Sample records for experimental methods applied

  1. A method for validation of finite element forming simulation on basis of a pointwise comparison of distance and curvature

    NASA Astrophysics Data System (ADS)

    Dörr, Dominik; Joppich, Tobias; Schirmaier, Fabian; Mosthaf, Tobias; Kärger, Luise; Henning, Frank

    2016-10-01

    Thermoforming of continuously fiber reinforced thermoplastics (CFRTP) is ideally suited to thin walled and complex shaped products. By means of forming simulation, an initial validation of the producibility of a specific geometry, an optimization of the forming process and the prediction of fiber-reorientation due to forming is possible. Nevertheless, applied methods need to be validated. Therefor a method is presented, which enables the calculation of error measures for the mismatch between simulation results and experimental tests, based on measurements with a conventional coordinate measuring device. As a quantitative measure, describing the curvature is provided, the presented method is also suitable for numerical or experimental sensitivity studies on wrinkling behavior. The applied methods for forming simulation, implemented in Abaqus explicit, are presented and applied to a generic geometry. The same geometry is tested experimentally and simulation and test results are compared by the proposed validation method.

  2. Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.

    PubMed

    Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan

    2013-01-01

    In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

  3. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    PubMed

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  4. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  5. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  6. 26 CFR 1.174-3 - Treatment as expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) of this section. If adopted, the method shall apply to all research and experimental expenditures... method is requested, and a description of the project or projects with respect to which research or... change to a different method of treating research or experimental expenditures shall be in writing and...

  7. Cooperative Learning as a Democratic Learning Method

    ERIC Educational Resources Information Center

    Erbil, Deniz Gökçe; Kocabas, Ayfer

    2018-01-01

    In this study, the effects of applying the cooperative learning method on the students' attitude toward democracy in an elementary 3rd-grade life studies course was examined. Over the course of 8 weeks, the cooperative learning method was applied with an experimental group, and traditional methods of teaching life studies in 2009, which was still…

  8. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  9. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  10. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  11. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models.

    PubMed

    Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar

    2017-09-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.

  12. Role of Microstructure in High Temperature Oxidation.

    DTIC Science & Technology

    1980-05-01

    Surface Prepartion Upon Oxidation ......... .................. 20 EXPERIMENTAL METHODS 21 Speciemen Preparation...angle sectioning method 26 Figure 3. Application of the test line upon the image of NiO scale to determine the number of the NiO grain boundary...of knowledge in this field was readily accounted for by extreme experimental difficulty in applying standard methods of microscopy to the thin

  13. An Integrated Optimization Design Method Based on Surrogate Modeling Applied to Diverging Duct Design

    NASA Astrophysics Data System (ADS)

    Hanan, Lu; Qiushi, Li; Shaobin, Li

    2016-12-01

    This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.

  14. Scientific use of the finite element method in Orthodontics

    PubMed Central

    Knop, Luegya; Gandini, Luiz Gonzaga; Shintcovsk, Ricardo Lima; Gandini, Marcia Regina Elisa Aparecida Schiavon

    2015-01-01

    INTRODUCTION: The finite element method (FEM) is an engineering resource applied to calculate the stress and deformation of complex structures, and has been widely used in orthodontic research. With the advantage of being a non-invasive and accurate method that provides quantitative and detailed data on the physiological reactions possible to occur in tissues, applying the FEM can anticipate the visualization of these tissue responses through the observation of areas of stress created from applied orthodontic mechanics. OBJECTIVE: This article aims at reviewing and discussing the stages of the finite element method application and its applicability in Orthodontics. RESULTS: FEM is able to evaluate the stress distribution at the interface between periodontal ligament and alveolar bone, and the shifting trend in various types of tooth movement when using different types of orthodontic devices. Therefore, it is necessary to know specific software for this purpose. CONCLUSIONS: FEM is an important experimental method to answer questions about tooth movement, overcoming the disadvantages of other experimental methods. PMID:25992996

  15. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  16. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time

    PubMed Central

    Austen, Emily J.; Weis, Arthur E.

    2016-01-01

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  17. The multistate impact parameter method for molecular charge exchange in nitrogen

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1980-01-01

    The multistate impact parameter method is applied to the calculation of total cross sections for low energy change transfer between nitrogen ions and nitrogen molecules. Experimental data showing the relationships between total cross section and ion energy for various pressures and electron ionization energies were obtained. Calculated and experimental cross section values from the work are compared with the experimental and theoretical results of other investigators.

  18. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    PubMed

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  19. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bennun, Leonardo

    2017-07-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE) and other X-ray fluorescence spectroscopic methods, etc. This algorithm, when properly applied, does not distort the form nor the intensity of the signal, so it is well suited for all kind of spectroscopic techniques. This method is extremely effective at reducing high-frequency noise in the signal much more efficient than a single rectangular smooth of the same width. As all of smoothing techniques, the proposed method improves the precision of the results, but in this case we found also a systematic improvement on the accuracy of the results. We still have to evaluate the improvement on the quality of the results when this method is applied over real experimental results. We expect better characterization of the net area quantification of the peaks, and smaller Detection and Quantification Limits. We have applied this method to signals that obey Poisson statistics, but with the same ideas and criteria, it could be applied to time series. In a general case, when this algorithm is applied over experimental results, also it would be required that the sought characteristic functions, required for this weighted smoothing method, should be obtained from a system with strong stability. If the sought signals are not perfectly clean, this method should be carefully applied

  20. Applying Propensity Score Methods in Medical Research: Pitfalls and Prospects

    PubMed Central

    Luo, Zhehui; Gardiner, Joseph C.; Bradley, Cathy J.

    2012-01-01

    The authors review experimental and nonexperimental causal inference methods, focusing on assumptions for the validity of instrumental variables and propensity score (PS) methods. They provide guidance in four areas for the analysis and reporting of PS methods in medical research and selectively evaluate mainstream medical journal articles from 2000 to 2005 in the four areas, namely, examination of balance, overlapping support description, use of estimated PS for evaluation of treatment effect, and sensitivity analyses. In spite of the many pitfalls, when appropriately evaluated and applied, PS methods can be powerful tools in assessing average treatment effects in observational studies. Appropriate PS applications can create experimental conditions using observational data when randomized controlled trials are not feasible and, thus, lead researchers to an efficient estimator of the average treatment effect. PMID:20442340

  1. A survey of methods for the evaluation of tissue engineering scaffold permeability.

    PubMed

    Pennella, F; Cerino, G; Massai, D; Gallo, D; Falvo D'Urso Labate, G; Schiavi, A; Deriu, M A; Audenino, A; Morbiducci, Umberto

    2013-10-01

    The performance of porous scaffolds for tissue engineering (TE) applications is evaluated, in general, in terms of porosity, pore size and distribution, and pore tortuosity. These descriptors are often confounding when they are applied to characterize transport phenomena within porous scaffolds. On the contrary, permeability is a more effective parameter in (1) estimating mass and species transport through the scaffold and (2) describing its topological features, thus allowing a better evaluation of the overall scaffold performance. However, the evaluation of TE scaffold permeability suffers of a lack of uniformity and standards in measurement and testing procedures which makes the comparison of results obtained in different laboratories unfeasible. In this review paper we summarize the most important features influencing TE scaffold permeability, linking them to the theoretical background. An overview of methods applied for TE scaffold permeability evaluation is given, presenting experimental test benches and computational methods applied (1) to integrate experimental measurements and (2) to support the TE scaffold design process. Both experimental and computational limitations in the permeability evaluation process are also discussed.

  2. Fulfilling the law of a single independent variable and improving the result of mathematical educational research

    NASA Astrophysics Data System (ADS)

    Pardimin, H.; Arcana, N.

    2018-01-01

    Many types of research in the field of mathematics education apply the Quasi-Experimental method and statistical analysis use t-test. Quasi-experiment has a weakness that is difficult to fulfil “the law of a single independent variable”. T-test also has a weakness that is a generalization of the conclusions obtained is less powerful. This research aimed to find ways to reduce the weaknesses of the Quasi-experimental method and improved the generalization of the research results. The method applied in the research was a non-interactive qualitative method, and the type was concept analysis. Concepts analysed are the concept of statistics, research methods of education, and research reports. The result represented a way to overcome the weaknesses of quasi-Experiments and T-test. In addition, the way was to apply a combination of Factorial Design and Balanced Design, which the authors refer to as Factorial-Balanced Design. The advantages of this design are: (1) almost fulfilling “the low of single independent variable” so no need to test the similarity of the academic ability, (2) the sample size of the experimental group and the control group became larger and equal; so it becomes robust to deal with violations of the assumptions of the ANOVA test.

  3. Experimental Mathematics and Computational Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  4. Analytical and Experimental Vibration Analysis of a Faulty Gear System.

    DTIC Science & Technology

    1994-10-01

    Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  5. EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.

    PubMed

    Hadinia, M; Jafari, R; Soleimani, M

    2016-06-01

    This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.

  6. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  7. Invariant 2D object recognition using the wavelet transform and structured neural networks

    NASA Astrophysics Data System (ADS)

    Khalil, Mahmoud I.; Bayoumi, Mohamed M.

    1999-03-01

    This paper applies the dyadic wavelet transform and the structured neural networks approach to recognize 2D objects under translation, rotation, and scale transformation. Experimental results are presented and compared with traditional methods. The experimental results showed that this refined technique successfully classified the objects and outperformed some traditional methods especially in the presence of noise.

  8. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  9. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  10. The Taguchi Method Application to Improve the Quality of a Sustainable Process

    NASA Astrophysics Data System (ADS)

    Titu, A. M.; Sandu, A. V.; Pop, A. B.; Titu, S.; Ciungu, T. C.

    2018-06-01

    Taguchi’s method has always been a method used to improve the quality of the analyzed processes and products. This research shows an unusual situation, namely the modeling of some parameters, considered technical parameters, in a process that is wanted to be durable by improving the quality process and by ensuring quality using an experimental research method. Modern experimental techniques can be applied in any field and this study reflects the benefits of interacting between the agriculture sustainability principles and the Taguchi’s Method application. The experimental method used in this practical study consists of combining engineering techniques with experimental statistical modeling to achieve rapid improvement of quality costs, in fact seeking optimization at the level of existing processes and the main technical parameters. The paper is actually a purely technical research that promotes a technical experiment using the Taguchi method, considered to be an effective method since it allows for rapid achievement of 70 to 90% of the desired optimization of the technical parameters. The missing 10 to 30 percent can be obtained with one or two complementary experiments, limited to 2 to 4 technical parameters that are considered to be the most influential. Applying the Taguchi’s Method in the technique and not only, allowed the simultaneous study in the same experiment of the influence factors considered to be the most important in different combinations and, at the same time, determining each factor contribution.

  11. Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program

    ERIC Educational Resources Information Center

    Lin, Su-ching; Wu, Ming-sui

    2016-01-01

    This study was the first year of a two-year project which applied a program theory-driven approach to evaluating the impact of teachers' professional development interventions on students' learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of…

  12. Modeling the basin of attraction as a two-dimensional manifold from experimental data: Applications to balance in humans

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, Maria S.; Stirling, James R.; Cordente Martínez, Carlos A.; Díaz de Durana, Alfonso López; Quintana, Manuel Sillero; Romo, Gabriel Rodríguez; Molinuevo, Javier Sampedro

    2010-03-01

    We present a method of modeling the basin of attraction as a three-dimensional function describing a two-dimensional manifold on which the dynamics of the system evolves from experimental time series data. Our method is based on the density of the data set and uses numerical optimization and data modeling tools. We also show how to obtain analytic curves that describe both the contours and the boundary of the basin. Our method is applied to the problem of regaining balance after perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the statistical description of the experimental data, providing a function that describes the shape of the basin of attraction. To test its robustness, our method has also been applied to two different data sets of a second subject and no significant differences were found between the contours of the calculated basin of attraction for the different data sets. The proposed method has many uses in a wide variety of areas, not just human balance for which there are many applications in medicine, rehabilitation, and sport.

  13. Characterization of biogenic ferrihydrite nanoparticles by means of SAXS, SRD and IBA methods

    NASA Astrophysics Data System (ADS)

    Balasoiu, M.; Kichanov, S.; Pantelica, A.; Pantelica, D.; Stolyar, S.; Iskhakov, R.; Aranghel, D.; Ionescu, P.; Badita, C. R.; Kurkin, S.; Orelovich, O.; Tiutiunikov, S.

    2018-03-01

    Investigations of biogenic ferrihydrite nanoparticles produced by bacteria Klebsiella oxytoca by applying small angle X-ray scattering, synchrotron radiation diffraction and ion beam analysis methods are reviewed. Different experimental data processing methods are used and analyzed.

  14. Statistical analysis of experimental multifragmentation events in 64Zn+112Sn at 40 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Lin, W.; Zheng, H.; Ren, P.; Liu, X.; Huang, M.; Wada, R.; Chen, Z.; Wang, J.; Xiao, G. Q.; Qu, G.

    2018-04-01

    A statistical multifragmentation model (SMM) is applied to the experimentally observed multifragmentation events in an intermediate heavy-ion reaction. Using the temperature and symmetry energy extracted from the isobaric yield ratio (IYR) method based on the modified Fisher model (MFM), SMM is applied to the reaction 64Zn+112Sn at 40 MeV/nucleon. The experimental isotope distribution and mass distribution of the primary reconstructed fragments are compared without afterburner and they are well reproduced. The extracted temperature T and symmetry energy coefficient asym from SMM simulated events, using the IYR method, are also consistent with those from the experiment. These results strongly suggest that in the multifragmentation process there is a freezeout volume, in which the thermal and chemical equilibrium is established before or at the time of the intermediate-mass fragments emission.

  15. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  16. Scientific computations section monthly report, November 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  17. Aiming for the Singing Teacher: An Applied Study on Preservice Kindergarten Teachers' Singing Skills Development within a Music Methods Course

    ERIC Educational Resources Information Center

    Neokleous, Rania

    2015-01-01

    This study examined the effects of a music methods course offered at a Cypriot university on the singing skills of 33 female preservice kindergarten teachers. To systematically measure and analyze student progress, the research design was both experimental and descriptive. As an applied study which was carried out "in situ," the normal…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.

    The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can bemore » divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.« less

  19. Subatmospheric vapor pressures evaluated from internal-energy measurements

    NASA Astrophysics Data System (ADS)

    Duarte-Garza, H. A.; Magee, J. W.

    1997-01-01

    Vapor pressures were evaluated from measured internal-energy changes in the vapor+liquid two-phase region, Δ U (2). The method employed a thermodynamic relationship between the derivative quantity (ϖ U (2)/ϖ V) T and the vapor pressure ( p σ) and its temperature derivative (ϖ p/ϖ T)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately ±0.04 kPa (±0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p σ for this substance. It was also applied to evaluate published p σ data which are in disagreement by more than their claimed uncertainty.

  20. Assuming Identities Online: Experimental Linguistics Applied to the Policing of Online Paedophile Activity

    ERIC Educational Resources Information Center

    Grant, Tim; Macleod, Nicci

    2016-01-01

    This article uses a research project into the online conversations of sex offenders and the children they abuse to further the arguments for the acceptability of experimental work as a research tool for linguists. The research reported here contributes to the growing body of work within linguistics that has found experimental methods to be useful…

  1. Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru

    2004-05-01

    The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.

  2. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hüseyin

    2010-04-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  3. Contact resistance extraction methods for short- and long-channel carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Pacheco-Sanchez, Anibal; Claus, Martin; Mothes, Sven; Schröter, Michael

    2016-11-01

    Three different methods for the extraction of the contact resistance based on both the well-known transfer length method (TLM) and two variants of the Y-function method have been applied to simulation and experimental data of short- and long-channel CNTFETs. While for TLM special CNT test structures are mandatory, standard electrical device characteristics are sufficient for the Y-function methods. The methods have been applied to CNTFETs with low and high channel resistance. It turned out that the standard Y-function method fails to deliver the correct contact resistance in case of a relatively high channel resistance compared to the contact resistances. A physics-based validation is also given for the application of these methods based on applying traditional Si MOSFET theory to quasi-ballistic CNTFETs.

  4. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  5. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    PubMed

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  6. Taguchi method of experimental design in materials education

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.

    1993-01-01

    Some of the advantages and disadvantages of the Taguchi Method of experimental design as applied to Materials Science will be discussed. This is a fractional factorial method that employs the minimum number of experimental trials for the information obtained. The analysis is also very simple to use and teach, which is quite advantageous in the classroom. In addition, the Taguchi loss function can be easily incorporated to emphasize that improvements in reproducibility are often at least as important as optimization of the response. The disadvantages of the Taguchi Method include the fact that factor interactions are normally not accounted for, there are zero degrees of freedom if all of the possible factors are used, and randomization is normally not used to prevent environmental biasing. In spite of these disadvantages it is felt that the Taguchi Method is extremely useful for both teaching experimental design and as a research tool, as will be shown with a number of brief examples.

  7. The experimental and calculated characteristics of 22 tapered wings

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1938-01-01

    The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.

  8. On the effect of boundary layer growth on the stability of compressible flows

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1981-01-01

    The method of multiple scales is used to describe a formally correct method based on the nonparallel linear stability theory, that examines the two and three dimensional stability of compressible boundary layer flows. The method is applied to the supersonic flat plate layer at Mach number 4.5. The theoretical growth rates are in good agreement with experimental results. The method is also applied to the infinite-span swept wing transonic boundary layer with suction to evaluate the effect of the nonparallel flow on the development of crossflow disturbances.

  9. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  10. Enhancing (In)Formal Learning Ties in Interdisciplinary Management Courses: A Quasi-Experimental Social Network Study

    ERIC Educational Resources Information Center

    Rienties, Bart; Héliot, YingFei

    2018-01-01

    While interdisciplinary courses are regarded as a promising method for students to learn and apply knowledge from other disciplines, there is limited empirical evidence available whether interdisciplinary courses can effectively "create" interdisciplinary students. In this innovative quasi-experimental study amongst 377 Master's…

  11. Accurate prediction of secondary metabolite gene clusters in filamentous fungi.

    PubMed

    Andersen, Mikael R; Nielsen, Jakob B; Klitgaard, Andreas; Petersen, Lene M; Zachariasen, Mia; Hansen, Tilde J; Blicher, Lene H; Gotfredsen, Charlotte H; Larsen, Thomas O; Nielsen, Kristian F; Mortensen, Uffe H

    2013-01-02

    Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.

  12. Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion

    PubMed Central

    Puszka, Agathe; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Derouard, Jacques; Dinten, Jean-Marc

    2013-01-01

    We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry. PMID:23577292

  13. Measurement of the configuration of a concave surface by the interference of reflected light

    NASA Technical Reports Server (NTRS)

    Kumazawa, T.; Sakamoto, T.; Shida, S.

    1985-01-01

    A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.

  14. Methods for determining the internal thrust of scramjet engine modules from experimental data

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  15. An Evaluation of Material Properties Using EMA and FEM

    NASA Astrophysics Data System (ADS)

    Ďuriš, Rastislav; Labašová, Eva

    2016-12-01

    The main goal of the paper is the determination of material properties from experimentally measured natural frequencies. A combination of two approaches to structural dynamics testing was applied: the experimental measurements of natural frequencies were performed by Experimental Modal Analysis (EMA) and the numerical simulations, were carried out by Finite Element Analysis (FEA). The optimization methods were used to determine the values of density and elasticity modulus of a specimen based on the experimental results.

  16. Applying An Aptitude-Treatment Interaction Approach to Competency Based Teacher Education.

    ERIC Educational Resources Information Center

    McNergney, Robert

    Aptitude treatment interaction (ATI), as applied to education, measures the interaction of personality factors and experimentally manipulated teaching strategies. ATI research has had dissappointingly inconclusive results so far, but proponents argue that this has been due to imprecise methods, which can be rectified. They believe that…

  17. Experimental 3-D residual stress measurement in rails with thermal annealing

    DOT National Transportation Integrated Search

    1999-07-01

    This report describes a novel method to determine residual stresses in railroad rails. The method uses thermal annealing to relieve the internal stresses in rail slices while advanced techniques (Miore and Twyman/Green interferometry) are applied to ...

  18. Two MIS Analysis Methods: An Experimental Comparison.

    ERIC Educational Resources Information Center

    Wang, Shouhong

    1996-01-01

    In China, 24 undergraduate business students applied data flow diagrams (DFD) to a mini-case, and 20 used object-oriented analysis (OOA). DFD seemed easier to learn, but after training, those using the OOA method for systems analysis made fewer errors. (SK)

  19. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  20. Experimental research of flow servo-valve

    NASA Astrophysics Data System (ADS)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  1. An Ultrasonic Guided Wave Method to Estimate Applied Biaxial Loads (Preprint)

    DTIC Science & Technology

    2011-11-01

    VALIDATION A fatigue test was performed with an array of six surface-bonded PZT transducers on a 6061 aluminum plate as shown in Figure 4. The specimen...direct paths of propagation are oriented at different angles. This method is applied to experimental sparse array data recorded during a fatigue test...and the additional complication of the resulting fatigue cracks interfering with some of the direct arrivals is addressed via proper selection of

  2. Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.

    PubMed

    Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N

    2017-01-01

    The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

  3. On the measurement of magnetic viscosity

    NASA Astrophysics Data System (ADS)

    Serletis, C.; Efthimiadis, K. G.

    2012-08-01

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.

  4. Simulation assisted characterization of kaolinite-methanol intercalation complexes synthesized using cost-efficient homogenization method

    NASA Astrophysics Data System (ADS)

    Makó, Éva; Kovács, András; Ható, Zoltán; Kristóf, Tamás

    2015-12-01

    Recent experimental and simulation findings with kaolinite-methanol intercalation complexes raised the question of the existence of more stable structures in wet and dry state, which has not been fully cleared up yet. Experimental and molecular simulation analyses were used to investigate different types of kaolinite-methanol complexes, revealing their real structures. Cost-efficient homogenization methods were applied to synthesize the kaolinite-dimethyl sulfoxide and kaolinite-urea pre-intercalation complexes of the kaolinite-methanol ones. The tested homogenization method required an order of magnitude lower amount of reagents than the generally applied solution method. The influence of the type of pre-intercalated molecules and of the wetting or drying (at room temperature and at 150 °C) procedure on the intercalation was characterized experimentally by X-ray diffraction and thermal analysis. Consistent with the suggestion from the present simulations, 1.12-nm and 0.83-nm stable kaolinite-methanol complexes were identified. For these complexes, our molecular simulations predict either single-layered structures of mobile methanol/water molecules or non-intercalated structures of methoxy-functionalized kaolinite. We found that the methoxy-modified kaolinite can easily be intercalated by liquid methanol.

  5. Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, S.; Jeon, P.-H.

    2016-04-01

    Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.

  6. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  7. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  8. Return to Our Roots: Raising Radishes to Teach Experimental Design. Methods and Techniques.

    ERIC Educational Resources Information Center

    Stallings, William M.

    1993-01-01

    Reviews research in teaching applied statistics. Concludes that students should analyze data from studies they have designed and conducted. Describes an activity in which students study germination and growth of radish seeds. Includes a table providing student instructions for both the experimental procedure and data analysis. (CFR)

  9. Development and Evaluation of Pretraining as an Adjunct to a Pilot Training Study.

    ERIC Educational Resources Information Center

    McFadden, Robert W.; And Others

    The utility of the pretraining of task-relevant cognitive skills within the context of experimental research methodology was investigated in this study. A criterion referenced pretraining multi-media product was developed and applied to support the initial phase of an experimental research effort in which several instructional methods for training…

  10. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  11. Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.

    2012-01-01

    In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.

  12. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  13. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  14. Reconstruction of the unknown optimization cost functions from experimental recordings during static multi-finger prehension

    PubMed Central

    Niu, Xun; Terekhov, Alexander V.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2013-01-01

    The goal of the research is to reconstruct the unknown cost (objective) function(s) presumably used by the neural controller for sharing the total force among individual fingers in multi-finger prehension. The cost function was determined from experimental data by applying the recently developed Analytical Inverse Optimization (ANIO) method (Terekhov et al 2010). The core of the ANIO method is the Theorem of Uniqueness that specifies conditions for unique (with some restrictions) estimation of the objective functions. In the experiment, subjects (n=8) grasped an instrumented handle and maintained it at rest in the air with various external torques, loads, and target grasping forces applied to the object. The experimental data recorded from 80 trials showed a tendency to lie on a 2-dimensional hyperplane in the 4-dimensional finger-force space. Because the constraints in each trial were different, such a propensity is a manifestation of a neural mechanism (not the task mechanics). In agreement with the Lagrange principle for the inverse optimization, the plane of experimental observations was close to the plane resulting from the direct optimization. The latter plane was determined using the ANIO method. The unknown cost function was reconstructed successfully for each performer, as well as for the group data. The cost functions were found to be quadratic with non-zero linear terms. The cost functions obtained with the ANIO method yielded more accurate results than other optimization methods. The ANIO method has an evident potential for addressing the problem of optimization in motor control. PMID:22104742

  15. A Method For Modeling Discontinuities In A Microwave Coaxial Transmission Line

    NASA Technical Reports Server (NTRS)

    Otoshi, Tom Y.

    1994-01-01

    A methodology for modeling discountinuities in a coaxial transmission line is presented. The method uses a none-linear least squares fit program to optimize the fit between a theoretical model and experimental data. When the method was applied for modeling discontinuites in a damaged S-band antenna cable, excellent agreement was obtained.

  16. Optical detection of random features for high security applications

    NASA Astrophysics Data System (ADS)

    Haist, T.; Tiziani, H. J.

    1998-02-01

    Optical detection of random features in combination with digital signatures based on public key codes in order to recognize counterfeit objects will be discussed. Without applying expensive production techniques objects are protected against counterfeiting. Verification is done off-line by optical means without a central authority. The method is applied for protecting banknotes. Experimental results for this application are presented. The method is also applicable for identity verification of a credit- or chip-card holder.

  17. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    NASA Astrophysics Data System (ADS)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  18. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    DTIC Science & Technology

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  19. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.

    PubMed

    Chen, Shuonan; Mar, Jessica C

    2018-06-19

    A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.

  20. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    PubMed

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.

  1. Detection of fuze defects by image-processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, M.J.

    1988-03-01

    This paper describes experimental studies of the detection of mechanical defects by the application of computer-processing methods to real-time radiographic images of fuze assemblies. The experimental results confirm that a new algorithm developed at Materials Research Laboratory has potential for the automatic inspection of these assemblies and of others that contain discrete components. The algorithm was applied to images that contain a range of grey levels and has been found to be tolerant to image variations encountered under simulated production conditions.

  2. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  3. The use of continuous culture in systems biology investigations.

    PubMed

    Winder, Catherine L; Lanthaler, Karin

    2011-01-01

    When acquiring data for systems biology studies, it is essential to perform the experiments in controlled and reproducible conditions. Advances in the fields of proteomics and metabolomics allow the quantitative analysis of the components of the biological cell. It is essential to include a method in the experimental pipeline to culture the biological system in controlled and reproducible conditions to facilitate the acquisition of high-quality data. The employment of continuous culture methods for the growth of microorganisms is an ideal tool to achieve these objectives. This chapter will review the continuous culture approaches which may be applied in such studies, outline the experimental options which should be considered, and describe the approach applied in the production of steady-state cultures of Saccharomyces cerevisiae. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments.

    PubMed

    Olesen, Scott W; Vora, Suhani; Techtmann, Stephen M; Fortney, Julian L; Bastidas-Oyanedel, Juan R; Rodríguez, Jorge; Hazen, Terry C; Alm, Eric J

    2016-01-01

    Many microbial ecology experiments use sequencing data to measure a community's response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samples and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method's validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of "bottle effects".

  5. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    NASA Astrophysics Data System (ADS)

    Masera, D.; Bocca, P.; Grazzini, A.

    2011-07-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  6. Virtual screening of cocrystal formers for CL-20

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Hong; Chen, Min-Bo; Chen, Wei-Ming; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen

    2014-08-01

    According to the structure characteristics of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) and the kinetic mechanism of the cocrystal formation, the method of virtual screening CL-20 cocrystal formers by the criterion of the strongest intermolecular site pairing energy (ISPE) was proposed. In this method the strongest ISPE was thought to determine the first step of the cocrystal formation. The prediction results for four sets of common drug molecule cocrystals by this method were compared with those by the total ISPE method from the reference (Musumeci et al., 2011), and the experimental results. This method was then applied to virtually screen the CL-20 cocrystal formers, and the prediction results were compared with the experimental results.

  7. Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1996-01-01

    A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.

  8. Effects of a Program for Developing Creative Thinking Skills

    ERIC Educational Resources Information Center

    Rabanos, Natalia Larraz; Torres, Pedro Allueva

    2012-01-01

    Introduction: The aim of this study is to present an intervention program for creative skills development applied to a group of students of lower Secondary Education. Method: This program was applied in a school in Zaragoza (Spain) during the 2008-09 academic year. The study used a repeated-measures, quasi-experimental design with non-equivalent…

  9. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  10. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    PubMed

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  11. The Historical Method of Inquiry in a Teacher Training Program: Theory and Metatheory.

    ERIC Educational Resources Information Center

    Kimmons, Ron

    A historical method of inquiry can be applied to an experimental teacher training program, specifically, the Ford Training and Preparation Program (FTPP). The historical method requires gathering a lot of loose ideas and events that have been part of the project and hanging them together in an integrated way. To achieve this, two organizing…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B.

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T 2v 1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  13. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  14. Discovering the Sequential Structure of Thought

    ERIC Educational Resources Information Center

    Anderson, John R.; Fincham, Jon M.

    2014-01-01

    Multi-voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel…

  15. Do Different Training Conditions Facilitate Team Implementation? A Quasi-Experimental Mixed Methods Study

    ERIC Educational Resources Information Center

    Nielsen, Karina; Randall, Raymond; Christensen, Karl B.

    2017-01-01

    A mixed methods approach was applied to examine the effects of a naturally occurring teamwork intervention supported with training. The first objective was to integrate qualitative process evaluation and quantitative effect evaluation to examine "how" and "why" the training influence intervention outcomes. The intervention (N =…

  16. Testing for intracycle determinism in pseudoperiodic time series.

    PubMed

    Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A

    2008-06-01

    A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.

  17. On the prediction of far field computational aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Korkan, Kenneth D.

    1990-01-01

    A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.

  18. Resistivity Correction Factor for the Four-Probe Method: Experiment III

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi

    1990-04-01

    Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.

  19. Chromatogram simulation by area reproduction.

    PubMed

    Boe, Bjarne

    2007-01-12

    A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.

  20. A Philosophical Perspective on Construct Validation: Application of Inductive Logic to the Analysis of Experimental Episode Construct Validity.

    ERIC Educational Resources Information Center

    Rossi, Robert Joseph

    Methods drawn from four logical theories associated with studies of inductive processes are applied to the assessment and evaluation of experimental episode construct validity. It is shown that this application provides for estimates of episode informativeness with respect to the person examined in terms of the construct and to the construct…

  1. Persons Camp Using Interpolation Method

    NASA Astrophysics Data System (ADS)

    Tawfiq, Luma Naji Mohammed; Najm Abood, Israa

    2018-05-01

    The aim of this paper is to estimate the rate of contaminated soils by using suitable interpolation method as an alternative accurate tool to evaluate the concentration of heavy metals in soil then compared with standard universal value to determine the rate of contamination in the soil. In particular, interpolation methods are extensively applied in the models of the different phenomena where experimental data must be used in computer studies where expressions of those data are required. In this paper the extended divided difference method in two dimensions is used to solve suggested problem. Then, the modification method is applied to estimate the rate of contaminated soils of displaced persons camp in Diyala Governorate, in Iraq.

  2. Improvement of the Owner Distinction Method for Healing-Type Pet Robots

    NASA Astrophysics Data System (ADS)

    Nambo, Hidetaka; Kimura, Haruhiko; Hara, Mirai; Abe, Koji; Tajima, Takuya

    In order to decrease human stress, Animal Assisted Therapy which applies pets to heal humans is attracted. However, since animals are insanitary and unsafe, it is difficult to practically apply animal pets in hospitals. For the reason, on behalf of animal pets, pet robots have been attracted. Since pet robots would have no problems in sanitation and safety, they are able to be applied as a substitute for animal pets in the therapy. In our previous study where pet robots distinguish their owners like an animal pet, we used a puppet type pet robot which has pressure type touch sensors. However, the accuracy of our method was not sufficient to practical use. In this paper, we propose a method to improve the accuracy of the distinction. The proposed method can be applied for capacitive touch sensors such as installed in AIBO in addition to pressure type touch sensors. Besides, this paper shows performance of the proposed method from experimental results and confirms the proposed method has improved performance of the distinction in the conventional method.

  3. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  4. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  5. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  6. Classification of bladder cancer cell lines using Raman spectroscopy: a comparison of excitation wavelength, sample substrate and statistical algorithms

    NASA Astrophysics Data System (ADS)

    Kerr, Laura T.; Adams, Aine; O'Dea, Shirley; Domijan, Katarina; Cullen, Ivor; Hennelly, Bryan M.

    2014-05-01

    Raman microspectroscopy can be applied to the urinary bladder for highly accurate classification and diagnosis of bladder cancer. This technique can be applied in vitro to bladder epithelial cells obtained from urine cytology or in vivo as an optical biopsy" to provide results in real-time with higher sensitivity and specificity than current clinical methods. However, there exists a high degree of variability across experimental parameters which need to be standardised before this technique can be utilized in an everyday clinical environment. In this study, we investigate different laser wavelengths (473 nm and 532 nm), sample substrates (glass, fused silica and calcium fluoride) and multivariate statistical methods in order to gain insight into how these various experimental parameters impact on the sensitivity and specificity of Raman cytology.

  7. Effect of a school-based oral health education programme in Wuhan City, Peoples Republic of China.

    PubMed

    Petersen, Poul Erik; Peng, Bin; Tai, Baojun; Bian, Zhuan; Fan, Mingwen

    2004-02-01

    To assess oral health outcomes of a school-based oral health education (OHE) programme on children, mothers and schoolteachers in China, and to evaluate the methods applied and materials used. The WHO Health Promoting Schools Project applied to primary schoolchildren in 3 experimental and 3 control schools in Hongshan District, Wuhan City, Central China, with a 3-year follow-up. Data on dental caries, gingival bleeding and behaviour were collected. 803 children and their mothers, and 369 teachers were included at baseline in 1998. After three years, 666 children and their mothers (response rate 83%), and 347 teachers (response rate 94%) remained. DMFT/DMFS increments were comparable but the f/F components were higher among children in experimental schools than in control schools and the gingival bleeding score was, similarly, significantly lower. More children in experimental schools adopted regular oral health behaviour such as toothbrushing, recent dental visits, use of fluoride toothpaste, with less frequent consumption of cakes/biscuits compared to controls. In experimental schools, mothers showed significant beneficial oral health developments, while teachers showed higher oral health knowledge and more positive attitudes, also being satisfied with training workshops, methods applied, materials used and involvement with children in OHE. The programme had positive effects on gingival bleeding score and oral health behaviour of children, and on oral health knowledge and attitudes of mothers and teachers. No positive effect on dental caries incidence rate was demonstrated by the OHE programme.

  8. A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis.

    PubMed

    Tucker, George; Loh, Po-Ru; Berger, Bonnie

    2013-10-04

    Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.

  9. Effects of Thermally Induced Microcracking on the Quasi Static and Dynamic Response of Salem Limestone

    DTIC Science & Technology

    2017-06-30

    description of a com- monly used material model that is modified in Chapter 5 based on the experimental data found in this work. 2.1 Background The quasi ...materials with varying levels of mi- crocracks. One of the intentions of this work is to establish experimental methods that can be applied to all quasi ...Projectile penetration into concrete target. To show how the experimental data obtained in this work can be used to improve quasi -brittle material

  10. Monte Carlo simulation of the radiant field produced by a multiple-lamp quartz heating system

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    1991-01-01

    A method is developed for predicting the radiant heat flux distribution produced by a reflected bank of tungsten-filament tubular-quartz radiant heaters. The method is correlated with experimental results from two cases, one consisting of a single lamp and a flat reflector and the other consisting of a single lamp and a parabolic reflector. The simulation methodology, computer implementation, and experimental procedures are discussed. Analytical refinements necessary for comparison with experiment are discussed and applied to a multilamp, common reflector heating system.

  11. Experimental and computational flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1989-01-01

    A comprehensive test program is defined which is being implemented in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel for obtaining data on a generic all-body hypersonic vehicle for computational fluid dynamics (CFD) code validation. Computational methods (approximate inviscid methods and an upwind parabolized Navier-Stokes code) currently being applied to the all-body model are outlined. Experimental and computational results on surface pressure distributions and Pitot-pressure surveys for the basic sharp-nose model (without control surfaces) at a free-stream Mach number of 7 are presented.

  12. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  13. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  14. The Effect of Coordinated Teaching Method Practices on Some Motor Skills of 6-Year-Old Children

    ERIC Educational Resources Information Center

    Altinkok, Mustafa

    2017-01-01

    Purpose: This study was designed to examine the effects of Coordinated Teaching Method activities applied for 10 weeks on 6-year-old children, and to examine the effects of these activities on the development of some motor skills in children. Research Methods: The "Experimental Research Model with Pre-test and Post-test Control Group"…

  15. Modal analysis applied to circular, rectangular, and coaxial waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1988-01-01

    Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.

  16. Sensitivity and systematics of calorimetric neutrino mass experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nucciotti, A.; Cremonesi, O.; Ferri, E.

    2009-12-16

    A large calorimetric neutrino mass experiment using thermal detectors is expected to play a crucial role in the challenge for directly assessing the neutrino mass. We discuss and compare here two approaches for the estimation of the experimental sensitivity of such an experiment. The first method uses an analytic formulation and allows to obtain readily a close estimate over a wide range of experimental configurations. The second method is based on a Montecarlo technique and is more precise and reliable. The Montecarlo approach is then exploited to study some sources of systematic uncertainties peculiar to calorimetric experiments. Finally, the toolsmore » are applied to investigate the optimal experimental configuration of the MARE project.« less

  17. Analysis of biomolecular solvation sites by 3D-RISM theory.

    PubMed

    Sindhikara, Daniel J; Hirata, Fumio

    2013-06-06

    We derive, implement, and apply equilibrium solvation site analysis for biomolecules. Our method utilizes 3D-RISM calculations to quickly obtain equilibrium solvent distributions without either necessity of simulation or limits of solvent sampling. Our analysis of these distributions extracts highest likelihood poses of solvent as well as localized entropies, enthalpies, and solvation free energies. We demonstrate our method on a structure of HIV-1 protease where excellent structural and thermodynamic data are available for comparison. Our results, obtained within minutes, show systematic agreement with available experimental data. Further, our results are in good agreement with established simulation-based solvent analysis methods. This method can be used not only for visual analysis of active site solvation but also for virtual screening methods and experimental refinement.

  18. A novel analysis method for paired-sample microbial ecology experiments

    DOE PAGES

    Olesen, Scott W.; Vora, Suhani; Techtmann, Stephen M.; ...

    2016-05-06

    Many microbial ecology experiments use sequencing data to measure a community s response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samplesmore » and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method s validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Furthermore, our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of bottle effects .« less

  19. A novel analysis method for paired-sample microbial ecology experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olesen, Scott W.; Vora, Suhani; Techtmann, Stephen M.

    Many microbial ecology experiments use sequencing data to measure a community s response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samplesmore » and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method s validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Furthermore, our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of bottle effects .« less

  20. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Arafa, Reham M.; Abbas, Samah S.; Amer, Sawsan M.

    2016-01-01

    Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL- 1. Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method.

  1. The coupling technique: A two-wave acoustic method for the study of dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Gremaud, G.; Bujard, M.; Benoit, W.

    1987-03-01

    Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.

  2. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Song, Huajing; Zhang, Feng

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less

  3. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    DOE PAGES

    Sun, Yang; Song, Huajing; Zhang, Feng; ...

    2018-02-23

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less

  4. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-01

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B 2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.

  5. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach.

    PubMed

    Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-23

    The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.

  6. Regularization of the double period method for experimental data processing

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Kalitkin, N. N.

    2017-11-01

    In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.

  7. Experimental study on secondary electron emission characteristics of Cu

    NASA Astrophysics Data System (ADS)

    Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang

    2018-02-01

    Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.

  8. Accurate and fast creep test for viscoelastic fluids using disk-probe-type and quadrupole-arrangement-type electromagnetically spinning systems

    NASA Astrophysics Data System (ADS)

    Hirano, Taichi; Sakai, Keiji

    2017-07-01

    Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.

  9. A century of vegetation change on the Santa Rita Experimental Range

    Treesearch

    Mitchel P. McClaran

    2003-01-01

    We know more about vegetation change on the Santa Rita Experimental Range since 1903 than is known about any other 20,000-ha area in the world. This record is only possible because important techniques of measuring vegetation changes were developed on the Santa Rita, such as repeat photography and the line intercept transect method, and because they were applied often...

  10. Behavioral economics: areas of cooperative research between economics and applied behavioral analysis1

    PubMed Central

    Kagel, John H.; Winkler, Robin C.

    1972-01-01

    The current research methods of behavioral economics are characterized by inadequate empirical foundations. Psychologists involved in the experimental analysis of behavior with their research strategies and their experimental technology, particularly that of the Token Economy, can assist in providing empirical foundations for behavioral economics. Cooperative research between economists and psychologists to this end should be immediately fruitful and mutually beneficial. PMID:16795356

  11. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    PubMed

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Case-Study of the High School Student's Family Values Formation

    ERIC Educational Resources Information Center

    Valeeva, Roza A.; Korolyeva, Natalya E.; Sakhapova, Farida Kh.

    2016-01-01

    The aim of the research is the theoretical justification and experimental verification of content, complex forms and methods to ensure effective development of the high school students' family values formation. 93 lyceum students from Kazan took part in the experiment. To study students' family values we have applied method of studying personality…

  13. Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method

    ERIC Educational Resources Information Center

    Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev

    2018-01-01

    The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…

  14. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  15. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar.

    PubMed

    Gitifar, Vahid; Eslamloueyan, Reza; Sarshar, Mohammad

    2013-11-01

    In this study, pretreatment of sugarcane bagasse and subsequent enzymatic hydrolysis is investigated using two categories of pretreatment methods: dilute acid (DA) pretreatment and combined DA-ozonolysis (DAO) method. Both methods are accomplished at different solid ratios, sulfuric acid concentrations, autoclave residence times, bagasse moisture content, and ozonolysis time. The results show that the DAO pretreatment can significantly increase the production of glucose compared to DA method. Applying k-fold cross validation method, two optimal artificial neural networks (ANNs) are trained for estimations of glucose concentrations for DA and DAO pretreatment methods. Comparing the modeling results with experimental data indicates that the proposed ANNs have good estimation abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  17. Unfolding and unfoldability of digital pulses in the z-domain

    NASA Astrophysics Data System (ADS)

    Regadío, Alberto; Sánchez-Prieto, Sebastián

    2018-04-01

    The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems applied to particle detection. This technique is applied to digital signals obtained by digitization of analog signals that represent the combined response of the particle detectors and the associated signal conditioning electronics. This work describes a technique to determine if the signal is unfoldable. For unfoldable signals the characteristics of the unfolding system (unfolder) are presented. Finally, examples of the method applied to real experimental setup are discussed.

  18. A method for modeling discontinuities in a microwave coaxial transmission line

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1992-01-01

    A method for modeling discontinuities in a coaxial transmission line is presented. The methodology involves the use of a nonlinear least-squares fit program to optimize the fit between theoretical data (from the model) and experimental data. When this method was applied to modeling discontinuities in a slightly damaged Galileo spacecraft S-band (2.295-GHz) antenna cable, excellent agreement between theory and experiment was obtained over a frequency range of 1.70-2.85 GHz. The same technique can be applied for diagnostics and locating unknown discontinuities in other types of microwave transmission lines, such as rectangular, circular, and beam waveguides.

  19. A method for modeling discontinuities in a microwave coaxial transmission line

    NASA Astrophysics Data System (ADS)

    Otoshi, T. Y.

    1992-08-01

    A method for modeling discontinuities in a coaxial transmission line is presented. The methodology involves the use of a nonlinear least-squares fit program to optimize the fit between theoretical data (from the model) and experimental data. When this method was applied to modeling discontinuities in a slightly damaged Galileo spacecraft S-band (2.295-GHz) antenna cable, excellent agreement between theory and experiment was obtained over a frequency range of 1.70-2.85 GHz. The same technique can be applied for diagnostics and locating unknown discontinuities in other types of microwave transmission lines, such as rectangular, circular, and beam waveguides.

  20. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  1. Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations.

    PubMed

    Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc

    2009-07-01

    The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.

  2. Crystal structure prediction supported by incomplete experimental data

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Naoto; Adachi, Daiki; Akashi, Ryosuke; Todo, Synge; Tsuneyuki, Shinji

    2018-05-01

    We propose an efficient theoretical scheme for structure prediction on the basis of the idea of combining methods, which optimize theoretical calculation and experimental data simultaneously. In this scheme, we formulate a cost function based on a weighted sum of interatomic potential energies and a penalty function which is defined with partial experimental data totally insufficient for conventional structure analysis. In particular, we define the cost function using "crystallinity" formulated with only peak positions within the small range of the x-ray-diffraction pattern. We apply this method to well-known polymorphs of SiO2 and C with up to 108 atoms in the simulation cell and show that it reproduces the correct structures efficiently with very limited information of diffraction peaks. This scheme opens a new avenue for determining and predicting structures that are difficult to determine by conventional methods.

  3. Experimental design and statistical methods for improved hit detection in high-throughput screening.

    PubMed

    Malo, Nathalie; Hanley, James A; Carlile, Graeme; Liu, Jing; Pelletier, Jerry; Thomas, David; Nadon, Robert

    2010-09-01

    Identification of active compounds in high-throughput screening (HTS) contexts can be substantially improved by applying classical experimental design and statistical inference principles to all phases of HTS studies. The authors present both experimental and simulated data to illustrate how true-positive rates can be maximized without increasing false-positive rates by the following analytical process. First, the use of robust data preprocessing methods reduces unwanted variation by removing row, column, and plate biases. Second, replicate measurements allow estimation of the magnitude of the remaining random error and the use of formal statistical models to benchmark putative hits relative to what is expected by chance. Receiver Operating Characteristic (ROC) analyses revealed superior power for data preprocessed by a trimmed-mean polish method combined with the RVM t-test, particularly for small- to moderate-sized biological hits.

  4. Perceptional Peculiarities and Selective Attitude of Teenagers towards the Pieces of Traditional Applied and Decorative Arts

    ERIC Educational Resources Information Center

    Kamak, Abdikarim; Auelbekov, Erzhan; Beisenbekov, Zhalgasbek; Zholdasova, Bibigul; Sadibek, Azhar

    2016-01-01

    The objective of this article is to eliminate the specifics of traditional applied and decorative arts as a special kind of fine arts and the results of the authors' experimental work on revealing of the peculiarities of children's perception of the art pieces. Methods: for revealing the level of the school students' knowledge of the traditional…

  5. Restructurable Controls

    NASA Technical Reports Server (NTRS)

    Montoya, R. J. (Compiler); Howell, W. E. (Compiler); Bundick, W. T. (Compiler); Ostroff, A. J. (Compiler); Hueschen, R. M. (Compiler); Belcastro, C. M. (Compiler)

    1983-01-01

    Restructurable control system theory, robust reconfiguration for high reliability and survivability for advanced aircraft, restructurable controls problem definition and research, experimentation, system identification methods applied to aircraft, a self-repairing digital flight control system, and state-of-the-art theory application are addressed.

  6. Examining the Effectiveness of Problem-Based Learning in the Teaching of Information Technology: A Comparison with Lectured-Based Learning

    ERIC Educational Resources Information Center

    Liu, YuFing

    2013-01-01

    This paper applies a quasi-experimental research method to compare the difference in students' approaches to learning and their learning achievements between the group that follows the problem based learning (PBL) teaching method with computer support and the group that follows the non-PBL teaching methods. The study sample consisted of 68 junior…

  7. Aeroacoustics Computation for Nearly Fully Expanded Supersonic Jets Using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In this paper, the space-time conservation element solution element (CE/SE) method is tested in the classical axisymmetric jet instability problem, rendering good agreement with the linear theory. The CE/SE method is then applied to numerical simulations of several nearly fully expanded axisymmetric jet flows and their noise fields and qualitative agreement with available experimental and theoretical results is demonstrated.

  8. Thin Film Research. Volume 2

    DTIC Science & Technology

    1985-05-30

    consisting of quarterwave layers by detecting the -- extrema of transmission or reflectance at a particular wavelength. This method is extremely stable for the...technique, which is based on an envelope method , and gives some experimental *results. L"( iL -2- I. Introduction The refractive index and the...constants determination :ecnnique by computer simulation, we have applied the method to various layers of titanium dioxide. This technique can then

  9. [Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand].

    PubMed

    Bíró, Vilmos

    2015-02-08

    In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.

  10. Improved HPLC method with the aid of chemometric strategy: determination of loxoprofen in pharmaceutical formulation.

    PubMed

    Venkatesan, P; Janardhanan, V Sree; Muralidharan, C; Valliappan, K

    2012-06-01

    Loxoprofen belongs to a class of Nonsteroidal anti-inflammatory drug acts by inhibiting isoforms of cyclo-oxygenase 1 and 2. In this study an improved RP-HPLC method was developed for the quantification of loxoprofen in pharmaceutical dosage form. For that purpose an experimental design approach was employed. Factors-independent variables (organic modifier, pH of the mobile phase and flow rate) were extracted from the preliminary study and as dependent variables three responses (loxoprofen retention factor, resolution between loxoprofen probenecid and retention time of probenecid) were selected. For the improvement of method development and optimization step, Derringer's desirability function was applied to simultaneously optimize the chosen three responses. The procedure allowed deduction of optimal conditions and the predicted optimum was acetonitrile: water (53:47, v/v), pH of the mobile phase adjusted at to 2.9 with ortho phosphoric acid. The separation was achieved in less than 4minutes. The method was applied in the quality control of commercial tablets. The method showed good agreement between the experimental data and predictive value throughout the studied parameter space. The optimized assay condition was validated according to International conference on harmonisation guidelines to confirm specificity, linearity, accuracy and precision.

  11. Application of Box-Behnken experimental design to optimize the extraction of insecticidal Cry1Ac from soil.

    PubMed

    Li, Yan-Liang; Fang, Zhi-Xiang; You, Jing

    2013-02-20

    A validated method for analyzing Cry proteins is a premise to study the fate and ecological effects of contaminants associated with genetically engineered Bacillus thuringiensis crops. The current study has optimized the extraction method to analyze Cry1Ac protein in soil using a response surface methodology with a three-level-three-factor Box-Behnken experimental design (BBD). The optimum extraction conditions were at 21 °C and 630 rpm for 2 h. Regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination of 0.96. The method was sensitive and precise with a method detection limit of 0.8 ng/g dry weight and relative standard deviations at 7.3%. Finally, the established method was applied for analyzing Cry1Ac protein residues in field-collected soil samples. Trace amounts of Cry1Ac protein were detected in the soils where transgenic crops have been planted for 8 and 12 years.

  12. An applied study using systems engineering methods to prioritize green systems options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sonya M; Macdonald, John M

    2009-01-01

    For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective intomore » how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.« less

  13. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.

  14. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  15. Methodological flaws introduce strong bias into molecular analysis of microbial populations.

    PubMed

    Krakat, N; Anjum, R; Demirel, B; Schröder, P

    2017-02-01

    In this study, we report how different cell disruption methods, PCR primers and in silico analyses can seriously bias results from microbial population studies, with consequences for the credibility and reproducibility of the findings. Our results emphasize the pitfalls of commonly used experimental methods that can seriously weaken the interpretation of results. Four different cell lysis methods, three commonly used primer pairs and various computer-based analyses were applied to investigate the microbial diversity of a fermentation sample composed of chicken dung. The fault-prone, but still frequently used, amplified rRNA gene restriction analysis was chosen to identify common weaknesses. In contrast to other studies, we focused on the complete analytical process, from cell disruption to in silico analysis, and identified potential error rates. This identified a wide disagreement of results between applied experimental approaches leading to very different community structures depending on the chosen approach. The interpretation of microbial diversity data remains a challenge. In order to accurately investigate the taxonomic diversity and structure of prokaryotic communities, we suggest a multi-level approach combining DNA-based and DNA-independent techniques. The identified weaknesses of commonly used methods to study microbial diversity can be overcome by a multi-level approach, which produces more reliable data about the fate and behaviour of microbial communities of engineered habitats such as biogas plants, so that the best performance can be ensured. © 2016 The Society for Applied Microbiology.

  16. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  17. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  18. 2D-DIGE in Proteomics.

    PubMed

    Pasquali, Matias; Serchi, Tommaso; Planchon, Sebastien; Renaut, Jenny

    2017-01-01

    The two-dimensional difference gel electrophoresis method is a valuable approach for proteomics. The method, using cyanine fluorescent dyes, allows the co-migration of multiple protein samples in the same gel and their simultaneous detection, thus reducing experimental and analytical time. 2D-DIGE, compared to traditional post-staining 2D-PAGE protocols (e.g., colloidal Coomassie or silver nitrate), provides faster and more reliable gel matching, limiting the impact of gel to gel variation, and allows also a good dynamic range for quantitative comparisons. By the use of internal standards, it is possible to normalize for experimental variations in spot intensities and gel patterns. Here we describe the experimental steps we follow in our routine 2D-DIGE procedure that we then apply to multiple biological questions.

  19. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  20. Study of The Vector Product using Three Dimensions Vector Card of Engineering in Pathumwan Institute of Technology

    NASA Astrophysics Data System (ADS)

    Mueanploy, Wannapa

    2015-06-01

    The objective of this research was to offer the way to improve engineering students in Physics topic of vector product. The sampling of this research was the engineering students at Pathumwan Institute of Technology during the first semester of academic year 2013. 1) Select 120 students by random sampling are asked to fill in a satisfaction questionnaire scale, to select size of three dimensions vector card in order to apply in the classroom. 2) Select 60 students by random sampling to do achievement test and take the test to be used in the classroom. The methods used in analysis of achievement test by the Kuder-Richardson Method (KR- 20). The results show that 12 items of achievement test are appropriate to be applied in the classroom. The achievement test gets Difficulty (P) = 0.40-0.67, Discrimination = 0.33-0.73 and Reliability (r) = 0.70.The experimental in the classroom. 3) Select 60 students by random sampling divide into two groups; group one (the controlled group) with 30 students was chosen to study in the vector product lesson by the regular teaching method. Group two (the experimental group) with 30 students was chosen to learn the vector product lesson with three dimensions vector card. 4) Analyzed data between the controlled group and the experimental group, the result showed that experimental group got higher achievement test than the controlled group significant at .01 level.

  1. Does working with the Veder Contact Method influence the job satisfaction of caregivers? A non-randomized controlled trial in nursing homes for people with dementia.

    PubMed

    Boersma, P; Dröes, R M; Lissenberg-Witte, B I; van Meijel, B; van Weert, J C M

    2017-12-01

    Person-centered care interventions can improve the quality of life and decrease behavioral problems of people with dementia. Although not convincingly proven, person-centered care interventions may benefit the caregivers as well. This study aims to gain insight into how working with the Veder Contact Method (VCM) - a new person-centered care method - influences the job satisfaction of caregivers. Within a quasi-experimental study, the job satisfaction of caregivers of six experimental wards (n = 75) was compared with caregivers of six control wards (n = 36) that applied Care-As-Usual. The Leiden Quality of Work Questionnaire (LQWQ) was filled in by caregivers in both conditions. Additionally, on the experimental wards, qualitative research, i.e. focus groups with 42 caregivers and interviews with 11 managers, was conducted to obtain a deeper understanding of the influence of applying VCM on caregivers' job satisfaction. The transcripts were analyzed using deductive analysis. No quantitatively significant differences were found on the subscales of the LQWQ: work and time pressure, job satisfaction, autonomous decision making, social support from colleagues, and social support from supervisors. From the qualitative research, some caregivers and managers reported that implementing VCM contributed to their job satisfaction and that applying VCM supported handling difficult behavior and depressed mood of residents and contributed to team building. No significant effects on job satisfaction were demonstrated. Qualitative findings indicate that VCM positively influences the daily work performances of nursing home caregivers. The relation between the experience of offering quality care and job satisfaction of caregivers needs further investigation.

  2. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.

    2015-11-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.

  3. Mathematical Critical Thinking and Curiosity Attitude in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory Course

    ERIC Educational Resources Information Center

    Zetriuslita; Wahyudin; Jarnawi

    2017-01-01

    This research aims to describe and analyze result of applying Problem-Based Learning and Cognitive Conflict Strategy (PBLCCS) in increasing students' Mathematical Critical Thinking (MCT) ability and Mathematical Curiosity Attitude (MCA). Adopting a quasi-experimental method with pretest-posttest control group design and using mixed method with…

  4. Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, S. V.; Ott, F.; Semenova, E.

    2017-03-01

    Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.

  5. HOPI: on-line injection optimization program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMaire, J L

    1977-10-26

    A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section.

  6. What Is Design-Based Causal Inference for RCTs and Why Should I Use It? NCEE 2017-4025

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2017-01-01

    Design-based methods have recently been developed as a way to analyze data from impact evaluations of interventions, programs, and policies. The impact estimators are derived using the building blocks of experimental designs with minimal assumptions, and have good statistical properties. The methods apply to randomized controlled trials (RCTs) and…

  7. The Effect of Montessori Method on Cognitive Tempo of Kindergarten Children

    ERIC Educational Resources Information Center

    Kayili, Gökhan

    2018-01-01

    This study was undertaken to discover the effect of the Montessori Method on the cognitive tempo of 4-5-year-old children. Using an experimental pre-test-post-test paired control group design, the study sample included 60 children attending Ihsan Dogramaci Applied Nursery School (affiliated to Selcuk University, Department of Health Sciences) in…

  8. Resolution enhancement in digital holography by self-extrapolation of holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2013-03-25

    It is generally believed that the resolution in digital holography is limited by the size of the captured holographic record. Here, we present a method to circumvent this limit by self-extrapolating experimental holograms beyond the area that is actually captured. This is done by first padding the surroundings of the hologram and then conducting an iterative reconstruction procedure. The wavefront beyond the experimentally detected area is thus retrieved and the hologram reconstruction shows enhanced resolution. To demonstrate the power of this concept, we apply it to simulated as well as experimental holograms.

  9. Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

    PubMed Central

    Cserpán, Dorottya; Meszéna, Domokos; Wittner, Lucia; Tóth, Kinga; Ulbert, István; Somogyvári, Zoltán

    2017-01-01

    Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus. PMID:29148974

  10. Calibration of a portable HPGe detector using MCNP code for the determination of 137Cs in soils.

    PubMed

    Gutiérrez-Villanueva, J L; Martín-Martín, A; Peña, V; Iniguez, M P; de Celis, B; de la Fuente, R

    2008-10-01

    In situ gamma spectrometry provides a fast method to determine (137)Cs inventories in soils. To improve the accuracy of the estimates, one can use not only the information on the photopeak count rates but also on the peak to forward-scatter ratios. Before applying this procedure to field measurements, a calibration including several experimental simulations must be carried out in the laboratory. In this paper it is shown that Monte Carlo methods are a valuable tool to minimize the number of experimental measurements needed for the calibration.

  11. Online optimization of storage ring nonlinear beam dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  12. Quantum state estimation when qubits are lost: a no-data-left-behind approach

    DOE PAGES

    Williams, Brian P.; Lougovski, Pavel

    2017-04-06

    We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.

  13. Hydrodynamic cavitation: from theory towards a new experimental approach

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Gervino, Gianpiero

    2009-09-01

    Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.

  14. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  15. Method for simple and rapid concentration of Zika virus particles from infected cell-culture supernatants.

    PubMed

    Richard, Vaea; Aubry, Maite

    2018-05-01

    Experimental studies on Zika virus (ZIKV) may require improvement of infectious titers in viral stocks obtained by cell culture amplification. The use of centrifugal filter devices to increase infectious titers of ZIKV from cell-culture supernatants is highlighted here. A mean gain of 2.33 ± 0.12 log 10 DICT 50 /mL was easily and rapidly obtained with this process. This efficient method of ultrafiltration may be applied to other viruses and be useful in various experimental studies requiring high viral titers. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  17. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  18. Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2004-01-01

    This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.

  19. Validation of chemistry models employed in a particle simulation method

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.; Mcdonald, Jeffrey D.

    1991-01-01

    The chemistry models employed in a statistical particle simulation method, as implemented in the Intel iPSC/860 multiprocessor computer, are validated and applied. Chemical relaxation of five-species air in these reservoirs involves 34 simultaneous dissociation, recombination, and atomic-exchange reactions. The reaction rates employed in the analytic solutions are obtained from Arrhenius experimental correlations as functions of temperature for adiabatic gas reservoirs in thermal equilibrium. Favorable agreement with the analytic solutions validates the simulation when applied to relaxation of O2 toward equilibrium in reservoirs dominated by dissociation and recombination, respectively, and when applied to relaxation of air in the temperature range 5000 to 30,000 K. A flow of O2 over a circular cylinder at high Mach number is simulated to demonstrate application of the method to multidimensional reactive flows.

  20. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  1. The same analysis approach: Practical protection against the pitfalls of novel neuroimaging analysis methods.

    PubMed

    Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan

    2017-12-27

    Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    NASA Astrophysics Data System (ADS)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  3. An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.; Rainsberger, R.

    1996-04-01

    The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less

  4. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination.

    PubMed

    Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M

    2016-01-15

    Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL(-1). Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A new mathematical approach for the estimation of the AUC and its variability under different experimental designs in preclinical studies.

    PubMed

    Navarro-Fontestad, Carmen; González-Álvarez, Isabel; Fernández-Teruel, Carlos; Bermejo, Marival; Casabó, Vicente Germán

    2012-01-01

    The aim of the present work was to develop a new mathematical method for estimating the area under the curve (AUC) and its variability that could be applied in different preclinical experimental designs and amenable to be implemented in standard calculation worksheets. In order to assess the usefulness of the new approach, different experimental scenarios were studied and the results were compared with those obtained with commonly used software: WinNonlin® and Phoenix WinNonlin®. The results do not show statistical differences among the AUC values obtained by both procedures, but the new method appears to be a better estimator of the AUC standard error, measured as the coverage of 95% confidence interval. In this way, the new proposed method demonstrates to be as useful as WinNonlin® software when it was applicable. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong-Ou-Mandel interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Peter J.; Cheung, Jessica Y.; Chunnilall, Christopher J.

    2010-04-10

    We present a method for using the Hong-Ou-Mandel (HOM) interference technique to quantify photon indistinguishability within an associated uncertainty. The method allows the relative importance of various experimental factors affecting the HOM visibility to be identified, and enables the actual indistinguishability, with an associated uncertainty, to be estimated from experimentally measured quantities. A measurement equation has been derived that accounts for the non-ideal performance of the interferometer. The origin of each term of the equation is explained, along with procedures for their experimental evaluation and uncertainty estimation. These uncertainties are combined to give an overall uncertainty for the derived photonmore » indistinguishability. The analysis was applied to measurements from an interferometer sourced with photon pairs from a parametric downconversion process. The measured photon indistinguishably was found to be 0.954+/-0.036 by using the prescribed method.« less

  7. Mutual information based feature selection for medical image retrieval

    NASA Astrophysics Data System (ADS)

    Zhi, Lijia; Zhang, Shaomin; Li, Yan

    2018-04-01

    In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.

  8. Optimization and Development of a Human Scent Collection Method

    DTIC Science & Technology

    2007-06-04

    19. Schoon, G. A. A., Scent Identification Lineups by Dogs (Canis familiaris): Experimental Design and Forensic Application. Applied Animal...Parker, Lloyd R., Morgan, Stephen L., Deming, Stanley N., Sequential Simplex Optimization. Chemometrics Series, ed. S.D. Brown. 1991, Boca Raton

  9. Evidence That Counts--What Happens When Teachers Apply Scientific Methods to Their Practice: Twelve Teacher-Led Randomised Controlled Trials and Other Styles of Experimental Research

    ERIC Educational Resources Information Center

    Churches, Richard; McAleavy, Tony

    2015-01-01

    This publication contains 12 (A3 open-out) poster-style reports of teacher experimental research. The style of presentation parallels the type of preliminary reporting common at academic conferences and postgraduate events. At the same time, it aims to act as a form of short primer to introduce teachers to the basic options that there are when…

  10. Does theatre improve the quality of life of people with dementia?

    PubMed

    van Dijk, A Marijke; van Weert, Julia C M; Dröes, Rose-Marie

    2012-03-01

    A new communication method, the "Veder method", has recently been developed. Caregivers are trained to apply this method in a group activity ("living-room theatre activity") for people with dementia in which theatrical stimuli are used in combination with proven emotion-oriented care methods. The aim of this exploratory study was to evaluate the added value of the Veder method group activity compared to a regular reminiscence group activity and to investigate whether professional carers can achieve the same effects with the Veder method as professional actors. A quasi-experimental three-group design was used. Experimental group 1 (E1; n = 65) joined a living-room theatre activity offered by trained professional caregivers. Experimental group 2 (E2; n = 31) joined a living-room theatre activity offered by professional actors. The control group (n = 55) received a usual reminiscence group activity. Behavior, mood and aspects of quality of life were measured using standardized observation scales at three points in time: (T1) pretest; (T2) during the intervention and; (T3) post-test, two hours after the intervention. During the intervention, significant differences were found in favor of the group that was offered a living-room theatre activity by actors (E2) on different aspects of behavior, mood and quality of life. At post-test, people in E2 were more alert compared to the control group. Moreover, they recalled more memories and showed less socially isolated behavior compared to the control group. This exploratory study shows that the Veder method has some clear positive effects on behavior and mood of people with dementia when applied by professional actors.

  11. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  12. Effectiveness of project ACORDE materials: applied evaluative research in a preclinical technique course.

    PubMed

    Shugars, D A; Trent, P J; Heymann, H O

    1979-08-01

    Two instructional strategies, the traditional lecture method and a standardized self-instructional (ACORDE) format, were compared for efficiency and perceived usefulness in a preclinical restorative dentistry technique course through the use of a posttest-only control group research design. Control and experimental groups were compared on (a) technique grades, (b) didactic grades, (c) amount of time spent, (d) student and faculty perceptions, and (e) observation of social dynamics. The results of this study demonstrated the effectiveness of Project ACORDE materials in teaching dental students, provided an example of applied research designed to test contemplated instructional innovations prior to use and used a method which highlighted qualitative, as well as quantitative, techniques for data gathering in applied research.

  13. Mechanical properties of experimental composites with different calcium phosphates fillers.

    PubMed

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sea level side loads in high-area-ratio rocket engines

    NASA Technical Reports Server (NTRS)

    Nave, L. H.; Coffey, G. A.

    1973-01-01

    An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.

  15. New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with Distorted Wave Born Approximation

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Iwamoto, Y.; Sato, T.; Niita, K.; Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.

    2014-08-01

    A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra.

  16. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  17. Reversed phase HPLC for strontium ranelate: Method development and validation applying experimental design.

    PubMed

    Kovács, Béla; Kántor, Lajos Kristóf; Croitoru, Mircea Dumitru; Kelemen, Éva Katalin; Obreja, Mona; Nagy, Előd Ernő; Székely-Szentmiklósi, Blanka; Gyéresi, Árpád

    2018-06-01

    A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20-320 μg mL-1 (R2 = 0.99998). Recovery, tested in the range of 40-120 μg mL-1, was found to be 96.1-102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0-1.4 and 1.2-1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL-1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.

  18. Effects of Multiple Intelligences Activities on Writing Skill Development in an EFL Context

    ERIC Educational Resources Information Center

    Gündüz, Zennure Elgün; Ünal, Ismail Dogan

    2016-01-01

    This study aims at exploring the effects of multiple intelligences activities versus traditional method on English writing development of the sixth grade students in Turkey. A quasi-experimental research method with a pre-test post-test design was applied. The participants were 50 sixth grade students at a state school in Ardahan in Turkey. The…

  19. A Study to Determine the Effectiveness of Letter Evaluation as a Learning Device in Business Correspondence Courses.

    ERIC Educational Resources Information Center

    Baker, William Henry

    The purpose of this study was to determine whether a letter-evaluation method would be as effective as the traditional letter-writing method when applied in a college level business correspondence class. One hundred twenty-nine Brigham Young University students were divided into two experimental and two control groups, and categorized according to…

  20. Lifting-surface-theory aspect-ratio corrections to the lift and hinge-moment parameters for full-span elevators on horizontal tail surfaces

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Crandall, Stewart M

    1948-01-01

    A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)

  1. Utility of Experimental Design in Pre-Column Derivatization for the Analysis of Tobramycin by HPLC-Fluorescence Detection: Application to Ophthalmic Solution and Human Plasma.

    PubMed

    El-Zaher, Asmaa A; Mahrouse, Marianne A

    2013-01-01

    A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min(-1). A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20-200 ng mL(-1). The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference.

  2. Utility of Experimental Design in Pre-Column Derivatization for the Analysis of Tobramycin by HPLC—Fluorescence Detection: Application to Ophthalmic Solution and Human Plasma

    PubMed Central

    El-Zaher, Asmaa A.; Mahrouse, Marianne A.

    2013-01-01

    A novel, selective, and sensitive reversed phase high-performance liquid chromatography (HPLC) method coupled with fluorescence detection has been developed for the determination of tobramycin (TOB) in pure form, in ophthalmic solution and in spiked human plasma. Since TOB lacks UV absorbing chromophores and native fluorescence, pre-column derivatization of TOB was carried out using fluorescamine reagent (0.01%, 1.5 mL) and borate buffer (pH 8.5, 2 mL). Experimental design was applied for optimization of the derivatization step. The resulting highly fluorescent stable derivative was chromatographed on C18 column and eluted using methanol:water (60:40, v/v) at a flow rate of 1 mL min−1. A fluorescence detector (λex 390 and λem 480 nm) was used. The method was linear over the concentration range 20–200 ng mL−1. The structure of the fluorescent product was proposed, the method was then validated and applied for the determination of TOB in human plasma. The results were statistically compared with the reference method, revealing no significant difference. PMID:23700362

  3. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  4. Evaluation of microcrack thermal shock damage in ceramics: Modeling and experiment

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.

    1992-01-01

    In this paper we present an experimental and theoretical study of the effect of microcrack damage on ceramic properties. For the experimental investigation, ceramic samples of aluminum oxide and reaction bonded silicon nitride (RBSN) are used. Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. For the theoretical investigation, damage mechanics, which relates microstructural damage to material service life and mechanical failure, is used. The change in elastic properties due to microcrack damage calculated from the theoretical model is compared with the experimental results for determination of the applicability of damage theory. It is shown that two independent experimental methods (bulk wave and surface wave) give the same results for shear moduli of damaged ceramics. The experimental results aagree reasonably well with the moduli predicted from the cracked solid model.

  5. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  6. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  7. Testing large aspheric surfaces with complementary annular subaperture interferometric method

    NASA Astrophysics Data System (ADS)

    Hou, Xi; Wu, Fan; Lei, Baiping; Fan, Bin; Chen, Qiang

    2008-07-01

    Annular subaperture interferometric method has provided an alternative solution to testing rotationally symmetric aspheric surfaces with low cost and flexibility. However, some new challenges, particularly in the motion and algorithm components, appear when applied to large aspheric surfaces with large departure in the practical engineering. Based on our previously reported annular subaperture reconstruction algorithm with Zernike annular polynomials and matrix method, and the experimental results for an approximate 130-mm diameter and f/2 parabolic mirror, an experimental investigation by testing an approximate 302-mm diameter and f/1.7 parabolic mirror with the complementary annular subaperture interferometric method is presented. We have focused on full-aperture reconstruction accuracy, and discuss some error effects and limitations of testing larger aspheric surfaces with the annular subaperture method. Some considerations about testing sector segment with complementary sector subapertures are provided.

  8. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  9. Experimental evaluation of tailored chordwise deformable box beam and correlation with theory

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Zischka, Peter J.; Chang, Stephen; Fentress, Michael L.; Ambur, Damodar R.

    1993-01-01

    This paper describes an experimental methodology based upon the use of a flexible sling support and load application system that has been created and utilized to evaluate a box beam which incorporates an elastic tailoring technology. The design technique used here for elastically tailoring the composite box beam structure is to produce exaggerated chordwise camber deformation of substantial magnitude to be of practical use in the new composite aircraft wings. The traditional methods such as a four-point bend test to apply constant bending moment with rigid fixtures inhibits the designed chordwise deformation from occurring and, hence, the need for the new test method. The experimental results for global camber and spanwise bending compliances correlate well with theoretical predictions based on a beam-like model.

  10. An Approach to the Evaluation of Hypermedia.

    ERIC Educational Resources Information Center

    Knussen, Christina; And Others

    1991-01-01

    Discusses methods that may be applied to the evaluation of hypermedia, based on six models described by Lawton. Techniques described include observation, self-report measures, interviews, automated measures, psychometric tests, checklists and criterion-based techniques, process models, Experimentally Measuring Usability (EMU), and a naturalistic…

  11. Solid State Kinetic Parameters and Chemical Mechanism of the Dehydration of CoCl2.6H2O.

    ERIC Educational Resources Information Center

    Ribas, Joan; And Others

    1988-01-01

    Presents an experimental example illustrating the most common methods for the determination of kinetic parameters. Discusses the different theories and equations to be applied and the mechanism derived from the kinetic results. (CW)

  12. Applied statistics in agricultural, biological, and environmental sciences.

    USDA-ARS?s Scientific Manuscript database

    Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...

  13. A New Approach in Time-Frequency Analysis with Applications to Experimental High Range Resolution Radar Data

    DTIC Science & Technology

    2003-11-01

    Distributions In contrast to the linear time-frequency transforms such as the short-time Fourier transform, the Wigner - Ville distribution ( WVD ) is...23 9 Results of nine TFDs: (a) Wigner - Ville distribution , (b) Born-Jordan distribution , (c) Choi-Williams distribution , (d) bilinear TFD...are applied in the Wigner - Ville class of time-frequency transforms and the reassignment methods, which are applied to any time-frequency distribution

  14. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  15. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.

  16. Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger (Zingiber officinale) Applying a Box-Behnken Design.

    PubMed

    Ramírez-Godínez, Juan; Jaimez-Ordaz, Judith; Castañeda-Ovando, Araceli; Añorve-Morga, Javier; Salazar-Pereda, Verónica; González-Olivares, Luis Guillermo; Contreras-López, Elizabeth

    2017-03-01

    Since ancient times, ginger (Zingiber officinale) has been widely used for culinary and medicinal purposes. This rhizome possesses several chemical constituents; most of them present antioxidant capacity due mainly to the presence of phenolic compounds. Thus, the physical conditions for the optimal extraction of antioxidant components of ginger were investigated by applying a Box-Behnken experimental design. Extracts of ginger were prepared using water as solvent in a conventional solid-liquid extraction. The analyzed variables were time (5, 15 and 25 min), temperature (20, 55 and 90 °C) and sample concentration (2, 6 and 10 %). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl method and a modified ferric reducing antioxidant power assay while total phenolics were measured by Folin & Ciocalteu's method. The suggested experimental design allowed the acquisition of aqueous extracts of ginger with diverse antioxidant activity (100-555 mg Trolox/100 g, 147-1237 mg Fe 2+ /100 g and 50-332 mg gallic acid/100 g). Temperature was the determining factor in the extraction of components with antioxidant activity, regardless of time and sample quantity. The optimal physical conditions that allowed the highest antioxidant activity were: 90 °C, 15 min and 2 % of the sample. The correlation value between the antioxidant activity by ferric reducing antioxidant power assay and the content of total phenolics was R 2  = 0.83. The experimental design applied allowed the determination of the physical conditions under which ginger aqueous extracts liberate compounds with antioxidant activity. Most of them are of the phenolic type as it was demonstrated through the correlation established between different methods used to measure antioxidant capacity.

  17. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    NASA Astrophysics Data System (ADS)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  18. Numerical Calculation of Non-uniform Magnetization Using Experimental Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Jhun, Youngseok; Kim, Seung-wook; Han, JungHyun

    2018-05-01

    A relation between the distance from the surface of a magnet and the number of cells required for a numerical calculation in order to secure the error below a certain threshold is derived. We also developed a method to obtain the magnetization at each part of the magnet from the experimentally measured magnetic field. This method is applied to three magnets with distinct patterns on magnetic-field-viewing film. Each magnet showed a unique pattern of magnetization. We found that the magnet that shows symmetric magnetization on the magnetic-field-viewing film is not uniformly magnetized. This method can be useful comparing the magnetization between magnets that yield typical magnetic field and those that yield atypical magnetic field.

  19. Investigations of Baikal Lake water absorption with ASP-15 device: measurement method and experimental data

    NASA Astrophysics Data System (ADS)

    Kokhanenko, Grigorii P.; Tarashchansky, Boris A.; Budnev, Nikolai M.; Mirgazov, Rashid R.

    2006-02-01

    Operation of the device ASP-15 is analyzed in the paper. The device is arranged in the south part of Lake Baikal, and it is capable of all-the-year-round measurements of hydro-optical characteristics at the depths down to 1300 m. The method for determining the absorption coefficient is based on measurement of the rate of decrease of the irradiance from an isotropic source with the distance between the source and the receiver. Possible reasons of appearance of anomalous dependences of the irradiance with the distance are revealed on the basis of numerical simulation, and the errors of the applied method are estimated. The experimental data obtained by means of the device ASP-15 last years are presented.

  20. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  1. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  2. Strain gage measurement errors in the transient heating of structural components

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1993-01-01

    Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.

  3. Experimental realization of noise-induced adiabaticity in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wang, Bi-Xue; Xin, Tao; Kong, Xiang-Yu; Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2018-04-01

    The adiabatic evolution is the dynamics of an instantaneous eigenstate of a slowly varing Hamiltonian. Recently, an interesting phenomenon shows up that white noises can enhance and even induce adiabaticity, which is in contrast to previous perception that environmental noises always modify and even ruin a designed adiabatic passage. We experimentally realized a noise-induced adiabaticity in a nuclear magnetic resonance system. Adiabatic Hadamard gate and entangled state are demonstrated. The effect of noise on adiabaticity is experimentally exhibited and compared with the noise-free process. We utilized a noise-injected method, which can be applied to other quantum systems.

  4. Numerical modeling of the strain of elastic rubber elements

    NASA Astrophysics Data System (ADS)

    Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.

    2017-11-01

    A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.

  5. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  6. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  7. Scramjet Fuel Injection Array Optimization Utilizing Mixed Variable Pattern Search With Kriging Surrogates

    DTIC Science & Technology

    2008-03-01

    injector con- figurations for Scramjet applications.” International Journal of Heat and Mass Transfer 49: 3634–3644 (2006). 8. Anderson, C.D...Experimental Attainment of Optimal Conditions,” Journal of the Royal Statistical Society, B(13): 1–38, 1951. 19. Brewer, K.M. Exergy Methods for the Mission...second applies mvps to a new scramjet design in support of the Hypersonic International Flight Re- search Experimentation (hifire). The results

  8. Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter.

    PubMed

    Rasigade, Gilles; Le Roux, Xavier; Marris-Morini, Delphine; Cassan, Eric; Vivien, Laurent

    2010-11-01

    A star coupler-based beam splitter for rib waveguides is reported. A design method is presented and applied in the case of silicon-on-insulator rib waveguides. Experimental results are in good agreement with simulations. Excess loss lower than 1 dB is experimentally obtained for star coupler lengths from 0.5 to 1 μm. Output balance is better than 1 dB, which is the measurement accuracy, and broadband transmission is obtained over 90 nm.

  9. Regional thermal-inertia mapping from an experimental satellite ( Powder River basin, Wyoming).

    USGS Publications Warehouse

    Watson, K.

    1982-01-01

    A new experimental satellite has provided, for the first time, thermal data that should be useful in reconnaissance geologic exploration. Thermal inertia, a property of geologic materials, can be mapped from these data by applying an algorithm that has been developed using a new thermal model. A simple registration procedure was used on a pair of day and night images of the Powder River basin, Wyoming, to illustrate the method.-from Author

  10. Experimental evaluation of the certification-trail method

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.; Itoh, Mamoru; Smith, Warren W.; Kay, Jonathan S.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. A comprehensive attempt to assess experimentally the performance and overall value of the method is reported. The method is applied to algorithms for the following problems: huffman tree, shortest path, minimum spanning tree, sorting, and convex hull. Our results reveal many cases in which an approach using certification-trails allows for significantly faster overall program execution time than a basic time redundancy-approach. Algorithms for the answer-validation problem for abstract data types were also examined. This kind of problem provides a basis for applying the certification-trail method to wide classes of algorithms. Answer-validation solutions for two types of priority queues were implemented and analyzed. In both cases, the algorithm which performs answer-validation is substantially faster than the original algorithm for computing the answer. Next, a probabilistic model and analysis which enables comparison between the certification-trail method and the time-redundancy approach were presented. The analysis reveals some substantial and sometimes surprising advantages for ther certification-trail method. Finally, the work our group performed on the design and implementation of fault injection testbeds for experimental analysis of the certification trail technique is discussed. This work employs two distinct methodologies, software fault injection (modification of instruction, data, and stack segments of programs on a Sun Sparcstation ELC and on an IBM 386 PC) and hardware fault injection (control, address, and data lines of a Motorola MC68000-based target system pulsed at logical zero/one values). Our results indicate the viability of the certification trail technique. It is also believed that the tools developed provide a solid base for additional exploration.

  11. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  12. A practical approach for linearity assessment of calibration curves under the International Union of Pure and Applied Chemistry (IUPAC) guidelines for an in-house validation of method of analysis.

    PubMed

    Sanagi, M Marsin; Nasir, Zalilah; Ling, Susie Lu; Hermawan, Dadan; Ibrahim, Wan Aini Wan; Naim, Ahmedy Abu

    2010-01-01

    Linearity assessment as required in method validation has always been subject to different interpretations and definitions by various guidelines and protocols. However, there are very limited applicable implementation procedures that can be followed by a laboratory chemist in assessing linearity. Thus, this work proposes a simple method for linearity assessment in method validation by a regression analysis that covers experimental design, estimation of the parameters, outlier treatment, and evaluation of the assumptions according to the International Union of Pure and Applied Chemistry guidelines. The suitability of this procedure was demonstrated by its application to an in-house validation for the determination of plasticizers in plastic food packaging by GC.

  13. Probabilistic fracture finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-01-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  14. Probabilistic fracture finite elements

    NASA Astrophysics Data System (ADS)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  15. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    PubMed

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  16. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  17. Classification of conductance traces with recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Lauritzen, Kasper P.; Magyarkuti, András; Balogh, Zoltán; Halbritter, András; Solomon, Gemma C.

    2018-02-01

    We present a new automated method for structural classification of the traces obtained in break junction experiments. Using recurrent neural networks trained on the traces of minimal cross-sectional area in molecular dynamics simulations, we successfully separate the traces into two classes: point contact or nanowire. This is done without any assumptions about the expected features of each class. The trained neural network is applied to experimental break junction conductance traces, and it separates the classes as well as the previously used experimental methods. The effect of using partial conductance traces is explored, and we show that the method performs equally well using full or partial traces (as long as the trace just prior to breaking is included). When only the initial part of the trace is included, the results are still better than random chance. Finally, we show that the neural network classification method can be used to classify experimental conductance traces without using simulated results for training, but instead training the network on a few representative experimental traces. This offers a tool to recognize some characteristic motifs of the traces, which can be hard to find by simple data selection algorithms.

  18. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  19. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  20. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  1. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Everything should be as simple as possible, but no simpler: towards a protocol for accumulating evidence regarding the active content of health behaviour change interventions.

    PubMed

    Peters, Gjalt-Jorn Ygram; de Bruin, Marijn; Crutzen, Rik

    2015-01-01

    There is a need to consolidate the evidence base underlying our toolbox of methods of behaviour change. Recent efforts to this effect have conducted meta-regressions on evaluations of behaviour change interventions, deriving each method's effectiveness from its association to intervention effect size. However, there are a range of issues that raise concern about whether this approach is actually furthering or instead obstructing the advancement of health psychology theories and the quality of health behaviour change interventions. Using examples from theory, the literature and data from previous meta-analyses, these concerns and their implications are explained and illustrated. An iterative protocol for evidence base accumulation is proposed that integrates evidence derived from both experimental and applied behaviour change research, and combines theory development in experimental settings with theory testing in applied real-life settings. As evidence gathered in this manner accumulates, a cumulative science of behaviour change can develop.

  3. Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

    PubMed Central

    Liu, Hang; Chu, Renzhi; Tang, Zhenan

    2015-01-01

    Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied. PMID:25942640

  4. Everything should be as simple as possible, but no simpler: towards a protocol for accumulating evidence regarding the active content of health behaviour change interventions

    PubMed Central

    Peters, Gjalt-Jorn Ygram; de Bruin, Marijn; Crutzen, Rik

    2015-01-01

    There is a need to consolidate the evidence base underlying our toolbox of methods of behaviour change. Recent efforts to this effect have conducted meta-regressions on evaluations of behaviour change interventions, deriving each method's effectiveness from its association to intervention effect size. However, there are a range of issues that raise concern about whether this approach is actually furthering or instead obstructing the advancement of health psychology theories and the quality of health behaviour change interventions. Using examples from theory, the literature and data from previous meta-analyses, these concerns and their implications are explained and illustrated. An iterative protocol for evidence base accumulation is proposed that integrates evidence derived from both experimental and applied behaviour change research, and combines theory development in experimental settings with theory testing in applied real-life settings. As evidence gathered in this manner accumulates, a cumulative science of behaviour change can develop. PMID:25793484

  5. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2013-01-25

    This work presents the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate from olive oil. Computational simulations allowed selecting itaconic acid as the monomer showing the highest affinity towards dimethoate. Experimental validation confirmed modelling predictions and showed that the polymer based on IA as functional monomer and omethoate as template molecule displays the highest selectivity for the structurally similar pesticides dimethoate, omethoate and monocrotophos. Molecularly imprinted solid phase extraction (MISPE) method was developed and applied to the clean-up of olive oil extracts. It was found that the most suitable solvents for loading, washing and elution step were respectively hexane, hexane-dichloromethane (85:15%) and methanol. The developed MIPSE was successfully applied to extraction of dimethoate from olive oil, with recovery rates up to 94%. The limits of detection and quantification of the described method were respectively 0.012 and 0.05 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    NASA Astrophysics Data System (ADS)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  7. Monitoring tooth profile faults in epicyclic gearboxes using synchronously averaged motor currents: Mathematical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Ottewill, J. R.; Ruszczyk, A.; Broda, D.

    2017-02-01

    Time-varying transmission paths and inaccessibility can increase the difficulty in both acquiring and processing vibration signals for the purpose of monitoring epicyclic gearboxes. Recent work has shown that the synchronous signal averaging approach may be applied to measured motor currents in order to diagnose tooth faults in parallel shaft gearboxes. In this paper we further develop the approach, so that it may also be applied to monitor tooth faults in epicyclic gearboxes. A low-degree-of-freedom model of an epicyclic gearbox which incorporates the possibility of simulating tooth faults, as well as any subsequent tooth contact loss due to these faults, is introduced. By combining this model with a simple space-phasor model of an induction motor it is possible to show that, in theory, tooth faults in epicyclic gearboxes may be identified from motor currents. Applying the synchronous averaging approach to experimentally recorded motor currents and angular displacements recorded from a shaft mounted encoder, validate this finding. Comparison between experiments and theory highlight the influence of operating conditions, backlash and shaft couplings on the transient response excited in the currents by the tooth fault. The results obtained suggest that the method may be a viable alternative or complement to more traditional methods for monitoring gearboxes. However, general observations also indicate that further investigations into the sensitivity and robustness of the method would be beneficial.

  8. A review of population data utilization in beef cattle research.

    PubMed

    Jones, R; Langemeier, M

    2010-04-01

    Controlled experimentation has been the most common source of research data in most biological sciences. However, many research questions lend themselves to the use of population data, or combinations of population data and data resulting from controlled experimentation. Studies of important economic outcomes, such as efficiency, profits, and costs, lend themselves particularly well to this type of analysis. Analytical methods that have been most commonly applied to population data in studies related to livestock production and management include statistical regression and mathematical programming. In social sciences, such as applied economics, it has become common to utilize more than one method in the same study to provide answers to the various questions at hand. Of course, care must be taken to ensure that the methods of analysis are appropriately applied; however, a wide variety of beef industry research questions are being addressed using population data. Issues related to data sources, aggregation levels, and consistency of collection often surface when using population data. These issues are addressed by careful consideration of the questions being addressed and the costs of data collection. Previous research across a variety of cattle production and marketing issues provides a broad foundation upon which to build future research. There is tremendous opportunity for increased use of population data and increased collaboration across disciplines to address issues of importance to the cattle industry.

  9. An expandable crosstalk reduction method for inline fiber Fabry-Pérot sensor array based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming

    2016-07-01

    The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.

  10. Effects of using mobile device-based academic electronic medical records for clinical practicum by undergraduate nursing students: A quasi-experimental study.

    PubMed

    Choi, Mona; Lee, HyeongSuk; Park, Joon Ho

    2018-02-01

    The academic electronic medical record (AEMR) system is applied with the expectation that nursing students will be able to attain competence in healthcare decision-making and nursing informatics competencies. However, there is insufficient evidence regarding the advantage of applying mobile devices to clinical practicum. This study aimed to examine the effect of an experiment that introduced a mobile AEMR application for undergraduate nursing students in their practicum. A quasi-experimental design was used. The subjects were 75 third-year nursing students enrolled in clinical practicum and were divided into an experimental (practicum with AEMR) and a control (conventional practicum) group. Nursing informatics competencies, critical thinking disposition, and satisfaction with clinical practicum were measured before and after the clinical practicum for each group. The usability of the AEMR application was also examined for the experimental group after the experiment. After the experiment, the experimental group showed a significant increase in the informatics knowledge domain of nursing informatics competencies in the post-test. The difference in critical thinking between the experimental and control groups was not statistically significant. Regarding satisfaction with the clinical practicum, the experimental group exhibited a significantly higher level of satisfaction in "preparation of a diagnostic test or laboratory test and understanding of the results" and "nursing intervention and documentation" than the control group. Students who participated in the practicum using the AEMR application considered it useful. The AEMR application was an effective educational method for practicing the immediate documentation of students' observations and interventions and was available at the patients' bedsides. To improve critical thinking, it is necessary to apply a variety of approaches when solving clinical problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    NASA Astrophysics Data System (ADS)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  12. The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Song, Z. G.; Gong, H.; Ong, C. K.

    1997-06-01

    A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.

  13. Imaging bio-distribution of a topically applied dermatological cream on minipig skin using fluorescence lifetime imaging microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Chaney, Eric J.; Criley, Jennifer M.; Spillman, Darold R.; Hutchison, Phaedra B.; Li, Joanne; Marjanovic, Marina; Frey, Steve; Cook, Steven; Boppart, Stephen A.; Arp, Zane A.

    2017-02-01

    Currently there is a lack of in vivo techniques to evaluate the spatial bio-distribution of dermal drugs over time without the need to take multiple serial biopsies. To address this gap, we investigated the use of multi-photon optical imaging methods to non-invasively track drug distribution on miniature pig (Species: Sus scrofa, Strain: Göttingen) skin in vivo. Minipig skin is the standard comparative research model to human skin, and is anatomically and functionally similar. We employed fluorescence lifetime imaging microscopy (FLIM) to visualize the spatial distribution and residency time of a topically applied experimental dermatological cream. This was made possible by the endogenous fluorescent optical properties of the experimental drug (fluorescence lifetime > 3000 ps). Two different drug formulations were applied on 2 minipigs for 7 consecutive days, with the control creams applied on the contralateral side, followed by 7 days of post-application monitoring using a multi-modal optical imaging system (MPTflex-CARS, JenLab, Germany). FLIM images were obtained from the treated regions 24 hr post-application from day 1 to day 14 that allowed visualization of cellular and sub-cellular features associated with different dermal layers non-invasively to a depth of 200 µm. Five punch biopsies per animal were obtained from the corresponding treated regions between days 8 and 14 for bioanalytical analysis and comparison with results obtained using FLIM. In conclusion, utilization of non-invasive optical biopsy methods for dermal drug evaluation can provide true longitudinal monitoring of drug spatial distribution, remove sampling limitations, and be more time-efficient compared to traditional methods.

  14. Text Line Detection from Rectangle Traffic Panels of Natural Scene

    NASA Astrophysics Data System (ADS)

    Wang, Shiyuan; Huang, Linlin; Hu, Jian

    2018-01-01

    Traffic sign detection and recognition is very important for Intelligent Transportation. Among traffic signs, traffic panel contains rich information. However, due to low resolution and blur in the rectangular traffic panel, it is difficult to extract the character and symbols. In this paper, we propose a coarse-to-fine method to detect the Chinese character on traffic panels from natural scenes. Given a traffic panel Color Quantization is applied to extract candidate regions of Chinese characters. Second, a multi-stage filter based on learning is applied to discard the non-character regions. Third, we aggregate the characters for text lines by Distance Metric Learning method. Experimental results on real traffic images from Baidu Street View demonstrate the effectiveness of the proposed method.

  15. Design, implementation and application of distributed order PI control.

    PubMed

    Zhou, Fengyu; Zhao, Yang; Li, Yan; Chen, YangQuan

    2013-05-01

    In this paper, a series of distributed order PI controller design methods are derived and applied to the robust control of wheeled service robots, which can tolerate more structural and parametric uncertainties than the corresponding fractional order PI control. A practical discrete incremental distributed order PI control strategy is proposed basing on the discretization method and the frequency criterions, which can be commonly used in many fields of fractional order system, control and signal processing. Besides, an auto-tuning strategy and the genetic algorithm are applied to the distributed order PI control as well. A number of experimental results are provided to show the advantages and distinguished features of the discussed methods in fairways. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Text mining by Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Jamaati, Maryam; Mehri, Ali

    2018-01-01

    Long-range correlations between the elements of natural languages enable them to convey very complex information. Complex structure of human language, as a manifestation of natural languages, motivates us to apply nonextensive statistical mechanics in text mining. Tsallis entropy appropriately ranks the terms' relevance to document subject, taking advantage of their spatial correlation length. We apply this statistical concept as a new powerful word ranking metric in order to extract keywords of a single document. We carry out an experimental evaluation, which shows capability of the presented method in keyword extraction. We find that, Tsallis entropy has reliable word ranking performance, at the same level of the best previous ranking methods.

  17. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    PubMed Central

    Lind, Cora; Gates, Stacy D.; Pedoussaut, Nathalie M.; Baiz, Tamam I.

    2010-01-01

    Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG) processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  18. Evaluation of MTANNs for eliminating false-positive with different computer aided pulmonary nodules detection software.

    PubMed

    Shi, Zhenghao; Ma, Jiejue; Feng, Yaning; He, Lifeng; Suzuki, Kenji

    2015-11-01

    MTANN (Massive Training Artificial Neural Network) is a promising tool, which applied to eliminate false-positive for thoracic CT in recent years. In order to evaluate whether this method is feasible to eliminate false-positive of different CAD schemes, especially, when it is applied to commercial CAD software, this paper evaluate the performance of the method for eliminating false-positives produced by three different versions of commercial CAD software for lung nodules detection in chest radiographs. Experimental results demonstrate that the approach is useful in reducing FPs for different computer aided lung nodules detection software in chest radiographs.

  19. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  20. The Trapping Of Laser-Generated Biradicals With Molecular Oxygen: The Synthesis Of Peroxides Related To Vitamin K, Insect Pheromones And Prostaglandins.

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.

    1984-05-01

    The theoretical and experimental considerations involved in laser-generated biradical trapping with molecular oxygen are discussed. This method has been applied in the elucidation of the mechanism of the photodegradation of Vitamin K via oxygen trapping of a preoxe-tane biradical. The trapping of biradicals derived from azoalkanes has been applied to the syntheses of pine beetle pheromone mimics and prostaglandin endoperoxide analogues.

  1. Downwash and Wake Behind Plain and Flapped Airfoils

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth

    1939-01-01

    Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.

  2. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism.

    PubMed

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V

    2013-08-01

    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  4. The Effect of Yoga on Functional Recovery Level in Schizophrenic Patients.

    PubMed

    Kavak, Funda; Ekinci, Mine

    2016-12-01

    The objective of this study is to determine the effect of yoga on functional recovery level in schizophrenic patients. The study was conducted in quasi-experimental design with pretest-posttest control group. The population of the study consisted of schizophrenic patients with registered in Malatya and Elazığ Community Mental Health Centers and regularly going to these centers. The sample group of the study consisted of totally 100 patients including 50 patients in the experimental group and 50 patients in the control group who were specified through power analysis and chosen by using random sampling method from this population. The data were collected between April 2015 and August 2015. 'Patient Description Form' and 'FROGS' were used to collect the data. Yoga was applied to patients in the experimental group. Any intervention was not made to patients in the control group. Percentage distribution, arithmetic mean, standard deviation, chi-square, independent samples t test, and paired t test were used to assess the data. Patients in the control and experimental group pretest subscale and the total means scores of FROGS was found to be low. In the posttest subscale and total means scores of FROGS in the experimental group were higher than in the control group and the differences between them were found to be statistically significant (p<0.05). In the experimental group pretest and posttest subscale and total means scores of FR0GS was determined to be statistically significant (p<0.05). Yoga that applied to schizophrenic patients it was determined to increased the level of functional recovery. It can be suggested that yoga should be used as an complementary method in nursing practise in order to increase the effectiveness of the treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections

    NASA Astrophysics Data System (ADS)

    Lenzen, Armin; Vollmering, Max

    2018-05-01

    In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.

  6. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Applying Pedagogical Principles to Grammar Instruction

    ERIC Educational Resources Information Center

    Kanda, Makiko; Beglar, David

    2004-01-01

    The purpose of this study was to investigate the effectiveness of two experimental methods of teaching the present progressive verb tense based on four instructional principles: teach form-function relations, compare similar grammatical forms, promote learner autonomy, and provide opportunities for generative use. Ninety-nine Japanese first-year…

  8. SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION

    EPA Science Inventory

    We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...

  9. Helicopter fertilizing of Foothill Range

    Treesearch

    Don A. Duncan; Jack N. Reppert

    1966-01-01

    Helicopters may prove the best method of applying sulfur fertilizer on rangeland too steep for ground application, or with no nearby landing strip for fixed-wing aircraft. Helicopter fertilization of 457 acres of the San Joaquin Experimental Range in central California in 1960 and 1963 was fast and practical.

  10. Robust digital image watermarking using distortion-compensated dither modulation

    NASA Astrophysics Data System (ADS)

    Li, Mianjie; Yuan, Xiaochen

    2018-04-01

    In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.

  11. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  12. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  13. The Infeasibility of Experimental Quantification of Life-Critical Software Reliability

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Finelli, George B.

    1991-01-01

    This paper affirms that quantification of life-critical software reliability is infeasible using statistical methods whether applied to standard software or fault-tolerant software. The key assumption of software fault tolerance|separately programmed versions fail independently|is shown to be problematic. This assumption cannot be justified by experimentation in the ultra-reliability region and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multi-version software experiments support this affirmation.

  14. Motion estimation of subcellular structures from fluorescence microscopy images.

    PubMed

    Vallmitjana, A; Civera-Tregon, A; Hoenicka, J; Palau, F; Benitez, R

    2017-07-01

    We present an automatic image processing framework to study moving intracellular structures from live cell fluorescence microscopy. The system includes the identification of static and dynamic structures from time-lapse images using data clustering as well as the identification of the trajectory of moving objects with a probabilistic tracking algorithm. The method has been successfully applied to study mitochondrial movement in neurons. The approach provides excellent performance under different experimental conditions and is robust to common sources of noise including experimental, molecular and biological fluctuations.

  15. Statistical density modification using local pattern matching

    DOEpatents

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  16. Mannitol-facilitated perfusion staining with 2, 3, 5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis

    PubMed Central

    Sun, Yu-Yo; Yang, Dianer; Kuan, Chia-Yi

    2011-01-01

    A simple method to quantify cerebral infarction has great value for mechanistic and therapeutic studies in experimental stroke research. Immersion staining of unfixed brain slices with 2,3,5-triphenyltetrazolium chloride (TTC) is a popular method to determine cerebral infarction in preclinical studies. However, it is often difficult to apply immersion TTC-labeling to severely injured or soft newborn brains in rodents. Here we report an in-vivo TTC perfusion-labeling method based on osmotic opening of blood-brain-barrier with mannitol-pretreatment. This new method delineates cortical infarction correlated with the boundary of morphological cell injury, differentiates the induction or subcellular redistribution of apoptosis-related factors between viable and damaged areas, and easily determines the size of cerebral infarction in both adult and newborn mice. Using this method, we confirmed that administration of lipopolysaccharide 72 h before hypoxia-ischemia increases the damage in neonatal mouse brains, in contrast to its effect of protective preconditioning in adults. These results demonstrate a fast and inexpensive method that simplifies the task of quantifying cerebral infarction in small or severely injured brains and assists biochemical analysis of experimental cerebral ischemia. PMID:21982741

  17. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  18. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.

  19. Computational modeling of RNA 3D structures, with the aid of experimental restraints

    PubMed Central

    Magnus, Marcin; Matelska, Dorota; Łach, Grzegorz; Chojnowski, Grzegorz; Boniecki, Michal J; Purta, Elzbieta; Dawson, Wayne; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M

    2014-01-01

    In addition to mRNAs whose primary function is transmission of genetic information from DNA to proteins, numerous other classes of RNA molecules exist, which are involved in a variety of functions, such as catalyzing biochemical reactions or performing regulatory roles. In analogy to proteins, the function of RNAs depends on their structure and dynamics, which are largely determined by the ribonucleotide sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that simulate either the physical process of RNA structure formation (“Greek science” approach) or utilize information derived from known structures of other RNA molecules (“Babylonian science” approach). All computational methods suffer from various limitations that make them generally unreliable for structure prediction of long RNA sequences. However, in many cases, the limitations of computational and experimental methods can be overcome by combining these two complementary approaches with each other. In this work, we review computational approaches for RNA structure prediction, with emphasis on implementations (particular programs) that can utilize restraints derived from experimental analyses. We also list experimental approaches, whose results can be relatively easily used by computational methods. Finally, we describe case studies where computational and experimental analyses were successfully combined to determine RNA structures that would remain out of reach for each of these approaches applied separately. PMID:24785264

  20. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  2. QSAR Methods.

    PubMed

    Gini, Giuseppina

    2016-01-01

    In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

  3. A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.

    PubMed

    Yang, Ching-Han; Chang, Chin-Chun; Liang, Deron

    2018-03-28

    All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication-an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment-confirm the feasibility of this approach.

  4. [Not Available].

    PubMed

    Bernard, A M; Burgot, J L

    1981-12-01

    The reversibility of the determination reaction is the most frequent cause of deviations from linearity of thermometric titration curves. Because of this, determination of the equivalence point by the tangent method is associated with a systematic error. The authors propose a relationship which connects this error quantitatively with the equilibrium constant. The relation, verified experimentally, is deduced from a mathematical study of the thermograms and could probably be generalized to apply to other linear methods of determination.

  5. A Survey of Commonly Applied Methods for Software Process Improvement

    DTIC Science & Technology

    1994-02-01

    conducted a controlled experimental study of the effectiveness of the method. They compared 10 cleanroom teams with 5 non -cleanroom teams working for six...Robert D. Austin Doctoral Candidate Carnegie Mellon University Daniel J. Paulish Resident Affiliate Siemens Corporate Research , Inc. Accesion For0...the U.S. Department of Defense. Copyright 0 1994 by Carnegie Mellon University. Copies of the documen are available from Research Access. Iinc., 800

  6. The Effect of Special Teaching Methods Class on the Level of Teachers' Self-Efficacy Perception of Pre-Service Teacher

    ERIC Educational Resources Information Center

    Gökdag Baltaoglu, Meltem

    2015-01-01

    The purpose of this study is to evaluate the change in the level of teachers' self-efficacy perception of primary school Social Studies pre-service teachers who take the special teaching methods class. Single group pretest-posttest model from pre-experimental patterns was applied in the research. The study group of the research consisted of 59…

  7. Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion

    DOE PAGES

    Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...

    2017-01-24

    An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less

  8. Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.

    An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less

  9. The 21st century skills with model eliciting activities on linear program

    NASA Astrophysics Data System (ADS)

    Handajani, Septriana; Pratiwi, Hasih; Mardiyana

    2018-04-01

    Human resources in the 21st century are required to master various forms of skills, including critical thinking skills and problem solving. The teaching of the 21st century is a teaching that integrates literacy skills, knowledge, skills, attitudes, and mastery of ICT. This study aims to determine whether there are differences in the effect of applying Model Elliciting Activities (MEAs) that integrates 21st century skills, namely 4C and conventional learning to learning outcomes. This research was conducted at Vocational High School in the odd semester of 2017 and uses the experimental method. The experimental class is treated MEAs that integrates 4C skills and the control class is given conventional learning. Methods of data collection in this study using the method of documentation and test methods. The data analysis uses Z-test. Data obtained from experiment class and control class. The result of this study showed there are differences in the effect of applying MEAs that integrates 4C skills and conventional learning to learning outcomes. Classes with MEAs that integrates 4C skills give better learning outcomes than the ones in conventional learning classes. This happens because MEAs that integrates 4C skills can improved creativity skills, communication skills, collaboration skills, and problem-solving skills.

  10. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  11. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  12. The stress analysis method for three-dimensional composite materials

    NASA Astrophysics Data System (ADS)

    Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

    1994-05-01

    This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

  13. An artificial-intelligence technique for qualitatively deriving enzyme kinetic mechanisms from initial-velocity measurements and its application to hexokinase.

    PubMed Central

    Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A

    1989-01-01

    We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819

  14. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    NASA Astrophysics Data System (ADS)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  15. A logic-based method to build signaling networks and propose experimental plans.

    PubMed

    Rougny, Adrien; Gloaguen, Pauline; Langonné, Nathalie; Reiter, Eric; Crépieux, Pascale; Poupon, Anne; Froidevaux, Christine

    2018-05-18

    With the dramatic increase of the diversity and the sheer quantity of biological data generated, the construction of comprehensive signaling networks that include precise mechanisms cannot be carried out manually anymore. In this context, we propose a logic-based method that allows building large signaling networks automatically. Our method is based on a set of expert rules that make explicit the reasoning made by biologists when interpreting experimental results coming from a wide variety of experiment types. These rules allow formulating all the conclusions that can be inferred from a set of experimental results, and thus building all the possible networks that explain these results. Moreover, given an hypothesis, our system proposes experimental plans to carry out in order to validate or invalidate it. To evaluate the performance of our method, we applied our framework to the reconstruction of the FSHR-induced and the EGFR-induced signaling networks. The FSHR is known to induce the transactivation of the EGFR, but very little is known on the resulting FSH- and EGF-dependent network. We built a single network using data underlying both networks. This leads to a new hypothesis on the activation of MEK by p38MAPK, which we validate experimentally. These preliminary results represent a first step in the demonstration of a cross-talk between these two major MAP kinases pathways.

  16. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC-MS/MS for the determination of glucocorticoids in water with the aid of experimental design.

    PubMed

    Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K

    2017-04-01

    An efficient and inexpensive method using vortex-assisted surfactant-enhanced emulsification microextraction (VASEME) based on solidification of floating organic droplet coupled with ultraperformance liquid chromatography-tandem mass spectrometry is proposed for the analysis of glucocorticoids in water samples (river water and hospital wastewater). VASEME was optimized by the experimental validation of Plackett-Burman design and central composite design, which has been co-related to experimental design. Plackett-Burman design showed that factors such as vortex time, surfactant concentration, and pH significantly affect the extraction efficiency of the method. Method validation was characterized by an acceptable calibration range of 1-1000 ng L -1 , and the limit of detection was in the range from 2.20 to 8.12 ng L -1 for glucocorticoids. The proposed method was applied to determine glucocorticoids in river water and hospital wastewater in Lucknow, India. It is reliable and rapid and has potential application for analysis of glucocorticoids in environmental aqueous samples. Graphical Abstract Low density based extraction of gluococorticoids by using design of experiment.

  17. Evaluation of hospital palliative care teams: strengths and weaknesses of the before-after study design and strategies to improve it.

    PubMed

    Simon, S; Higginson, I J

    2009-01-01

    Hospital palliative care teams (HPCTs) are well established as multi-professional services to provide palliative care in an acute hospital setting and are increasing in number. However, there is still limited evaluation of them, in terms of efficacy and effectiveness. The gold standard method of evaluation is a randomised control trial, but because of methodological (e.g., randomisation), ethical and practical difficulties such trials are often not possible. HPCT is a complex intervention, and the specific situation in palliative care makes it challenging to evaluate (e.g., distress and cognitive impairment of patients). The quasi-experimental before-after study design has the advantage of enabling an experimental character without randomisation. But this has other weaknesses and is prone to bias, for example, temporal trends and selection bias. As for every study design, avoidance and minimisation of bias is important to improve validity. Therefore, strategies of selecting an appropriate control group or time series and applying valid outcomes and measurement tools help reducing bias and strengthen the methods. Special attention is needed to plan and define the design and applied method.

  18. A method of increasing the depth of the plastically deformed layer in the roller burnishing process

    NASA Astrophysics Data System (ADS)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    The subject of this paper is an analysis of the determination of the depth of the plastically deformed layer in the process of roller burnishing a shaft using a newly developed method in which a braking moment is applied to the roller. It is possible to increase the depth of the plastically deformed layer by applying the braking moment to the roller during the burnishing process. The theoretical considerations presented are based on the Hertz-Bielayev and Huber-Mises theories and permit the calculation of the depth of plastic deformation of the top layer of the burnished shaft. The theoretical analysis has been verified experimentally and using numerical calculations based on the finite element method using the Msc.MARC program. Experimental tests were carried out on ring-shaped samples made of C45 carbon steel. The samples were burnished at different values of roller force and different values of braking moment. A significant increase was found in the depth of the plastically deformed surface layer of roller burnished shafts. Usage of the phenomenon of strain hardening of steel allows the technology presented here to increase the fatigue life of the shafts.

  19. A Behavior-Analytic Conceptualization of the Side Effects of Psychotropic Medication

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Kennedy, Craig H.

    2004-01-01

    A range of behavior--much deemed problematic by society--is treated with behavioral methods or psychotropic medications. Although the processes associated with behavioral interventions have been investigated using conceptual, experimental, and applied analyses, less is known about the behavioral processes associated with the use of psychotropic…

  20. Olympic Education as a Factor of Socialization of Preschoolers

    ERIC Educational Resources Information Center

    Varfolomeeva, Zoya S.; Surinov, Ilya A.

    2016-01-01

    The purpose of this study is theoretical substantiation and experimental confirmation of importance of the Olympic education as a socialization factor of the preschoolers. To address the study issues, theoretical methods of analysis, generalization and systematization as well as personal and activity approaches were applied. The older preschoolers…

  1. Community-Based Research and Approaches to Social Change: The Case of the Hispanic Health Council.

    ERIC Educational Resources Information Center

    Schensul, Jean J.; And Others

    1981-01-01

    This article reviews six programs that have applied anthropological concepts, methods, and research to implementing change in American schools, school districts, and communities. The programs are: (1) the West Philadelphia (Pennsylvania) Free School, an experimental alternative education program that emphasizes freedom, individualized instruction,…

  2. An Isotopic Dilution Experiment Using Liquid Scintillation: A Simple Two-System, Two-Phase Analysis.

    ERIC Educational Resources Information Center

    Moehs, Peter J.; Levine, Samuel

    1982-01-01

    A simple isotonic, dilution analysis whose principles apply to methods of more complex radioanalyses is described. Suitable for clinical and instrumental analysis chemistry students, experimental manipulations are kept to a minimum involving only aqueous extraction before counting. Background information, procedures, and results are discussed.…

  3. Breeding bird communities

    Treesearch

    Vanessa L. Artman; Randy Dettmers

    2003-01-01

    Prescribed burning is being applied on an experimental basis to restore and maintain mixed-oak communities in southern Ohio. This chapter describes baseline conditions for the breeding bird community prior to prescribed burning. We surveyed breeding bird populations at four study areas using the territory-mapping method. We observed 35 bird species during the surveys....

  4. Audiolingual Method and Behaviorism: From Misunderstanding to Myth

    ERIC Educational Resources Information Center

    Castagnaro, Peter J.

    2006-01-01

    This article contends that the modern descendant of B. F. Skinner's experimental analysis of behavior, "behavior analysis," and as well his 1957 masterwork "Verbal Behavior," have rarely if ever been seriously contemplated by applied linguists for possible contributions to the field. Rather, a pat literature of dismissal has developed that…

  5. 76 FR 12979 - Submission for OMB Review: Comment Request; Questionnaire Cognitive Interviewing and Pretesting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... cognitive interviews, focus groups, Pilot household interviews, and experimental research in laboratory and field settings, both for applied questionnaire evaluation and more basic research on response errors in surveys. The most common evaluation method is the cognitive interview, in which a questionnaire design...

  6. Efficient composite broadband polarization retarders and polarization filters

    NASA Astrophysics Data System (ADS)

    Dimova, E.; Ivanov, S. S.; Popkirov, G.; Vitanov, N. V.

    2014-12-01

    A new type of broadband polarization half-wave retarder and narrowband polarization filters are described and experimentally tested. Both, the retarders and the filters are designed as composite stacks of standard optical half-wave plates, each of them twisted at specific angles. The theoretical background of the proposed optical devices was obtained by analogy with the method of composite pulses, known from the nuclear and quantum physics. We show that combining two composite filters built from different numbers and types of waveplates, the transmission spectrum is reduced from about 700 nm to about 10 nm width.We experimentally demonstrate that this method can be applied to different types of waveplates (broadband, zero-order, multiple order, etc.).

  7. Resistance fail strain gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  8. Research in Atomic, Ionic and Photonic Systems for Scalable Deterministic Quantum Logic

    DTIC Science & Technology

    2005-11-17

    1. Ion Trap Project (DL, ANS, DS) Year 1 The “pushing gate” that we intend to use to entangle ions was thoroughly studied theoretically (milestone 1...allow more complex experimental sequences (e.g. Raman sideband cooling). We achieved important goals on the way to implementing an entangling gate in...for a two-ion entangling gate (in the method of [3]), we applied the same force to a single ion. When applied to a spin superposition state, the

  9. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    PubMed

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  10. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  11. [Effect of Smartphone Apps Applying BodyThink Program on Obesity in Adolescent Girls].

    PubMed

    Jun, Min Kyung; Ha, Ju Young

    2016-06-01

    The purpose of this study was to determine the effects of smartphone apps applying BodyThink program on BMI, percentage of body fat, skeletal muscle rate, body image, and self-esteem of adolescent girls. Sixty-eight high school girls with a BMI of over 25kg/m² were recruited to participate in this study. Girls from four schools were divided into two groups: the experimental group, which used the smartphone apps applying BodyThink program, and the control group, which used smartphone apps and small group counseling. The experimental group received the BodyThink program 6 times, scheduled once a week, with each session lasting 40~50 minutes. Test measures were completed before and after the 6 week intervention period for all participants. Collected data was analyzed using Shapiro-Wilk test, descriptive statistics, χ² test, independent t-test, Mann-Whitney U test with the SPSS/WIN 18.0 program. The girls in the experimental group significantly improved their results in BMI(Z=-1.67, p=.042), percentage of body fat (Z=-3.01, p=.001), skeletal muscle rate (t=-3.50, p<.001), and self-esteem (t=2.66, p=.005) after the program, compared to the girls in the control group. Mobile applications applying psychological and emotional intervention programs have the potential to be effective alternative methods to improve the body composition and self-esteem of obese adolescent girls.

  12. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data

    PubMed Central

    2013-01-01

    Background Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Methods Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE) ,cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Results Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. Conclusions LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR. PMID:24207108

  13. Research on Novel Algorithms for Smart Grid Reliability Assessment and Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Luo, Wenjin

    In this dissertation, several studies of electric power system reliability and economy assessment methods are presented. To be more precise, several algorithms in evaluating power system reliability and economy are studied. Furthermore, two novel algorithms are applied to this field and their simulation results are compared with conventional results. As the electrical power system develops towards extra high voltage, remote distance, large capacity and regional networking, the application of a number of new technique equipments and the electric market system have be gradually established, and the results caused by power cut has become more and more serious. The electrical power system needs the highest possible reliability due to its complication and security. In this dissertation the Boolean logic Driven Markov Process (BDMP) method is studied and applied to evaluate power system reliability. This approach has several benefits. It allows complex dynamic models to be defined, while maintaining its easy readability as conventional methods. This method has been applied to evaluate IEEE reliability test system. The simulation results obtained are close to IEEE experimental data which means that it could be used for future study of the system reliability. Besides reliability, modern power system is expected to be more economic. This dissertation presents a novel evolutionary algorithm named as quantum evolutionary membrane algorithm (QEPS), which combines the concept and theory of quantum-inspired evolutionary algorithm and membrane computation, to solve the economic dispatch problem in renewable power system with on land and offshore wind farms. The case derived from real data is used for simulation tests. Another conventional evolutionary algorithm is also used to solve the same problem for comparison. The experimental results show that the proposed method is quick and accurate to obtain the optimal solution which is the minimum cost for electricity supplied by wind farm system.

  14. A new method to study ferroelectrics using the remanent Henkel plots

    NASA Astrophysics Data System (ADS)

    Vopson, Melvin M.

    2018-05-01

    Analysis of experimental curves constructed from dc demagnetization and isothermal remanent magnetization known as Henkel and delta M plots, have served for over 53 years as an important tool for characterization of interactions in ferromagnets. In this article we address the question whether the same experimental technique could be applied to the study of ferroelectric systems. The successful measurement of the equivalent dc depolarisation and isothermal remanent polarization curves and the construction of the Henkel and delta P plots for ferroelectrics is reported here. Full measurement protocol is provided together with experimental examples for two ferroelectric ceramic samples. This new measurement technique is an invaluable experimental tool that could be used to further advance our understanding of ferroelectric materials and their applications.

  15. Experimental test of the polarization direction correlation method (PDCO)

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Morek, T.; Droste, Ch.; Rohoziński, S. G.; Srebrny, J.; Wierzchucka, A.; Bergström, M.; Herskind, B.; Melby, E.; Czosnyka, T.; Napiorkowski, P. J.

    1999-02-01

    The study of the polarization direction correlation method (PDCO) for γ quanta emitted from the nuclear states oriented in fusion-evaporation reactions is discussed with emphasis on making unique multipolarity assignments. The method is applied to the data coming from a typical experiment performed with the EUROGAM II array, where polarization-sensitive CLOVER detectors were used. The accuracy obtained in the experiment for the studied transitions was high enough to exclude, using the PDCO method, most of the ambiguities which occur if the assignments are made on the basis of angular correlation measurements alone.

  16. Velocity interferometer signal de-noising using modified Wiener filter

    NASA Astrophysics Data System (ADS)

    Rav, Amit; Joshi, K. D.; Roy, Kallol; Kaushik, T. C.

    2017-05-01

    The accuracy and precision of the non-contact velocity interferometer system for any reflector (VISAR) depends not only on the good optical design and linear optical-to- electrical conversion system, but also on accurate and robust post-processing techniques. The performance of these techniques, such as the phase unwrapping algorithm, depends on the signal-to-noise ratio (SNR) of the recorded signal. In the present work, a novel method of improving the SNR of the recorded VISAR signal, based on the knowledge of the noise characteristic of the signal conversion and recording system, is presented. The proposed method uses a modified Wiener filter, for which the signal power spectrum estimation is obtained using a spectral subtraction method (SSM), and the noise power spectrum estimation is obtained by taking the average of the recorded signal during the period when no target movement is expected. Since the noise power spectrum estimate is dynamic in nature, and obtained for each experimental record individually, the improved signal quality is high. The proposed method is applied to the simulated standard signals, and is not only found to be better than the SSM, but is also less sensitive to the selection of the noise floor during signal power spectrum estimation. Finally, the proposed method is applied to the recorded experimental signal and an improvement in the SNR is reported.

  17. Dual Logic and Cerebral Coordinates for Reciprocal Interaction in Eye Contact

    PubMed Central

    Lee, Ray F.

    2015-01-01

    In order to scientifically study the human brain’s response to face-to-face social interaction, the scientific method itself needs to be reconsidered so that both quantitative observation and symbolic reasoning can be adapted to the situation where the observer is also observed. In light of the recent development of dyadic fMRI which can directly observe dyadic brain interacting in one MRI scanner, this paper aims to establish a new form of logic, dual logic, which provides a theoretical platform for deductive reasoning in a complementary dual system with emergence mechanism. Applying the dual logic in the dfMRI experimental design and data analysis, the exogenous and endogenous dual systems in the BOLD responses can be identified; the non-reciprocal responses in the dual system can be suppressed; a cerebral coordinate for reciprocal interaction can be generated. Elucidated by dual logic deductions, the cerebral coordinate for reciprocal interaction suggests: the exogenous and endogenous systems consist of the empathy network and the mentalization network respectively; the default-mode network emerges from the resting state to activation in the endogenous system during reciprocal interaction; the cingulate plays an essential role in the emergence from the exogenous system to the endogenous system. Overall, the dual logic deductions are supported by the dfMRI experimental results and are consistent with current literature. Both the theoretical framework and experimental method set the stage to formally apply the scientific method in studying complex social interaction. PMID:25885446

  18. Effect of random surface inhomogeneities on spectral properties of dielectric-disk microresonators: theory and modeling at millimeter wave range.

    PubMed

    Ganapolskii, E M; Eremenko, Z E; Tarasov, Yu V

    2009-04-01

    The influence of random axially homogeneous surface roughness on spectral properties of dielectric resonators of circular disk form is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields, the method of eigenmode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering that is highly responsible for nondissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object, we use a dielectric disk resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigenfrequencies and the Q factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.

  19. Influence of experimental parameters on the microencapsulation of a photopolymerizable phase.

    PubMed

    Pernot, J M; Brun, H; Pouyet, B; Sergent, M; Phan-Tan-Luu, R

    1993-01-01

    Conditions of microencapsulation by in situ polycondensation, using melamine-formaldehyde as wall material, are influenced by the chemical nature of the core to encapsulate. In our study concerning the encapsulation of a photopolymerizable phase containing an electrically charged compound, it was necessary to modify the experimental process to obtain capsules of good quality. We used the factorial design method of screening by utilization of an asymmetric matrix, according to the collapsing principle of Addleman. The advantage of this method is that it allows determination of the simultaneous influences of the 11 experimental parameters involved in this preparation. The calculation method can be applied to more than two levels for some of the factors. The continuously varying parameters were altered between two extreme levels, chosen to allow encapsulation. For discontinuous factors, such as the molecular weight of the modifying system or nature of the aminoplast, we used the commercially available compounds, respectively three and four kinds. The results of the obtained capsules were determined by comparing microphotographic pictures. With 16 experiments we found four more factors influencing quality of capsules. We also determined the most favourable levels for the other seven parameters. The results allowed us to find optimal conditions in the experimental field. We obtained capsules of a satisfactory quality for this purpose, using only minimum experimentation.

  20. Acute effect of Vagus nerve stimulation parameters on cardiac chronotropic, inotropic, and dromotropic responses

    NASA Astrophysics Data System (ADS)

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2017-11-01

    Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy and depression, and is considered as a potential therapy for other pathologies, including Heart Failure (HF) or inflammatory diseases. In the case of HF, several experimental studies on animals have shown an improvement in the cardiac function and a reverse remodeling of the cardiac cavity when VNS is applied. However, recent clinical trials have not been able to reproduce the same response in humans. One of the hypothesis to explain this lack of response is related to the way in which stimulation parameters are defined. The combined effect of VNS parameters is still poorly-known, especially in the case of VNS synchronously delivered with cardiac activity. In this paper, we propose a methodology to analyze the acute cardiovascular effects of VNS parameters individually, as well as their interactive effects. A Latin hypercube sampling method was applied to design a uniform experimental plan. Data gathered from this experimental plan was used to produce a Gaussian process regression (GPR) model in order to estimate unobserved VNS sequences. Finally, a Morris screening sensitivity analysis method was applied to each obtained GPR model. Results highlight dominant effects of pulse current, pulse width and number of pulses over frequency and delay and, more importantly, the degree of interactions between these parameters on the most important acute cardiovascular responses. In particular, high interacting effects between current and pulse width were found. Similar sensitivity profiles were observed for chronotropic, dromotropic and inotropic effects. These findings are of primary importance for the future development of closed-loop, personalized neuromodulator technologies.

  1. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  2. Corrosion Protection Properties of PPy-ND Composite Coating: Sonoelectrochemical Synthesis and Design of Experiment

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Bagheri, R.; Rezaei-Moghadam, B.

    2016-02-01

    In this research, the nanocomposite coatings comprising the polypyrrole-nanodiamond, PPy-ND, on St-12 steel electrodes were electro-synthesized using in situ polymerization process under ultrasonic irradiation. The corrosion protection performance and morphology characterization of prepared coatings were investigated by electrochemical methods and scanning electron microscopy, SEM, respectively. Also, the experimental design was employed to determine the best values considering the effective parameters such as the concentration of nanoparticles, the applied current density and synthesis time to achieve the most protective films. A response surface methodology, RSM, involving a central composite design, CCD, was applied to the modeling and optimization of the PPy-ND nanocomposite deposition. Pareto graphic analysis of the parameters indicated that the applied current density and some of the interactions were effective on the response. The electrochemical results proved that the embedment of diamond nanoparticle, DNP, improves the corrosion resistance of PPy coatings significantly. Therefore, desirable correlation exists between predicted data and experimental results.

  3. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  4. Band-gap corrected density functional theory calculations for InAs/GaSb type II superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Zhang, Yong

    2014-12-07

    We performed pseudopotential based density functional theory (DFT) calculations for GaSb/InAs type II superlattices (T2SLs), with bandgap errors from the local density approximation mitigated by applying an empirical method to correct the bulk bandgaps. Specifically, this work (1) compared the calculated bandgaps with experimental data and non-self-consistent atomistic methods; (2) calculated the T2SL band structures with varying structural parameters; (3) investigated the interfacial effects associated with the no-common-atom heterostructure; and (4) studied the strain effect due to lattice mismatch between the two components. This work demonstrates the feasibility of applying the DFT method to more exotic heterostructures and defect problemsmore » related to this material system.« less

  5. A new experimental method to determine the sorption isotherm of a liquid in a porous medium.

    PubMed

    Ouoba, Samuel; Cherblanc, Fabien; Cousin, Bruno; Bénet, Jean-Claude

    2010-08-01

    Sorption from the vapor phase is an important factor controlling the transport of volatile organic compounds (VOCs) in the vadose zone. Therefore, an accurate description of sorption behavior is essential to predict the ultimate fate of contaminants. Several measurement techniques are available in the case of water, however, when dealing with VOCs, the determination of sorption characteristics generally relies on gas chromatography. To avoid some drawbacks associated with this technology, we propose a new method to determine the sorption isotherm of any liquid compounds adsorbed in a soil. This method is based on standard and costless transducers (gas pressure, temperature) leading to a simple and transportable experimental device. A numerical estimation underlines the good accuracy and this technique is validated on two examples. Finally, this method is applied to determine the sorption isotherm of three liquid compounds (water, heptane, and trichloroethylene) in a clayey soil.

  6. Flow in curved ducts of varying cross-section

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  7. Probing dynamic behavior of electric fields and band diagrams in complex semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Shalish, Ilan

    2018-01-01

    Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.

  8. G W (Γ ) method without the Bethe-Salpeter equation for photoabsorption energies of spin-polarized systems

    NASA Astrophysics Data System (ADS)

    Isobe, Tomoharu; Kuwahara, Riichi; Ohno, Kaoru

    2018-06-01

    The one-shot G W method, beginning with the local density approximation (LDA), enables one to calculate photoemission and inverse photoemission spectra. In order to calculate photoabsorption spectra, one had to additionally solve the Bethe-Salpeter equation (BSE) for the two-particle (electron-hole) Green's function, which doubly induces evaluation errors. It has been recently reported that the G W +BSE method significantly underestimates the experimental photoabsorption energies (PAEs) of small molecules. In order to avoid these problems, we propose to apply the G W (Γ ) method not to the neutral ground state but to the cationic state to calculate PAEs without solving the BSE, which allows a rigorous one-to-one correspondence between the photoabsorption peak and the "extended" quasiparticle level. We applied the self-consistent linearized G W Γ method including the vertex correction Γ to our method, and found that this method gives the PAEs of B, Na3, and Li3 to within 0.1 eV accuracy.

  9. Comparison of two surface temperature measurement using thermocouples and infrared camera

    NASA Astrophysics Data System (ADS)

    Michalski, Dariusz; Strąk, Kinga; Piasecka, Magdalena

    This paper compares two methods applied to measure surface temperatures at an experimental setup designed to analyse flow boiling heat transfer. The temperature measurements were performed in two parallel rectangular minichannels, both 1.7 mm deep, 16 mm wide and 180 mm long. The heating element for the fluid flowing in each minichannel was a thin foil made of Haynes-230. The two measurement methods employed to determine the surface temperature of the foil were: the contact method, which involved mounting thermocouples at several points in one minichannel, and the contactless method to study the other minichannel, where the results were provided with an infrared camera. Calculations were necessary to compare the temperature results. Two sets of measurement data obtained for different values of the heat flux were analysed using the basic statistical methods, the method error and the method accuracy. The experimental error and the method accuracy were taken into account. The comparative analysis showed that although the values and distributions of the surface temperatures obtained with the two methods were similar but both methods had certain limitations.

  10. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts.

    PubMed

    Maksimovic, Svetolik; Tadic, Vanja; Skala, Dejan; Zizovic, Irena

    2017-06-01

    Helichrysum italicum presents a valuable source of natural bioactive compounds. In this work, a literature review of terpenes, phenolic compounds, and other less common phytochemicals from H. italicum with regard to application of different separation methods is presented. Data including extraction/separation methods and experimental conditions applied, obtained yields, number of identified compounds, content of different compound groups, and analytical techniques applied are shown as corresponding tables. Numerous biological activities of both isolates and individual compounds are emphasized. In addition, the data reported are discussed, and the directions for further investigations are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography

    PubMed Central

    Birk, Udo Jochen; Rieckher, Matthias; Konstantinides, Nikos; Darrell, Alex; Sarasa-Renedo, Ana; Meyer, Heiko; Tavernarakis, Nektarios; Ripoll, Jorge

    2010-01-01

    The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experiments in Caenorhabditis elegans. Successful reconstructions for both fluorescence and white light (absorption) measurements are shown. Since no difference between movement of the animal and movement of the rotation axis is made, this approach at the same time removes artifacts due to mechanical drifts and errors in the assumed center of rotation. PMID:21258448

  12. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  13. Manual of Scaling Methods

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.

    2004-01-01

    This manual reviews the derivation of the similitude relationships believed to be important to ice accretion and examines ice-accretion data to evaluate their importance. Both size scaling and test-condition scaling methods employing the resulting similarity parameters are described, and experimental icing tests performed to evaluate scaling methods are reviewed with results. The material included applies primarily to unprotected, unswept geometries, but some discussion of how to approach other situations is included as well. The studies given here and scaling methods considered are applicable only to Appendix-C icing conditions. Nearly all of the experimental results presented have been obtained in sea-level tunnels. Recommendations are given regarding which scaling methods to use for both size scaling and test-condition scaling, and icing test results are described to support those recommendations. Facility limitations and size-scaling restrictions are discussed. Finally, appendices summarize the air, water and ice properties used in NASA scaling studies, give expressions for each of the similarity parameters used and provide sample calculations for the size-scaling and test-condition scaling methods advocated.

  14. Experimental comparison between performance of the PM and LPM methods in computed radiography

    NASA Astrophysics Data System (ADS)

    Kermani, Aboutaleb; Feghhi, Seyed Amir Hossein; Rokrok, Behrouz

    2018-07-01

    The scatter downgrades the image quality and reduces its information efficiency in quantitative measurement usages when creating projections with ionizing radiation. Therefore, the variety of methods have been applied for scatter reduction and correction of the undesirable effects. As new approaches, the ordinary and localized primary modulation methods have already been used individually through experiments and simulations in medical and industrial computed tomography, respectively. The aim of this study is the evaluation of capabilities and limitations of these methods in comparison with each other. For this mean, the ordinary primary modulation has been implemented in computed radiography for the first time and the potential of both methods has been assessed in thickness measurement as well as scatter to primary signal ratio determination. The comparison results, based on the experimental outputs which obtained using aluminum specimens and continuous X-ray spectra, are to the benefit of the localized primary modulation method because of improved accuracy and higher performance especially at the edges.

  15. Prediction of explosive yield and other characteristics of liquid rocket propellant explosions

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Smith, J. H.; Watts, E. H.

    1973-01-01

    Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.

  16. Efficient path-based computations on pedigree graphs with compact encodings

    PubMed Central

    2012-01-01

    A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance (dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and accumulation of genealogy information, pedigree data is becoming increasingly important. In large pedigree graphs, path-based methods for efficiently computing genealogical measurements, such as inbreeding and kinship coefficients of individuals, depend on efficient identification and processing of paths. In this paper, we propose a new compact path encoding scheme on large pedigrees, accompanied by an efficient algorithm for identifying paths. We demonstrate the utilization of our proposed method by applying it to the inbreeding coefficient computation. We present time and space complexity analysis, and also manifest the efficiency of our method for evaluating inbreeding coefficients as compared to previous methods by experimental results using pedigree graphs with real and synthetic data. Both theoretical and experimental results demonstrate that our method is more scalable and efficient than previous methods in terms of time and space requirements. PMID:22536898

  17. The Effect of Reflexology Applied to Patients with Chronic Obstructive Pulmonary Disease on Dyspnea and Fatigue.

    PubMed

    Polat, Hatice; Ergüney, Seher

    The purpose of this study was to determine the effect of reflexology on reducing dyspnea and fatigue in patients with chronic obstructive pulmonary disease (COPD). The study was conducted as a pretest-posttest experimental design. The population of the study consisted of 60 patients (30 in experimental group and 30 in control group). Patient Description Form, Baseline Dyspnea Index (BDI) and Visual Analogue Scale-Fatigue (VAS-F) were used to collect the data. The difference between pretest-posttest dyspnea and fatigue mean scores of patients in the experimental group was statistically significant (p < .01). The difference between pretest-posttest dyspnea and fatigue mean scores of patients in the control group was statistically insignificant (p > .05). It was determined that the reflexology reduced dyspnea and fatigue in patients with COPD. Complementary methods such as reflexology should be used with pharmacological methods to reduce dyspnea and fatigue of COPD patients.

  18. Multi-criteria decision making approaches for quality control of genome-wide association studies.

    PubMed

    Malovini, Alberto; Rognoni, Carla; Puca, Annibale; Bellazzi, Riccardo

    2009-03-01

    Experimental errors in the genotyping phases of a Genome-Wide Association Study (GWAS) can lead to false positive findings and to spurious associations. An appropriate quality control phase could minimize the effects of this kind of errors. Several filtering criteria can be used to perform quality control. Currently, no formal methods have been proposed for taking into account at the same time these criteria and the experimenter's preferences. In this paper we propose two strategies for setting appropriate genotyping rate thresholds for GWAS quality control. These two approaches are based on the Multi-Criteria Decision Making theory. We have applied our method on a real dataset composed by 734 individuals affected by Arterial Hypertension (AH) and 486 nonagenarians without history of AH. The proposed strategies appear to deal with GWAS quality control in a sound way, as they lead to rationalize and make explicit the experimenter's choices thus providing more reproducible results.

  19. Numerical and experimental investigations on cavitation erosion

    NASA Astrophysics Data System (ADS)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  20. Measurement and Analysis of the Temperature Gradient of Blackbody Cavities, for Use in Radiation Thermometry

    NASA Astrophysics Data System (ADS)

    De Lucas, Javier; Segovia, José Juan

    2018-05-01

    Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.

  1. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  2. Using dust as probes to determine sheath extent and structure

    NASA Astrophysics Data System (ADS)

    Douglass, Angela; Land, V.; Qiao, K.; Matthews, L.; Hyde, T.

    2016-08-01

    Two in situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a radio frequency (RF) plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma towards the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that the particles exhibiting a levitation height that is independent of RF voltage indicate the sheath edge - the boundary between the quasineutral bulk plasma and the sheath. Therefore, both of these simple and inexpensive, yet effective, methods can be applied across a wide range of experimental parameters in any ground-based RF plasma chamber to gain useful information regarding the sheath, which is needed for interpretation of dusty plasma experiments.

  3. Data base for the prediction of inlet external drag

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  4. Accurate reconstruction of the thermal conductivity depth profile in case hardened steel

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Mandelis, Andreas

    2010-04-01

    The problem of retrieving a nonhomogeneous thermal conductivity profile from photothermal radiometry data is addressed from the perspective of a stabilized least square fitting algorithm. We have implemented an inversion method with several improvements: (a) a renormalization of the experimental data which removes not only the instrumental factor, but the constants affecting the amplitude and the phase as well, (b) the introduction of a frequency weighting factor in order to balance the contribution of high and low frequencies in the inversion algorithm, (c) the simultaneous fitting of amplitude and phase data, balanced according to their experimental noises, (d) a modified Tikhonov regularization procedure has been introduced to stabilize the inversion, and (e) the Morozov discrepancy principle has been used to stop the iterative process automatically, according to the experimental noise, to avoid "overfitting" of the experimental data. We have tested this improved method by fitting theoretical data generated from a known conductivity profile. Finally, we have applied our method to real data obtained in a hardened stainless steel plate. The reconstructed in-depth thermal conductivity profile exhibits low dispersion, even at the deepest locations, and is in good anticorrelation with the hardness indentation test.

  5. Optimal Objective-Based Experimental Design for Uncertain Dynamical Gene Networks with Experimental Error.

    PubMed

    Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R

    2018-01-01

    In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.

  6. Test method for telescopes using a point source at a finite distance

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zissa, D. E.; Korsch, D.

    1985-01-01

    A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.

  7. Experimental and simulation studies of multivariable adaptive optimization of continuous bioreactors using bilevel forgetting factors.

    PubMed

    Chang, Y K; Lim, H C

    1989-08-20

    A multivariable on-line adaptive optimization algorithm using a bilevel forgetting factor method was developed and applied to a continuous baker's yeast culture in simulation and experimental studies to maximize the cellular productivity by manipulating the dilution rate and the temperature. The algorithm showed a good optimization speed and a good adaptability and reoptimization capability. The algorithm was able to stably maintain the process around the optimum point for an extended period of time. Two cases were investigated: an unconstrained and a constrained optimization. In the constrained optimization the ethanol concentration was used as an index for the baking quality of yeast cells. An equality constraint with a quadratic penalty was imposed on the ethanol concentration to keep its level close to a hypothetical "optimum" value. The developed algorithm was experimentally applied to a baker's yeast culture to demonstrate its validity. Only unconstrained optimization was carried out experimentally. A set of tuning parameter values was suggested after evaluating the results from several experimental runs. With those tuning parameter values the optimization took 50-90 h. At the attained steady state the dilution rate was 0.310 h(-1) the temperature 32.8 degrees C, and the cellular productivity 1.50 g/L/h.

  8. HPLC-MS/MS method for dexmedetomidine quantification with Design of Experiments approach: application to pediatric pharmacokinetic study.

    PubMed

    Szerkus, Oliwia; Struck-Lewicka, Wiktoria; Kordalewska, Marta; Bartosińska, Ewa; Bujak, Renata; Borsuk, Agnieszka; Bienert, Agnieszka; Bartkowska-Śniatkowska, Alicja; Warzybok, Justyna; Wiczling, Paweł; Nasal, Antoni; Kaliszan, Roman; Markuszewski, Michał Jan; Siluk, Danuta

    2017-02-01

    The purpose of this work was to develop and validate a rapid and robust LC-MS/MS method for the determination of dexmedetomidine (DEX) in plasma, suitable for analysis of a large number of samples. Systematic approach, Design of Experiments, was applied to optimize ESI source parameters and to evaluate method robustness, therefore, a rapid, stable and cost-effective assay was developed. The method was validated according to US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (5-2500 pg/ml), Results: Experimental design approach was applied for optimization of ESI source parameters and evaluation of method robustness. The method was validated according to the US FDA guidelines. LLOQ was determined at 5 pg/ml. The assay was linear over the examined concentration range (R 2 > 0.98). The accuracies, intra- and interday precisions were less than 15%. The stability data confirmed reliable behavior of DEX under tested conditions. Application of Design of Experiments approach allowed for fast and efficient analytical method development and validation as well as for reduced usage of chemicals necessary for regular method optimization. The proposed technique was applied to determination of DEX pharmacokinetics in pediatric patients undergoing long-term sedation in the intensive care unit.

  9. Research on teaching reform and practice of applied optics design experiment

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Tong, Chengguo; Zhang, Tao; Lu, Cunlian; Meng, Ting; Zhang, Yang; Wang, Ran; Sun, Weimin; Liu, Zhihai; Yang, Jun

    2017-08-01

    It is an important way to effectively improve applied optics experimental teaching effect and motivate the undergraduates' practice ability and creativity by means of scientific and systematic setting teaching contents and link. Based on the research and analysis of applied optics experiment teaching present condition at home and abroad, this paper aims to solve the existed problems and deficiencies during the experiment teaching in our university, and also puts forward some reform ideas and practice method from several aspects such as teaching thought, teaching content and mode, examination and evaluation and so on. Simultaneously, this paper also gives some suggestions on the future course development.

  10. Incomplete Detection of Nonclassical Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  11. Measurement of Insertion Loss of an Acoustic Treatment in the Presence of Additional Uncorrelated Sound Sources

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.

    2003-01-01

    A method to intended for measurement of the insertion loss of an acoustic treatment applied to an aircraft fuselage in-situ is documented in this paper. Using this method, the performance of a treatment applied to a limited portion of an aircraft fuselage can be assessed even though the untreated fuselage also radiates into the cabin, corrupting the intensity measurement. This corrupting noise in the intensity measurement incoherent with the panel vibration of interest is removed by correlating the intensity to reference transducers such as accelerometers. Insertion loss of the acoustic treatments is estimated from the ratio of correlated intensity measurements with and without a treatment applied. In the case of turbulent boundary layer excitation of the fuselage, this technique can be used to assess the performance of noise control methods without requiring treatment of the entire fuselage. Several experimental studies and numerical simulations have been conducted, and results from three case studies are documented in this paper. Conclusions are drawn about the use of this method to study aircraft sidewall treatments.

  12. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  13. Understanding Femtosecond-Pulse Laser Damage through Fundamental Physics Simulations

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A., III

    It did not take long after the invention of the laser for the field of laser damage to appear. For several decades researchers have been studying how lasers damage materials, both for the basic scientific understanding of highly nonequilibrium processes as well as for industrial applications. Femtosecond pulse lasers create little collateral damage and a readily reproducible damage pattern. They are easily tailored to desired specifications and are particularly powerful and versatile tools, contributing even more industrial interest in the field. As with most long-standing fields of research, many theoretical tools have been developed to model the laser damage process, covering a wide range of complexities and regimes of applicability. However, most of the modeling methods developed are either too limited in spatial extent to model the full morphology of the damage crater, or incorporate only a small subset of the important physics and require numerous fitting parameters and assumptions in order to match values interpolated from experimental data. Demonstrated in this work is the first simulation method capable of fundamentally modeling the full laser damage process, from the laser interaction all the way through to the resolidification of the target, on a large enough scale that can capture the full morphology of the laser damage crater so as to be compared directly to experimental measurements instead of extrapolated values, and all without any fitting parameters. The design, implementation, and testing of this simulation technique, based on a modified version of the particle-in-cell (PIC) method, is presented. For a 60 fs, 1 mum wavelength laser pulse with fluences of 0.5 J/cm 2, 1.0 J/cm2, and 2.0 J/cm2 the resulting laser damage craters in copper are shown and, using the same technique applied to experimental crater morphologies, a laser damage fluence threshold is calculated of 0.15 J/cm2, consistent with current experiments performed under conditions similar to those in the simulation. Lastly, this method is applied to the phenomenon known as LIPSS, or Laser-Induced Periodic Surface Structures; a problem of fundamental importance that is also of great interest for industrial applications. While LIPSS have been observed for decades in laser damage experiments, the exact physical mechanisms leading to the periodic corrugation on the surface of a target have been highly debated, with no general consensus. Applying this technique to a situation known to create LIPSS in a single shot, the generation of this periodicity is observed, the wavelength of the damage is consistent with experimental measures and, due to the fundamental nature of the simulation method, the physical mechanisms behind LIPSS are examined. The mechanism behind LIPSS formation in the studied regime is shown to be the formation of and interference with an evanescent surface electromagnetic wave known as a surface plasmon-polariton. This shows that not only can this simulation technique model a basic laser damage situation, but it is also flexible and powerful enough to be applied to complex areas of research, allowing for new physical insight in regimes that are difficult to probe experimentally.

  14. In situ potential distribution measurement in an all-vanadium flow battery.

    PubMed

    Liu, Qinghua; Turhan, Ahmet; Zawodzinski, Thomas A; Mench, Matthew M

    2013-07-18

    An experimental method for measurement of local redox potential within multilayer electrodes was developed and applied to all-vanadium redox flow batteries (VRFBs). Through-plane measurement at the positive side reveals several important phenomena including potential distribution, concentration distribution of active species and the predominant reaction location within the porous carbon electrodes.

  15. NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items

    ERIC Educational Resources Information Center

    Topczewski, Joseph J.; Topczewski, Anna M.; Tang, Hui; Kendhammer, Lisa K.; Pienta, Norbert J.

    2017-01-01

    Nuclear magnetic resonance spectroscopy (NMR) plays a key role in introductory organic chemistry, spanning theory, concepts, and experimentation. Therefore, it is imperative that the instruction methods for NMR are both efficient and effective. By utilizing eye tracking equipment, the researchers were able to monitor how second-semester organic…

  16. Utilizing Mutual Aid in Reducing Adolescent Substance Use and Developing Group Engagement

    ERIC Educational Resources Information Center

    Mogro-Wilson, Cristina; Letendre, Joan; Toi, Hiroki; Bryan, Janelle

    2015-01-01

    Objective: This study assessed the effectiveness of mutual aid groups for high school students. Methods: A quasi-experimental design was applied to 242 adolescents, where every other adolescent was assigned to the intervention or the control condition. The study evaluated the influence of implementing mutual aid groups in decreasing perceived risk…

  17. Blending and nudging in fluid dynamics: some simple observations

    NASA Astrophysics Data System (ADS)

    Germano, M.

    2017-10-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.

  18. Microvascular Autonomic Composites

    DTIC Science & Technology

    2012-01-06

    thermogravimetric analysis (TGA) was employed. The double wall allowed for increased thermal stability of the microcapsules, which was...fluorescent nanoparticles (Berfield et al. 2006). Digital Image Correlation (DIC) is a data analysis method, which applies a mathematical...Theme IV: Experimental Assessment & Analysis 2.4.1 Optical diagnostics for complex microfluidic systems pg. 50 2.4.2 Fluorescent thermometry

  19. A Formal Construction of Term Classes. Technical Report No. TR73-18.

    ERIC Educational Resources Information Center

    Yu, Clement T.

    The computational complexity of a formal process for the construction of term classes for information retrieval is examined. While the process is proven to be difficult computationally, heuristic methods are applied. Experimental results are obtained to illustrate the maximum possible improvement in system performance of retrieval using the formal…

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. A Materials Index--Its Storage, Retrieval, and Display

    ERIC Educational Resources Information Center

    Rosen, Carol Z.

    1973-01-01

    An experimental procedure for indexing physical materials based on simple syntactical rules was tested by encoding the materials in the journal, Applied Physics Letters,'' to produce a materials index. The syntax and numerous examples together with an indication of the method by which retrieval can be effected are presented. (5 references)…

  2. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    NASA Astrophysics Data System (ADS)

    Schablinski, Jan; Block, Dietmar

    2015-02-01

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  3. Validation of the Quantitative Diagnostic Thinking Inventory for Athletic Training: A Pilot Study

    ERIC Educational Resources Information Center

    Kicklighter, Taz; Barnum, Mary; Geisler, Paul R.; Martin, Malissa

    2016-01-01

    Context: The cognitive process of making a clinical decision lies somewhere on a continuum between novices using hypothetico-deductive reasoning and experts relying more on case pattern recognition. Although several methods exist for measuring facets of clinical reasoning in specific situations, none have been experimentally applied, as of yet, to…

  4. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs.

    PubMed

    Schiavon, Marco; Marulli, Giuseppe; Zuin, Andrea; Lunardi, Francesca; Villoresi, Paolo; Bonora, Stefano; Calabrese, Fiorella; Rea, Federico

    2013-05-01

    Alveolar air leaks represent a challenging problem in thoracic surgery, leading to increased patient morbidity and prolonged hospitalization. Several methods have been used, but no ideal technique exists yet. We investigated the lung-sealing capacity of an experimental kit for laser tissue welding. The kit is composed of a semiconductor laser system applied on a protein substrate associated with a chromophore that increases absorption. In vitro tests on porcine lung tissue were done to define ideal laser parameters (power 100 Å, frequency 50 Hz, pulse duration 400 µs) and protein substrate dilution (50%). For in vivo tests, through a left thoracotomy, 14 pigs received two different lung damages: a linear incision and a circular incision. Protein substrate applied on damaged areas was treated with laser to obtain a layer that reconstituted the integrity of the visceral pleura. Air leaks were intraoperatively evaluated by water submersion test with an airway pressure of 20 cmH2O. Animals were sacrificed at postoperative days 0 and 7 to study early and late pathological features. After applying laser treatment, no air leaks were seen in all proofs except in 2 cases in which a second application was required. At time 0, pathological damage mostly consisted of superficial alveolar necrotic tissue covered by protein membrane. At time 7, a complete recovery of lung lesions by fibrous scar with slight inflammatory reaction of adjacent lung tissue was seen. This experimental study demonstrated the effectiveness of laser tissue welding applied to seal air leaks after lung surgery. Further studies are needed to verify acceptability for human application.

  5. Time series modeling of human operator dynamics in manual control tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.

  6. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  7. Three-dimensional finite-element analysis of chevron-notched fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.

  8. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  9. Alternatives to animal testing: A review.

    PubMed

    Doke, Sonali K; Dhawale, Shashikant C

    2015-07-01

    The number of animals used in research has increased with the advancement of research and development in medical technology. Every year, millions of experimental animals are used all over the world. The pain, distress and death experienced by the animals during scientific experiments have been a debating issue for a long time. Besides the major concern of ethics, there are few more disadvantages of animal experimentation like requirement of skilled manpower, time consuming protocols and high cost. Various alternatives to animal testing were proposed to overcome the drawbacks associated with animal experiments and avoid the unethical procedures. A strategy of 3 Rs (i.e. reduction, refinement and replacement) is being applied for laboratory use of animals. Different methods and alternative organisms are applied to implement this strategy. These methods provide an alternative means for the drug and chemical testing, up to some levels. A brief account of these alternatives and advantages associated is discussed in this review with examples. An integrated application of these approaches would give an insight into minimum use of animals in scientific experiments.

  10. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  11. Alternatives to animal testing: A review

    PubMed Central

    Doke, Sonali K.; Dhawale, Shashikant C.

    2013-01-01

    The number of animals used in research has increased with the advancement of research and development in medical technology. Every year, millions of experimental animals are used all over the world. The pain, distress and death experienced by the animals during scientific experiments have been a debating issue for a long time. Besides the major concern of ethics, there are few more disadvantages of animal experimentation like requirement of skilled manpower, time consuming protocols and high cost. Various alternatives to animal testing were proposed to overcome the drawbacks associated with animal experiments and avoid the unethical procedures. A strategy of 3 Rs (i.e. reduction, refinement and replacement) is being applied for laboratory use of animals. Different methods and alternative organisms are applied to implement this strategy. These methods provide an alternative means for the drug and chemical testing, up to some levels. A brief account of these alternatives and advantages associated is discussed in this review with examples. An integrated application of these approaches would give an insight into minimum use of animals in scientific experiments. PMID:26106269

  12. Extraction of memory colors for preferred color correction in digital TVs

    NASA Astrophysics Data System (ADS)

    Ryu, Byong Tae; Yeom, Jee Young; Kim, Choon-Woo; Ahn, Ji-Young; Kang, Dong-Woo; Shin, Hyun-Ho

    2009-01-01

    Subjective image quality is one of the most important performance indicators for digital TVs. In order to improve subjective image quality, preferred color correction is often employed. More specifically, areas of memory colors such as skin, grass, and sky are modified to generate pleasing impression to viewers. Before applying the preferred color correction, tendency of preference for memory colors should be identified. It is often accomplished by off-line human visual tests. Areas containing the memory colors should be extracted then color correction is applied to the extracted areas. These processes should be performed on-line. This paper presents a new method for area extraction of three types of memory colors. Performance of the proposed method is evaluated by calculating the correct and false detection ratios. Experimental results indicate that proposed method outperform previous methods proposed for the memory color extraction.

  13. Ghost artifact cancellation using phased array processing.

    PubMed

    Kellman, P; McVeigh, E R

    2001-08-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples.

  14. Ghost Artifact Cancellation Using Phased Array Processing

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638

  15. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  16. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min

    2013-12-01

    The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.

  17. Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals

    NASA Astrophysics Data System (ADS)

    Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin

    2016-12-01

    Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.

  18. Spotting the difference in molecular dynamics simulations of biomolecules

    NASA Astrophysics Data System (ADS)

    Sakuraba, Shun; Kono, Hidetoshi

    2016-08-01

    Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.

  19. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  20. Effects of reading-oriented tasks on students' reading comprehension of geometry proof

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Lin; Lin, Fou-Lai

    2012-06-01

    This study compared the effects of reading-oriented tasks and writing-oriented tasks on students' reading comprehension of geometry proof (RCGP). The reading-oriented tasks were designed with reading strategies and the idea of problem posing. The writing-oriented tasks were consistent with usual proof instruction for writing a proof and applying it. Twenty-two classes of ninth-grade students ( N = 683), aged 14 to 15 years, and 12 mathematics teachers participated in this quasi-experimental classroom study. While the experimental group was instructed to read and discuss the reading tasks in two 45-minute lessons, the control group was instructed to prove and apply the same propositions. Generalised estimating equation (GEE) method was used to compare the scores of the post-test and the delayed post-test with the pre-test scores as covariates. Results showed that the total scores of the delayed post-test of the experimental group were significantly higher than those of the control group. Furthermore, the scores of the experimental group on all facets of reading comprehension except the application facet were significantly higher than those of the control group for both the post-test and delayed post-test.

  1. TummyTrials: A Feasibility Study of Using Self-Experimentation to Detect Individualized Food Triggers.

    PubMed

    Karkar, Ravi; Schroeder, Jessica; Epstein, Daniel A; Pina, Laura R; Scofield, Jeffrey; Fogarty, James; Kientz, Julie A; Munson, Sean A; Vilardaga, Roger; Zia, Jasmine

    2017-05-02

    Diagnostic self-tracking, the recording of personal information to diagnose or manage a health condition, is a common practice, especially for people with chronic conditions. Unfortunately, many who attempt diagnostic self-tracking have trouble accomplishing their goals. People often lack knowledge and skills needed to design and conduct scientifically rigorous experiments, and current tools provide little support. To address these shortcomings and explore opportunities for diagnostic self-tracking, we designed, developed, and evaluated a mobile app that applies a self-experimentation framework to support patients suffering from irritable bowel syndrome (IBS) in identifying their personal food triggers. TummyTrials aids a person in designing, executing, and analyzing self-experiments to evaluate whether a specific food triggers their symptoms. We examined the feasibility of this approach in a field study with 15 IBS patients, finding that participants could use the tool to reliably undergo a self-experiment. However, we also discovered an underlying tension between scientific validity and the lived experience of self-experimentation. We discuss challenges of applying clinical research methods in everyday life, motivating a need for the design of self-experimentation systems to balance rigor with the uncertainties of everyday life.

  2. Limitations of Lifting-Line Theory for Estimation of Aileron Hinge-Moment Characteristics

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S.; Gillis, Clarence L.

    1943-01-01

    Hinge-moment parameters for several typical ailerons were calculated from section data with the aspect-ratio correction as usually determined from lifting-line theory. The calculations showed that the agreement between experimental and calculated results was unsatisfactory. An additional aspect-ratio correction, calculated by the method of lifting-surface theory, was applied to the slope of the curve of hinge-moment coefficient against angle of attack at small angles of attack. This so-called streamline-curvature correction brought the calculated and experimental results into satisfactory agreement.

  3. Experimental entanglement distillation of two-qubit mixed states under local operations.

    PubMed

    Wang, Zhi-Wei; Zhou, Xiang-Fa; Huang, Yun-Feng; Zhang, Yong-Sheng; Ren, Xi-Feng; Guo, Guang-Can

    2006-06-09

    We experimentally demonstrate optimal entanglement distillation from two forms of two-qubit mixed states under local filtering operations according to the constructive method introduced by [F. Verstraete, Phys. Rev. A 64, 010101(R) (2001)10.1103/PhysRevA.64.010101]. In principle, our setup can be easily applied to distilling entanglement from arbitrary two-qubit partially mixed states. We also test the violation of the Clauser-Horne-Shinmony-Holt inequality for the distilled state from the first form of mixed state to show its "hidden nonlocality."

  4. Distance dependence in photo-induced intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1986-09-01

    The distance dependence of the rate of photo-induced electron transfer reactions is studied. A quantum mechanical method CNDO/S is applied to a series of molecules recently investigated by Hush et al. experimentally. The calculations show a large interaction through the saturated bridge which connects the two chromophores. The electronic matrix element HAB decreases a factor 10 in about 4 Å. There is also a decrease of the rate due to less exothermicity for the longer molecule. The results are in fair agreement with the experimental results.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  6. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  7. Investigation of different C-backings for targets

    NASA Astrophysics Data System (ADS)

    Hübner, Annett; Kindler, Birgit; Lommel, Bettina; Steiner, Jutta; Yakusheva, Vera; Khuyagbaatar, J.; Hinde, David J.; Dasgupta, Mahananda

    2018-05-01

    For a special application, carbon-backings with a very flat surface, microscopically as well as macroscopically, were needed as backings for targets of enriched isotopes. However, betaine-sucrose routinely applied at GSI as parting agent for carbon deposition results in a microscopically rough surface which was not perfectly satisfying the experimental requirements. For these targets we investigated the carbon-backing quality in relation to the applied different parting agents and different deposition processes. In this paper we report on the yield, on the structure of the carbon layers and the deposited target layer of 208PbS, 206PbS, and 142NdF3 depending on the parting agent, the thickness and the deposition methods. We report on elastic scattering experiments with a 48Ti-beam demonstrating the influence of the structure of the carbon backing on the experimental results.

  8. Signal processing for molecular and cellular biological physics: an emerging field.

    PubMed

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  9. Signal processing for molecular and cellular biological physics: an emerging field

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  10. Practical application of stereological methods in experimental kidney animal models.

    PubMed

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Optimizing Associative Experimental Design for Protein Crystallization Screening

    PubMed Central

    Dinç, Imren; Pusey, Marc L.; Aygün, Ramazan S.

    2016-01-01

    The goal of protein crystallization screening is the determination of the main factors of importance to crystallizing the protein under investigation. One of the major issues about determining these factors is that screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for maximizing the chances of a successful (crystalline) outcome. In this paper, we propose an experimental design method called “Associative Experimental Design (AED)” and an optimization method includes eliminating prohibited combinations and prioritizing reagents based on AED analysis of results from protein crystallization experiments. AED generates candidate cocktails based on these initial screening results. These results are analyzed to determine those screening factors in chemical space that are most likely to lead to higher scoring outcomes, crystals. We have tested AED on three proteins derived from the hyperthermophile Thermococcus thioreducens, and we applied an optimization method to these proteins. Our AED method generated novel cocktails (count provided in parentheses) leading to crystals for three proteins as follows: Nucleoside diphosphate kinase (4), HAD superfamily hydrolase (2), Nucleoside kinase (1). After getting promising results, we have tested our optimization method on four different proteins. The AED method with optimization yielded 4, 3, and 20 crystalline conditions for holo Human Transferrin, archaeal exosome protein, and Nucleoside diphosphate kinase, respectively. PMID:26955046

  12. Electronic-structure theory of plutonium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean

    2009-03-01

    The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.

  13. Steady and unsteady aerodynamic forces from the SOUSSA surface-panel method for a fighter wing with tip missile and comparison with experiment and PANAIR

    NASA Technical Reports Server (NTRS)

    Cunningham, Herbert J.

    1987-01-01

    The body surface-panel method SOUSSA is applied to calculate steady and unsteady lift and pitching moment coefficients on a thin fighter-type wing model with and without a tip-mounted missile. Comparisons are presented with experimental results and with PANAIR and PANAIR-related calculations for Mach numbers from 0.6 to 0.9. In general the SOUSSA program, the experiments, and the PANAIR (and related) programs give lift and pitching-moment results which agree at least fairly well, except for the unsteady clean-wing experimental moment and the unsteady moment on the wing tip body calculated by a PANAIR-predecessor program at a Mach number of 0.8.

  14. Effects of dynamical screening on single ionization of potassium by electron impact in doubly symmetric geometry

    NASA Astrophysics Data System (ADS)

    Sun, S. Y.; Jia, X. F.; Miao, X. Y.; Zhang, J. F.

    2014-03-01

    The dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of potassium by electron impact. Triple differential cross-sections (TDCS) are calculated in doubly symmetric geometry at excess energies of 6, 10, 15, 20, 30, 40, 50 and 60 eV. Comparisons are made with recent experimental data and theoretical predictions from a three-Coulomb-wave (3C) and distorted-wave Born approximation (DWBA). The DS3C method is able to reproduce most of the trend of experimental data and in good agreement with DWBA results. It is shown that the DS3C calculation provides much better shape and relative magnitude agreement with experiment.

  15. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Arijit K., E-mail: akde@lbl.gov; Fleming, Graham R., E-mail: grfleming@lbl.gov; Department of Chemistry, University of California at Berkeley, Berkeley, California 94702

    2014-05-21

    We present a novel experimental scheme for two-dimensional fluorescence-detected coherent spectroscopy (2D-FDCS) using a non-collinear beam geometry with the aid of “confocal imaging” of dynamic (population) grating and 27-step phase-cycling to extract the signal. This arrangement obviates the need for distinct experimental designs for previously developed transmission detected non-collinear two-dimensional coherent spectroscopy (2D-CS) and collinear 2D-FDCS. We also describe a novel method for absolute phasing of the 2D spectrum. We apply this method to record 2D spectra of a fluorescent dye in solution at room temperature and observe “spectral diffusion.”.

  16. Method of experimental and calculation determination of dissipative properties of carbon

    NASA Astrophysics Data System (ADS)

    Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.

    2017-12-01

    This paper describes the process of definition of relations between the damping ratio and strain/state levels in a material. For these purposes, the experimental-calculation approach was applied. The experimental research was performed on plane composite specimens. The tests were accompanied by finite element modeling using the ANSYS software. Optimization was used as a tool for FEM property setting and for finding the above-mentioned relations. A difference between the calculation and experimental results was accepted as objective functions of this optimization. The optimization cycle was implemented using the pSeven DATADVANCE software platform. The developed approach makes it possible to determine the relations between the damping ratio and strain/state levels in the material, which can be used for computer modeling of the structure response under dynamic loading.

  17. Ethical review of human experimentation in the consumer products industry.

    PubMed

    Steadman, J H

    1998-04-01

    Ethical review of human experimentation in the consumer products industry is important and provides instructive parallels and contrasts with clinical medical research. The procedures used in Unilever NV/plc are described. A central body sets standards for and monitors compliance with ethical review of human studies throughout Unilever. Guidance has been produced on many topics including issues applying generally to human experimentation and more specifically to the consumer products sector. Deficiencies and inconsistencies in the procedures for ethical review and the care of subjects during the conduct of studies have been identified and corrected. Appropriate uniform standards have been achieved across all Unilever operations. All human experimentation in the industry needs adequate ethical review. Although the methods used by individual companies may differ, procedures must ensure uniform high standards across a global industry.

  18. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  19. Passive wireless strain monitoring of tire using capacitance change

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2004-07-01

    In-service strain monitoring of tires of automobile is quite effective for improving the reliability of tires and Anti-lock Braking System (ABS). Since conventional strain gages have high stiffness and require lead wires, the conventional strain gages are cumbersome for the strain measurements of the tires. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tire itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tire monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tire is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of tire causes change of the tuning frequency. This change of the tuned radio wave enables us to measure the applied strain of the specimen wirelessly, without any power supply from outside. This new passive wireless method is applied to a specimen and the static applied strain is measured. As a result, the method is experimentally shown to be effective as a passive wireless strain monitoring of tires.

  20. Automated Segmentation of High-Resolution Photospheric Images of Active Regions

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Rao, Changhui

    2018-02-01

    Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).

  1. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  2. Free energy of formation of a crystal nucleus in incongruent solidification: Implication for modeling the crystallization of aqueous nitric acid droplets in polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Djikaev, Yuri S.; Ruckenstein, Eli

    2017-04-01

    Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σls of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σls based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σsv of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σsv of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σsv to the nucleation of nitric acid trihydrate crystals in PSC droplets of stoichiometric composition.

  3. Speckle noise removal applied to ultrasound image of carotid artery based on total least squares model.

    PubMed

    Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao

    2016-10-06

    An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.

  4. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  5. An improved parallel fuzzy connected image segmentation method based on CUDA.

    PubMed

    Wang, Liansheng; Li, Dong; Huang, Shaohui

    2016-05-12

    Fuzzy connectedness method (FC) is an effective method for extracting fuzzy objects from medical images. However, when FC is applied to large medical image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which causes miscalculation of edge points. In this paper, an improved algorithm is proposed by adding a correction step on the edge points. The improved algorithm can greatly enhance the calculation accuracy. In the improved method, an iterative manner is applied. In the first iteration, the affinity computation strategy is changed and a look up table is employed for memory reduction. In the second iteration, the error voxels because of asynchronism are updated again. Three different CT sequences of hepatic vascular with different sizes were used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to evaluate our improved method over these three data sets. Experimental results show that the improved algorithm can achieve a faster segmentation compared to the CPU version and higher accuracy than CUDA-kFOE. The calculation results were consistent with the CPU version, which demonstrates that it corrects the edge point calculation error of the original CUDA-kFOE. The proposed method has a comparable time cost and has less errors compared to the original CUDA-kFOE as demonstrated in the experimental results. In the future, we will focus on automatic acquisition method and automatic processing.

  6. From nonlinear optimization to convex optimization through firefly algorithm and indirect approach with applications to CAD/CAM.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  7. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380

  8. Hyperspectral imaging and multivariate analysis in the dried blood spots investigations

    NASA Astrophysics Data System (ADS)

    Majda, Alicja; Wietecha-Posłuszny, Renata; Mendys, Agata; Wójtowicz, Anna; Łydżba-Kopczyńska, Barbara

    2018-04-01

    The aim of this study was to apply a new methodology using the combination of the hyperspectral imaging and the dry blood spot (DBS) collecting. Application of the hyperspectral imaging is fast and non-destructive. DBS method offers the advantage also on the micro-invasive blood collecting and low volume of required sample. During experimental step, the reflected light was recorded by two hyperspectral systems. The collection of 776 spectral bands in the VIS-NIR range (400-1000 nm) and 256 spectral bands in the SWIR range (970-2500 nm) was applied. Pixel has the size of 8 × 8 and 30 × 30 µm for VIS-NIR and SWIR camera, respectively. The obtained data in the form of hyperspectral cubes were treated with chemometric methods, i.e., minimum noise fraction and principal component analysis. It has been shown that the application of these methods on this type of data, by analyzing the scatter plots, allows a rapid analysis of the homogeneity of DBS, and the selection of representative areas for further analysis. It also gives the possibility of tracking the dynamics of changes occurring in biological traces applied on the surface. For the analyzed 28 blood samples, described method allowed to distinguish those blood stains because of time of apply.

  9. A Modeling Insight into Adipose-Derived Stem Cell Myogenesis.

    PubMed

    Deshpande, Rajiv S; Grayson, Warren L; Spector, Alexander A

    2015-01-01

    Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain.

  10. The computation of three-dimensional flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.

    1991-01-01

    A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.

  11. A Comparison of Interactional Aerodynamics Methods for a Helicopter in Low Speed Flight

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Letnikov, Victor; Bavykina, Irena; Chaffin, Mark S.

    1998-01-01

    Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.

  12. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data.

    PubMed

    Wang, Kung-Jeng; Makond, Bunjira; Wang, Kung-Min

    2013-11-09

    Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE), cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR.

  13. Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.

    2011-01-01

    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.

  14. Higher-Order Spectral Analysis of F-18 Flight Flutter Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Dunn, Shane

    2005-01-01

    Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  15. Contact angle determination procedure and detection of an invisible surface film

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Grat, R.

    1990-01-01

    The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.

  16. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  17. Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.

    PubMed

    Morris, Jeffrey S

    2012-01-01

    In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.

  18. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters.

    PubMed

    Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T

    2016-08-07

    The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.

  19. Damage detection in composite materials using Lamb wave methods

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  20. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  1. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  2. Thermal Imaging Applied to Cryocrystallography: Cryocooling and Beam Heating (Part I)

    NASA Technical Reports Server (NTRS)

    Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark; Kazmierczak, Michael

    2006-01-01

    Thermal imaging provides a non-invasive method to study both the cryocooling process and the heating due to the X-ray beam interaction with a sample. The method has been used successfully to image cryocooling in a number of experimental situations, i.e. cooling as a function of sample volume and as a function of cryostream orientation. Although there are experimental limitations to the method, it has proved a powerful technique to aid cryocrystallography development. Due to the rapid spatial temperature information provided about the sample it is also a powerful tool in the testing of mathematical models. Recently thermal imaging has been used to measure the temperature distribution on both a model and typical crystal samples illuminated with an X-ray beam produced by an undulator. A brief overview of thermal imaging and previous results will be presented. In addition, a detailed description of the calibration and experimental aspects of the beam heating measurements will be described. This will complement the following talk on the mathematical modeling and analysis of the results.

  3. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

  4. A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.

    2009-01-01

    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.

  5. The use of experimental design for the development of a capillary zone electrophoresis method for the quantitation of captopril.

    PubMed

    Mukozhiwa, S Y; Khamanga, S M M; Walker, R B

    2017-09-01

    A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.

  6. The effectiveness of the error reporting promoting program on the nursing error incidence rate in Korean operating rooms.

    PubMed

    Kim, Myoung-Soo; Kim, Jung-Soon; Jung, In Sook; Kim, Young Hae; Kim, Ho Jung

    2007-03-01

    The purpose of this study was to develop and evaluate an error reporting promoting program(ERPP) to systematically reduce the incidence rate of nursing errors in operating room. A non-equivalent control group non-synchronized design was used. Twenty-six operating room nurses who were in one university hospital in Busan participated in this study. They were stratified into four groups according to their operating room experience and were allocated to the experimental and control groups using a matching method. Mann-Whitney U Test was used to analyze the differences pre and post incidence rates of nursing errors between the two groups. The incidence rate of nursing errors decreased significantly in the experimental group compared to the pre-test score from 28.4% to 15.7%. The incidence rate by domains, it decreased significantly in the 3 domains-"compliance of aseptic technique", "management of document", "environmental management" in the experimental group while it decreased in the control group which was applied ordinary error-reporting method. Error-reporting system can make possible to hold the errors in common and to learn from them. ERPP was effective to reduce the errors of recognition-related nursing activities. For the wake of more effective error-prevention, we will be better to apply effort of risk management along the whole health care system with this program.

  7. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  8. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

    PubMed

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2017-01-01

    Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

  9. Comparison of Classification Methods for Detecting Emotion from Mandarin Speech

    NASA Astrophysics Data System (ADS)

    Pao, Tsang-Long; Chen, Yu-Te; Yeh, Jun-Heng

    It is said that technology comes out from humanity. What is humanity? The very definition of humanity is emotion. Emotion is the basis for all human expression and the underlying theme behind everything that is done, said, thought or imagined. Making computers being able to perceive and respond to human emotion, the human-computer interaction will be more natural. Several classifiers are adopted for automatically assigning an emotion category, such as anger, happiness or sadness, to a speech utterance. These classifiers were designed independently and tested on various emotional speech corpora, making it difficult to compare and evaluate their performance. In this paper, we first compared several popular classification methods and evaluated their performance by applying them to a Mandarin speech corpus consisting of five basic emotions, including anger, happiness, boredom, sadness and neutral. The extracted feature streams contain MFCC, LPCC, and LPC. The experimental results show that the proposed WD-MKNN classifier achieves an accuracy of 81.4% for the 5-class emotion recognition and outperforms other classification techniques, including KNN, MKNN, DW-KNN, LDA, QDA, GMM, HMM, SVM, and BPNN. Then, to verify the advantage of the proposed method, we compared these classifiers by applying them to another Mandarin expressive speech corpus consisting of two emotions. The experimental results still show that the proposed WD-MKNN outperforms others.

  10. Global optimization and reflectivity data fitting for x-ray multilayer mirrors by means of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Pareschi, Giovanni

    2001-01-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thicknesses, densities, roughness). Non-linear fitting of experimental data with simulations requires to use initial values sufficiently close to the optimum value. This is a difficult task when the space topology of the variables is highly structured, as in our case. The application of global optimization methods to fit multilayer reflectivity data is presented. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (e.g. selection, crossover, mutation) on the members of the parent generation. The pressure of selection drives the population to include 'good' individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C multilayers recorded at the ESRF BM5 are presented. This method could be also applied to the help in the design of multilayers optimized for a target application, like for an astronomical grazing-incidence hard X-ray telescopes.

  11. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.

  12. Effects of organic amendments on water use efficiency evaluated by a stable isotope technique. A case study in experimental mine restoration.

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Delgado Huertas, Antonio; Miralles Mellado, Isabel; Solé Benet, Albert

    2017-04-01

    Water deficit and low infiltration reduce restoration success in semiarid post-mine soils, where high mortality of plants has been observed in early years of the restoration. Species that originate from arid and semi-arid regions are often considered appropriate for xeriscaping, but there have been relatively few direct measurements of main water related parameters as water use efficiency (WUE) in restoration strategies. In this respect, the goal of this study was to analyse the efficiency with which native plants use water when organic amendments and mulches are applied in mine soil restorations. The experimental design was established in a calcareous quarry in Almería (SE Spain), under arid climate. We tested two organic amendments (sewage sludge from water treatment plant and compost from vegetable residues) and gravel mulch. Three plant species were planted in 50 m2 experimental plots: Macrochloa tenacissima, Genista umbellata and Anthyllis cytisoides. Soil moisture was monitored at a depth of 0.1 m during 4 years and at the end of this period stable isotope of Carbon (δ13C), considered as an effective method to evaluate the plant intrinsic WUE, was measured. We did not observe significant differences in soil moisture among the different soil restoration treatments. With regard to WUE, species is the factor most important to establish differences. Anthyllis cytisoides showed the lowest mean δ13C values, indicating low WUE. On the contrary, Macrochloa tenacissima presented high δ13C values. Moreover, species showed higher δ13C values when gravel mulch was applied. To increase WUE in restored soils under arid conditions it is necessary to apply water conservation methods and to use the most appropriate species.

  13. A Novel Method for Quantifying Human In Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry.

    PubMed

    Alshareef, Ahmed; Giudice, J Sebastian; Forman, Jason; Salzar, Robert S; Panzer, Matthew B

    2018-03-01

    Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite element (FE) models of the brain have been crucial for understanding concussion and for developing injury mitigation systems; however, the experimental brain deformation data currently used to validate these models are limited. The objective of this study was to develop a methodology for the investigation of in situ three-dimensional brain deformation during pure rotational loading of the head, using sonomicrometry. Sonomicrometry uses ultrasonic pulses to measure the dynamic distances between piezoelectric crystals implanted in any sound-transmitting media. A human cadaveric head-neck specimen was acquired 14 h postmortem and was instrumented with an array of 32 small sonomicrometry crystals embedded in the head: 24 crystals were implanted in the brain, and 8 were fixed to the inner skull. A dynamic rotation was then applied to the head using a closed-loop controlled test device. Four pulses with different severity levels were applied around three orthogonal anatomical axes of rotation. A repeated test of the highest severity rotation was conducted in each axis to assess repeatability. All tests were completed within 56 h postmortem. Overall, the combined experimental and sonomicrometry methods were demonstrated to reliably and repeatedly capture three-dimensional dynamic deformation of an intact human brain. These methods provide a framework for using sonomicrometry to acquire multidimensional experimental data required for FE model development and validation, and will lend insight into the deformations sustained by the brain during impact.

  14. Fuzzy rule-based image segmentation in dynamic MR images of the liver

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Hata, Yutaka; Tokimoto, Yasuhiro; Ishikawa, Makato

    2000-06-01

    This paper presents a fuzzy rule-based region growing method for segmenting two-dimensional (2-D) and three-dimensional (3- D) magnetic resonance (MR) images. The method is an extension of the conventional region growing method. The proposed method evaluates the growing criteria by using fuzzy inference techniques. The use of the fuzzy if-then rules is appropriate for describing the knowledge of the legions on the MR images. To evaluate the performance of the proposed method, it was applied to artificially generated images. In comparison with the conventional method, the proposed method shows high robustness for noisy images. The method then applied for segmenting the dynamic MR images of the liver. The dynamic MR imaging has been used for diagnosis of hepatocellular carcinoma (HCC), portal hypertension, and so on. Segmenting the liver, portal vein (PV), and inferior vena cava (IVC) can give useful description for the diagnosis, and is a basis work of a pres-surgery planning system and a virtual endoscope. To apply the proposed method, fuzzy if-then rules are derived from the time-density curve of ROIs. In the experimental results, the 2-D reconstructed and 3-D rendered images of the segmented liver, PV, and IVC are shown. The evaluation by a physician shows that the generated images are comparable to the hepatic anatomy, and they would be useful to understanding, diagnosis, and pre-surgery planning.

  15. Quasi-experimental study on the effectiveness of a flipped classroom for teaching adult health nursing.

    PubMed

    Park, Esther O; Park, Ji Hyun

    2018-04-01

    The effectiveness of flipped learning as one of the teaching methods of active learning has been left unexamined in nursing majors, compared to the frequent attempts to uncover the effectiveness of it in other disciplines. The purpose of this study was to reveal the effectiveness of flipped learning pedagogy in an adult health nursing course, controlling for other variables. The study applied a quasi-experimental approach, comparing pre- and post-test results in learning outcomes. Included in this analysis were the records of 81 junior nursing major students. The convenience sampling method was used to select the participants. Those in the experimental group were exposed to a flipped classroom experience that was given after the completion of their traditional class. The students' learning outcomes and the level of critical thinking skills were evaluated before and after the intervention of the flipped classroom. After the flipped classroom experience, the scores of the students' achievement in subject topics and critical thinking skills, specifically intellectual integrity and creativity, showed a greater level of increase than those of their controlled counterparts. This remained true even after controlling for previous academic performance and the level of creativity. This study confirmed the effectiveness of the flipped classroom as a measure of active learning by applying a quantitative approach. But, regarding the significance of the initial contribution of flipped learning in the discipline of nursing science, carrying out a more authentic experimental study could justify the impact of flipped learning pedagogy. © 2017 Japan Academy of Nursing Science.

  16. How to validate similarity in linear transform models of event-related potentials between experimental conditions?

    PubMed

    Cong, Fengyu; Lin, Qiu-Hua; Astikainen, Piia; Ristaniemi, Tapani

    2014-10-30

    It is well-known that data of event-related potentials (ERPs) conform to the linear transform model (LTM). For group-level ERP data processing using principal/independent component analysis (PCA/ICA), ERP data of different experimental conditions and different participants are often concatenated. It is theoretically assumed that different experimental conditions and different participants possess the same LTM. However, how to validate the assumption has been seldom reported in terms of signal processing methods. When ICA decomposition is globally optimized for ERP data of one stimulus, we gain the ratio between two coefficients mapping a source in brain to two points along the scalp. Based on such a ratio, we defined a relative mapping coefficient (RMC). If RMCs between two conditions for an ERP are not significantly different in practice, mapping coefficients of this ERP between the two conditions are statistically identical. We examined whether the same LTM of ERP data could be applied for two different stimulus types of fearful and happy facial expressions. They were used in an ignore oddball paradigm in adult human participants. We found no significant difference in LTMs (based on ICASSO) of N170 responses to the fearful and the happy faces in terms of RMCs of N170. We found no methods for straightforward comparison. The proposed RMC in light of ICA decomposition is an effective approach for validating the similarity of LTMs of ERPs between experimental conditions. This is very fundamental to apply group-level PCA/ICA to process ERP data. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Finelli, George B.

    1991-01-01

    This paper affirms that the quantification of life-critical software reliability is infeasible using statistical methods whether applied to standard software or fault-tolerant software. The classical methods of estimating reliability are shown to lead to exhorbitant amounts of testing when applied to life-critical software. Reliability growth models are examined and also shown to be incapable of overcoming the need for excessive amounts of testing. The key assumption of software fault tolerance separately programmed versions fail independently is shown to be problematic. This assumption cannot be justified by experimentation in the ultrareliability region and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multiversion software experiments support this affirmation.

  18. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  19. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; Prestridge, Katherine; Adrian, Ronald J.

    2018-07-01

    We introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficient for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. We apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.

  20. Development and validation of an MEKC method for determination of nitrogen-containing drugs in pharmaceutical preparations.

    PubMed

    Buiarelli, Francesca; Coccioli, Franco; Jasionowska, Renata; Terracciano, Alessandro

    2008-09-01

    A fast and accurate micellar electrokinetic capillary chromatography method was developed for quality control of pharmaceutical preparations containing cold remedies as acetaminophen, salicylamide, caffeine, phenylephrine, pseudoephedrine, norephedrine and chlorpheniramine. The method optimization was realized on a Beckman P/ACE System MDQ instrument. The baseline separation of seven analytes was performed in an uncoated fused silica capillary internal diameter (ID)=50 microm using tris-borate (20 mM, pH=8.5) containing sodium dodecyl sulphate 30 mM BGE. On line-UV detection at 214 nm was performed and the applied voltage was 10 kV. The operating temperature was 25 degrees C. After experimental conditions optimization, the proposed method was validated. The evaluated parameters were: precision of migration time and of corrected peak area ratio, linearity range, limit of detection, limit of quantification, accuracy (recovery), ruggedness and applicability. The method was then successfully applied for the analysis of three pharmaceutical preparations containing some of the analytes listed before.

  1. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  2. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  3. A theoretical study of optical contact of vitreous silica

    NASA Technical Reports Server (NTRS)

    Barber, T. D.

    1972-01-01

    Optical contact has been proposed as a method of bonding quartz parts of the Stanford relativity satellite. The theory of the van der Waals force is outlined and applied to the problem of optical contact. The effect of various contaminations is discussed and a program of experimentation for further study of the problem is presented.

  4. A Short Study on the Validity of Miller's Theorem Applied to Transistor Amplifier High-Frequency Performance

    ERIC Educational Resources Information Center

    Schubert, T. F., Jr.; Kim, E. M.

    2009-01-01

    The use of Miller's Theorem in the determination of the high-frequency cutoff frequency of transistor amplifiers was recently challenged by a paper published in this TRANSACTIONS. Unfortunately, that paper provided no simulation or experimental results to bring credence to the challenge or to validate the alternate method of determination…

  5. Web-Based Learning in a Geometry Course

    ERIC Educational Resources Information Center

    Chan, Hsungrow; Tsai, Pengheng; Huang, Tien-Yu

    2006-01-01

    This study concerns applying Web-based learning with learner controlled instructional materials in a geometry course. The experimental group learned in a Web-based learning environment, and the control group learned in a classroom. We observed that the learning method accounted for a total variation in learning effect of 19.1% in the 3rd grade and…

  6. Status of Single-Case Research Designs for Evidence-Based Practice

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Turygin, Nicole C.; Beighley, Jennifer; Matson, Michael L.

    2012-01-01

    The single-case research design has become a paradoxical methodology in the applied sciences. While various experimental designs have been in place for over 50 years, there has not been wide acceptance of single-case methodology outside clinical and school psychology, or the field of special education. These methods were developed in the U.S.A.,…

  7. Infant Eye-Tracking in the Context of Goal-Directed Actions

    ERIC Educational Resources Information Center

    Corbetta, Daniela; Guan, Yu; Williams, Joshua L.

    2012-01-01

    This paper presents two methods that we applied to our research to record infant gaze in the context of goal-oriented actions using different eye-tracking devices: head-mounted and remote eye-tracking. For each type of eye-tracking system, we discuss their advantages and disadvantages, describe the particular experimental setups we used to study…

  8. Reconceptualizing Teacher Education Programs: Applying Dewey's Theories to Service-Learning with Early Childhood Preservice Teachers

    ERIC Educational Resources Information Center

    Lake, Vickie E.; Winterbottom, Christian; Ethridge, Elizabeth A.; Kelly, Loreen

    2015-01-01

    Dewey's concept of enabling children to explore based on their own interests has evolved into investigations and projects using methods of exploration, experimentation, and discovery--three tenets of service-learning. Using mixed methodology, the authors examined the implementation of service-learning in a teacher education program. A total of 155…

  9. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  10. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  11. Robust Measurements of Phase Response Curves Realized via Multicycle Weighted Spike-Triggered Averages

    NASA Astrophysics Data System (ADS)

    Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio

    2017-02-01

    Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.

  12. [Comparison of minimally invasive extraction and traditional method in the extraction of impacted mandibular third molar].

    PubMed

    Xu, Fang; Zhang, Hui-Xia

    2016-10-01

    To compare minimally invasive extraction and traditional method in the extraction of impacted mandibular third molar. One hundred and sixty patients with impacted mandibular third molar were equally divided into two groups. Patients in the experimental group were treated with minimally invasive extraction, using implant machine and luxator, while patients in the control group were treated with traditional methods including use of orthodox chisel. The operation time, intraoperative and postoperative complications including deformation of extraction sockets, dry socket, limitation of mouth opening, pain and swelling, and fear were observed and compared between the two groups. The data were analyzed with SPSS18.0 software package. The operation time was (17.32±1.01) min in the experimental group, significantly shorter than the control group which was (33.46±1.12)min (P<0.05); significant difference was found in the incidence of root fracture, medium or severe tooth sockets deformation and incidence of psychological fear during operation between the control group and experimental group(P<0.05); the degree of mouth opening after surgery, the incidence of moderate or severe pain after surgery was significantly lower in the experimental than in the control group(P<0.05). Minimally invasive extraction of mandibular impacted wisdom tooth is better than traditional method, with shorter operation time and less intraoperative and postoperative complications, which should be widely applied in clinic.

  13. Identification of material constants for piezoelectric transformers by three-dimensional, finite-element method and a design-sensitivity method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2003-08-01

    In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.

  14. Compressive sensing method for recognizing cat-eye effect targets.

    PubMed

    Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo

    2013-10-01

    This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

  15. Statistical Modeling of an Optically Trapped Cilium

    NASA Astrophysics Data System (ADS)

    Flaherty, Justin; Resnick, Andrew

    We explore, analytically and experimentally, the stochastic dynamics of a biologically significant slender microcantilever, the primary cilium, held within an optical trap. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. Optical trapping is an ideal method to probe the mechanical response of a cilium due to the spatial localization and non-contact nature of the applied force. However, analysis of an optically trapped cilium is complicated both by the geometry of a cilium and boundary conditions. Here, we present experimentally measured mean-squared displacement data of trapped cilia where the trapping force is oppositely directed to the elastic restoring force of the ciliary axoneme, analytical modeling results deriving the mean-squared displacement of a trapped cilium using the Langevin approach, and apply our analytical results to the experimental data. We demonstrate that mechanical properties of the cilium can be accurately determined and efficiently extracted from the data using our model. It is hoped that improved measurements will result in deeper understanding of the biological function of cellular flow sensing by this organelle.

  16. Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Kylling, Arve; Cassiani, Massimo; Solveig Dinger, Anne; Stebel, Kerstin; Schmidbauer, Norbert; Stohl, Andreas

    2017-04-01

    Turbulence in stable planetary boundary layers often encountered in high latitudes influences the exchange fluxes of heat, momentum, water vapor and greenhouse gases between the Earth's surface and the atmosphere. In climate and meteorological models, such effects of turbulence need to be parameterized, ultimately based on experimental data. A novel experimental approach is being developed within the COMTESSA project in order to study turbulence statistics at high resolution. Using controlled tracer releases, high-resolution camera images and estimates of the background radiation, different tomographic algorithms can be applied in order to obtain time series of 3D representations of the scalar dispersion. In this preliminary work, using synthetic data, we investigate different reconstruction algorithms with emphasis on algebraic methods. We study the dependence of the reconstruction quality on the discretization resolution and the geometry of the experimental device in both 2 and 3-D cases. We assess the computational aspects of the iterative algorithms focusing of the phenomenon of semi-convergence applying a variety of stopping rules. We discuss different strategies for error reduction and regularization of the ill-posed problem.

  17. Ultrasonic and densimetric titration applied for acid-base reactions.

    PubMed

    Burakowski, Andrzej; Gliński, Jacek

    2014-01-01

    Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).

  18. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    PubMed

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  19. [Experimental rationale for the parameters of a rapid method for oxidase activity determination].

    PubMed

    Butorina, N N

    2010-01-01

    Experimental rationale is provided for the parameters of a rapid (1-2-min) test to concurrently determine the oxidase activity of all bacteria grown on the membrane filter after water filtration. Oxidase reagents that are the aqueous solutions of tetramethyl-p-phenylenediamine dihydrochloride and demethyl-p-phenylenediamine dihydrochloride have been first ascertained to exert no effect on the viability and enzymatic activity of bacteria after one-hour contact. An algorithm has been improved for the rapid oxidase activity test: the allowable time for bacteria to contact oxidase reagents and procedures for minimizing the effect on bacterial biochemical activity following the contact. An accelerated method based on lactose medium with tergitol 7 and Endo agar has been devised to determine coliform bacteria, by applying the rapid oxidase test: the time of a final response is 18-24 hours. The method has been included into GOST 52426-2005.

  20. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM

    NASA Astrophysics Data System (ADS)

    Mucha, Waldemar; Kuś, Wacław

    2018-01-01

    The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.

  1. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  2. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  3. Experimental studies of forensic odontology to aid in the identification process

    PubMed Central

    Saxena, Susmita; Sharma, Preeti; Gupta, Nitin

    2010-01-01

    The importance of dental identification is on the increase year after year. With the passage of time, the role of forensic odontology has increased as very often teeth and dental restorations are the only means of identification. Forensic odontology has played a key role in identification of persons in mass disasters (aviation, earthquakes, Tsunamis), in crime investigations, in ethnic studies, and in identification of decomposed and disfigured bodies like that of drowned persons, fire victims, and victims of motor vehicle accidents. The various methods employed in forensic odontology include tooth prints, radiographs, photographic study, rugoscopy, cheiloscopy and molecular methods. Investigative methods applied in forensic odontology are reasonably reliable, yet the shortcomings must be accounted for to make it a more meaningful and relevant procedure. This paper gives an overview of the various experimental studies to aid in the identification processes, discussing their feasibilities and limitations in day-to-day practice. PMID:21731343

  4. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  5. Calibration and Measurement in Turbulence Research by the Hot-Wire Method

    NASA Technical Reports Server (NTRS)

    Kovasznay, Kaszlo

    1947-01-01

    The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.

  6. Teaching critical thinking.

    PubMed

    Holmes, N G; Wieman, Carl E; Bonn, D A

    2015-09-08

    The ability to make decisions based on data, with its inherent uncertainties and variability, is a complex and vital skill in the modern world. The need for such quantitative critical thinking occurs in many different contexts, and although it is an important goal of education, that goal is seldom being achieved. We argue that the key element for developing this ability is repeated practice in making decisions based on data, with feedback on those decisions. We demonstrate a structure for providing suitable practice that can be applied in any instructional setting that involves the acquisition of data and relating that data to scientific models. This study reports the results of applying that structure in an introductory physics laboratory course. Students in an experimental condition were repeatedly instructed to make and act on quantitative comparisons between datasets, and between data and models, an approach that is common to all science disciplines. These instructions were slowly faded across the course. After the instructions had been removed, students in the experimental condition were 12 times more likely to spontaneously propose or make changes to improve their experimental methods than a control group, who performed traditional experimental activities. The students in the experimental condition were also four times more likely to identify and explain a limitation of a physical model using their data. Students in the experimental condition also showed much more sophisticated reasoning about their data. These differences between the groups were seen to persist into a subsequent course taken the following year.

  7. Teaching critical thinking

    PubMed Central

    Holmes, N. G.; Wieman, Carl E.; Bonn, D. A.

    2015-01-01

    The ability to make decisions based on data, with its inherent uncertainties and variability, is a complex and vital skill in the modern world. The need for such quantitative critical thinking occurs in many different contexts, and although it is an important goal of education, that goal is seldom being achieved. We argue that the key element for developing this ability is repeated practice in making decisions based on data, with feedback on those decisions. We demonstrate a structure for providing suitable practice that can be applied in any instructional setting that involves the acquisition of data and relating that data to scientific models. This study reports the results of applying that structure in an introductory physics laboratory course. Students in an experimental condition were repeatedly instructed to make and act on quantitative comparisons between datasets, and between data and models, an approach that is common to all science disciplines. These instructions were slowly faded across the course. After the instructions had been removed, students in the experimental condition were 12 times more likely to spontaneously propose or make changes to improve their experimental methods than a control group, who performed traditional experimental activities. The students in the experimental condition were also four times more likely to identify and explain a limitation of a physical model using their data. Students in the experimental condition also showed much more sophisticated reasoning about their data. These differences between the groups were seen to persist into a subsequent course taken the following year. PMID:26283351

  8. Quality by Design approach in the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol and its impurities.

    PubMed

    Jovanović, Marko; Rakić, Tijana; Tumpa, Anja; Jančić Stojanović, Biljana

    2015-06-10

    This study presents the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol, its endo-isomer and three impurities following Quality by Design (QbD) approach. The main objective of the method was to identify the conditions where adequate separation quality in minimal analysis duration could be achieved within a robust region that guarantees the stability of method performance. The relationship between critical process parameters (acetonitrile content in the mobile phase, pH of the water phase and ammonium acetate concentration in the water phase) and critical quality attributes is created applying design of experiments methodology. The defined mathematical models and Monte Carlo simulation are used to evaluate the risk of uncertainty in models prediction and incertitude in adjusting the process parameters and to identify the design space. The borders of the design space are experimentally verified and confirmed that the quality of the method is preserved in this region. Moreover, Plackett-Burman design is applied for experimental robustness testing and method is fully validated to verify the adequacy of selected optimal conditions: the analytical column ZIC HILIC (100 mm × 4.6 mm, 5 μm particle size); mobile phase consisted of acetonitrile-water phase (72 mM ammonium acetate, pH adjusted to 6.5 with glacial acetic acid) (86.7:13.3) v/v; column temperature 25 °C, mobile phase flow rate 1 mL min(-1), wavelength of detection 254 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  10. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    NASA Astrophysics Data System (ADS)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  11. Marginalized Women in West Iran

    PubMed

    Malmir, Shabnam; Barati, Majid; Khani Jeihooni, Ali; Bashirian, Saeed; Hazavehei, Seyed Mohammad Mehdi

    2018-03-27

    Objective: This study aimed to determine the effectiveness of an educational intervention to prevent cervical cancer among marginalized Iranianwomen based on the Protection Motivation Theory (PMT) as a theoretical framework. Methods: This quasi-experimental study was carried out on 143 women of Kermanshah City in western Iran during 2017. Participants were recruited through cluster and simple random sampling and randomly divided into experimental (n=72) and control groups (n=71). All completed a self-administered questionnaire including PMT constructs and demographic variables. An intervention over six sessions was then applied to the experimental group. Reassessment was conducted three months after the intervention, with data was analyzed with SPSS-16 using chi-square, McNemar, paired T- and independent T-tests. Results: The mean scores for the constructs of PMT, and cervical cancer screening behavior showed no significant differences between the two groups before the intervention (P>0.05). The educational manipulation had significant effects on the experimental groups’ average response for perceived vulnerability, perceived severity, perceived reward, self-efficacy, response efficacy, response cost and protection motivation (all p < 0.001). Also, the prevalence of regular Pap smear testing and referral to health centers were significantly increased after 3 months in the experimental (P=0.048), but notthe control group (P>0.05). Conclusions: The results show that applying an educational intervention based on PMT might help prevent cervical cancer and improve regular Pap smear testing. Creative Commons Attribution License

  12. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  13. The psychological science of addiction.

    PubMed

    Gifford, Elizabeth; Humphreys, Keith

    2007-03-01

    To discuss the contributions and future course of the psychological science of addiction. The psychology of addiction includes a tremendous range of scientific activity, from the basic experimental laboratory through increasingly broad relational contexts, including patient-practitioner interactions, families, social networks, institutional settings, economics and culture. Some of the contributions discussed here include applications of behavioral principles, cognitive and behavioral neuroscience and the development and evaluation of addiction treatment. Psychology has at times been guilty of proliferating theories with relatively little pruning, and of overemphasizing intrapersonal explanations for human behavior. However, at its best, defined as the science of the individual in context, psychology is an integrated discipline using diverse methods well-suited to capture the multi-dimensional nature of addictive behavior. Psychology has a unique ability to integrate basic experimental and applied clinical science and to apply the knowledge gained from multiple levels of analysis to the pragmatic goal of reducing the prevalence of addiction.

  14. Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure

    NASA Technical Reports Server (NTRS)

    Gross, Bernard

    1996-01-01

    Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.

  15. Strain gauge using Si-based optical microring resonator.

    PubMed

    Lei, Longhai; Tang, Jun; Zhang, Tianen; Guo, Hao; Li, Yanna; Xie, Chengfeng; Shang, Chenglong; Bi, Yu; Zhang, Wendong; Xue, Chenyang; Liu, Jun

    2014-12-20

    This paper presents a strain gauge using the mechanical-optical coupling method. The Si-based optical microring resonator was employed as the sensing element, which was embedded on the microcantilevers. The experimental results show that applying external strain triggers a clear redshift of the output resonant spectrum of the structure. The sensitivity of 93.72  pm/MPa was achieved, which also was verified using theoretical simulations. This paper provides what we believe is a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  16. Graph-theoretic strengths of contextuality

    NASA Astrophysics Data System (ADS)

    de Silva, Nadish

    2017-03-01

    Cabello-Severini-Winter and Abramsky-Hardy (building on the framework of Abramsky-Brandenburger) both provide classes of Bell and contextuality inequalities for very general experimental scenarios using vastly different mathematical techniques. We review both approaches, carefully detail the links between them, and give simple, graph-theoretic methods for finding inequality-free proofs of nonlocality and contextuality and for finding states exhibiting strong nonlocality and/or contextuality. Finally, we apply these methods to concrete examples in stabilizer quantum mechanics relevant to understanding contextuality as a resource in quantum computation.

  17. Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Yan, Xiao-Lin; Liu, Bao-Hua

    2003-05-01

    We propose an innovative method of electron injection by E-field drift into a plasma device and discuss its application in starting-up tokamak plasmas at low loop voltage. The experimental results obtained from HT-6M Tokamak are also presented. The breakdown loop voltage is obviously reduced and the discharge performance is improved by using the electron injection method. It could be applied to some other types of plasma device.

  18. A ranking algorithm for spacelab crew and experiment scheduling

    NASA Technical Reports Server (NTRS)

    Grone, R. D.; Mathis, F. H.

    1980-01-01

    The problem of obtaining an optimal or near optimal schedule for scientific experiments to be performed on Spacelab missions is addressed. The current capabilities in this regard are examined and a method of ranking experiments in order of difficulty is developed to support the existing software. Experimental data is obtained from applying this method to the sets of experiments corresponding to Spacelab mission 1, 2, and 3. Finally, suggestions are made concerning desirable modifications and features of second generation software being developed for this problem.

  19. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  20. EFFECTS OF LASER RADIATION ON MATTER: Distribution function of microinclusions in polymethylmethacrylate and its evolution under the influence of a series of laser pulses

    NASA Astrophysics Data System (ADS)

    Glauberman, G. Ya; Savanin, S. Yu; Shkunov, V. V.; Shumov, D. E.

    1990-08-01

    A new method is proposed for the derivation of the distribution function of the experimentally determined breakdown thresholds of absorbing microinclusions in a transparent insulator. Expressions are obtained for describing the evolution of this function in the course of irradiation of the insulator with laser pulses of constant energy density. The method is applied to calculate the distribution function of microinclusions in polymethylmethacrylate and the evolution of this function.

  1. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient.

    PubMed

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-02-06

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.

  2. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient

    PubMed Central

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-01-01

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733

  3. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    PubMed

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  4. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  5. Iterative optimization method for design of quantitative magnetization transfer imaging experiments.

    PubMed

    Levesque, Ives R; Sled, John G; Pike, G Bruce

    2011-09-01

    Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.

  6. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  7. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor

    NASA Astrophysics Data System (ADS)

    Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping

    2018-03-01

    In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.

  8. Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.

    2016-09-01

    In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.

  9. Molecular dynamics simulations and free energy calculations on the enzyme 4-hydroxyphenylpyruvate dioxygenase.

    PubMed

    De Beer, Stephanie B A; Glättli, Alice; Hutzler, Johannes; Vermeulen, Nico P E; Oostenbrink, Chris

    2011-07-30

    4-Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one-step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. Copyright © 2011 Wiley Periodicals, Inc.

  10. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  11. The SPR detection of Salmonella enteritidis in food using aptamers as recongnition elements

    NASA Astrophysics Data System (ADS)

    Di, W. T.; Du, X. W.; Pan, M. F.; Wang, J. P.

    2017-09-01

    In this experiment, a fast, accurate, non-destructive, unmarked and simple-operation detection method for Salmonella enteritidis in food was established by the BI-3000 plasma resonance biosensor (SPR). This article establishes a method of using nucleic acid aptamer as immune recognition element in SPR which can be employed to detect Salmonella enteritidis in food for the first time. The experimental conditions were screened and the experimental scheme was validated and applied. The best flow rate was 5μL/min, the best concentration of the aptamers was 180mM, and the best regenerating solution was the 20mM NaOH. This method had almost no cross-reactivity. Besides, we established a standard curve of Salmonella enteritidis and SPR signal, with the detection limit of 2 cfu/mL. Finally, we tested the samples of chicken, pork, shrimp and fish purchased from supermarkets. The method has the advantages of short time, low detection limit and easy operation, which can be used for a large number of food samples.

  12. Thickness measurement by two-sided step-heating thermal imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  13. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  14. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Dirusso, E.; Fleming, D. P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  15. Experimental study of uniaxial stress effects on Coulomb-limited mobility in p-type metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken

    2007-11-01

    Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.

  16. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  17. AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-wing 445.6

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    To promote the evaluation of existing and emerging unsteady aerodynamic codes and methods for applying them to aeroelastic problems, especially for the transonic range, a limited number of aerodynamic configurations and experimental dynamic response data sets are to be designated by the AGARD Structures and Materials Panel as standards for comparison. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. This report presents the information needed to perform flutter calculations for the first candidate standard configuration for dynamic response along with the related experimental flutter data.

  18. Laser Ablation of Poly(methylmethacrylate) Doped with Aromatic Compounds: Laser Intensity Dependence of Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1999-02-01

    We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.

  19. Correcting magnetic probe perturbations on current density measurements of current carrying plasmas.

    PubMed

    Knoblauch, P; Raspa, V; Di Lorenzo, F; Lazarte, A; Clausse, A; Moreno, C

    2010-09-01

    A method to infer the current density distribution in the current sheath of a plasma focus discharge from a magnetic probe is formulated and then applied to experimental data obtained in a 1.1 kJ device. Distortions on the magnetic probe signal caused by current redistribution and by a time-dependent total discharge current are considered simultaneously, leading to an integral equation for the current density. Two distinct, easy to implement, numerical procedures are given to solve such equation. Experimental results show the coexistence of at least two maxima in the current density structure of a nitrogen sheath.

  20. Studies on remote sensing method of particle size and water density distribution in mists and clouds using laser radar techniques

    NASA Technical Reports Server (NTRS)

    Shimizu, H.; Kobayasi, T.; Inaba, H.

    1979-01-01

    A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.

Top