolytic bond cleavages of four benzylpyridinium "thermometer" ions are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. In this experiment, substituted benzylpyridinium ions are introduced into the apparatus using an electrospray ionization source, thermalized, and collided with Xe at varied kinetic energies to determine absolute cross-sections for these reactions. Various effects are accounted for, including kinetic shifts, multiple collisions, and internal and kinetic energy distributions. These experimentally measured 0 K BDEs are compared with computationally predicted values at the B3LYP-GD3BJ, M06-GD3, and MP2(full) levels of theory with a 6-311+G(2d,2p) basis set using vibrational frequencies and geometries determined at the B3LYP/6-311+G(d,p) level. Additional dissociation pathways are observed for nitrobenzylpyridinium experimentally and investigated using these same levels of theory. Experimental BDEs are also compared against values in the literature at the AM1, HF, B3LYP, B3P86, and CCSD(T) levels of theory. Of the calculated values obtained in this work, the MP2(full) level of theory with counterpoise corrections best reproduces the experimental results, as do the similar literature CCSD(T) values. Lastly, the survival yield method is used to determine the characteristic temperature (Tchar) of the electrospray source prior to the thermalization region and to confirm efficient thermalization. [Figure not available: see fulltext.
Kinetics of Methane Production from Swine Manure and Buffalo Manure.
Sun, Chen; Cao, Weixing; Liu, Ronghou
2015-10-01
The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.
Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.
Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin
2011-01-14
Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.
Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer
NASA Astrophysics Data System (ADS)
Demiray, Engin; Tulek, Yahya
2014-06-01
The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.
Effects of crowders on the equilibrium and kinetic properties of protein aggregation
NASA Astrophysics Data System (ADS)
Bridstrup, John; Yuan, Jian-Min
2016-08-01
The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.
Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics
NASA Technical Reports Server (NTRS)
Rosenberger, F.
1998-01-01
Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.
Study of the Characteristics of Elementary Processes in a Chain Hydrogen Burning Reaction in Oxygen
NASA Astrophysics Data System (ADS)
Bychkov, M. E.; Petrushevich, Yu. V.; Starostin, A. N.
2017-12-01
The characteristics of possible chain explosive hydrogen burning reactions in an oxidizing medium are calculated on the potential energy surface. Specifically, reactions H2 + O2 → H2O + O, H2 + O2 → HO2 + H, and H2 + O2 → OH + OH are considered. Special attention is devoted to the production of a pair of fast highly reactive OH radicals. Because of the high activation threshold, this reaction is often excluded from the known kinetic scheme of hydrogen burning. However, a spread in estimates of kinetic characteristics and a disagreement between theoretical predictions with experimental results suggest that the kinetic scheme should be refined.
Kinetics of oxygen atom formation during the oxidation of methane behind shock waves
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1974-01-01
An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.
Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process.
Marques, Rodrigo de Oliveira; Ferreira Filho, Sidney Seckler
2017-04-01
The main objective of this study was to propose an improvement to the flocculation kinetics model presented by Argaman and Kaufman, by including a new term that accounts for the irreversible floc breakup process. Both models were fitted to the experimental results obtained with flocculation kinetics assays of low turbidity raw water containing Microcystis aeruginosa cells. Aluminum sulfate and ferric chloride were used as coagulants, and three distinct average velocity gradient (G) values were applied in the flocculation stage (20, 40 and 60 s -1 ). Experimental results suggest that the equilibrium between the aggregation and breakup process, as depicted by Argaman and Kaufman's original model, might not be constant over time, since the residual turbidity increased in various assays (phenomenon that was attributed to the irreversible floc breakup process). In the aluminum sulfate assays, the residual turbidity increase was visible when G = 20 s -1 (dosages of 60 and 80 mg L -1 ). For the ferric chloride assays, the phenomenon was noticed when G = 60 s -1 (dosages of 60 and 80 mg L -1 ). The proposed model presented a better fit to the experimental results, especially at higher coagulant dosages and/or higher values of average velocity gradient (G).
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; George, K.; Cucinotta, F. A.
2011-01-01
New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.
CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study.
Gupta, Ankita; Thengane, Sonal K; Mahajani, Sanjay
2018-04-25
In this study, the dry leaves litter from jackfruit, raintree, mango and eucalyptus trees, lignin, and cellulose were characterized, pyrolysed, and evaluated for their char reactivity towards CO 2 gasification using TGA. The differences in char reactivity were attributed to the difference in char morphology and the varying inorganic contents. The mineral analysis of biomass ash showed the presence of alkali minerals some of which could act as catalysts. The adverse effect of high silica content was also evident through the experimental results. The kinetic parameters for gasification reaction were determined using three different reaction models. A modified random pore model was investigated to account for the influence of inorganic content. The effect of external catalyst on CO 2 gasification was also studied by adding potassium carbonate to biomass char and pellets. The results obtained from this study can be conveniently used in the design of a gasifier for lignocellulosic garden waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic modeling of reversible methanolysis of Jatropha curcas oil to biodiesel.
Syam, Azhari M; Hamid, Hamidah A; Yunus, Robiah; Rashid, Umer
2013-01-01
Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.
Dynamic Modeling of Reversible Methanolysis of Jatropha curcas Oil to Biodiesel
Syam, Azhari M.; Hamid, Hamidah A.; Yunus, Robiah; Rashid, Umer
2013-01-01
Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol−1. PMID:24363616
On-site generation of hydrogen from ethanol
DOT National Transportation Integrated Search
2008-01-01
Supercritical water is a synergistic, non-catalytic media for the reformation of crude ethanol feedstocks into hydrogen. The kinetics of the supercritical water reformation of ethanol was experimentally studied in a tubular reactor made of Inconel 62...
Desorption Kinetics of Methanol, Ethanol, and Water from Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.
2014-09-18
The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignmentmore » throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.« less
Desorption kinetics of methanol, ethanol, and water from graphene.
Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D
2014-09-18
The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.
From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle
NASA Astrophysics Data System (ADS)
Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin
2011-12-01
The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.
Chemistry of vaporization of refractory materials
NASA Technical Reports Server (NTRS)
Gilles, P. W.
1975-01-01
A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.
Oxidation kinetics of model compounds of metabolic waste in supercritical water
NASA Technical Reports Server (NTRS)
Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.
1990-01-01
In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.
Taking Ockham's razor to enzyme dynamics and catalysis.
Glowacki, David R; Harvey, Jeremy N; Mulholland, Adrian J
2012-01-29
The role of protein dynamics in enzyme catalysis is a matter of intense current debate. Enzyme-catalysed reactions that involve significant quantum tunnelling can give rise to experimental kinetic isotope effects with complex temperature dependences, and it has been suggested that standard statistical rate theories, such as transition-state theory, are inadequate for their explanation. Here we introduce aspects of transition-state theory relevant to the study of enzyme reactivity, taking cues from chemical kinetics and dynamics studies of small molecules in the gas phase and in solution--where breakdowns of statistical theories have received significant attention and their origins are relatively better understood. We discuss recent theoretical approaches to understanding enzyme activity and then show how experimental observations for a number of enzymes may be reproduced using a transition-state-theory framework with physically reasonable parameters. Essential to this simple model is the inclusion of multiple conformations with different reactivity.
Interaction of intense laser pulses with hydrogen atomic clusters
NASA Astrophysics Data System (ADS)
Du, Hong-Chuan; Wang, Hui-Qiao; Liu, Zuo-Ye; Sun, Shao-Hua; Li, Lu; Ma, Ling-Ling; Hu, Bi-Tao
2010-03-01
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.
NASA Astrophysics Data System (ADS)
Anisuzzaman, S. M.; Krishnaiah, D.; Alfred, D.
2018-02-01
The purpose of this study is to find the effect of the modified activated carbon (MAC) on the adsorption activity for nitrogen containing compounds (NCC) removal from model fuel. Modification of commercial activated carbon (AC) involved impregnation with different ratios of sulfuric acid solution. Pseudo-first and pseudo-second order kinetic models were applied to study the adsorption kinetics, while the adsorption isotherms were used for the evaluation of equilibrium data. All of the experimental data were analyzed using ultraviolet-visible spectroscopy after adsorption experiment between different concentration dosage of adsorbent and model fuel. It has been found that adsorption of NCC by MAC was best fit is the Langmuir isotherm for quinoline (QUI) and Freundlich isotherm for indole (IND) with a maximum adsorption capacity of 0.13 mg/g and 0.16 mg/g respectively. Based on the experimental data, pseudo-first order exhibited the best fit for QUI with linear regression (R2) ranges from 0.0.9777 to 0.9935 and pseudo-second order exhibited the best fit for IND with linear regression (R2) ranges from 0.9701 to 0.9962. From the adsorption isotherm and kinetic studies result proven that commercial AC shows great potential in removing nitrogen.
Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.
El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E
2016-10-01
In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.
Tian, Lu; Wei, Wan-Zhi; Mao, You-An
2004-04-01
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.
Siciliano, Alessio; De Rosa, Salvatore
2016-08-01
In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.
Orue, Ane; Uria, Uxue; Roca-López, David; Delso, Ignacio; Reyes, Efraím; Carrillo, Luisa
2017-01-01
2-Hydroxydihydropyran-5-ones behave as excellent polyfunctional reagents able to react with enals through oxa-Michael/Michael process cascade under the combination of iminium and enamine catalysis. These racemic hemiacetalic compounds are used as unconventional O-pronucleophiles in the initial oxa-Michael reaction, also leading to the formation of a single stereoisomer under a dynamic kinetic resolution (DKR) process. Importantly, by using β-aryl or β-alkyl substituted α,β-unsaturated substrates as initial Michael acceptors either kinetically or thermodynamically controlled diastereoisomers were formed with high stereoselection through the careful selection of the reaction conditions. Finally, a complete experimental and computational study confirmed the initially proposed DKR process during the catalytic oxa-Michael/Michael cascade reaction and also explained the kinetic/thermodynamic pathway operating in each case. PMID:28451356
Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-08-01
The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong
2011-09-01
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.
CO activation pathways and the mechanism of Fischer–Tropsch synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojeda, Manuel; Nabar, Rahul P.; Nilekar, Anand U.
2010-06-15
Unresolved mechanistic details of monomer formation in Fischer–Tropsch synthesis (FTS) and of its oxygen rejection routes are addressed here by combining kinetic and theoretical analyses of elementary steps on representative Fe and Co surfaces saturated with chemisorbed CO. These studies provide experimental and theoretical evidence for hydrogen-assisted CO activation as the predominant kinetically-relevant step on Fe and Co catalysts at conditions typical of FTS practice. H2 and CO kinetic effects on FTS rates and oxygen rejection selectivity (as H2O or CO2) and density functional theory estimates of activation barriers and binding energies are consistent with H-assisted CO dissociation, but notmore » with the previously accepted kinetic relevance of direct CO dissociation and chemisorbed carbon hydrogenation elementary steps. H-assisted CO dissociation removes O-atoms as H2O, while direct dissociation forms chemisorbed oxygen atoms that desorb as CO2. Direct CO dissociation routes are minor contributors to monomer formation on Fe and may become favored at high temperatures on alkali-promoted catalysts, but not on Co catalysts, which remove oxygen predominantly as H2O because of the preponderance of Hassisted CO dissociation routes. The merging of experiment and theory led to the clarification of persistent mechanistic issues previously unresolved by separate experimental and theoretical inquiries.« less
Kinetics model of bainitic transformation with stress
NASA Astrophysics Data System (ADS)
Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu
2018-01-01
Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
Kinetic mechanism for reversible structural transition in MoTe2 induced by excess charge carriers
NASA Astrophysics Data System (ADS)
Rubel, O.
2018-06-01
Kinetic of a reversible structural transition between insulating (2H) and metallic (1T ') phases in a monolayer MoTe2 due to an electrostatic doping is studied using first-principle calculations. The driving force for the structural transition is the energy gained by transferring excess electrons from the bottom of the conduction band to lower energy gapless states in the metallic phase as have been noticed in earlier studies. The corresponding structural transformation involves dissociation of Mo-Te bonds (one per formula unit), which results in a kinetic energy barrier of 0.83 eV. The transformation involves a consecutive movement of atoms similar to a domain wall motion. The presence of excess charge carriers modifies not only the total energy of the initial and final states, but also lowers an energy of the transition state. An experimentally observed hysteresis in the switching process can be attributed to changes in the kinetic energy barrier due to its dependence on the excess carrier density.
Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique
NASA Astrophysics Data System (ADS)
Berchane, Nader
2005-11-01
Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.
A Multi Water Bag model of drift kinetic electron plasmaa
NASA Astrophysics Data System (ADS)
Morel, Pierre; Ghiro, Florent Dreydemy; Berionni, Vincent; Coulette, David; Besse, Nicolas; Gürcan, Özgür D.
2014-08-01
A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)].
Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi
2018-08-01
The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.
1997-08-01
A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less
Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.
Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin
2016-10-20
We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.
Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models
NASA Astrophysics Data System (ADS)
Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba
2017-06-01
G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.
Production of large-particle-size monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.
1984-01-01
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.
Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation.
Censori, Matteo; La Marca, Floriana; Carvalho, M Teresa
2016-08-01
Froth flotation is a promising technique to separate polymers of similar density. The present paper shows the need for performing kinetic tests to evaluate and optimize the process. In the experimental study, batch flotation tests were performed on samples of ABS and PS. The floated product was collected at increasing flotation time. Two variables were selected for modification: the concentration of the depressor (tannic acid) and airflow rate. The former is associated with the chemistry of the process and the latter with the transport of particles. It was shown that, like mineral flotation, plastics flotation can be adequately assumed as a first order rate process. The results of the kinetic tests showed that the kinetic parameters change with the operating conditions. When the depressing action is weak and the airflow rate is low, the kinetic is fast. Otherwise, the kinetic is slow and a variable percentage of the plastics never floats. Concomitantly, the time at which the maximum difference in the recovery of the plastics in the floated product is attained changes with the operating conditions. The prediction of flotation results, process evaluation and comparisons should be done considering the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
Lin, Yan; Chen, Zhihao; Dai, Minquan; Fang, Shiwen; Liao, Yanfen; Yu, Zhaosheng; Ma, Xiaoqian
2018-07-01
In this study, the kinetic models of bagasse, sewage sludge and their mixture were established by the multiple normal distributed activation energy model. Blending with sewage sludge, the initial temperature declined from 437 K to 418 K. The pyrolytic species could be divided into five categories, including analogous hemicelluloses I, hemicelluloses II, cellulose, lignin and bio-char. In these species, the average activation energies and the deviations situated at reasonable ranges of 166.4673-323.7261 kJ/mol and 0.1063-35.2973 kJ/mol, respectively, which were conformed to the references. The kinetic models were well matched to experimental data, and the R 2 were greater than 99.999%y. In the local sensitivity analysis, the distributed average activation energy had stronger effect on the robustness than other kinetic parameters. And the content of pyrolytic species determined which series of kinetic parameters were more important. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamireddy, Srinivas Reddy; Kozliak, Evguenii I.; Tucker, Melvin
A kinetic study of acid pretreatment was conducted for sorghum non-brown mid rib (SNBMR) ( Sorghum bicolor L Moench), sorghum-brown mid rib (SBMR), sunn hemp ( Crotalaria juncea L) and kenaf ( Gossypiumhirsutum L), focusing on rates of xylose monomer and furfural formation. The kinetics was investigated using two independent variables, reaction temperature (150 and 160°C) and acid concentration (1 and 2 wt%), with a constant dry biomass loading of 10 wt% and a treatment time up to 20 min while sampling the mixture every 2 min. The experimental data were fitted using a two-step kinetic model based on irreversiblemore » pseudo first order kinetics at each step. Varied kinetic orders on the acid concentration, ranging from 0.2 to >3, were observed for both xylose and furfural formation, the values depending on the feedstock. The crystallinity index of raw biomass was shown to be a major factor influencing the rate of both xylose and furfural formation. As a result, a positive correlation was observed between the activation energy and biomass crystallinity index for xylose formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzha, N. M., E-mail: magazine@miee.ru
2010-12-15
Deposition kinetics of silicon nitride layers at lowered reactor pressures of 10-130 Pa and temperatures in the range 973-1073 K has been studied. The equilibrium constant of the bimolecular reaction of dichlorosilane with ammonia has been calculated. The apparent activation energies calculated taking into account the experimental growth rate nearly coincide with the experimental data. Recommendations for improving the quality of silicon nitride layers are made.
Hansen, N; Harper, M R; Green, W H
2011-12-07
An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.
Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling.
Kohen, Amnon; Jensen, Jan H
2002-04-17
Hydrogen quantum mechanical tunneling has been suggested to play a role in a wide variety of hydrogen-transfer reactions in chemistry and enzymology. An important experimental criterion for tunneling is based on the breakdown of the semiclassical prediction for the relationship among the rates of the three isotopes of hydrogen (hydrogen -H, deuterium -D, and tritium -T). This is denoted the Swain-Schaad relationship. This study examines the breakdown of the Swain-Schaad relationship as criterion for tunneling. The semiclassical (no tunneling) limit used hereto (e.g., 3.34, for H/T to D/T kinetic isotope effects), was based on simple theoretical considerations of a diatomic cleavage of a stable covalent bond, for example, a C-H bond. Yet, most experimental evidence for a tunneling contribution has come from breakdown of those relationship for a secondary hydrogen, that is, not the hydrogen whose bond is being cleaved but its geminal neighbor. Furthermore, many of the reported experiments have been mixed-labeling experiments, in which a secondary H/T kinetic isotope effect was measured for C-H cleavage, while the D/T secondary effect accompanied C-D cleavage. In experiments of this type, the breakdown of the Swain-Schaad relationship indicates both tunneling and the degree of coupled motion between the primary and secondary hydrogens. We found a new semiclassical limit (e.g., 4.8 for H/T to D/T kinetic isotope effects), whose breakdown can serve as a more reliable experimental evidence for tunneling in this common mixed-labeling experiment. We study the tunneling contribution to C-H bond activation, for which many relevant experimental and theoretical data are available. However, these studies can be applied to any hydrogen-transfer reaction. First, an extension of the original approach was applied, and then vibrational analysis studies were carried out for a model system (the enzyme alcohol dehydrogenase). Finally, the effect of complex kinetics on the observed Swain-Schaad relationship was examined. All three methods yield a new semiclassical limit (4.8), above which tunneling must be considered. Yet, it was found that for many cases the original, localized limit (3.34), holds fairly well. For experimental results that are between the original and new limits (within statistical errors), several methods are suggested that can support or exclude tunneling. These new and clearer criteria provide a basis for future applications of the Swain-Schaad relationship to demonstrate tunneling in complex systems.
A novel method to measure regional muscle blood flow continuously using NIRS kinetics information
Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton
2006-01-01
Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2017-12-01
The present paper deals with quantitative kinetics and thermodynamics of collision induced dissociation (CID) reactions of piperazines under different experimental conditions together with a systematic description of effect of counter-ions on common MS fragment reactions of piperazines; and intra-molecular effect of quaternary cyclization of substituted piperazines yielding to quaternary salts. There are discussed quantitative model equations of rate constants as well as free Gibbs energies of series of m-independent CID fragment processes in GP, which have been evidenced experimentally. Both kinetic and thermodynamic parameters are also predicted by computational density functional theory (DFT) and ab initio both static and dynamic methods. The paper examines validity of Maxwell-Boltzmann distribution to non-Boltzmann CID processes in quantitatively as well. The experiments conducted within the latter framework yield to an excellent correspondence with theoretical quantum chemical modeling. The important property of presented model equations of reaction kinetics is the applicability in predicting unknown and assigning of known mass spectrometric (MS) patterns. The nature of "GP" continuum of CID-MS coupled scheme of measurements with electrospray ionization (ESI) source is discussed, performing parallel computations in gas-phase (GP) and polar continuum at different temperatures and ionic strengths. The effect of pressure is presented. The study contributes significantly to methodological and phenomenological developments of CID-MS and its analytical implementations for quantitative and structural analyses. It also demonstrates great prospective of a complementary application of experimental CID-MS and computational quantum chemistry studying chemical reactivity, among others. To a considerable extend this work underlies the place of computational quantum chemistry to the field of experimental analytical chemistry in particular highlighting the structural analysis.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, K. S.
1986-01-01
During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.
Vitamin C: Rate of Decay and Stability Characteristics
ERIC Educational Resources Information Center
Kakis, Frederic J.; Rossi, Carl J.
1974-01-01
Describes an experiment designed to provide the opportunity for studying some of the parameters affecting the stability of Vitamin C in various environments, and to acquaint the student with an experimental procedure for studying simple reaction kinetics and the calculations of specific rate constants. (Author/JR)
DOT National Transportation Integrated Search
2009-02-01
Binder oxidation in pavements and its impact on pavement performance has been addressed by : numerous laboratory studies of binder oxidation chemistry, reaction kinetics, and hardening and its impact on : mixture fatigue. Studies also have included s...
Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.
Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng
2011-08-01
Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.
Elucidation of molecular kinetic schemes from macroscopic traces using system identification
González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir
2017-01-01
Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems. PMID:28192423
Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein
2002-01-01
Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.
Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N
2017-01-25
This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.
An experimental study of the dynamics of saltation within a three-dimensional framework
NASA Astrophysics Data System (ADS)
O'Brien, Patrick; McKenna Neuman, Cheryl
2018-04-01
Our understanding of aeolian sand transport via saltation lacks an experimental determination of the particle borne kinetic energy partitioned into 3 dimensions relative to the mean flow direction. This in turn creates a disconnect between global wind erosion estimates and particle scale processes. The present study seeks to address this deficiency through an extended analysis of data obtained from a series of particle tracking velocimetry experiments conducted in a boundary layer wind tunnel under transport limited conditions. Particle image diameter, as it appeared within each camera frame, was extensively calibrated against that obtained by sieving, and the ballistic trajectories detected were disassembled into discrete particle image pairs whose distribution and dynamics were then examined in vertical profile with sub-millimeter resolution. The vertical profile of the wind aligned particle transport rate was found to follow a power relation within 10 mm of the bed surface. The exponent of this power function changes with increasing spanwise angle (θ) to produce a family of curves representing particle diffusion in 3 dimensions. Particle mass was found to increase with θ, and the distribution of the total particle kinetic energy was found to be very similar to that for the particle concentration. The spanwise component of the kinetic energy of a saltating particle peaks at θ = 45°, with the stream-aligned component an order of magnitude higher in value. Low energy, splashed particles near the bed account for a majority of the kinetic energy distributed throughout the particle cloud, regardless of their orientation.
Mathematical modeling provides kinetic details of the human immune response to vaccination
Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.
2015-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280
Mathematical modeling provides kinetic details of the human immune response to vaccination.
Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V
2014-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsson, Mikael
This 3-year project was a collaboration between University of California Irvine (UC Irvine), Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), Argonne National Laboratory (ANL) and with an international collaborator at ForschungZentrum Jülich (FZJ). The project was led from UC Irvine under the direction of Profs. Mikael Nilsson and Hung Nguyen. The leads at PNNL, INL, ANL and FZJ were Dr. Liem Dang, Dr. Peter Zalupski, Dr. Nathaniel Hoyt and Dr. Giuseppe Modolo, respectively. Involved in this project at UC Irvine were three full time PhD graduate students, Tro Babikian, Ted Yoo, and Quynh Vo, and one MS student,more » Alba Font Bosch. The overall objective of this project was to study how the kinetics and thermodynamics of metal ion extraction can be described by molecular dynamic (MD) simulations and how the simulations can be validated by experimental data. Furthermore, the project includes the applied separation by testing the extraction systems in a single stage annular centrifugal contactor and coupling the experimental data with computational fluid dynamic (CFD) simulations. Specific objectives of the proposed research were: Study and establish a rigorous connection between MD simulations based on polarizable force fields and extraction thermodynamic and kinetic data. Compare and validate CFD simulations of extraction processes for An/Ln separation using different sizes (and types) of annular centrifugal contactors. Provide a theoretical/simulation and experimental base for scale-up of batch-wise extraction to continuous contactors. We approached objective 1 and 2 in parallel. For objective 1 we started by studying a well established extraction system with a relatively simple extraction mechanism, namely tributyl phosphate. What we found was that well optimized simulations can inform experiments and new information on TBP behavior was presented in this project, as well be discussed below. The second objective proved a larger challenge and most of the efforts were devoted to experimental studies.« less
Modeling texture kinetics during thermal processing of potato products.
Moyano, P C; Troncoso, E; Pedreschi, F
2007-03-01
A kinetic model based on 2 irreversible serial chemical reactions has been proposed to fit experimental data of texture changes during thermal processing of potato products. The model links dimensionless maximum force F*(MAX) with processing time. Experimental texture changes were obtained during frying of French fries and potato chips at different temperatures, while literature data for blanching/cooking of potato cubes have been considered. A satisfactory agreement between experimental and predicted values was observed, with root mean square values (RMSs) in the range of 4.7% to 16.4% for French fries and 16.7% to 29.3% for potato chips. In the case of blanching/cooking, the proposed model gave RMSs in the range of 1.2% to 17.6%, much better than the 6.2% to 44.0% obtained with the traditional 1st-order kinetics. The model is able to predict likewise the transition from softening to hardening of the tissue during frying.
Kinetic study on ferulic acid production from banana stem waste via mechanical extraction
NASA Astrophysics Data System (ADS)
Zainol, Norazwina; Masngut, Nasratun; Khairi Jusup, Muhamad
2018-04-01
Banana is the tropical plants associated with lots of medicinal properties. It has been reported to be a potential source of phenolic compounds such as ferulic acid (FA). FA has excellent antioxidant properties higher than vitamin C and E. FA also have a wide range of biological activities, such as antioxidant activities and anti-microbial activities. This paper presents an experimental and kinetic study on ferulic acid (FA) production from banana stem waste (BSW) via mechanical extraction. The objective of this research is to determine the kinetic parameters in the ferulic acid production. The banana stem waste was randomly collected from the local banana plantation in Felda Lepar Hilir, Pahang. The banana stem juice was mechanically extracted by using sugarcane press machine (KR3176) and further analyzed in high performance liquid chromatography. The differential and integral method was applied to determine the kinetic parameter of the extraction process and the data obtained were fitted into the 0th, 1st and 2nd order of extraction process. Based on the results, the kinetic parameter and R2 value from were 0.05 and 0.93, respectively. It was determined that the 0th kinetic order fitted the reaction processes to best represent the mechanical extraction.
Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen
2014-01-01
Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Santiago; Remacha, Pilar; Ballester, Javier
2008-03-15
In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized ({proportional_to}500 {mu}m) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recentlymore » proposed for the combustion of pulverized coal [J. Ballester, S. Jimenez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown. (author)« less
Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David
2015-05-15
The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2001-01-01
Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.
Update of KDBI: Kinetic Data of Bio-molecular Interaction database
Kumar, Pankaj; Han, B. C.; Shi, Z.; Jia, J.; Wang, Y. P.; Zhang, Y. T.; Liang, L.; Liu, Q. F.; Ji, Z. L.; Chen, Y. Z.
2009-01-01
Knowledge of the kinetics of biomolecular interactions is important for facilitating the study of cellular processes and underlying molecular events, and is essential for quantitative study and simulation of biological systems. Kinetic Data of Bio-molecular Interaction database (KDBI) has been developed to provide information about experimentally determined kinetic data of protein–protein, protein–nucleic acid, protein–ligand, nucleic acid–ligand binding or reaction events described in the literature. To accommodate increasing demand for studying and simulating biological systems, numerous improvements and updates have been made to KDBI, including new ways to access data by pathway and molecule names, data file in System Biology Markup Language format, more efficient search engine, access to published parameter sets of simulation models of 63 pathways, and 2.3-fold increase of data (19 263 entries of 10 532 distinctive biomolecular binding and 11 954 interaction events, involving 2635 proteins/protein complexes, 847 nucleic acids, 1603 small molecules and 45 multi-step processes). KDBI is publically available at http://bidd.nus.edu.sg/group/kdbi/kdbi.asp. PMID:18971255
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, A.; Yamazaki, Y.; Hattori, T.
1982-01-01
In order to examine the applicability of the rectangular pulse technique to the determination of the kinetics of a two-components' reaction on a catalyst in the specified surface state, the kinetics of the reaction of NO with NH/sub 3/ on the V/sub 2/O/sub 5/ catalyst, that is, NO + NH/sub 3/ + VVertical BarO ..-->.. N/sub 2/ + H/sub 2/O + V-OH, has been investigated using the rectangular pulse apparatus. Chromatograms of the individual components have shown that NH/sub 3/ is strongly adsorbed on the catalyst while NO or N/sub 2/ is not or only very weakly adsorbed. The adsorptionmore » of NH/sub 3/ has been approximately described by the Langmuir adsorption isotherm. The yield of N/sub 2/ produced by the reaction has changed significantly with the pusle width. This indicates a separation of NO and NH/sub 3/ in the catalyst bed during the pulse experiments. By analyzing the experimental data with the theory of the pulse technique, the kinetics of the above-mentioned two-components' reaction has successfully been determined and it has agreed with the kinetics of the reaction of NO with NH/sub 3/ under excess oxygen conditions determined by using the continuous flow technique. On the basis of these results, the rectangular pulse technique coupled with the theoretical analsysis of the experimental data has been concluded to be a method effective for the determination of the kinetics of a multicomponents' reaction on a catalyst in the specified surface state.« less
Serial sectioning of grain microstructures under junction control: An old problem in a new guise
NASA Astrophysics Data System (ADS)
Zöllner, D.; Streitenberger, P.
2015-04-01
In the present work the importance of 3D and 4D microstructure analyses are shown. To that aim, we study polycrystalline grain microstructures obtained by grain growth under grain boundary, triple line and quadruple point control. The microstructures themselves are obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic and thermodynamic parameters affecting grain growth than can be realized experimentally. In extensive simulation studies we find by 3D respectively 4D microstructure analyses that metrical and topological properties of the microstructures depend strongly on the microstructural feature controlling the growth kinetics. However, the differences between the growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a differentiation of the controlling grain feature near impossible.
Kinetic study and mechanism of Niclosamide degradation.
Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M
2014-11-11
A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.
Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1.
Muñoz, Antonio Jesús; Espínola, Francisco; Ruiz, Encarnación
2017-05-05
This study investigated the potential ability of Klebsiella sp. 3S1 to remove silver cations from aqueous solutions. The selected strain is a ubiquitous bacterium selected from among several microorganisms that had been isolated from wastewaters. To optimise the operating conditions in the biosorption process, a Rotatable Central Composite Experimental Design was developed establishing pH, temperature and biomass concentration as independent variables. Interaction mechanisms involved were analysed through kinetic and equilibrium studies. The experimental results suit pseudo-second order kinetics with two biosorption stages, being the first almost instantly. The Langmuir equilibrium model predicted a maximum capacity of biosorption (q) of 114.1mg Ag/g biomass. The study of the mechanisms involved in the biosorption was completed by employing advanced techniques which revealed that both bacterium-surface interactions and intracellular bioaccumulation participate in silver removal from aqueous solutions. The ability of Klebsiella sp. 3S1 to form silver chloride nanoparticles with interesting potential applications was also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
NASA Astrophysics Data System (ADS)
Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio
2016-12-01
Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.
Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite
Ho, Christopher R.; Shylesh, Sankaranarayanapillai; Bell, Alexis T.
2015-12-23
The mechanism and kinetics for ethanol coupling to n-butanol over hydroxyapatite (HAP) were investigated at 573-613 K. In situ titration experiments show that the active sites for acetaldehyde and butanol formation are different. In combination with FTIR studies, it was found that ethanol dehydrogenation is catalyzed by Ca-O sites, whereas condensation of acetaldehyde is catalyzed by CaO/PO 4 3- pairs. Measurements of the reaction kinetics at various ethanol (3.5-9.4 kPa) and acetaldehyde (0.055-0.12 kPa) partial pressures reveal that direct condensation involving two ethanol molecules does not play a significant role in butanol formation; instead, n-butanol is formed via a Guerbetmore » pathway. At a constant acetaldehyde pressure, enolate formation is rate-limiting, and ethanol inhibits acetaldehyde condensation rates by competitive adsorption. A model of the reaction kinetics consistent with all experimental observations is developed.« less
Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María
2009-12-30
Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.
Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.; Marsik, S. J.
1974-01-01
The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.
Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.
Oueslati, Khaled; Promeyrat, Aurélie; Gatellier, Philippe; Daudin, Jean-Dominique; Kondjoyan, Alain
2018-05-31
Fenton reaction kinetics, which involved an Fe(II)/Fe(III) oxidative redox cycle, were studied in a liquid medium that mimics meat composition. Muscle antioxidants (enzymes, peptides, and vitamins) were added one by one in the medium to determine their respective effects on the formation of superoxide and hydroxyl radicals. A stoichio-kinetic mathematical model was used to predict the formation of these radicals under different iron and H 2 O 2 concentrations and temperature conditions. The difference between experimental and predicted results was mainly due to iron reactivity, which had to be taken into account in the model, and to uncertainties on some of the rate constant values introduced in the model. This stoichio-kinetic model will be useful to predict oxidation during meat processes, providing it can be completed to take into account the presence of myoglobin in the muscle.
Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags
NASA Astrophysics Data System (ADS)
Esfahani, Shaghayegh; Barati, Mansoor
2018-04-01
The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
The role of kinetic context in apparent biased agonism at GPCRs
Klein Herenbrink, Carmen; Sykes, David A.; Donthamsetti, Prashant; Canals, Meritxell; Coudrat, Thomas; Shonberg, Jeremy; Scammells, Peter J.; Capuano, Ben; Sexton, Patrick M.; Charlton, Steven J.; Javitch, Jonathan A.; Christopoulos, Arthur; Lane, J. Robert
2016-01-01
Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that ‘kinetic context', as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism. PMID:26905976
Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study
Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong
2018-01-01
Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753
Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W
2005-09-30
Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary conformation as cytoskeletal interaction appears to mask the effect. Furthermore, as cytoskeletal disruption only impacts channel gating kinetics at low physiological intracellular chloride concentrations, these studies highlight the importance of paying close attention to anion concentrations used under experimental conditions.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
Xu, Di; Chai, Meiyun; Dong, Zhujun; Rahman, Md Maksudur; Yu, Xi; Cai, Junmeng
2018-06-04
The kinetic compensation effect in the logistic distributed activation energy model (DAEM) for lignocellulosic biomass pyrolysis was investigated. The sum of square error (SSE) surface tool was used to analyze two theoretically simulated logistic DAEM processes for cellulose and xylan pyrolysis. The logistic DAEM coupled with the pattern search method for parameter estimation was used to analyze the experimental data of cellulose pyrolysis. The results showed that many parameter sets of the logistic DAEM could fit the data at different heating rates very well for both simulated and experimental processes, and a perfect linear relationship between the logarithm of the frequency factor and the mean value of the activation energy distribution was found. The parameters of the logistic DAEM can be estimated by coupling the optimization method and isoconversional kinetic methods. The results would be helpful for chemical kinetic analysis using DAEM. Copyright © 2018 Elsevier Ltd. All rights reserved.
KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems
2014-01-01
Background The kinetic modeling of biological systems is mainly composed of three steps that proceed iteratively: model building, simulation and analysis. In the first step, it is usually required to set initial metabolite concentrations, and to assign kinetic rate laws, along with estimating parameter values using kinetic data through optimization when these are not known. Although the rapid development of high-throughput methods has generated much omics data, experimentalists present only a summary of obtained results for publication, the experimental data files are not usually submitted to any public repository, or simply not available at all. In order to automatize as much as possible the steps of building kinetic models, there is a growing requirement in the systems biology community for easily exchanging data in combination with models, which represents the main motivation of KiMoSys development. Description KiMoSys is a user-friendly platform that includes a public data repository of published experimental data, containing concentration data of metabolites and enzymes and flux data. It was designed to ensure data management, storage and sharing for a wider systems biology community. This community repository offers a web-based interface and upload facility to turn available data into publicly accessible, centralized and structured-format data files. Moreover, it compiles and integrates available kinetic models associated with the data. KiMoSys also integrates some tools to facilitate the kinetic model construction process of large-scale metabolic networks, especially when the systems biologists perform computational research. Conclusions KiMoSys is a web-based system that integrates a public data and associated model(s) repository with computational tools, providing the systems biology community with a novel application facilitating data storage and sharing, thus supporting construction of ODE-based kinetic models and collaborative research projects. The web application implemented using Ruby on Rails framework is freely available for web access at http://kimosys.org, along with its full documentation. PMID:25115331
Experimental studies were performed to investigate the interactions of elemental mercury vapor with entrained fly ash particles from coal combustion in a flow reactor. The rate of transformation of elemental mercury on fly ash particles was evauated over the temperature range fro...
KINETIC STUDIES RELATED TO THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) BURNER
The report gives results of theoretical and experimental studies of subjects related to the limestone injection multistage burner (LIMB). The main findings include data on the rate of evolution of H2S from different coals and on the dependence of the rate of evolution on the dist...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIssaac, L. D.; Baker, J. D.; Meikrantz, D. H.
1980-01-01
Wastes generated at ICPP and in the reprocessing of LWR fuel is discussed separately. DHDECMP is used as extractant. Studies on DHDECMP purification and toxicity, diluent effects, reaction kinetics, radioloysis, mixer-settler performance, etc. are reported. 10 tables, 3 figures. (DLC)
USDA-ARS?s Scientific Manuscript database
Isothermal inactivation studies are commonly used to quantify thermal inactivation kinetics of bacteria. Meta-analyses and comparisons utilizing results from multiple sources have revealed large variations in reported inactivation parameters for Salmonella, even in similar food materials. Different ...
Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater
Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2014-01-01
The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152
Bernetti, Mattia; Masetti, Matteo; Pietrucci, Fabio; Blackledge, Martin; Jensen, Malene Ringkjobing; Recanatini, Maurizio; Mollica, Luca; Cavalli, Andrea
2017-10-19
Intrinsically disordered proteins (IDPs) are emerging as an important class of the proteome. Being able to interact with different molecular targets, they participate in many physiological and pathological activities. However, due to their intrinsically heterogeneous nature, determining the equilibrium properties of IDPs is still a challenge for biophysics. Herein, we applied state-of-the-art enhanced sampling methods to Sev N TAIL , a test case of IDPs, and constructed a bin-based kinetic model to unveil the underlying kinetics. To validate our simulation strategy, we compared the predicted NMR properties against available experimental data. Our simulations reveal a rough free-energy surface comprising multiple local minima, which are separated by low energy barriers. Moreover, we identified interconversion rates between the main kinetic states, which lie in the sub-μs time scales, as suggested in previous works for Sev N TAIL . Therefore, the emerging picture is in agreement with the atomic-level properties possessed by the free IDP in solution. By providing both a thermodynamic and kinetic characterization of this IDP test case, our study demonstrates how computational methods can be effective tools for studying this challenging class of proteins.
The kinetic study of hydrogen bacteria and methanotrophs in pure and defined mixed cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, D.K.
The kinetics of pure and mixed cultures of Alcaligenes eutrophus H 16 and Methylobacterium organophilum CRL 26 under double substrate limited conditions were studied. In pure culture growth kinetics, a non-interactive model was found to fit the experimental data best. The yield of biomass on limiting substrate was found to vary with the dilution rate. The variation in the biomass yield may be attributed to the change in metabolic pathways resulting from a shift in the limiting substrates. Both species exhibited wall growth in the chemostat under dark conditions. However, under illuminated conditions, there was significant reduction in wall growth.more » Poly-{beta}-hydroxybutyric acid was synthesized by both species under ammonia and oxygen limiting conditions. The feed gas mixture was optimized to achieve the steady-state coexistence of these two species in a chemostate for the first time. In mixed cultures, the biomass species assays were differentiated on the basis of their selective growth on particular compounds: Sarcosine and D-arabinose were selected for hydrogen bacteria and methylotrophs, respectively. The kinetics parameters estimated from pure cultures were used to predict the growth kinetics of these species in defined mixed cultures.« less
NASA Astrophysics Data System (ADS)
Malinov, S.; Guo, Z.; Sha, W.; Wilson, A.
2001-04-01
The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the β ⇒ α transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the β ⇒ α transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.
Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.
Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad
2012-01-01
The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.
The Dynamics of Solid Propellant Combustion.
1980-12-31
review the theory and summarize most of the nume- rical and experimental findings by our research group . The complete literature so far published by this...deradiation reported by the Princeton group (Refs. 58-59). Ciepluch (Refs.20-22) conducted one of the first systematic experimental studies of depressurization...is the reaction order of the overall, one-step, irreversible kinetics controlling the gas phase heat release. Taking into account the quasi -steady
Influence of a Binder Layer on the Response Time of Pressure-Sensitive Coatings
NASA Astrophysics Data System (ADS)
Zharkova, G. M.; Khachaturyan, V. M.; Malov, A. N.; Lopatkina, A. A.
2002-07-01
The present work describes an experimental study of pressure-sensitive luminescent coatings containing phosphors prepared on different substrates. Data are presented concerning measurements of luminescence intensity and luminescence decay kinetics at different pressures and temperatures.
Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G
2009-04-01
Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.
First-principles chemical kinetic modeling of methyl trans-3-hexenoate epoxidation by HO 2
Cagnina, S.; Nicolle, Andre; de Bruin, T.; ...
2017-02-16
The design of innovative combustion processes relies on a comprehensive understanding of biodiesel oxidation kinetics. The present study aims at unraveling the reaction mechanism involved in the epoxidation of a realistic biodiesel surrogate, methyl trans-3-hexenoate, by hydroperoxy radicals using a bottom-up theoretical kinetics methodology. The obtained rate constants are in good agreement with experimental data for alkene epoxidation by HO 2. The impact of temperature and pressure on epoxidation pathways involving H-bonded and non-H-bonded conformers was assessed. As a result, the obtained rate constant was finally implemented into a state-of-the-art detailed combustion mechanism, resulting in fairly good agreement with enginemore » experiments.« less
NASA Astrophysics Data System (ADS)
Zhao, Zhenwei
To help understand the fuel oxidation process in practical combustion environments, laminar flame speeds and high temperature chemical kinetic models were studied for several practical fuels and "surrogate" fuels, such as propane, dimethyl ether (DME), and primary reference fuel (PRF) mixtures, gasoline and n-decane. The PIV system developed for the present work is described. The general principles for PIV measurements are outlined and the specific considerations are also reported. Laminar flame speeds were determined for propane/air over a range of equivalence ratios at initial temperature of 298 K, 500 K and 650 K and atmospheric pressure. Several data sets for propane/air laminar flame speeds with N 2 dilution are also reported. These results are compared to the literature data collected at the same conditions. The propane flame speed is also numerically calculated with a detailed kinetic model and multi component diffusion, including Soret effects. This thesis also presents experimentally determined laminar flame speeds for primary reference fuel (PRF) mixtures of n-heptane/iso-octane and real gasoline fuel at different initial temperature and at atmospheric pressure. Nitrogen dilution effects on the laminar flame speed are also studied for selected equivalence ratios at the same conditions. A minimization of detailed kinetic model for PRF mixtures on laminar flame speed conditions was performed and the measured flame speeds were compared with numerical predictions using this model. The measured laminar flame speeds of n-decane/air mixtures at 500 K and at atmospheric pressure with and without dilution were determined. The measured flame speeds are significantly different that those predicted using existing published kinetic models, including a model validated previously against high temperature data from flow reactor, jet-stirred reactor, shock tube ignition delay, and burner stabilized flame experiments. A significant update of this model is described which continues to predict the earlier validation experiments as well as the newly acquired laminar flame speed data and other recently published shock tube ignition delay measurements. A high temperature decomposition and oxidation model based on a hierarchical nature of reacting systems to reflect the new development in the small molecule and radical kinetics and thermochemistry and to evaluate recent measurements of DME laminar flame speeds is developed. The, thermal decomposition of DME was studied theoretically by using the RRKM/master equation approach and the high temperature model was then compared with the literature experimental data. The new model predicts well high temperature flow reactor data, high temperature shock tube ignition delays, and the species profiles from the burner-stabilized flames. Predictions of laminar flame speed and jet-stirred reactor data also reasonably agree with the available experimental data. The remaining uncertainties that need to be addressed for further model improvement will also be discussed. This thesis also presents a novel temperature-dependent feature sensitivity analysis methodology for combustion modeling. The obtained information is demonstrated to be of critical relevance in optimizing complex reaction schemes against multiple experimental targets. Applications of the presented approach are not limited to sensitivities with respect to reaction rate coefficients; the method can also be used to investigate any temperature-dependent property of interest (such as binary diffusion coefficients). This application is also demonstrated in this thesis.
NASA Astrophysics Data System (ADS)
Yunardi, Y.; Darmadi, D.; Hisbullah, H.; Fairweather, M.
2011-12-01
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model representing soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a standard k-ɛ turbulence model. A number of five reaction kinetic mechanisms having 50-100 species and 200-1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.
Phase transition kinetics in DIET of vanadium pentoxide. I. Experimental results
NASA Astrophysics Data System (ADS)
Ai, R.; Fan, H.-J.; Marks, L. D.
1993-01-01
Experimental results of the kinetics of phase transformation in vanadium pentoxide during surface loss of oxygen from electron irradiation are described. Phase transformations under three different regimes were examined: (a) low flux; (b) intermediate flux and (c) high flux. Different phase transformation routes were observed under different fluxes. In a companion paper, numerical calculations are presented demonstrating that these results are due to a mixed interface/diffusion controlled phase transition pumped by surface oxygen loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufferand, H.; Tosatto, L.; La Mantia, B.
2009-08-15
The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less
Cluster kinetics model for mixtures of glassformers
NASA Astrophysics Data System (ADS)
Brenskelle, Lisa A.; McCoy, Benjamin J.
2007-10-01
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.
Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment
NASA Astrophysics Data System (ADS)
Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.
2018-05-01
Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some rainfall erosivity indices and their ability to distinguish the type of involved soil erosion processes.
Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...
2013-03-12
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung
2015-12-17
Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
NASA Astrophysics Data System (ADS)
Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief
2015-12-01
Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.
Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; Kennedy, Eric M; Mackie, John C
2008-04-24
This study investigates the kinetic parameters of the formation of the chlorophenoxy radical from the 2-chlorophenol molecule, a key precursor to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/F), in unimolecular and bimolecular reactions in the gas phase. The study develops the reaction potential energy surface for the unimolecular decomposition of 2-chlorophenol. The migration of the phenolic hydrogen to the ortho-C bearing the hydrogen atom produces 2-chlorocyclohexa-2,4-dienone through an activation barrier of 73.6 kcal/mol (0 K). This route holds more importance than the direct fission of Cl or the phenolic H. Reaction rate constants for the bimolecular reactions, 2-chlorophenol + X --> X-H + 2-chlorophenoxy (X = H, OH, Cl, O2) are calculated and compared with the available experimental kinetics for the analogous reactions of X with phenol. OH reaction with 2-chlorophenol produces 2-chlorophenoxy by direct abstraction rather than through addition and subsequent water elimination. The results of the present study will find applications in the construction of detailed kinetic models describing the formation of PCDD/F in the gas phase.
Studies of the di-iron(VI) Intermediate in ferrate-dependent oxygen evolution from water.
Sarma, Rupam; Angeles-Boza, Alfredo M; Brinkley, David W; Roth, Justine P
2012-09-19
Molecular oxygen is produced from water via the following reaction of potassium ferrate (K(2)FeO(4)) in acidic solution: 4[H(3)Fe(VI)O(4)](+) + 8H(3)O(+) → 4Fe(3+) + 3O(2) + 18H(2)O. This study focuses upon the mechanism by which the O-O bond is formed. Stopped-flow kinetics at variable acidities in H(2)O and D(2)O are used to complement the analysis of competitive oxygen-18 kinetic isotope effects ((18)O KIEs) upon consumption of natural abundance water. The derived (18)O KIEs provide insights concerning the identity of the transition state. Water attack (WA) and oxo-coupling (OC) transition states were evaluated for various reactions of monomeric and dimeric ferrates using a calibrated density functional theory protocol. Vibrational frequencies from optimized isotopic structures are used here to predict (18)O KIEs for comparison to experimental values determined using an established competitive isotope-fractionation method. The high level of agreement between experimental and theoretic isotope effects points to an intramolecular OC mechanism within a di-iron(VI) intermediate, consistent with the analysis of the reaction kinetics. Alternative mechanisms are excluded based on insurmountably high free energy barriers and disagreement with calculated (18)O KIEs.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
Revisiting the flocculation kinetics of destabilized asphaltenes.
Vilas Bôas Fávero, Cláudio; Maqbool, Tabish; Hoepfner, Michael; Haji-Akbari, Nasim; Fogler, H Scott
2017-06-01
A comprehensive review of the recently published work on asphaltene destabilization and flocculation kinetics is presented. Four different experimental techniques were used to study asphaltenes undergoing flocculation process in crude oils and model oils. The asphaltenes were destabilized by different n-alkanes and a geometric population balance with the Smoluchowski collision kernel was used to model the asphaltene aggregation process. Additionally, by postulating a relation between the aggregation collision efficiency and the solubility parameter of asphaltenes and the solution, a unified model of asphaltene aggregation model was developed. When the aggregation model is applied to the experimental data obtained from several different crude oil and model oils, the detection time curves collapsed onto a universal single line, indicating that the model successfully captures the underlying physics of the observed process. Copyright © 2016 Elsevier B.V. All rights reserved.
Yun, Yeoung-Sang; Park, Jong Moon
2003-08-05
Light-dependent photosynthesis of Chlorella vulgaris was investigated by using a novel photosynthesis measurement system that could cover wide ranges of incident light and cell density and reproduce accurate readings. Various photosynthesis models, which have been reported elsewhere, were classified and/or reformulated based upon the underlying hypotheses of the light dependence of the algal photosynthesis. Four types of models were derived, which contained distinct light-related variables such as the average or local photon flux density (APFD or LPFD) and the average or local photon absorption rate (APAR or LPAR). According to our experimental results, the LPFD and LPAR models could predict the experimental data more accurately although the APFD and APAR models have been widely used for the kinetic study of microalgal photosynthesis. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 303-311, 2003.
A chemical kinetic theory on muscle contraction and spontaneous oscillation
NASA Astrophysics Data System (ADS)
Guo, Wei-Sheng; Luo, Liao-Fu; Li, Qian-Zhong
2002-09-01
From a set of chemical kinetic equations describing the actin-activated myosin ATPase cycle, we show that, in active muscle, the fraction of myosin heads in any given biochemical state is independent of both [ADP] and [P i]. Combining muscle mechanics data of Pate and Cooke, we deduce the muscle state equation in which muscle force is a state variable of the muscle system. The theoretical results are consistent with Baker's experimental data but somewhat different from conventional muscle theory. Based on the muscle state equation with the knowledge of special structure of muscle, we present a physical mechanism which can lead to both contraction and oscillation of sarcomeres. It explains the muscle spontaneous oscillatory contraction in a natural way and agrees well with experimental data. The model will be helpful in studying the oscillatory behavior of cilia and flagella.
NASA Astrophysics Data System (ADS)
Ghaedi, Mehrorang; Khajesharifi, Habibollah; Hemmati Yadkuri, Amin; Roosta, Mostafa; Sahraei, Reza; Daneshfar, Ali
2012-02-01
In the present research, cadmium hydroxide nanowire loaded on activated carbon (Cd(OH) 2-NW-AC) was synthesized and characterized. This new adsorbent was applied for the removal of Bromocresol Green (BCG) molecules from aqueous solutions. The influence of effective variables such as solution pH, contact time, initial BCG concentration, amount of Cd(OH) 2-NW-AC and temperature on the adsorption efficiency of BCG in batch system was examined. During all experiments BCG contents were determined by UV-Vis spectrophotometer. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. Equilibrium isotherm studies were examined by application of different conventional models such as Langmuir, Freundlich and Tempkin models to explain the experimental data. Based on considering R2 value as criterion the adsorption data well fitted to Langmuir model with maximum adsorption capacity of 108.7 mg g -1. Thermodynamic parameters (Gibb's free energy, entropy and enthalpy) of adsorption were calculated according to general procedure to take some information about the on-going adsorption process. The high negative value of Gibb's free energy and positive value of enthalpy show the feasibility and endothermic nature of adsorption process.
Ghaedi, Mehrorang; Khajesharifi, Habibollah; Hemmati Yadkuri, Amin; Roosta, Mostafa; Sahraei, Reza; Daneshfar, Ali
2012-02-01
In the present research, cadmium hydroxide nanowire loaded on activated carbon (Cd(OH)(2)-NW-AC) was synthesized and characterized. This new adsorbent was applied for the removal of Bromocresol Green (BCG) molecules from aqueous solutions. The influence of effective variables such as solution pH, contact time, initial BCG concentration, amount of Cd(OH)(2)-NW-AC and temperature on the adsorption efficiency of BCG in batch system was examined. During all experiments BCG contents were determined by UV-Vis spectrophotometer. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. Equilibrium isotherm studies were examined by application of different conventional models such as Langmuir, Freundlich and Tempkin models to explain the experimental data. Based on considering R(2) value as criterion the adsorption data well fitted to Langmuir model with maximum adsorption capacity of 108.7 mg g(-1). Thermodynamic parameters (Gibb's free energy, entropy and enthalpy) of adsorption were calculated according to general procedure to take some information about the on-going adsorption process. The high negative value of Gibb's free energy and positive value of enthalpy show the feasibility and endothermic nature of adsorption process. Copyright © 2011 Elsevier B.V. All rights reserved.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
High temperature chemical kinetic study of the H2-CO-CO2-NO reaction system
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1975-01-01
An experimental study of the kinetics of the H2-CO-CO2-NO reaction system was made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate of the reaction was measured by monitoring radiation from the CO + O yields CO2 + h upoilon reaction. Correlation of these data with a detailed reaction mechanism showed that the high-temperature rate of the reaction N + OH yields NO + H can be described by the low-temperature (320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was an important reaction under the tests conditions.
Heavy atom labeled nucleotides for measurement of kinetic isotope effects.
Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A
2015-11-01
Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
Sanches-Neto, Flávio O; Coutinho, Nayara D; Carvalho-Silva, Valter H
2017-09-20
A number of experimental and theoretical papers accounted almost exclusively for two channels in the reaction of atomic hydrogen with methanol: H-abstraction from the methyl (R1) and hydroxyl (R2) functional groups. Recently, several astrochemical studies claimed the importance of another channel for this reaction, which is crucial for kinetic simulations related to the abundance of molecular constituents in planetary atmospheres: methyl radical and water formation (R3 channel). Here, motivated by the lack of and uncertainties about the experimental and theoretical kinetic rate constants for the third channel, we developed first-principles Car-Parrinello molecular dynamics thermalized at two significant temperatures - 300 and 2500 K. Furthermore, the kinetic rate constant of all three channels was calculated using a high-level deformed-transition state theory (d-TST) at a benchmark electronic structure level. d-TST is shown to be suitable for describing the overall rate constant for the CH 3 OH + H reaction (an archetype of the moderate tunnelling regime) with the precision required for practical applications. Considering the experimental ratios at 1000 K, k R1 /k R2 ≈ 0.84 and k R1 /k R3 ≈ 15-40, we provided a better estimate when compared with previous theoretical work: 7.47 and 637, respectively. The combination of these procedures explicitly demonstrates the role of the third channel in a significant range of temperatures and indicates its importance considering the thermodynamic control to estimate methyl radical and water formation. We expect that these results can help to shed new light on the fundamental kinetic rate equations for the CH 3 OH + H reaction.
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2013-03-01
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d
Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu
2013-02-15
The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu
2015-11-01
The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.
Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.
Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh
2014-01-01
The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2012-01-21
Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics
Vecino, Xanel; Devesa-Rey, Rosa; Villagrasa, Salvador; Cruz, Jose M; Moldes, Ana B
2015-12-01
In this work a comparative bioadsorption study between a biocomposite consisting of hydrolysed vineyard pruning waste entrapped in calcium alginate spheres and non entrapped vineyard residue was carried out. Results have demonstrated that the biocomposite based on lignocellulose-calcium alginate spheres removed 77.3% of dyes, while non entrapped lignocellulose eliminated only removed 27.8% of colour compounds. The experimental data were fitted to several kinetic models (pseudo-first order, pseudo-second order, Chien-Clayton model, intraparticle diffusion model and Bangham model); being pseudo-second order the kinetic model that better described the adsorption of dyes onto both bioadsorbents. In addition, a morphological study (roughness and shape) of alginate-vineyard biocomposite was established under extreme conditions, observing significant differences between hydrated and dehydrated alginate-vineyard biocomposite. The techniques used to carry out this morphological study consisted of scanning electron microscopy (SEM), perfilometry and 3D surface analysis. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed
2016-12-01
The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.
Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...
2017-06-01
In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less
Kamireddy, Srinivas Reddy; Kozliak, Evguenii I.; Tucker, Melvin; ...
2014-08-01
A kinetic study of acid pretreatment was conducted for sorghum non-brown mid rib (SNBMR) ( Sorghum bicolor L Moench), sorghum-brown mid rib (SBMR), sunn hemp ( Crotalaria juncea L) and kenaf ( Gossypiumhirsutum L), focusing on rates of xylose monomer and furfural formation. The kinetics was investigated using two independent variables, reaction temperature (150 and 160°C) and acid concentration (1 and 2 wt%), with a constant dry biomass loading of 10 wt% and a treatment time up to 20 min while sampling the mixture every 2 min. The experimental data were fitted using a two-step kinetic model based on irreversiblemore » pseudo first order kinetics at each step. Varied kinetic orders on the acid concentration, ranging from 0.2 to >3, were observed for both xylose and furfural formation, the values depending on the feedstock. The crystallinity index of raw biomass was shown to be a major factor influencing the rate of both xylose and furfural formation. As a result, a positive correlation was observed between the activation energy and biomass crystallinity index for xylose formation.« less
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
NASA Astrophysics Data System (ADS)
Bian, Yunqiang; Ren, Weitong; Song, Feng; Yu, Jiafeng; Wang, Jihua
2018-05-01
Structure-based models or Gō-like models, which are built from one or multiple particular experimental structures, have been successfully applied to the folding of proteins and RNAs. Recently, a variant termed the hybrid atomistic model advances the description of backbone and side chain interactions of traditional structure-based models, by borrowing the description of local interactions from classical force fields. In this study, we assessed the validity of this model in the folding problem of human telomeric DNA G-quadruplex, where local dihedral terms play important roles. A two-state model was developed and a set of molecular dynamics simulations was conducted to study the folding dynamics of sequence Htel24, which was experimentally validated to adopt two different (3 + 1) hybrid G-quadruplex topologies in K+ solution. Consistent with the experimental observations, the hybrid-1 conformation was found to be more stable and the hybrid-2 conformation was kinetically more favored. The simulations revealed that the hybrid-2 conformation folded in a higher cooperative manner, which may be the reason why it was kinetically more accessible. Moreover, by building a Markov state model, a two-quartet G-quadruplex state and a misfolded state were identified as competing states to complicate the folding process of Htel24. Besides, the simulations also showed that the transition between hybrid-1 and hybrid-2 conformations may proceed an ensemble of hairpin structures. The hybrid atomistic structure-based model reproduced the kinetic partitioning folding dynamics of Htel24 between two different folds, and thus can be used to study the complex folding processes of other G-quadruplex structures.
Hu, Mian; Chen, Zhihua; Guo, Dabin; Liu, Cuixia; Xiao, Bo; Hu, Zhiquan; Liu, Shiming
2015-02-01
The pyrolysis process of two microalgae, Chlorella pyrenoidosa (CP) and bloom-forming cyanobacteria (CB) was examined by thermo-gravimetry to investigate their thermal decomposition behavior under non-isothermal conditions. It has found that the pyrolysis of both microalgae consists of three stages and stage II is the major mass reduction stage with mass loss of 70.69% for CP and 64.43% for CB, respectively. The pyrolysis kinetics of both microalgae was further studied using single-step global model (SSGM) and distributed activation energy model (DAEM). The mean apparent activation energy of CP and CB in SSGM was calculated as 143.71 and 173.46 kJ/mol, respectively. However, SSGM was not suitable for modeling pyrolysis kinetic of both microalgae due to the mechanism change during conversion. The DAEM with 200 first-order reactions showed an excellent fit between simulated data and experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.
Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G
2016-12-01
The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.
Chemical kinetic reaction mechanism for the combustion of propane
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1984-01-01
A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das
2012-06-01
Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.
Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface
NASA Astrophysics Data System (ADS)
Erdtman, Edvin; Andersson, Mike; Lloyd Spetz, Anita; Ojamäe, Lars
2017-02-01
Ruthenium(IV)oxide (RuO2) is a material used for various purposes. It acts as a catalytic agent in several reactions, for example oxidation of carbon monoxide. Furthermore, it is used as gate material in gas sensors. In this work theoretical and computational studies were made on adsorbed molecules on RuO2 (110) surface, in order to follow the chemistry on the molecular level. Density functional theory calculations of the reactions on the surface have been performed. The calculated reaction and activation energies have been used as input for thermodynamic and kinetics calculations. A surface phase diagram was calculated, presenting the equilibrium composition of the surface at different temperature and gas compositions. The kinetics results are in line with the experimental studies of gas sensors, where water has been produced on the surface, and hydrogen is found at the surface which is responsible for the sensor response.
Huang, P Y; Hellums, J D
1993-01-01
A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
El-Fadel, M; Matar, F; Hashisho, J
2013-05-01
The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.
Lee, Souk Min
2015-01-01
Objective This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a -7° torque. The orthodontic wires used included 0.018 round and 0.019 × 0.025 in rectangular stainless steel wires. The FR was measured at 0°, 5°, and 10° angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the 0° angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation. PMID:25667913
Experiments assigned to determine the acceleration of 8000kN shear laboratory model elements
NASA Astrophysics Data System (ADS)
Budiul Berghian, A.; Vasiu, T.; Abrudean, C.
2017-01-01
In this paper presents an experimental kinetics study by measuring accelerations using a bi-axial accelerometer constructed in the basis of a miniature integrated circuit, included in the class of micro-electrical and mechanical systems - MMA6261Q on the experimental installation reduced to the 1:5 dividing rule by comparison with the shear existent in exploitation, conceived and projected at the Faculty of Engineering in Hunedoara.
Bódalo, A; Gómez, J L.; Gómez, E; Bastida, J; Máximo, M F.; Montiel, M C.
2001-03-08
In this paper the possibility of continuous resolution of DL-phenylalanine, catalyzed by L-aminoacylase in a ultrafiltration membrane reactor (UFMR) is presented. A simple design model, based on previous kinetic studies, has been demonstrated to be capable of describing the behavior of the experimental system. The model has been used to determine the optimal experimental conditions to carry out the asymmetrical hydrolysis of N-acetyl-DL-phenylalanine.
Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.
2013-01-01
Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912
Tabaraki, Reza; Sadeghinejad, Negar
2017-06-01
Biosorption of Methyl Blue (MB), Fuchsin Acid (FA), Rhodamine B (RB), Methylene Blue (MEB), Bromocresol purple (BC) and Methyl Orange (MO) onto Sargassum ilicifolium was studied in a batch system. Effect of dye structure on biosorption by Sargassum ilicifolium was studied to define the correlation between chemical structure and biosorption capacity. Different dye groups such as triarylmethane (MB, FA and BC), monoazo (MO), thiazine (MEB) and xanthene (RB) were studied. At optimum experimental conditions for each dye, biosorption capacity was determined and compared. The results indicate that the chemical structure (triarylmethane, monoazo, thiazine, xanthene), number of sulfonic groups, basicity (element of chromophore group: S, N, O) and molecular weight of dye molecules influence their biosorption capacity. Experimental parameters such as biosorbent dose, pH, contact time, and initial dye concentration were optimized for each dye. The biosorption kinetic data were successfully described by the pseudo second-order model. The biosorption results were also analyzed by the Langmuir and Freundlich isotherms. Finally, biosorption capacities obtained using Sargassum ilicifolium were compared with the ones presented in the literature.
Roopavathi, K V; Shanthakumar, S
2016-09-01
In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.
Smedra-Kaźmirska, Anna; Barzdo, Maciej; Kedzierski, Maciej; Szram, Stefan; Berent, Jarosław
2010-01-01
In Poland, according to the Weapons and Ammunition Act" an air weapon which has kinetic energy of fired projectiles below 17 J does not require registration and can be bought even on the Internet. Sport and recreational shooting with this weapon does not have to be performed in a special shooting-range, but can be carried on in an open terrain providing "particular caution" is exercised. In this study we presented experimental effects of shooting pneumatic weapons (Norica Dragon air-rifle and Walther PPK/S air-pistol) which had kinetic energy of fired projectiles below 17 J. The aim of this study was to assess the effects of shooting the above weapons at human soft tissues and thin bones of the temple region to empirically evaluate the degree of danger to health and life, which such shots can produce. We used 20% gelatine blocks at 10 degrees C, which were the model of human soft tissues, and fresh calf scapulas, which served as the models of the temporal bone of the human cranium. Before the experiment, we had evaluated the weight of all the projectiles and their initial velocity using a chronograph. By these measures, we calculated the kinetic energy of the fired missiles. After shooting, we estimated if projectiles of different shapes shot from air weapons characterized by different kinetic energy and from different distances penetrated the gelatine blocks and if the said missiles perforated the bones. We also measured the depth of missiles penetration in the gelatine blocks.
Ghaedi, Mehrorang
2012-08-01
Adsorption of Sunset yellow (SY) onto cadmium hydroxide nanowires loaded on activated carbon (Cd(OH)(2)-NW-AC) and silver nanoparticles loaded on activated carbon (Ag-NP-AC) was investigated. The effects of pH, contact time, amount of adsorbents, initial dye concentration, agitation speed and temperature on Sunset yellow removal on both adsorbents were studied. Following the optimization of variables, the experimental data were fitted to different conventional isotherm models like Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich (D-R) based on linear regression coefficient R(2) the Langmuir isotherm was found to be the best fitting isotherm model and the maximum monolayer adsorption capacities calculated based on this model for Cd(OH)(2)-NW-AC and Ag-NP-AC were found to be 76.9 and 37.03mg g(-1) at room temperatures, respectively. The experimental fitting of time dependency of adsorption of SY onto both adsorbent shows the applicability of second order kinetic model for interpretation of kinetic data. The pseudo-second order model best fits the adsorption kinetics. Thermodynamic parameters such as enthalpy, entropy, activation energy, sticking probability, and Gibb's free energy changes were also calculated. It was found that the sorption of SY over (Cd(OH)(2)-NW-AC) and (Ag-NP-AC) was spontaneous and endothermic in nature. Efficiency of the adsorbent was also investigated using real effluents and more than 95% SY removal for both adsorbents was observed. Copyright © 2012 Elsevier B.V. All rights reserved.
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Gurunathan, Baskar; Ravi, Aiswarya
2015-08-01
Heterogeneous nanocatalyst has become the choice of researchers for better transesterification of vegetable oils to biodiesel. In the present study, transesterification reaction was optimized and kinetics was studied for biodiesel production from neem oil using CZO nanocatalyst. The highly porous and non-uniform surface of the CZO nanocatalyst was confirmed by AFM analysis, which leads to the aggregation of CZO nanoparticles in the form of multi layered nanostructures. The 97.18% biodiesel yield was obtained in 60min reaction time at 55°C using 10% (w/w) CZO nanocatalyst and 1:10 (v:v) oil:methanol ratio. Biodiesel yield of 73.95% was obtained using recycled nanocatalyst in sixth cycle. The obtained biodiesel was confirmed using GC-MS and (1)H NMR analysis. Reaction kinetic models were tested on biodiesel production, first order kinetic model was found fit with experimental data (R(2)=0.9452). The activation energy of 233.88kJ/mol was required for transesterification of neem oil into biodiesel using CZO nanocatalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
NASA Astrophysics Data System (ADS)
Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.
2014-10-01
Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...
2017-09-21
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stephen S.; White, Josh; Hosemann, Peter
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
Parker, Stephen S.; White, Josh; Hosemann, Peter; ...
2017-11-03
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
NASA Astrophysics Data System (ADS)
Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew
2018-02-01
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I
2017-09-21
The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.
Romański, Michał; Ratajczak, Whitney; Główka, Franciszek
2017-07-01
A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Lei; Shi, Zhenqing; Lu, Yang
Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less
Kinetic models of controllable pore growth of anodic aluminum oxide membrane
NASA Astrophysics Data System (ADS)
Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin
2012-06-01
An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.
Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.
2016-10-01
New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
NASA Astrophysics Data System (ADS)
Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand
2017-10-01
In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.
Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Millard; Dagdigian, Paul J.
Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less
Prompt isothermal decay of thermoluminescence in an apatite exhibiting strong anomalous fading
NASA Astrophysics Data System (ADS)
Sfampa, I. K.; Polymeris, G. S.; Tsirliganis, N. C.; Pagonis, V.; Kitis, G.
2014-02-01
Anomalous fading (AF) is one of the most serious drawbacks in thermoluminescence (TL) and optically stimulated luminescence (OSL) dating. In the present work the isothermal decay of TL signals from Durango apatite is studied for temperatures located on the rising part of the main TL peak. This material is known to exhibit strong AF phenomena, and its isothermal TL decay properties have not been studied previously. The experimental results show that the characteristic decay time of the isothermal signal does not depend of the temperature, and that this signal does not exhibit the strong temperature dependence expected from conventional TL kinetic theories. This is further direct experimental evidence for the possible presence of tunneling phenomena in this material. The isothermal decay curves are analyzed and discussed within the framework of conventional theories of TL, as well as within the context of a recently developed tunneling kinetic model for random distributions of electron-hole pairs in luminescent materials.
Biosorption of metal ions from aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiaping; Yiacoumi, Sotira
1997-01-01
Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less
Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals
Alikin, Denis O.; Ievlev, Anton; Turigin, Anton P.; ...
2015-05-05
Currently ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to investigation of the domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate allows us to study the forward growthmore » with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. Lastly, to explain experimental results we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.« less
Hydrogen chemistry - Perspective on experiment and theory. [atmospheric chemistry
NASA Technical Reports Server (NTRS)
Kaufman, F.
1975-01-01
A review is presented of the advantages and limitations of various experimental methods for the investigation of the kinetics of hydrogen chemistry, including classic thermal and photochemical methods and the crossed molecular beam method. Special attention is given to the flash photolysis-resonance fluorescence apparatus developed by Braun et al, in which repetitive vacuum UV flashes result in the photolytic generation of the desired species, and to the discharge-flow technique. The use of various theoretical methods for the selection or elimination of kinetic data is considered in a brief discussion of the rate theory of two-body encounters and recombination-dissociation processes in neutral reactions. Recent kinetic studies of a series of OH reactions and of a major loss process for odd H in the stratosphere are summarized.
NASA Astrophysics Data System (ADS)
Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.; Kamenetskaya, E. A.
2016-07-01
The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiH x has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption-desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.
Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas
Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad
2012-01-01
Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940
Validation Results for Core-Scale Oil Shale Pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staten, Josh; Tiwari, Pankaj
2015-03-01
This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation.more » Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.« less
Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah
2013-10-01
In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.
Ohno, K; Manjanath, A; Kawazoe, Y; Hatakeyama, R; Misaizu, F; Kwon, E; Fukumura, H; Ogasawara, H; Yamada, Y; Zhang, C; Sumi, N; Kamigaki, T; Kawachi, K; Yokoo, K; Ono, S; Kasama, Y
2018-01-25
The aim of increasing the production ratio of endohedral C 60 by impinging foreign atoms against C 60 is a crucial matter of the science and technology employed towards industrialization of these functional building block materials. Among these endohedral fullerenes, Li + @C 60 exhibits a wide variety of physical and chemical phenomena and has the potential to be applicable in areas spanning the medical field to photovoltaics. However, currently, Li + @C 60 can be experimentally produced with only ∼1% ratio using the plasma shower method with a 30 eV kinetic energy provided to the impinging Li + ion. From extensive first-principles molecular dynamics simulations, it is found that the maximum production ratio of Li + @C 60 per hit is increased to about 5.1% (5.3%) when a Li + ion impinges vertically on a six-membered ring of C 60 with 30 eV (40 eV) kinetic energy, although many C 60 molecules are damaged during this collision. On the contrary, when it impinges vertically on a six-membered ring with 10 eV kinetic energy, the production ratio remains at 1.3%, but the C 60 molecules are not damaged at all. On the other hand, when the C 60 is randomly oriented, the production ratio reduces to about 3.7 ± 0.5%, 3.3 ± 0.5%, and 0.2 ± 0.03% for 30 eV, 40 eV, and 10 eV kinetic energy, respectively. Based on these observations we demonstrate the possibility of increasing the production ratio by fixing six-membered rings atop C 60 using the Cu(111) substrate or UV light irradiation. In order to assess the ideal experimental production ratio, the 7 Li solid NMR spectroscopy measurement is also performed for the multilayer randomly oriented C 60 sample irradiated by Li + using the plasma shower method combined with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Time-of-flight mass spectroscopy measurements are also performed to cross check whether Li + @C 60 molecules are produced in the sample. The resulting experimental estimate, 4% for 30 eV incident kinetic energy, fully agrees with our simulation results mentioned above, suggesting the consistency and accuracy of our simulations and experiments.
Kinetic modelling of a diesel-polluted clayey soil bioremediation process.
Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor
2016-07-01
A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. Copyright © 2016. Published by Elsevier B.V.
Rapid freezing of water under dynamic compression
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Belof, Jonathan L.
2018-06-01
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu
2013-08-21
Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.
Rapid freezing of water under dynamic compression.
Myint, Philip C; Belof, Jonathan L
2018-06-13
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A
2013-02-21
A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.
He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M
2012-01-01
In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).
Base-Catalyzed Linkage Isomerization: An Undergraduate Inorganic Kinetics Experiment.
ERIC Educational Resources Information Center
Jackson, W. G.; And Others
1981-01-01
Describes kinetics experiments completed in a single two-hour laboratory period at 25 degrees Centigrade of nitrito to nitro rearrangement, based on the recently discovered base-catalysis path. Includes information on synthesis and characterization of linkage isomers, spectrophotometric techniques, and experimental procedures. (SK)
Sorption isotherm and kinetic modeling of aniline on Cr-bentonite.
Zheng, Hong; Liu, Donghong; Zheng, Yan; Liang, Shuping; Liu, Zhe
2009-08-15
In this paper, the sorption characteristics of aniline on Cr-bentonite prepared using synthetic wastewater containing chromium was investigated in a batch system at 30 degrees C. The effects of relevant parameters, such as pH value of solution, adsorbent dosage and initial aniline concentration were examined. The experimental data were analyzed by the Langmuir and Freundlich, and Temkin models of sorption. The sorption isotherm data were fitted well to Langmuir isotherm and the monolayer sorption capacity was found to be 21.60 mg/g at 30 degrees C. Dubinin-Redushkevich (D-R) isotherm was applied to describe the nature of aniline uptake and it was found that it occurred chemically. The kinetic data obtained at different concentrations were analyzed using a pseudo first-order, pseudo second-order kinetic equation and intraparticle diffusion model. The experimental data fitted very well the pseudo second-order kinetic model. Intraparticle diffusion affects aniline uptake. The results indicate that there is significant potential for Cr-bentonite as an adsorbent material for aniline removal from aqueous solutions.
Ard, Shaun G; Li, Anyang; Martinez, Oscar; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua
2014-12-11
Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O(+) rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment-theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range.
Martella, Andrea; Sijben, Huub; Rufer, Arne C; Grether, Uwe; Fingerle, Juergen; Ullmer, Christoph; Hartung, Thomas; IJzerman, Adriaan P; van der Stelt, Mario; Heitman, Laura H
2017-10-01
The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [ 3 H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [ 3 H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [ 3 H]RO6957022 showed high affinity for human CB2R with fast association ( k on ) and moderate dissociation ( k off ) kinetics. To demonstrate the robustness of [ 3 H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [ 3 H]RO6957022 to study the kinetic binding profiles (i.e., k on and k off values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [ 3 H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Data acquisition system for chemical kinetic studies
Zhu, Yu-zhen; Zhou, Xin; Zang, Xiang-sheng
1989-01-01
A microcomputer-interfaced data acquisition system for chemical kinetics (interfacing with laboratory analogue instruments) has been developed. Analogue signals from instruments used in kinetics experiments are amplifed by a wide-range adjustable high-gain operational amplifier and smoothed by an op-based filter, and then digitized at rates of up to 104 samples per channel by an ADC 0816 digitizer. The ADC data transfer and manipulation routine was written in Assembler code and in high-level language; the graphics package and data treatment package is in Basic. For the various sampling speeds, all of the program can be written using Basic-Assembler or completely in Assembler if a high sampling rate is needed. Several numerical treatment methods for chemical kinetics have been utilized to smooth the data from experiments. The computer-interfaced system for second-order chemical kinetic studies was applied to the determination of the rate constant of the saponification of ethyl acetate at 35°C. For this specific problem, an averaging treatment was used which can be called an interval method. The use of this method avoids the diffcully of measuring the starting time of the reaction. Two groups of experimental data and results were used to evaluate the systems performance. All of the results obtained are in agreement with the reference value. PMID:18925219
Kinetic study on bonding reaction of gelatin with CdS nanopaticles by UV-visible spectroscopy.
Tang, Shihua; Wang, Baiyang; Li, Youqun
2015-04-15
The chemical kinetics on gelatin-CdS direct conjugates has been systematically investigated as a function of different temperature and reactant concentration (i.e. Cd(2+), S(2-) and gelatin) by UV-visible spectroscopy, for the first time. The nonlinear fitting and the differential method were used to calculate the initial rate based on the absorbance-time data. A double logarithmic linear equation for calculating the rate constant (k) and the reaction order (n) was introduced. The reaction kinetic parameters (n, k, Ea, and Z) and activation thermodynamic parameters (ΔG(≠), ΔH(≠), and ΔS(≠)) were obtained from variable temperature kinetic studies. The overall rate equation allowing evaluation of conditions that provide required reaction rate could be expressed as: r = 1.11 × 10(8) exp(-4971/T)[Cd(2+)][gelatin](0.6)[S(2-)](0.6) (M/S) The calculated values of the reaction rate are well coincide with the experimental results. A suitable kinetic model is also proposed. This work will provide guidance for the rational design of gelatin-directed syntheses of metal sulfide materials, and help to understand the biological effects of nanoparticles at the molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.
Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L
2012-01-01
Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.
Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin
2013-07-20
Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana
2012-09-30
Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.
Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan
2017-01-20
Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics of conjugative gene transfer on surfaces in granular porous media
NASA Astrophysics Data System (ADS)
Ginn, T.; Massoudieh, A.; Nelson, K.; Mathew, A.; Lambertini, E.
2005-12-01
The transfer of genetic material among bacteria in the environment can occur both in the planktonic and attached state. Given the propensity of organisms to exist in sessile microbial communities in oligotrophic conditions, and that such conditions typify the subsurface, this study focuses on exploratory modeling of horizontal gene transfer among surface-associated E. coli in the subsurface. The mathematics so far used to describe the kinetics of conjugation in biofilms are developed largely from experimental observations of planktonic gene transfer, and are absent of lags or plasmid stability that appear experimentally. We develop a model for bacterial filtration and gene transfer in the attached state, for the early stages of biofilm formation using a recently revised filtration theory approach (Nelson and Ginn, 2005) with motility of E. coli described as a continuous time random walk according to data from microflow chamber experiments (Biondi et al., 2002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo
A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less
Melt infiltration of silicon carbide compacts. I - Study of infiltration dynamics
NASA Technical Reports Server (NTRS)
Asthana, Rajiv; Rohatgi, Pradeep K.
1992-01-01
Countergravity, pressure-assisted infiltration with a 2014 Al alloy of suitably tamped porous compacts of platelet shaped single crystals of alpha (hexagonal) silicon carbide was used to measure particulate wettability and infiltration kinetics under dynamic conditions relevant to pressure casting of composites. A threshold pressure P(th) for ingression of the infiltrant was identified based on the experimental penetration length versus pressure profiles for a range of experimental variables which included infiltration pressure, infiltration time, SiC size and SiC surface chemistry. The results showed that P(th) decreased whereas the penetration length increased with increasing SiC size and infiltration time. Cu-coated SiC led to lower P(th) and larger penetration lengths compared to uncoated SiC under identical conditions. These observations have been discussed in the light of theoretical models of infiltration and the kinetics of wetting.
Kinetics of a gas adsorption compressor
NASA Technical Reports Server (NTRS)
Chan, C. K.; Tward, E.; Elleman, D. D.
1984-01-01
Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.
An experimental study of the transient regime to fluidized chimney in a granular medium
NASA Astrophysics Data System (ADS)
Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer
2017-06-01
Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.
Norman, Małgorzata; Bartczak, Przemysław; Zdarta, Jakub; Tomala, Wiktor; Żurańska, Barbara; Dobrowolska, Anna; Piasecki, Adam; Czaczyk, Katarzyna; Ehrlich, Hermann; Jesionowski, Teofil
2016-01-01
In this study, Hippospongia communis marine demosponge skeleton was used as an adsorbent for sodium copper chlorophyllin (SCC). Obtained results indicate the high sorption capacity of this biomaterial with respect to SCC. Batch experiments were performed under different conditions and kinetic and isotherms properties were investigated. Acidic pH and the addition of sodium chloride increased SCC adsorption. The experimental data were well described by a pseudo-second order kinetic model. Equilibrium adsorption isotherms were determined and the experimental data were analyzed using both Langmuir and Freundlich isotherms. The effectiveness of the process was confirmed by 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (13C CP/MAS NMR), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TG). This novel SCC-sponge-based functional hybrid material was found to exhibit antimicrobial activity against the gram-positive bacterium Staphylococcus aureus. PMID:27690001
A novel approach of modeling continuous dark hydrogen fermentation.
Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-02-01
In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Driver, Erin M; Roberts, Jeff; Dollar, Peter; Charles, Maurissa; Hurst, Paul; Halden, Rolf U
2017-02-05
A systematic comparison was performed between batch bottle and continuous-flow column microcosms (BMs and CMs, respectively) commonly used for in situ groundwater remedial design. Review of recent literature (2000-2014) showed a preference for reporting batch kinetics, even when corresponding column data were available. Additionally, CMs produced higher observed rate constants, exceeding those of BMs by a factor of 6.1±1.1 standard error. In a subsequent laboratory investigation, 12 equivalent microcosm pairs were constructed from fractured bedrock and perchloroethylene (PCE) impacted groundwater. First-order PCE transformation kinetics of CMs were 8.0±4.8 times faster than BMs (rates: 1.23±0.87 vs. 0.16±0.05d -1 , respectively). Additionally, CMs transformed 16.1±8.0-times more mass than BMs owing to continuous-feed operation. CMs are concluded to yield more reliable kinetic estimates because of much higher data density stemming from long-term, steady-state conditions. Since information from BMs and CMs is valuable and complementary, treatability studies should report kinetic data from both when available. This first systematic investigation of BMs and CMs highlights the need for a more unified framework for data use and reporting in treatability studies informing decision-making for field-scale groundwater remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbon kinetic isotope effect in the reaction of CH4 with HO
NASA Technical Reports Server (NTRS)
Davidson, J. A.; Cantrell, C. A.; Tyler, S. C.; Shetter, R. E.; Cicerone, R. J.
1987-01-01
The carbon kinetic isotope effect in the CH4 + HO reaction is measured experimentally and the use of carbon isotope ratios to diagnose atmospheric methane is examined. The chemical, photolysis, and analytical experimental conditions and procedures are described. It is determined that the CH4 + HO reaction has a carbon kinetic isotope effect of 1.010 + or 0.007 for k(12)k(13) (rate constants ratio) at 297 + or - 3 K. This value is compared with the data of Rust and Stevens (1980). Causes for the poor correlation between the data at high methane conversions are discussed. It is supposed that the difference between the k(12) and k(13) values is due to a difference in the activation energy of the two reactions.
On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Vaden, T.; Imre, D. G.; Beránek, J.; Shrivastava, M.
2010-12-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort that is focused on finding additional SOA sources, but leaves many of the fundamental assumptions that are used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets that form instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using an accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory generated α-pinene SOA and ambient atmospheric SOA. The experimental setup was first tested by measuring the evaporation kinetics of single component organic particles of known vapor pressure. We show that, as expected for liquid droplets, smaller particles evaporate faster, and that these data yield the correct vapor pressure. We then study the evaporation kinetics of α-pinene SOA and find that evaporation proceeds in two stages: a fast stage, during which 50% of the particle volume evaporates in ~100 minutes, followed by a slower stage, when additional 25% evaporate in 1400 minutes, which is in sharp contrast to the ~10 minutes timescale predicted by current kinetic models. α-pinene SOA formed in the presence of “spectator” hydrophobic organic vapors like dioctyl phthalate, dioctyl sebacate, pyrene, or their mixture, were shown to adsorb noticeable amounts of these organics, forming what we term here ‘coated’ SOA particles. We show that these adsorbed coatings reduce evaporation rates of SOA particles. Moreover, aging of coated SOA particles dramatically reduces evaporation rates, and in some cases nearly stops it. For example, aging of SOA with adsorbed pyrene reduces evaporation rate to the point that only ~11% of the particle volume evaporates within 24 hrs. For all cases studied in this work, SOA evaporation behavior is size-independent and does not follow the evaporation kinetics of liquid droplets, which is in sharp contrast with model assumptions. To address the question of how closely the laboratory observations described above reflect reality in the atmosphere we characterized the evaporation kinetics of size-selected atmospheric SOA particles sampled in-situ during the recent Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign. We find that the evaporation of ambient SOA is very similar to that of coated and aged laboratory-generated α-pinene SOA. Ambient SOA particles in Sacramento, CA lose between 17% and 25% of their volume in 6 hours. Like laboratory SOA, their evaporation is size-independent and does not follow the kinetics of liquid droplets. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging - all indicate the need to reformulate the way SOA formation and evaporation are treated by models.
NASA Astrophysics Data System (ADS)
Prastiwi, A. C.; Kholiq, A.; Setyarsih, W.
2018-03-01
The purposed of this study are to analyse reduction of students’ misconceptions after getting ECIRR with virtual simulation. The design of research is the pre-experimental design with One Group Pretest-Posttest Design. Subjects of this research were 36 students of class XI MIA-5 SMAN 1 Driyorejo Gresik 2015/2016 school year. Students misconceptions was determined by Three-tier Diagnostic Test. The result shows that the average percentage of misconceptions reduced on topics of ideal gas law, equation of ideal gases and kinetic theory of gases respectively are 38%, 34% and 38%.
Unraveling supported lipid bilayer formation kinetics: osmotic effects.
Hain, Nicole; Gallego, Marta; Reviakine, Ilya
2013-02-19
Solid-supported lipid bilayers are used as cell membrane models and form the basis of biomimetic and biosensor platforms. The mechanism of their formation from adsorbed liposomes is not well-understood. Using membrane-permeable solute glycerol, impermeable solutes sucrose and dextran, and a pore forming peptide melittin, we studied experimentally how osmotic effects affect the kinetics of the adsorbed liposome-to-bilayer transition. We find that its rate is enhanced if adsorbed liposomes are made permeable but is not significantly retarded by impermeable solutes. The results are explained in terms of adsorbed liposome deformation and formation of transmembrane pores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuehe; Liu, Chongxuan; Wu, Hong
2003-03-02
The feasibility of using sulfur-containing organophosphorus reagents for the chelation-supercritical fluid extraction (SFE) of toxic heavy metals and uranium from acidic media was investigated. The SFE experiments were conducted in a specially-designed flow-through liquid extractor. Effective extraction of the metal ions from various acidic media was demonstrated. The effect of ligand concentration in supercritical CO{sub 2} on the kinetics of metal extraction was studied. A simplified model is used to describe the extraction kinetics and the good agreement of experimental data with the equilibrium-based model is achieved.
Theoretcial studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.; Fong, Z. S.
1984-01-01
A method of pumping a COhZ laser by a hot cavity was demonstrated. The cavity, heated by solar radiation, should increase the efficiency of solar pumped lasers used for energy conversion. Kinetic modeling is used to examine the behavior of such a COhZ laser. The kinetic equations are solved numerically vs. time and, in addition, steady state solutions are obtained analytically. The effect of gas heating filling the lower laser level is included. The output power and laser efficiency are obtained as functions of black body temperature and gas ratios (COhZ-He-Ar) and pressures. The values are compared with experimental results.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
The Kinetics of Dissolution Revisited
NASA Astrophysics Data System (ADS)
Antonel, Paula S.; Hoijemberg, Pablo A.; Maiante, Leandro M.; Lagorio, M. Gabriela
2003-09-01
An experiment analyzing the kinetics of dissolution of a solid with cylindrical geometry in water is presented. The dissolution process is followed by measuring the solid mass and its size parameters (thickness and diameter) as a function of time. It is verified that the dissolution rate follows the Nernst model. Data treatment is compared with the dissolution of a spherical solid previously described. Kinetics, diffusion concepts, and polynomial fitting of experimental data are combined in this simple experiment.
Mitsika, Elena E; Christophoridis, Christophoros; Fytianos, Konstantinos
2013-11-01
The aims of this study were (a) to evaluate the degradation of acetamiprid with the use of Fenton reaction, (b) to investigate the effect of different concentrations of H2O2 and Fe(2+), initial pH and various iron salts, on the degradation of acetamiprid and (c) to apply response surface methodology for the evaluation of degradation kinetics. The kinetic study revealed a two-stage process, described by pseudo- first and second order kinetics. Different H2O2:Fe(2+) molar ratios were examined for their effect on acetamiprid degradation kinetics. The ratio of 3 mg L(-1) Fe(2+): 40 mg L(-1) H2O2 was found to completely remove acetamiprid at less than 10 min. Degradation rate was faster at lower pH, with the optimal value at pH 2.9, while Mohr salt appeared to degrade acetamiprid faster. A central composite design was selected in order to observe the effects of Fe(2+) and H2O2 initial concentration on acetamiprid degradation kinetics. A quadratic model fitted the experimental data, with satisfactory regression and fit. The most significant effect on the degradation of acetamiprid, was induced by ferrous iron concentration followed by H2O2. Optimization, aiming to minimize the applied ferrous concentration and the process time, proposed a ratio of 7.76 mg L(-1) Fe(II): 19.78 mg L(-1) H2O2. DOC is reduced much more slowly and requires more than 6h of processing for 50% degradation. The use to zero valent iron, demonstrated fast kinetic rates with acetamiprid degradation occurring in 10 min and effective DOC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes
Abdel-Ghani, Nour T.; El-Chaghaby, Ghadir A.; Helal, Farag S.
2014-01-01
Individual and competitive adsorption studies were carried out to investigate the removal of phenol and nickel ions by adsorption onto multiwalled carbon nanotubes (MWCNTs). The carbon nanotubes were characterized by different techniques such as X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier transformation infrared spectroscopy. The different experimental conditions affecting the adsorption process were investigated. Kinetics and equilibrium models were tested for fitting the adsorption experimental data. The characterization experimental results proved that the studied adsorbent possess different surface functional groups as well as typical morphological features. The batch experiments revealed that 300 min of contact time was enough to achieve equilibrium for the adsorption of both phenol and nickel at an initial adsorbate concentration of 25 mg/l, an adsorbent dosage of 5 g/l, and a solution pH of 7. The adsorption of phenol and nickel by MWCNTs followed the pseudo-second order kinetic model and the intraparticle diffusion model was quite good in describing the adsorption mechanism. The Langmuir equilibrium model fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. The maximum Langmuir adsorption capacities were found to be 32.23 and 6.09 mg/g, for phenol and Ni ions, respectively. The removal efficiency of MWCNTs for nickel ions or phenol in real wastewater samples at the optimum conditions reached up to 60% and 70%, respectively. PMID:26257938
Probabilistic approach to lysozyme crystal nucleation kinetics.
Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P
2015-09-01
Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.
Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.
Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika
2011-06-01
Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome
Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233
Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.
Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.
Ojha, Deepak Kumar; Viju, Daniel; Vinu, R
2017-10-01
In this study, the apparent kinetics of fast pyrolysis of alkali lignin was evaluated by obtaining isothermal mass loss data in the timescale of 2-30s at 400-700°C in an analytical pyrolyzer. The data were analyzed using different reaction models to determine the rate constants and apparent rate parameters. First order and one dimensional diffusion models resulted in good fits with experimental data with apparent activation energy of 23kJmol -1 . Kinetic compensation effect was established using a large number of kinetic parameters reported in the literature for pyrolysis of different lignins. The time evolution of the major functional groups in the pyrolysate was analyzed using in situ Fourier transform infrared spectroscopy. Maximum production of the volatiles occurred around 10-12s. A clear transformation of guaiacols to phenol, catechol and their derivatives, and aromatic hydrocarbons was observed with increasing temperature. The plausible reaction steps involved in various transformations are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air
NASA Astrophysics Data System (ADS)
Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.
2018-03-01
The oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deeper oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.
Tomassetti, M; Vecchio, S; Campanella, L; Dragone, R
2013-10-15
The present research was devoted to studying the kinetics of the artificial rancidification of peanut oil (PO) when a sample of this oil was isothermally heated at 180°C in an air stream. The formation of radical species due to heating was evaluated using a radical index whose value was determined using a biosensor method based on a superoxide dismutase (SOD), while the increasing toxicity was monitored using a suitable toxicity measuring probe based on the Clark electrode and immobilized yeast cells. An extra virgin olive oil was isothermally rancidified under the same experimental conditions and the corresponding data were used for the purpose of comparison. Both the so-called "model-fitting" and the classical kinetic methods were applied to the isothermal process biosensor data in order to obtain the kinetic constant rate value at 180°C. Copyright © 2012 Elsevier Ltd. All rights reserved.
Khemakhem, Ibtihel; Ahmad-Qasem, Margarita Hussam; Catalán, Enrique Barrajón; Micol, Vicente; García-Pérez, Jose Vicente; Ayadi, Mohamed Ali; Bouaziz, Mohamed
2017-01-01
In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70°C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC-DAD/MS-MS). Moreover, Naik's model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR>98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p<0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57±0.18 being extracted approximately 88% in the first minute for UAE experiments. Copyright © 2016 Elsevier B.V. All rights reserved.
Drainage and Stratification Kinetics of Foam Films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
2014-03-01
Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.
Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.
Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul
2010-01-01
The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.
Pyrolysis kinetics of algal consortia grown using swine manure wastewater.
Sharara, Mahmoud A; Holeman, Nathan; Sadaka, Sammy S; Costello, Thomas A
2014-10-01
In this study, pyrolysis kinetics of periphytic microalgae consortia grown using swine manure slurry in two seasonal climatic patterns in northwest Arkansas were investigated. Four heating rates (5, 10, 20 and 40 °C min(-1)) were used to determine the pyrolysis kinetics. Differences in proximate, ultimate, and heating value analyses reflected variability in growing substrate conditions, i.e., flocculant use, manure slurry dilution, and differences in diurnal solar radiation and air temperature regimes. Peak decomposition temperature in algal harvests varied with changing the heating rate. Analyzing pyrolysis kinetics using differential and integral isoconversional methods (Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose) showed strong dependency of apparent activation energy on the degree of conversion suggesting parallel reaction scheme. Consequently, the weight loss data in each thermogravimetric test was modeled using independent parallel reactions (IPR). The quality of fit (QOF) for the model ranged between 2.09% and 3.31% indicating a good agreement with the experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.
2001-01-01
While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.
Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone
Li, Bo; Zhao, Jinyang; Lu, Junfu
2015-01-01
This study used two kinetic mechanisms to evaluate the oxidation processes of NO and SO2 by ozone. The performance of the two models was assessed by comparisons with experimental results from previous studies. The first kinetic mechanism was a combined model developed by the author that consisted of 50 species and 172 reactions. The second mechanism consisted of 23 species and 63 reactions. Simulation results of both of the two models show under predictions compared with experimental data. The results showed that the optimized reaction temperature for NO with O3 ranged from 100~200 °C. At higher temperatures, O3 decomposed to O2 and O, which resulted in a decrease of the NO conversion rate. When the mole ratio of O3/NO was greater than 1, products with a higher oxidation state (such as NO3, N2O5) were formed. The reactions between O3 and SO2 were weak; as such, it was difficult for O3 to oxidize SO2. PMID:25642689
Determination of the frictional coefficient of the implant-antler interface: experimental approach.
Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph
2012-10-01
The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.
Some important considerations in the development of stress corrosion cracking test methods.
NASA Technical Reports Server (NTRS)
Wei, R. P.; Novak, S. R.; Williams, D. P.
1972-01-01
Discussion of some of the precaution needs the development of fracture-mechanics based test methods for studying stress corrosion cracking involves. Following a review of pertinent analytical fracture mechanics considerations and of basic test methods, the implications for test corrosion cracking studies of the time-to-failure determining kinetics of crack growth and life are examined. It is shown that the basic assumption of the linear-elastic fracture mechanics analyses must be clearly recognized and satisfied in experimentation and that the effects of incubation and nonsteady-state crack growth must also be properly taken into account in determining the crack growth kinetics, if valid data are to be obtained from fracture-mechanics based test methods.
NASA Technical Reports Server (NTRS)
Molina, Mario J.
2003-01-01
The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.
Simulation of Decomposition Kinetics of Supercooled Austenite in Powder Steel
NASA Astrophysics Data System (ADS)
Tsyganova, M. S.; Ivashko, A. G.; Polyshuk, I. N.; Nabatov, R. I.; Tsyganova, A. I.
2017-10-01
To approve heat treatment of steel modes, quantitative data on austenite decomposition are required. Gaining these data experimentally appears to be extremely complicated. In present work, few approaches to simulate the phase transformation process are proposed considering structure characteristics of powder steels. Results of comparative analysis of these approaches are also given. Predicting the transformation kinetics by simulation is verified for PK40N2M (0.38% C, 2.10% Ni, 0.40% Mo) steel with 3% porosity and PK80 (0.80% C) steel with different porosity using published experimental data.
Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji
2015-11-10
Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.
2015-01-01
Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.; ...
2017-02-05
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
Kinetic modeling of cell metabolism for microbial production.
Costa, Rafael S; Hartmann, Andras; Vinga, Susana
2016-02-10
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong
2016-05-15
In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebadi, Azra; Rafati, Amir Abbas; Bavafa, Sadeghali; Mohammadi, Masoumah
2017-12-01
This study involves the synthesis of a new silica-based colloidal hybrid system. In this new hybrid system, poly (ethylene glycol) (PEG) and thermo-sensitive amphiphilic biocompatible poly (vinyl pyrrolidone) (PVP) were used to create suitable storage for hydrophobic drugs. The possibility of using variable PVP/PEG molar ratios to modulate drug release rate from silica nanoparticles was a primary goal of the current research. In addition, an investigation of the drug release kinetic was conducted. To achieve this, silica nanoparticles were synthesized in poly (ethylene glycol) (PEG) and poly (vinyl pyrrolidone) (PVP) solution incorporated with enrofloxacin (EFX) (as a model hydrophobic drug), using a simple synthetic strategy of hybrid materials which avoided waste and multi-step processes. The impacts of PVP/PEG molar ratios, temperature, and pH of the release medium on release kinetic were investigated. The physicochemical properties of the drug-loaded composites were studied by Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). In vitro drug release studies demonstrated that the drug release rate, which was evaluated by analyzing the experimental data with seven kinetic models in a primarily non-Fickian diffusion-controlled process, aligned well with both Ritger-Peppas and Sahlin-Peppas equations.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
2010-01-01
Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862
NASA Astrophysics Data System (ADS)
Park, J.; Xu, Z. F.; Lin, M. C.
2003-06-01
The kinetics and mechanism for the H+C2H5OH reaction, a key chain-propagation step in the high temperature decomposition and combustion of ethanol, have been investigated with the modified GAUSSIAN -2 (G2M) method using the structures of the reactants, transition states and products optimized at the B3LYP/6-311+G(d,p) level of theory. Four transition states have been identified for the production of H2+CH3CHOH (TS1), H2+CH2CH2OH (TS2), H2+C2H5O (TS3), and H2O+C2H5 (TS4) with the corresponding barriers, 7.18, 13.30, 14.95, and 27.10 kcal/mol. The predicted rate constants and branching ratios for the three H-abstraction reactions have been calculated over the temperature range 300-3000 K using the conventional and variational transition state theory with quantum-mechanical tunneling corrections. The predicted total rate constant, kt=3.15×103T3.12 exp(-1508/T) cm3 mol-1 s-1, agrees reasonably with existing experimental data; in particular, the result at 423 K was found to agree quantitatively with an available experimental value. The small deviation between the predicted kt and another set of experimental data measured at 295-700 K has been examined by kinetic modeling; the deviation is attributable to insufficient corrections for contributions from secondary reactions.
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys
Zhang, Chuan; Zhang, Fan; Jin, Ke; ...
2017-07-13
As one of the core effects on the high-temperature structural stability, the so-called “sluggish diffusion effect” in high-entropy alloy (HEA) has attracted much attention. Experimental investigations on the diffusion kinetics have been carried out in a few HEA systems, such as Al-Co-Cr-Fe-Ni and Co-Cr-Fe-Mn-Ni. However, the mechanisms behind this effect remain unclear. To better understand the diffusion kinetics of the HEAs, a combined computational/experimental approach is employed in the current study. In the present work, a self-consistent atomic mobility database is developed for the face-centered cubic (fcc) phase of the Co-Cr-Fe-Mn-Ni quinary system. The simulated diffusion coefficients and concentration profilesmore » using this database can well describe the experimental data both from this work and the literatures. The validated mobility database is then used to calculate the tracer diffusion coefficients of Ni in the subsystems of the Co-Cr-Fe-Mn-Ni system with equiatomic ratios. The comparisons of these calculated diffusion coefficients reveal that the diffusion of Ni is not inevitably more sluggish with increasing number of components in the subsystem even with homologous temperature. Taking advantage of computational thermodynamics, the diffusivities of alloying elements with composition and/or temperature are also calculated. Furthermore, these calculations provide us an overall picture of the diffusion kinetics within the Co-Cr-Fe-Mn-Ni system.« less
Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R
1993-01-01
A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361
Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yiguang Ju; Frederick Dryer
2009-02-07
Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.
NASA Astrophysics Data System (ADS)
Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.
2015-12-01
In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.
NASA Astrophysics Data System (ADS)
Korologos, Christos A.; Philippopoulos, Constantine J.; Poulopoulos, Stavros G.
2011-12-01
In the present work, the gas-solid heterogeneous photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) over UV-irradiated titanium dioxide was studied in an annular reactor operated in the CSTR (continuous stirred-tank reactor) mode. GC-FID and GC-MS were used for analysing reactor inlet and outlet streams. Initial BTEX concentrations were in the low parts per million (ppmv) range, whereas the water concentration was in the range of 0-35,230 ppmv and the residence time varied from 50 to 210 s. The effect of water addition on the photocatalytic process showed strong dependence on the type of the BTEX and the water vapour concentration. The increase in residence time resulted in a considerable increase in the conversion achieved for all compounds and experimental conditions. There was a clear interaction between residence time and water presence regarding the effect on conversions achieved. It was established that conversions over 95% could be achieved by adjusting appropriately the experimental conditions and especially the water concentration in the reactor. In all cases, no by-products were detected above the detection limit and carbon dioxide was the only compound detected. Finally, various Langmuir-Hinshelwood kinetic models have been tested in the analysis of the experimental data obtained. The kinetic data obtained confirmed that water had an active participation in the photocatalytic reactions of benzene, toluene, ethylbenzene and m-xylene since the model involving reaction of BTEX and water adsorbed on different active sites yielded the most successful fitting to the experimental results for the first three compounds, whereas the kinetic model based on the assumption that reaction between VOC and water dissociatively adsorbed on the photocatalyst takes place was the most appropriate in the case of m-xylene.
Kinetic Study of Methyl Acetate Oxidation in a Pt/Al2O3 Fixed-Bed Reactor
NASA Technical Reports Server (NTRS)
Hoy, Michael; Li, K. Y.; Li, Jeffrey S.; Chen, S. M.; Yaws, C. L.; Chu, H. W.; Simon, W. E.
1994-01-01
To support technology development for future long-term missions, a metabolic simulator will be used in a closed chamber to test the functions of a Controlled Ecological Life Support System (CELSS). Methyl acetate (MA) was selected as the fuel because its metabolic respiratory quotient is near that of humans. A kinetic study of the catalytic oxidation of MA over Pt/Al203 was then conducted to support the design and operation of the simulator. Kinetic data were obtained as a conversion percentage of MA versus retention time. The reaction was studied at one atmosphere and temperatures from 220 to 340 deg. C. The inlet MA concentration was varied from 100 to 2000 ppm with retention times from 0.01 to 10 sec. A first-order rate law and a Langmuir-Hinshelwood rate equation were tested by nonlinear regression of the kinetic data to estimate rate constants in the rate law. Regression results of the L-H equation explain the kinetic data better than the results of the first-order rate law. A Taguchi experimental design was used to study the effects of temperature, retention time, and concentrations of MA, CO2, and O2 on the conversion of MA. Results indicate that temperature has greatest effect, followed by retention time, and finally MA concentration. It was further determined that the effects of CO2 and O2 concentrations, and the cross effects, are negligible.
Ordaz, Alberto; López, Juan C; Figueroa-González, Ivonne; Muñoz, Raúl; Quijano, Guillermo
2014-12-15
Biological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs. In this study, an experimental framework based on the in situ pulse respirometry technique was developed to assess the impact of NAP addition on the methane biodegradation kinetics using Methylosinus sporium as a model methane-degrading microorganism. A comprehensive mass transfer characterization was performed in order to avoid mass transfer limiting scenarios and ensure a correct kinetic parameter characterization. The presence of the NAP mediated significant changes in the apparent kinetic parameters of M. sporium during methane biodegradation, with variations of 60, 120, and 150% in the maximum oxygen uptake rate, half-saturation constant and maximum specific growth rate, respectively, compared with the intrinsic kinetic parameters retrieved from a control without NAP. These significant changes in the kinetic parameters mediated by the NAP must be considered for the design, operation and modeling of TPPBs devoted to air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nagy, Péter
2013-05-01
Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Miskovic, Ljubisa; Alff-Tuomala, Susanne; Soh, Keng Cher; Barth, Dorothee; Salusjärvi, Laura; Pitkänen, Juha-Pekka; Ruohonen, Laura; Penttilä, Merja; Hatzimanikatis, Vassily
2017-01-01
Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2 -deficient S. cerevisiae strain. We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2 -deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M
2010-05-01
The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.
Zhang, Dian; Strawn, Mary; Novak, John T; Wang, Zhi-Wu
2018-07-01
The highly volatile methanethiol (MT) with an extremely low odor threshold and distinctive putrid smell is often identified as a major odorous compound generated under anaerobic conditions. As an intermediate compound in the course of anaerobic digestion, the extent of MT emission is closely related to the time of anaerobic reaction. In this study, lab-scale anaerobic digesters were operated at solids retention time (SRTs) of 15, 20, 25, 30, 40 and 50 days to investigate the effect of SRT on MT emission. The experimental results demonstrated a bell-shaped curve of MT emission versus SRT with a peak around 20 days SRT. In order to understand this SRT effect, a kinetic model was developed to describe MT production and utilization dynamics in the course of anaerobic digestion and calibrated with the experimental results collected from this study. The model outcome revealed that the high protein content in the feed sludge together with the large maintenance coefficient of MT fermenters are responsible for the peak MT emission emergence in the range of typical SRT used for anaerobic digestion. A further analysis of the kinetic model shows that it can be extensively simplified with reasonable approximation to a form that anaerobic digestion practitioners could easily use to predict the MT and SRT relationship. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration
2017-10-01
We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise
ERIC Educational Resources Information Center
Dias, Albino A.; Pinto, Paula A.; Fraga, Irene; Bezerra, Rui M. F.
2014-01-01
In enzyme kinetic studies, linear transformations of the Michaelis-Menten equation, such as the Lineweaver-Burk double-reciprocal transformation, present some constraints. The linear transformation distorts the experimental error and the relationship between "x" and "y" axes; consequently, linear regression of transformed data…
Investigation of Solvent Effects on the Rate and Stereoselectivity of the Henry Reaction
Kostal, Jakub; Voutchkova, Adelina M.; Jorgensen, William L.
2011-01-01
A combined computational and experimental kinetic study on the Henry reaction is reported. The effects of salvation on the transition structures and the rates of reaction between nitromethane and formaldehyde, and between nitropropane and benzaldehyde are elucidated with QM/MM calculations. PMID:22168236
Becerra, Rosa; Cannady, J Pat; Walsh, Robin
2011-05-05
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(∞) values in the range (1.9-4.5) × 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.