Science.gov

Sample records for experimental murine tumors

  1. Tumor vascularity and hematogenous metastasis in experimental murine intraocular melanoma.

    PubMed Central

    Grossniklaus, H E

    1998-01-01

    PURPOSE: The purpose of this study is to test the hypothesis that primary tumor vascularity in a murine model of intraocular melanoma positively correlates with the development and hematogenous spread of metastasis. METHODS: Forty 12-week-old C57BL6 mice were inoculated in either the anterior chamber (AC) or posterior compartment (PC) of 1 eye with 5 x 10(5) cells/microL of Queens tissue culture melanoma cells. The inoculated eye was enucleated at 2 weeks; the mice were sacrificed at 4 weeks postinoculation, and necropsies were performed. The enucleated eyes were examined for histologic and ultrastructural features, including relationship of tumor cells to tumor vascular channels, vascular pattern, and mean vascular density. RESULTS: Melanoma grew and was confined to the eye in 12 of 20 AC eyes and 10 of 20 PC eyes. Histologic and electron microscopic examination showed tumor invasion into vascular channels. Five of 12 AC tumors (42%) and 8 of 10 PC tumors (80%) metastasized. All of the AC tumors, but none of the PC tumors, that distantly metastasized also metastasized to ipsilateral cervical lymph nodes (P = .00535). There was no statistically significant difference of vascular pattern between the melanomas that did and did not metastasize to lungs in the PC group (P = .24), although there was a significant difference in the AC group (P = .02). Tumors with high-grade vascular patterns were more likely to metastasize than tumors with low-grade vascular patterns in the AC group. The mean vascular density positively correlated with the presence and number of metastases in both groups (P = .0000 and P < .001, respectively). There was no statistically significant difference of vascular pattern and mean vascular density for AC versus PC melanoma (P = .97). CONCLUSIONS: The rate of metastasis in this murine intraocular melanoma model positively correlates with primary tumor vascularity. The melanoma metastasizes via invasion of tumor vascular channels. AC melanoma also

  2. Tumor gangliosides accelerate murine tumor angiogenesis.

    PubMed

    Liu, Yihui; Wondimu, Assefa; Yan, Su; Bobb, Daniel; Ladisch, Stephan

    2014-07-01

    Tumor cells shed gangliosides and populate their microenvironment with these biologically active membrane glycosphingolipids. In vitro, ganglioside enrichment amplifies receptor tyrosine kinase signaling and activation of vascular endothelial cells. However, a long-standing question is whether in the actual microenvironment of a neoplasm, in vivo, tumor cell ganglioside shedding stimulates angiogenesis. Here we tested the hypothesis that tumor gangliosides have a critical proangiogenic role in vivo using novel murine tumor cells, GM3synthase/GM2synthase double knockout (DKO) cells, genetically completely incapable of ganglioside synthesis and impaired in tumor growth versus wild-type (WT) ganglioside-rich cells. We studied angiogenesis during tumor formation by these ganglioside-depleted cells, quantifying vessel formation, angiogenic factor production/release, and consequences of reconstitution with purified WT gangliosides. DKO cells formed virtually avascular tumors, much smaller than ganglioside-rich WT tumors and displaying a striking paucity of blood vessels, despite levels of VEGF and other angiogenic factors that were similar to those of WT cells. Transient enrichment of the ganglioside milieu of the DKO cell inoculum by adding purified WT gangliosides partially restored angiogenesis and tumor growth. We conclude that tumor gangliosides trigger robust angiogenesis important for tumor growth. Our findings suggest strategies to eliminate their synthesis and shedding by tumor cells should be pursued.

  3. Tumor gangliosides accelerate murine tumor angiogenesis

    PubMed Central

    Liu, Yihui; Wondimu, Assefa; Yan, Su; Bob, Daniel; Ladisch, Stephan

    2013-01-01

    Tumor cells shed gangliosides and populate their microenvironment with these biologically active membrane glycosphingolipids. In vitro, ganglioside enrichment amplifies receptor tyrosine kinase signaling and activation of vascular endothelial cells. However, a long-standing question is whether in the actual microenvironment of a neoplasm, in vivo, tumor cell ganglioside shedding stimulates angiogenesis. Here we tested the hypothesis that tumor gangliosides have a critical proangiogenic role in vivo using novel murine tumor cells (DKO) genetically completely incapable of ganglioside synthesis and impaired in tumor growth vs. wild-type (WT) ganglioside-rich cells. We studied angiogenesis during tumor formation by these ganglioside-depleted cells, quantifying vessel formation, angiogenic factor production/release, and consequences of reconstitution with purified WT gangliosides. DKO cells formed virtually avascular tumors, much smaller than ganglioside-rich WT tumors and displaying a striking paucity of blood vessels, despite levels of VEGF and other angiogenic factors that were similar to those of WT cells. Transient enrichment of the ganglioside milieu of the DKO cell inoculum by adding purified WT gangliosides partially restored angiogenesis and tumor growth. We conclude that tumor gangliosides trigger robust angiogenesis important for tumor growth. Our findings suggest strategies to eliminate their synthesis and shedding by tumor cells should be pursued. PMID:24165965

  4. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model

    PubMed Central

    Liu, Chengbo; Rajaram, Narasimhan; Vishwanath, Karthik; Jiang, Tony; Palmer, Gregory M.

    2012-01-01

    Abstract. An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence from turbid media. The goal of this work was to experimentally validate the model to extract intrinsic fluorescence of three biologically meaningful fluorophores related to metabolism from turbid media containing absorbers and scatterers. Experimental studies were first carried out on tissue-mimicking phantoms that contained individual fluorophores and their combinations, across multiple absorption, scattering, and fluorophore concentrations. The model was then tested in a murine tumor model to determine both the kinetics of fluorophore uptake as well as overall tissue fluorophore concentration through extraction of the intrinsic fluorescence of an exogenous contrast agent that reports on glucose uptake. Results show the model can be used to recover the true intrinsic fluorescence spectrum with high accuracy (R2=0.988) as well as accurately compute fluorophore concentration in both single and multiple fluorophores phantoms when appropriate calibration standards are available. In the murine tumor, the model-corrected intrinsic fluorescence could be used to differentiate drug dose injections between different groups. A strong linear correlation was observed between the extracted intrinsic fluorescence intensity and injected drug dose, compared with the distorted turbid tissue fluorescence.

  5. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model

    PubMed Central

    Liu, Chengbo; Rajaram, Narasimhan; Vishwanath, Karthik; Jiang, Tony; Palmer, Gregory M.

    2012-01-01

    Abstract. An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence from turbid media. The goal of this work was to experimentally validate the model to extract intrinsic fluorescence of three biologically meaningful fluorophores related to metabolism from turbid media containing absorbers and scatterers. Experimental studies were first carried out on tissue-mimicking phantoms that contained individual fluorophores and their combinations, across multiple absorption, scattering, and fluorophore concentrations. The model was then tested in a murine tumor model to determine both the kinetics of fluorophore uptake as well as overall tissue fluorophore concentration through extraction of the intrinsic fluorescence of an exogenous contrast agent that reports on glucose uptake. Results show the model can be used to recover the true intrinsic fluorescence spectrum with high accuracy (R2=0.988) as well as accurately compute fluorophore concentration in both single and multiple fluorophores phantoms when appropriate calibration standards are available. In the murine tumor, the model-corrected intrinsic fluorescence could be used to differentiate drug dose injections between different groups. A strong linear correlation was observed between the extracted intrinsic fluorescence intensity and injected drug dose, compared with the distorted turbid tissue fluorescence. PMID:22894524

  6. Interleukin-10 Enhances the Therapeutic Effectiveness of a Recombinant Poxvirus-Based Vaccine in an Experimental Murine Tumor Model

    PubMed Central

    Kaufman, Howard L.; Rao, Jay B.; Irivine, Kari R.; Bronte, Vincenzo; Rosenberg, Steven A.; Restifo, Nicholas P.

    2008-01-01

    Summary Interleukin-10 (IL-10) has a wide range of in vivo biological activities and is a key regulatory cytokine of immune-mediated inflammation. The authors found that murine IL-10 given 12 hours after a recombinant vaccinia virus (rVV) containing the LacZ gene significantly enhanced the treatment of mice bearing 3-day-old pulmonary metastases expressing β-galactosidase. Because IL-10 has been shown to inhibit the functions of key elements of both innate and acquired immune responses, the authors hypothesized that IL-10 might act by inhibiting clearance of the rVV, thus prolonging exposure to the experimental antigen. However, evidence that IL-10 was not acting primarily through such negative regulatory mechanisms included the following: (a) IL-10 also enhanced the therapeutic effectiveness of a recombinant fowlpox virus, which cannot replicate in mammalian cells; (b) Titers of rVV in immunized mice were lower, not higher; and (c) Although IL-10 did not alter levels of anti-vaccinia antibodies or natural killer cell activity, rVV-primed mice treated with IL-10 had enhanced vaccinia-specific cytotoxic T-lymphocyte activity. Thus, IL-10 enhanced the function of a recombinant poxvirus-based anti-cancer vaccine and may represent a potential adjuvant in the vaccination against human cancers using recombinant poxvirus-based vaccines. PMID:10570747

  7. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  8. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  9. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  10. Effect of N-methylformamide on radiocurability of murine tumors

    SciTech Connect

    Iwakawa, M.; Milas, L.

    1988-01-01

    N-Methylformamide (NMF) is a polar solvent with maturational activity, i.e., it induces malignant cells to form more differentiated phenotypes. In addition, it renders tumor cells more sensitive to chemotherapeutic drugs and ionizing radiation. In the present study, NMF failed to augment radiocurability, as measured by the single-dose TCD50 assay, of two murine tumors: an 8-mm fibrosarcoma (FSA) and a 6-mm mammary carcinoma (MCA-K). NMF, at a dose of 300 mg/kg, was given ip daily for several days before and/or after local tumor irradiation.

  11. Experimental murine model of renal cancer.

    PubMed

    Padilla-Fernández, B; García-Cenador, M B; Rodríguez-Marcos, P; López-Marcos, J F; Antúnez-Plaza, P; Silva-Abuín, J M; López-Montañés, D; García-Criado, F J; Lorenzo-Gómez, M F

    2017-09-01

    The objective of this study was to determine the reproducibility in a murine model of renal tumours of various histological strains that could be useful for investigating the response to target drugs. Development and analysis of the "in vivo" model: tumour xenograft of renal cell carcinomas with Balb/c nude athymic mice. Nontumourous human renal tissue was implanted in the interscapular region of 5 mice, chromophobe renal cell carcinoma was implanted in 5 mice (which, after checking its growth, was prepared for implantation in another 10 mice) and Fuhrman grade 2 clear cell renal cell carcinoma (CCRCC) was implanted in 5 mice (which was also subsequently implanted in 10 mice). We monitored the tumour size, onset of metastases and increase in size and number of tumours. When the size had reached a point greater than or equal to locally advanced or metastatic carcinoma, the animals were euthanised for a pathological and immunohistochemical study and a second phase of implantation. The subcutaneous xenograft of the healthy tissue did not grow. The animals were euthanised at 6 months and no renal tissue was found. The chromophobe renal cell carcinoma cells grew in the initial phase (100%); however, in the second phase, we observed a chronic lymphomonocyte inflammatory reaction and a foreign body reaction. The CCRCC grew at 5-8 months both in the first and second phase (100%), maintaining the tumour type and grade. The model with athymic Balb/c nude mice is useful for reproducing CCRCC, with the same histological characteristics and aggressiveness as native human tumours, promoting the development of the second experimental phase. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Immunotherapy of murine bladder cancer by irradiated tumor vaccine

    SciTech Connect

    Lamm, D.L.; Riggs, D.R.; DeHaven, J.I.; Bryner, R.W. )

    1991-01-01

    This investigation explored the efficacy of irradiated autologous mouse bladder tumor (Ir-MBT2) as an active specific immunotherapeutic agent and as adjuvant therapy with Bacillus Calmette-Guerin (BCG) against a subcutaneously transplanted murine bladder tumor. Tumor incidence was significantly reduced in groups receiving BCG (27%, p less than 0.005) or Ir-MBT2 with BCG (53%, p less than 0.025), compared to control (93%). Survival was significantly improved in groups treated with BCG (100%, p less than 0.005), 10(5) Ir-MBT2 with BCG (53%, p less than 0.01), or 10(7) Ir-MBT2 with BCG (47%, p less than 0.025) compared with control (13%). Surprisingly, Ir-MBT2 consistently reduced the efficacy of BCG alone. Ir-MBT2 alone (10(7)) appeared to enhance tumor growth. Autologous irradiated bladder tumor vaccine, alone or in combination with BCG, displayed no immunotherapeutic advantage. The use of irradiated tumor cell vaccine for bladder cancer therapy may reduce the results achievable with BCG alone.

  13. Quantitative Monitoring of Murine Lung Tumors by Magnetic Resonance Imaging

    PubMed Central

    Krupnick, Alexander Sasha; Tidwell, Vanessa K.; Engelbach, John A.; Alli, Vamsi V.; Nehorai, Arye; You, Ming; Vikis, Haris G.; Gelman, Andrew E.; Kreisel, Daniel; Garbow, Joel R.

    2013-01-01

    Primary lung cancer remains the leading cause of cancer-related death in the western world and the lung is a common site for recurrence of extra-thoracic malignancies. Small-animal (rodent) models of cancer can play a very valuable role in the development of improved therapeutic strategies. However, detection of murine pulmonary tumors and their subsequent response to therapy, in situ, is challenging. We have recently described magnetic resonance imaging (MRI) as a reliable, reproducible, and non-destructive modality for the detection and serial monitoring of pulmonary tumors. Combining respiratory-gated data acquisition methods with manual and automated segmentation algorithms described by our laboratory, pulmonary tumor burden can be quantitatively measured in approximately one hour (data acquisition plus analysis) per mouse. Quantitative, analytic methods are described for measuring tumor burden in both primary (discrete tumors) and metastatic (diffuse tumors) disease. Thus, small-animal MRI represents a novel and unique research tool for preclinical investigation of therapeutic strategies for treatment of pulmonary malignancies and may be valuable in evaluating new compounds targeting lung cancer in vivo. PMID:22222788

  14. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  15. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  16. Radiobiologic effect of intermittent radiation exposure in murine tumors

    SciTech Connect

    Sugie, Chikao . E-mail: chikao@bg8.so-net.ne.jp; Shibamoto, Yuta; Ito, Masato; Ogino, Hiroyuki; Miyamoto, Akihiko; Fukaya, Nobuyuki; Niimi, Hiroshige; Hashizume, Takuya

    2006-02-01

    Purpose: In stereotactic irradiation using a linear accelerator, the effect of radiation may be reduced during intermittent exposures owing to recovery from sublethal damage in tumor cells. After our previous in vitro study suggesting this phenomenon, we investigated the issue in murine tumors. Methods and Materials: We used EMT6 and SCCVII tumors approximately 1 cm in diameter growing in the hind legs of syngeneic mice. Three schedules of intermittent radiation were investigated. First, 2 fractions of 10 Gy were given at an interval of 15-360 min to investigate the pattern of recovery from sublethal damage. Second, 5 fractions of 4 Gy were given with interfraction intervals of 2.5-15 min each. Third, 10 fractions of 2 Gy were given with interfraction intervals of 1-7 min each. Doses of 15-20 Gy were also given without interruption to estimate the dose-modifying factors. Tumors were excised 20 h later, and tumor cell survival was determined by an in vivo-in vitro assay. Results: In the 2-fraction experiment, the increase in cell survival with elongation of the interval was much less than that observed in our previous in vitro study. In the 5- and 10-fraction experiments, no significant increase in cell survival was observed after the intermittent exposures. Moreover, cell survival decreased at most points of the 5-fraction experiments by interruption of radiation in both EMT6 and SCCVII tumors. In the 10-fraction experiment, cell survival also decreased when the interruption was 3 or 7 min in EMT6 tumors. Conclusion: The results of the present in vivo studies were different from those of our in vitro studies in which cell survival increased significantly when a few minutes or longer intervals were posed between fractions. This suggests that recovery from sublethal damage in vivo may be counterbalanced by other phenomena such as reoxygenation that sensitizes tumor cells to subsequent irradiation.

  17. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    SciTech Connect

    Savion, N.; Disatnik, M.H.; Nevo, Z.

    1987-01-01

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the (/sup 35/S)O/sub 4//sup -/-labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of (/sup 35/S)O/sub 4//sup -/-labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10..mu..g/ml), arteparon (10..mu..g/ml), and heparin at a concentration of 3 ..mu..g/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis.

  18. An Immunomodulatory Peptide Confers Protection in an Experimental Candidemia Murine Model.

    PubMed

    Freitas, Camila G; Lima, Stella M F; Freire, Mirna S; Cantuária, Ana Paula C; Júnior, Nelson G O; Santos, Tatiane S; Folha, Jéssica S; Ribeiro, Suzana M; Dias, Simoni C; Rezende, Taia M B; Albuquerque, Patrícia; Nicola, André M; de la Fuente-Núñez, César; Hancock, Robert E W; Franco, Octávio L; Felipe, Maria Sueli S

    2017-08-01

    Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 μg · ml(-1), respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 μg · ml(-1) was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg(-1) of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy. Copyright © 2017 American Society for Microbiology.

  19. Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.).

    PubMed

    Beuth, Josef; Braun, Jan Matthias

    2005-01-01

    The antitumor and antimetastatic activities of the plant cysteine endoproteinase bromelaine were evaluated in a murine model. Syngeneic sarcoma L-1 cells were incubated with bromelaine (after preceeding time and dosage kinetics) and subcutaneously; (s.c.) or intravenously; (i.v.) inoculated into BALB/c-mice (n = 5 per experimental group) to induce local tumor growth or lung colonization. Compared to non-protease incubated L-1 cells, local tumor growth and experimental lung metastasis decreased significantly (p < 0.05). After bromelaine incubation of the tumor cells. Sarcoma L-1 cells induced local tumor growth after s.c. inoculation and lung colonization after i.v. injection. Intraperitoneal (i.p.) or s.c. administration of bromelaine (optimal dosage and time schedule tested in preceeding kinetic studies) significantly (p < 0.05) reduced local tumor weight, however, lung colonization was non-significantly reduced. Bromelaine incubation of sarcoma L-1 cells significantly reduced their tumorigenic/metastatic capacities. Bromelaine treatment after tumor cell inoculation significantly reduced local tumor growth, experimental lung metastasis, however, to a lesser, non-significant degree.

  20. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3.

    PubMed

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-02-08

    Activation of peroxisome proliferator-activated receptors gamma (PPARgamma) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARgamma agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARgamma used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ2, BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARgamma expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 muM RGZ (non-cytotoxic dose). RGZ induced PPARgamma protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1-100 microM RGZ, 1 microM-treated cells recovered their proliferating capacity while 100 microM treated cells died. The PPARgamma antagonist Biphenol A diglicydyl ether (BADGE) did

  1. Interleukin-27 signaling promotes immunity against endogenously arising murine tumors.

    PubMed

    Natividad, Karlo D T; Junankar, Simon R; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent.

  2. Interleukin-27 Signaling Promotes Immunity against Endogenously Arising Murine Tumors

    PubMed Central

    Natividad, Karlo D. T.; Junankar, Simon R.; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C.; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent. PMID:23554861

  3. Tumors in murine brains studied by grating-based phase contrast microtomography

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Dominietto, Marco; Kovacs, Zsofia; Schmitz, Rüdiger; Hieber, Simone E.; Thalmann, Peter; Beckmann, Felix; Müller, Bert

    2014-09-01

    Angiogenesis, i.e. the formation of vessels, is one of the key processes during tumor development. The newly formed vessels transport oxygen and nutrients from the healthy tissue to the tumor and gives tumor cells the possibility to replicate. The principle of anti-angiogenic therapy is to block angiogenic process in order to stop tumor growth. The aim of the present study is the investigation of murine glioma vascular architecture at early (7 days), intermediate (10 and 15 days) and late (23 days) stage of growth by means of grating-based phase contrast microtomography. We demonstrate that this technique yields premium contrast between healthy and cancerous parts of murine brain tissues.

  4. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS

    EPA Science Inventory

    STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS
    M S Miller, J E Moore, M Xu, G B Nelson, S T Dance, N D Kock, J A Ross Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC

    Previously, our laboratory demonstrated...

  5. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS

    EPA Science Inventory

    STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS
    M S Miller, J E Moore, M Xu, G B Nelson, S T Dance, N D Kock, J A Ross Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC

    Previously, our laboratory demonstrated...

  6. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    PubMed

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an

  7. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis

    PubMed Central

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-01-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an amelioration at

  8. Sequence dependence of administration of human recombinant tumor necrosis factor and interleukin-2 in murine tumor therapy.

    PubMed

    Zimmerman, R J; Gauny, S; Chan, A; Landre, P; Winkelhake, J L

    1989-02-01

    Simultaneous administration of recombinant human tumor necrosis factor (rhTNF) and interleukin-2 (rhIL-2) has been shown to block tumor take in murine models. We investigated the effects of sequence and schedule of administration as a function of tumor burden with two tumor models (B16 and Meth A). rhTNF followed by rhIL-2 had extraordinary antitumor efficacy, but rhIL-2 followed by rhTNF was much less effective. Sequential rhTNF/rhIL-2 therapy resulted in complete tumor regression, whereas simultaneous therapy resulted in complete tumor regression, whereas simultaneous therapy resulted in only reduced growth rate. Experiments with genetically immunodeficient mice suggested that T cell factors may be required for synergistic antitumor activity.

  9. Successful murine tumor allotransplantation after total lymphoid irradiation.

    PubMed

    Hoppe, R T; Dorie, M J

    1982-06-01

    C3H/Km (H-2k) mice were treated with fractionated total lymphoid irradiation (TLI) (17 x 200 rad) and then were inoculated with 3 x 10(6) tumor cells from the EMT6 tumor cell line derived from the BALB/c (H-2d) mouse. One group of mice also received an i.v. infusion of BALB/c bone marrow (3 x 10(7) cells). Tumors in control animals (no TLI) became palpable within 10 days after inoculation, but subsequent tumor regression was rapid, with complete disappearance in all animals by 23 days. Initial tumor growth was exponential in both groups of mice treated with TLI, but tumors regressed after 30 days in the animals treated with TLI alone. In the group treated with TLI and bone marrow infusion exponential tumor growth continued until pulmonary metastases developed and all animals died. The TLI-treated mouse provides a model for tumor allografting. Further development of this model may demonstrate its efficacy in human tumor xenotransplantation.

  10. Cone beam CT tumor vasculature dynamic study (Murine model)

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Ning, Ruola; Conover, David; Ricardo, Betancourt; Liu, Shaohua

    2008-03-01

    Tumor angiogenesis is the process by which new blood vessels are formed from the existing vessels in a tumor to promote tumor growth. Tumor angiogenesis has important implications in the diagnosis and treatment of various solid tumors. Flat panel detector based cone beam CT opens up a new way for detection of tumors, and tumor angiogenesis associated with functional CBCT has the potential to provide more information than traditional functional CT due to more overall coverage during the same scanning period and the reconstruction being isotropic resulting in a more accurate 3D volume intensity measurement. A functional study was conducted by using CBCT to determine the degree of the enhancement within the tumor after injecting the contrast agent intravenously. For typical doses of contrast material, the amount of enhancement is proportional to the concentration of this material within the region of interest. A series of images obtained at one location over time allows generation of time-attenuation data from which a number of semi-quantitative parameters, such as enhancement rate, can be determined. An in vivo mice study with and without mammo tumor was conducted on our prototype CBCT system, and half scan scheme is used to determine the time-intensity curve within the VOI of the mouse. The CBCT has an x-ray tube, a gantry with slip ring technology, and a 40×30 cm Varian Paxscan 4030CB real time FPD.

  11. Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy.

    PubMed

    Lechner, Melissa G; Karimi, Saman S; Barry-Holson, Keegan; Angell, Trevor E; Murphy, Katherine A; Church, Connor H; Ohlfest, John R; Hu, Peisheng; Epstein, Alan L

    2013-01-01

    Immune profiling has been widely used to probe mechanisms of immune escape in cancer and identify novel targets for therapy. Two emerging uses of immune signatures are to identify likely responders to immunotherapy regimens among individuals with cancer and to understand the variable responses seen among subjects with cancer in immunotherapy trials. Here, the immune profiles of 6 murine solid tumor models (CT26, 4T1, MAD109, RENCA, LLC, and B16) were correlated to tumor regression and survival in response to 2 immunotherapy regimens. Comprehensive profiles for each model were generated using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and flow cytometry techniques, as well as functional studies of suppressor cell populations (regulatory T cells and myeloid-derived suppressor cells), to analyze intratumoral and draining lymphoid tissues. Tumors were stratified as highly or poorly immunogenic, with highly immunogenic tumors showing a significantly greater presence of T-cell costimulatory molecules and immune suppression in the tumor microenvironment. An absence of tumor-infiltrating cytotoxic T lymphocytes and mature dendritic cells was seen across all models. Delayed tumor growth and increased survival with suppressor cell inhibition and tumor-targeted chemokine+/-dendritic cells vaccine immunotherapy were associated with high tumor immunogenicity in these models. Tumor MHC class I expression correlated with the overall tumor immunogenicity level and was a singular marker to predict immunotherapy response with these regimens. By using experimental tumor models as surrogates for human cancers, these studies demonstrate how select features of an immune profile may be utilized to identify patients most likely to respond to immunotherapy regimens.

  12. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model.

    PubMed

    Lee, Che-Hsin; Wu, Chao-Liang; Shiau, Ai-Li

    2005-02-01

    Some anaerobic and facultative anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in the hypoxia regions of solid tumors after systemic administration. We have previously shown the feasibility of using attenuated Salmonella choleraesuis as a gene delivery vector. In this study, we exploited S. choleraesuis carrying thrombospondin-1 (TSP-1) gene for treating primary melanoma and experimental pulmonary metastasis in the syngeneic murine B16F10 melanoma model. Systemic administration of S. choleraesuis allowed targeted gene delivery to tumors. The bacteria accumulated preferentially in tumors over livers and spleens at ratios ranging from 1000:1 to 10,000:1. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. Notably, bacterial accumulation was also observed in the lungs with metastatic nodules, but not in healthy lungs. When administered into mice bearing subcutaneous or pulmonary metastatic melanomas, S. choleraesuis carrying TSP-1 gene significantly inhibited tumor growth and enhanced survival of the mice. Immunohistochemical studies in the tumors from these mice displayed decreased intratumoral microvessel density. Taken together, these findings suggest that TSP-1 gene therapy delivered by S. choleraesuis may be effective for the treatment of primary as well as metastatic melanomas.

  13. Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on murine cell surfaces.

    PubMed Central

    Takemoto, L J; Fox, C F; Jensen, F C; Elder, J H; Lerner, R A

    1978-01-01

    Formaldehyde-fixed Staphylococcus aureus and monospecific antiserum to gp70, the major envelope glycoprotein of murine leukemia virus, were used to immunoadsorb gp70 from Nonidet P40 extracts prepared from surface-radioiodinated murine cells. The labeled gp70 molecules in these cells were linked to a protein of approximately 15,000 daltons via native disulfide bonding. Prior treatment of cells with the reversible, bifunctional, crosslinking reagent dimethyl-3,3'-dithiobispropionimidate, followed by immunoadsorption and two-dimensional diagonal electrophoresis, revealed apparent homodimers and homotrimers of the 85,000-dalton complex. Identical treatment of purified type C RNA tumor virus from murine cells also revealed homodimeric and homotrimeric species, demonstrating similar self-associating tendencies of this glycoprotein in both intact virus and the plasma membrane of nonproducing murine cells. One cross-linked product consistently detected on the surfaces of murine cells was not present after crosslinking of a representative strain of murine leukemia virus. Images PMID:211503

  14. Cytotoxicity of RSU 1069 in spheroids and murine tumors.

    PubMed

    Olive, P L; Durand, R E; Chaplin, D J

    1987-09-01

    Hypoxia following treatment with the alkylating nitroimidazole, RSU 1069, greatly enhanced cell killing in the Lewis lung tumor and Chinese hamster V79 spheroids. When mice were injected with RSU-1069 and tumors were excised after 3 hr to measure colony formation in soft agar, significant cell killing was observed. However, if tumors were excised 18 hr after drug injection, viability was increased, and cell killing was confined to cells distant from the blood supply. In subsequent experiments, viability observed at 3 hr could be greatly increased if the tumors were cooled to 4 degrees C immediately after excision, and were then rapidly disaggregated. This suggested that the hypoxia which occurred after animal sacrifice and during the tumor disaggregation procedure was sufficient to account for the additional cell killing at early times after drug injection. Results using V79 spheroids similarly suggest that tumor excision soon after injection of RSU 1069 can give false information on RSU 1069 toxicity if efforts are not made to prevent tumor hypoxia during processing. In spheroids, hypoxia-induced toxicity after aerobic exposure decreased as the time between RSU 1069 exposure and hypoxic incubation increased; spheroid cells exposed to RSU 1069 under air lost sensitivity to subsequent hypoxic incubation with a half-time of about 10 hr, representing the time for cell turnover and/or repair from damage produced under aerobic conditions.

  15. Multispectral Imaging of T and B Cells in Murine Spleen and Tumor

    PubMed Central

    Feng, Zipei; Jensen, Shawn M.; Messenheimer, David J.; Farhad, Mohammed; Neuberger, Michael; Bifulco, Carlo B.

    2016-01-01

    Recent advances in multiplex immunohistochemistry techniques allow for quantitative, spatial identification of multiple immune parameters for enhanced diagnostic and prognostic insight. However, applying such techniques to murine fixed tissues, particularly sensitive epitopes, such as CD4, CD8α, and CD19, has been difficult. We compared different fixation protocols and Ag-retrieval techniques and validated the use of multiplex immunohistochemistry for detection of CD3+CD4+ and CD3+CD8+ T cell subsets in murine spleen and tumor. This allows for enumeration of these T cell subsets within immune environments, as well as the study of their spatial distribution. PMID:26994219

  16. Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss

    PubMed Central

    Ou, Lihui; Ip, Clement; Lisafeld, Barbara; Ip, Margot M.

    2007-01-01

    Conjugated linoleic acid (CLA) is a powerful anticancer agent in a number of tumor model systems; however, its precise mechanism of action remains elusive. Here, we report that t10,c12 CLA, a component of synthetic CLA supplements, induced apoptosis and G1 arrest of p53 mutant TM4t murine mammary tumor cells. Furthermore, t10,c12-CLA induced a time- and concentration-dependent cleavage of caspases-3 and -9, and release of cytochrome c from mitochondria to cytosol. Levels of Bcl-2 protein were decreased both in total cellular lysates and in mitochondria after t10,c12-CLA treatment; however, there was no significant change in Bax or Bak. Overexpression of Bcl-2 attenuated apoptosis in response to t10,c12-CLA treatment. These results demonstrate that t10,c12-CLA triggers apoptosis of p53 mutant murine mammary tumor cells through the mitochondrial pathway by targeting Bcl-2. PMID:17400188

  17. Altered transcription of genes coding for class I histocompatibility antigens in murine tumor cells

    PubMed Central

    1983-01-01

    Three murine tumors induced by Moloney murine leukemia virus (M-MLV) which exhibited loss of some or all H-2 class I antigens at the cell surface were analyzed at the DNA and RNA level with molecular probes specific of H-2 heavy chains and beta 2-microglobulin sequences. No observable difference could be detected at the DNA level between the tumors and the parent animals. However, a decrease in H-2 mRNA was observed, especially in phenotypically H-2 negative tumor, BM5R, where H-2 transcripts were at least 30-fold less abundant. These results show that an H-2-negative character may result from a general alteration in the transcription of H-2 genes, which could reflect some kind of regulatory process. PMID:6311935

  18. The prostaglandin E{sub 1} analog, misoprostol, a normal tissue protector, does not protect four murine tumors in vivo from radiation injury

    SciTech Connect

    Hanson, W.R.; Zhen, W.; Geng, L.

    1995-06-01

    The clinical development of radioprotectors, such as misoprostol, to protect normal tissue during cancer treatment must proceed with the assurance that tumors are not protected similarly or significantly. To provide data on this critical question, radiation-induced growth delay with or without the presence of misoprostol was measured in four murine tumors grown in the flanks of mice: the Lewis lung carcinoma, M-5076 ovarian sarcoma, FSA and NFSA. The effect of misoprostol on the tumor control dose (TCD{sub 50}) of radiation was measured in FSA-bearing mice with or without prior treatment with the nonsteroidal anti-inflammatory agent, indomethacin. Misoprostol did not influence the in vivo growth of any of the four tumors, nor did it protect any of the tumors from radiation-induced growth delay. Likewise, there was no increase in the radiation TCD{sub 50} to treat the FSA in vivo in control or indomethacin-treated tumor-bearing mice. To measure any possible influence of tumor burden on the protective effect of miso-prostol on normal tissue in mice, the protective effect of misoprostol on the survival of intestinal clonogenic cells was measured in M-5076-bearing mice and found to be the same as in non-tumor-bearing mice. These data suggest that misoprostol protects normal tissue in mice without protecting at least four experimental murine tumors. The data support the contention that misoprostol can achieve therapeutic gain by protecting normal tissues without protecting tumors. 44 refs., 5 figs., 1 tab.

  19. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Anti-Tumor Innate Immunity.

    PubMed

    Patnaik, Akash; Swanson, Kenneth D; Csizmadia, Eva; Solanki, Aniruddh; Landon-Brace, Natalie; Gehring, Marina P; Helenius, Katja; Olson, Brian M; Pyzer, Athalia R; Wang, Lily C; Elemento, Olivier; Novak, Jesse; Thornley, Thomas B; Asara, John M; Montaser, Laleh; Timmons, Joshua J; Morgan, Todd M; Wang, Yugang; Levantini, Elena; Clohessy, John G; Kelly, Kathleen; Pandolfi, Pier Paolo; Rosenblatt, Jacalyn M; Avigan, David E; Ye, Huihui; Karp, Jeffrey M; Signoretti, Sabina; Balk, Steven P; Cantley, Lewis C

    2017-03-08

    Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here we show that cabozantinib rapidly eradicates invasive, poorly-differentiated PTEN/p53 deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor, plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anti-cancer innate immune response, resulting in tumor clearance.

  20. Dietary linoleate-enhanced metastasis of 4526 murine mammary tumors

    SciTech Connect

    Hubbard, N.E.

    1987-01-01

    The influence of quantitative differences in dietary linoleic acid (18:2) and of the cyclooxygenase inhibitor, indomethacin (IM), on the metastasis of line 4526 mammary tumors was investigated. All mice were fed high fat (20%, w/w), semipurified diets that were prepared using different mixtures of coconut (primarily saturated) and safflower (mostly 18:2) oil and thus contained either 1, 2, 4, 8, or 12% 18:2 (w/w). The spontaneous metastasis of 4526 tumor cells from primary sites, was increased 2-4 fold in mice that were fed diets containing higher levels of 18:2 (8 and 12%). Chronic treatment of mice with a relatively low dosage of IM reduced the growth rate of primary 4526 tumors, slightly reduced metastasis in mice fed 1 and 4% 18:2, and completely inhibited the increased metastasis observed in mice fed 12% 18:2. Treatment with a higher dosage of IM reduced metastasis even further compared to controls, but did not decrease growth rate compared to the low dosage of IM. The level of 18:2 in the diet did not appear to affect the incorporation of {sup 3}H-thymidine into tumor cells of metastatic lung nodules. The effect of 18:2 may be through a modulation of arachidonic acid metabolism. This modulation, in turn, may affect particular steps in the metastatic cascade such as lodgement and survival of tumor cells.

  1. The relationship between the antitumor effect of the IL-12 gene therapy and the expression of Th1 cytokines in an HPV16-positive murine tumor model.

    PubMed

    García Paz, Flor; Madrid Marina, Vicente; Morales Ortega, Ausencio; Santander González, Abimelec; Peralta Zaragoza, Oscar; Burguete García, Ana; Torres Poveda, Kirvis; Moreno, José; Alcocer González, Juan; Hernandez Marquez, Eva; Bermúdez Morales, Victor

    2014-01-01

    The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer.

  2. IMMUNE AND NATURAL ANTIBODIES TO SYNGENEIC MURINE PLASMA CELL TUMORS

    PubMed Central

    Herberman, Ronald B.; Aoki, Tadao

    1972-01-01

    Cytotoxic antibody to a plasma cell tumor antigen was produced in syngeneic BALB mice by immunization with viable or inactivated plasma cell tumors. Antibody with the same specificity was found in the sera of normal BALB and other strains of mice. This natural antibody reacted with an antigen with characteristics indistinguishable from the previously described alloantigen, PC.1, and with viral envelope antigen, χVEA. The incidence of cytotoxic reactivity and the antibody titers reached a peak in normal BALB mice at 3–4 months of age, and were lower in 9–12-month old mice. The sera of germfree mice had lower reactivity; but when the mice were transferred to conventional conditions, their sera soon became as active as those of conventional mice. A virus common to all plasma cell tumors, which is present in latent form in some normal tissues of BALB and other PC.1 positive strains, is suggested as the cause for the PC.1 antigen and for the appearance of natural antibody to it. The considerable evidence for the close association of a virus with plasma cell tumors is presented. PMID:5033423

  3. Nardilysin regulates inflammation, metaplasia, and tumors in murine stomach

    PubMed Central

    Kimura, Yuto; Ikuta, Kozo; Kimura, Takeshi; Chiba, Tsutomu; Oshima, Hiroko; Oshima, Masanobu; Nishi, Eiichiro; Seno, Hiroshi

    2017-01-01

    Chronic inflammation contributes to a wide variety of human disorders. In the stomach, longstanding gastritis often results in structural alterations in the gastric mucosa, including metaplastic changes and gastric cancers. Therefore, it is important to elucidate factors that are involved in gastric inflammation. Nardilysin (N-arginine dibasic convertase; Nrdc) is a metalloendopeptidase of the M16 family that promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of a disintegrin and metalloproteinase (ADAM) proteins. Here, we have demonstrated that Nrdc crucially regulates gastric inflammation caused by Helicobacter felis infection or forced expression of prostaglandin E2 in K19-C2mE mice. Metaplastic changes following gastric inflammation were suppressed by the deletion of Nrdc. Furthremore, the deletion of Nrdc significantly suppressed N-methyl-N-nitrosourea (MNU)-induced gastric tumorigenesis in the murine stomach. These data may lead to a global therapeutic approach against various gastric disorders by targeting Nrdc. PMID:28230087

  4. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma

    PubMed Central

    Kumar, Amit; Coquard, Laurie; Pasquereau, Sébastien; Russo, Laetitia; Valmary-Degano, Séverine; Borg, Christophe; Pothier, Pierre; Herbein, Georges

    2016-01-01

    Although viruses can cause cancer, other studies reported the regression of human tumors upon viral infections. We investigated the cytoreductive potential of human cytomegalovirus (HCMV) in a murine model of human hepatocellular carcinoma (HCC) in severe-immunodeficient mice. Infection of HepG2 cells with HCMV resulted in the absence of tumor or in a limited tumor growth following injection of cells subcutaneously. By contrast all mice injected with uninfected HepG2 cells and with HepG2 cells infected with UV-treated HCMV did develop tumors without any significant restriction. Analysis of tumors indicated that in mice injected with HCMV-infected-HepG2 cells, but not in controls, a restricted cellular proliferation was observed parallel to a limited activation of the STAT3-cyclin D1 axis, decreased formation of colonies in soft agar, and activation of the intrinsic apoptotic pathway. We conclude that HCMV can provide antitumoral effects in a murine model of HCC which requires replicative virus at some stages that results in limitation of tumor cell proliferation and enhanced apoptosis mediated through the intrinsic caspase pathway. PMID:27626063

  5. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  6. Therapy of Experimental Nerve Sheath Tumors Using Oncolytic Viruses

    DTIC Science & Technology

    2005-06-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Abstract follows. 15. SUBJECT TERMS Oncolytic HSV, angiogenesis, MPNST , mouse model 16. SECURITY CLASSIFICATION OF: 17...reliable tumor models for malignant peripheral nerve sheath tumors ( MPNST ). Several existing and novel oncolytic HSV vectors will then be tested on these...from G47A increases cytotoxicity in vitro to human endothelial cells and murine Nfl" MPNST cell lines. Inhibition of MPNST M2 tumor growth in vivo was

  7. Dynamic Tumor Growth Patterns in a Novel Murine Model of Colorectal Cancer

    PubMed Central

    Olson, Terrah J. Paul; Hadac, Jamie N.; Sievers, Chelsie K.; Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Albrecht, Dawn M.; Nomura, Alice; Nettekoven, Laura A.; Plesh, Lauren K.; Clipson, Linda; Sullivan, Ruth; Newton, Michael A.; Schelman, William R.; Halberg, Richard B.

    2014-01-01

    Colorectal cancer (CRC) often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which progress and which remain benign is difficult. We developed a novel long-lived murine model of CRC with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk-stratification of colonic tumors. Long-lived ApcMin/+ mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of β-catenin was higher in adenomas that became intratumoral carcinomas as compared to those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to CRC. Further characterization of cellular and molecular features are needed to determine which features can be used to risk-stratify polyps for progression to CRC and potentially guide prevention strategies. PMID:24196829

  8. Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments.

    PubMed

    Akashi, Yoshimasa; Oda, Tatsuya; Ohara, Yusuke; Miyamoto, Ryoichi; Hashimoto, Shinji; Enomoto, Tsuyoshi; Yamada, Keiichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Ohkochi, Nobuhiro

    2013-11-01

    Experimental data based on cell line-derived xenograft models (cell xenograft) seldom reproduce the clinical situation, and therefore we demonstrated here the superiority of a murine model involving transplantation of human pancreatic cancer tissue fragments (tumor graft), focusing on the histological features and drug delivery characteristics. Tumor pieces from 10 pancreatic cancer patients were transplanted into SCID (severe combined immunodeficient) mice. Histological characteristics of tumor grafts, including morphology, desmoplastic reaction, and vascularization, were compared with those of cell xenografts. Drug delivery was evaluated by quantifying the concentrations of injected drug, and the results were compared with its histological features. Eight of the 10 transplanted tumors successfully engrafted. Histological comparisons between tumor grafts and cell xenografts revealed the following: the amount of stroma was more (22.9% ± 11.8% vs 10.8% ± 5.4%; P < 0.05), vessel-cancer cell distance was longer (35.3 ± 39.0 vs 3.9 ± 3.1 μm; P < 0.001), and microvessel density was lower (6.8 ± 1.9 vs 10.8 ± 2.1 vessels/0.4 mm(2); P < 0.05) in tumor grafts. Drug concentrations in tumor grafts were lower than those in cell xenografts (3.3 ± 1.2 vs 6.0±0.2 μg/mL; P = 0.003), and the differences were correlated with the histological differences. Pancreatic tumor grafts better reproduce the histological nature of clinical cancer and thus provide a more realistic model that is applicable for pharmacokinetic studies.

  9. T-Cell Receptor Gene Therapy of Established Tumors in a Murine Melanoma Model

    PubMed Central

    Abad, John D.; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A.; Jorritsma, Annelies; Hsu, Gary; Gattinoni, Luca; Cohen, Cyrille J.; Paulos, Chrystal M.; Palmer, Douglas C.; Haanen, John B. A. G.; Schumacher, Ton N. M.; Rosenberg, Steven A.; Restifo, Nicholas P.; Morgan, Richard A.

    2008-01-01

    Summary Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-γ secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies. PMID:18157006

  10. T-cell receptor gene therapy of established tumors in a murine melanoma model.

    PubMed

    Abad, John D; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A; Jorritsma, Annelies; Hsu, Cary; Gattinoni, Luca; Cohen, Cyrille J; Paulos, Chrystal M; Palmer, Douglas C; Haanen, John B A G; Schumacher, Ton N M; Rosenberg, Steven A; Restifo, Nicholas P; Morgan, Richard A

    2008-01-01

    Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-gamma secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies.

  11. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors.

    PubMed

    Cho, Robert W; Wang, Xinhao; Diehn, Maximilian; Shedden, Kerby; Chen, Grace Y; Sherlock, Gavin; Gurney, Austin; Lewicki, John; Clarke, Michael F

    2008-02-01

    In human breast cancers, a phenotypically distinct minority population of tumorigenic (TG) cancer cells (sometimes referred to as cancer stem cells) drives tumor growth when transplanted into immunodeficient mice. Our objective was to identify a mouse model of breast cancer stem cells that could have relevance to the study of human breast cancer. To do so, we used breast tumors of the mouse mammary tumor virus (MMTV)-Wnt-1 mice. MMTV-Wnt-1 breast tumors were harvested, dissociated into single-cell suspensions, and sorted by flow cytometry on Thy1, CD24, and CD45. Sorted cells were then injected into recipient background FVB/NJ female syngeneic mice. In six of seven tumors examined, Thy1+CD24+ cancer cells, which constituted approximately 1%-4% of tumor cells, were highly enriched for cells capable of regenerating new tumors compared with cells of the tumor that did not fit this profile ("not-Thy1+CD24+"). Resultant tumors had a phenotypic diversity similar to that of the original tumor and behaved in a similar manner when passaged. Microarray analysis comparing Thy1+CD24+ tumor cells to not-Thy1+CD24+ cells identified a list of differentially expressed genes. Orthologs of these differentially expressed genes predicted survival of human breast cancer patients from two different study groups. These studies suggest that there is a cancer stem cell compartment in the MMTV-Wnt-1 murine breast tumor and that there is a clinical utility of this model for the study of cancer stem cells.

  12. Modulation of prostaglandin biosynthesis in murine mammary adenocarcinoma tumor cells

    SciTech Connect

    Shalinsky, D.R.

    1988-01-01

    In efforts to exploit the differential oxygen levels within the subcompartments of solid neoplasms, this project has focused on modulating prostaglandin (PG) biosynthesis under aerobic and hypoxic conditions. Mammary adenocarcinoma tumor cells (Line 4526), either intact or sonicated, were incubated with either 2.0 uM {sup 14}C-arachidonic acid (AA) or 20.0 uM {sup 14}C-PGH{sub 2}, respectively. Following metabolism, products were extracted, separated by thin layer chromatography and analyzed by radiochromatographic scan. PGE{sub 2} was predominantly formed with minimal amounts of PGF{sub 2a} or PGD{sub 2}. Indomethacin and ibuprofen inhibited the PGE{sub 2} formation from AA with an IC{sub 50} value of 6.3 {times} 10{sup {minus}8} and 9.6 {times} 10{sup {minus}5}M, respectively. Suspended cells in glass vials were made hypoxic by flushing with N{sub 2} for varying time intervals to study AA metabolism. A time-dependent inhibition of PG biosynthesis was observed under hypoxia, and by 30 min, the PGE{sub 2} synthesis was reduced by 50% which was further inhibited by indomethacin. Misonidazole, a 2-nitroimidazole analogue, partially reversed the inhibition of PGE{sub 2} synthesis under hypoxia by 49% at 100 uM. However, misonidazole did not affect PG biosynthesis under aerobic conditions. The stimulation of PGE{sub 2} biosynthesis by misonidazole under hypoxia was blocked by indomethacin, suggesting that misonidazole can not act independently of the cyclooxygenase.

  13. Effects of tumor-specific antigen induced by lentinan on murine H22 hepatocellular carcinoma immunoprophylaxis.

    PubMed

    Wang, Y; Han, X; Li, Y-D; Zhao, S-Y; Zhang, D-J; Zhao, Z-H; Wang, Y-B

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent tumor types and the third most common form of morbidity in cancer-related deaths worldwide. Lentinan isolated from Lentinus edodes, is known to be a biologically active macromolecule with extremely strong activation of the human immune system such as host-mediated anti-cancer activity. The aim of this study is to investigate the immunoprophylaxis effect of the antigens induced by lentinan on murine hepatocellular carcinoma. The antigens were prepared by a co-culture method (HCL) and purified by ammonium sulfate fractionation precipitation (Z1, Z2, Z3). The effects of antigens on murine hepatocellular carcinoma immunoprophylaxis were determined in vivo. The cellular immunity of the immunized mice was tested by spleen lymphocyte proliferation tests and peritoneal macrophage phagocytosis assays. The tumor-specific antigen was confirmed by Western blot analysis. Results in vivo revealed that the antigens (HCL/Z1) activated immunoprophylaxis against hepatocellular carcinoma with a better survival status. The survival rates (60%, 100%) of the HCL/Z1 group were better than the model group (p < 0.01). The quantity of lymphocytes in the spleen in the HCL or Z1 groups treated with ConA or LPS were higher than that of the model group (p < 0.01). The phagocytosis ability of macrophages in the HCL or Z1 groups was better than that of the control group or model group (p < 0.01). The characterization of Western blot analysis showed that about 59.6 kDa tumor specific antigen combined with antiserum of immunized mice specifically appeared in antigens. The newly generated tumor-specific antigen played a key role in the anti-tumor immune response and in activating the immune system. Our results suggest that this protein could serve as a tumor vaccine, and it could generate new ideas for tumor immunoprophylaxis.

  14. Critical roles of TIPE2 protein in murine experimental colitis

    PubMed Central

    Lou, Yunwei; Sun, Honghong; Morrissey, Samantha; Porturas, Thomas; Liu, Suxia; Hua, Xianxin; Chen, Youhai H.

    2014-01-01

    Both commensal bacteria and infiltrating inflammatory cells play essential roles in the pathogenesis of inflammatory bowel disease. The molecular mechanisms whereby these pathogenic factors are regulated during the disease are not fully understood. We report here that a member of the TNFAIP8 (tumor necrosis factor-α-induced protein 8) family called TIPE2 (TNFAIP8-like 2, or TNFAIP8L2) plays a crucial role in regulating commensal bacteria dissemination and inflammatory cell function in experimental colitis induced by dextran sodium sulfate (DSS). Following DSS treatment, TIPE2-deficient mice, or chimeric mice that are deficient in TIPE2 only in their hematopoietic cells, lost less body weight and survived longer than wild type controls. Consistent with this clinical observation, TIPE2-deficient mice exhibited significantly less severe colitis and colonic damage. This was associated with a marked reduction in the colonic expression of inflammatory cytokines such as TNF-α, IL-6, and IL-12. Importantly, the ameliorated DSS-induced colitis in TIPE2−/− mice was also associated with reduced local dissemination of commensal bacteria and a weaker systemic inflammatory response. Combined with our previous report that TIPE2 is a negative regulator of anti-bacterial immunity, these results indicate that TIPE2 promotes colitis by inhibiting mucosal immunity to commensal bacteria. PMID:24973456

  15. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-08-02

    Highlights: •IR-induced NO increased tissue perfusion and pO{sub 2}. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO{sub 2} in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.

  16. TUMOR INDUCTION BY MURINE SARCOMA VIRUS IN AKR AND C58 MICE

    PubMed Central

    Chieco-Bianchi, Luigi; Colombatti, Alfonso; Collavo, Dino; Sendo, Fujiro; Aoki, Tadao; Fischinger, Peter J.

    1974-01-01

    Adult AKR and C58 mice injected intramuscularly with murine sarcoma virus, Moloney isolate (M-MSV), developed high incidence of nonregressing local tumors. Histologically, these tumors revealed the typical pleomorphism of M-MSV sarcomas; in some cases, however, neoplastic tissue showed a nodular or diffuse growth of monomorphic myoblastlike cells, reminiscent of clonal aggregates. No depression of immune reactivity was found in M-MSV-injected mice as evaluated by direct hemolytic plaque-forming cells against SRBC and by virus-neutralizing antibody production. The MSV recovered from the induced tumors proved to be, by neutralization assay, a Gross (G)-MSV pseudotype. Moreover, tumor cell suspensions absorbed out cytotoxic antibody directed against G-cell surface antigens. Therefore, the conclusion was drawn that MSV with envelope characteristics of endogenous G leukemia virus had formed in vivo through a phenotypic mixing phenomenon. The failure of tumors to regress has been interpreted as mainly due to the partial unresponsiveness of host immune reactivity towards G-MuLV specified antigens. Since MSV-tumors arose in AKR mice after a very long latent period, the possibility was considered that this relative resistance might depend on immunologic mechanisms. In fact, M-MSV-injected AKR mice immunodepressed by goat antimouse lymphocyte serum or rendered partially tolerant by neonatal M-MuLV inoculation developed sarcomas with higher incidence and with a shorter latency. Furthermore, the MSV recovered from these early tumors proved to be the original Moloney pseudotype. PMID:4608945

  17. Local tumor irradiation augments the response to IL-2 therapy in a murine renal adenocarcinoma.

    PubMed

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Kukuruga, M A; Montecillo, E; Pontes, J E; Hillman, G G

    1995-10-15

    We have previously demonstrated that local tumor irradiation effectively enhanced the therapeutic effect of IL-2 therapy on pulmonary metastases from a murine renal adenocarcinoma, Renca. Irradiation with 300 rad to the left lung only, followed by systemic IL-2 therapy, results in increased tumor reduction in both lungs, suggesting that radiation enhances the systemic effect of immunotherapy. In this study, we show that irradiation of the tumor-bearing organ is essential for the combined effect of both modalities. This effect is radiation dose-dependent as increases in the radiation dosage result in greater tumor reduction in the irradiated field as well as systemically in nonirradiated fields when combined with immunotherapy. We find that irradiation has a direct inhibitory effect on Renca cell growth in vitro. Irradiation of Renca cells also causes an upregulation in H-2Kd class I MHC antigen detectable at 300 rad and more pronounced with 800 rad. By in vivo selective depletion of lymphocyte subsets, we demonstrate the involvement of Lyt-2+ and L3T4+ T cell subsets and AsGM1+ cells, including NK cells, in the antitumor effect mediated by tumor irradiation and IL-2 therapy. Immunohistochemistry studies, performed on lung sections, showed a significant infiltration of CD3+ T cells and macrophages in the tumor nodules following treatment with tumor irradiation and IL-2 therapy. Our studies indicate that the mechanism of interaction between tumor irradiation and immunotherapy may include radiation-induced alterations in the tumor growth and antigenicity which may enhance or trigger an anti-tumor response elicited by IL-2 and mediated by T cells, AsGM1+ cells, and macrophages.

  18. The radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor.

    PubMed

    Chaplin, D J; Durand, R E; Stratford, I J; Jenkins, T C

    1986-07-01

    RSU-1069 is one of a group of compounds of particular interest in radiobiology, since it combines the nitroimidazole ring with a side chain bearing a monofunctional alkylating agent. This compound has been shown to be a potent radiosensitizer both in vitro and in vivo. Furthermore, it has recently been shown to be an effective hypoxic cell cytotoxin in vitro. Our studies have been carried out using the SCCVII squamous carcinoma implanted subcutaneously in C3H mice, using a technique we recently developed which facilitates isolation of tumor cell subpopulations from known locations relative to the tumor blood supply. The response of the separated tumor subpopulations was assessed using a soft agar clonogenic assay. For radiosensitization studies, RSU-1069 was administered i.p. at 0.5 mumol/g 20 min before irradiation and the tumors excised 20 min after irradiation. For toxicity studies, tumors were excised 16-18 hr after RSU-1069 administration. The results obtained to date clearly demonstrate that RSU-1069 is an efficient hypoxic cell radiosensitizer and cytotoxin in this murine tumor and has little effect on well perfused (i.e., oxic) cells.

  19. The potentiation of radiation response on murine tumor by fludarabine phosphate.

    PubMed

    Kim, J H; Alfieri, A A; Kim, S H; Fuks, Z

    1986-04-01

    Fludarabine phosphate is a synthetic analog of beta-arabinofuranosyl adenine (beta-ara-A), an anti-viral agent. Since beta-ara-A has been shown to be an effective inhibitor of potentially lethal damage (PLD) repair in cell culture system but ineffective in in vivo tumors, we carried out experiments to determine whether fludarabine phosphate which is not inactivated by adenosine deaminase potentiates the radiation effects on in vivo murine tumor. The combined effects of single acute fludarabine phosphate (600 mg/kg) and single dose of X-irradiation (20 Gy) on Meth-A fibrosarcomas in BALB/c mice produced more than 90% tumor control, while the radiation alone resulted in less than 10% tumor control. The radiosensitizing effect by fludarabine phosphate was higher when the drug was administered immediately prior to X-irradiation. The dose modifying factor of fludarabine phosphate is estimated to be 1.6 at 400 mg/kg. Experiments with fractionated irradiation and fludarabine phosphate similarly showed a high rate of tumor control. The present study suggests that inhibitors of PLD repair including several antiviral agents may have potential utility in the treatment of some radioresistant human tumors by radiotherapy.

  20. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  1. T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3

    PubMed Central

    2011-01-01

    Regulatory T cells (Treg) that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg) or induced Treg (iTreg) converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL) and splenocytes (SPL) in B16 murine melanoma-bearing C57BL/6 Foxp3EGFP mice. OT-II Foxp3EGFP mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA). Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3EGFP mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR) and exposure to transforming growth factor β (TGFβ). B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment. PMID:22112546

  2. Optimizing the time of doxil injection to increase the drug retention in transplanted murine mammary tumors

    PubMed Central

    You, Shaojin; Zuo, Lian; Li, Wei

    2010-01-01

    Sex hormonal milieus during the female fertility cycle modulate the tumor vascular permeability of breast cancer. It has been proposed that the liposomal formulated doxorubicin (ie, Doxil), given at the menstrual/estrous stage with the predicted highest tumor vascular permeability, allows significantly increased drug retention in the breast tumor. In the current study, syngeneic murine 4T1 mammary tumors were established on the backs of female BALB/c mice and Doxil was administered at particular mouse estrous cycle stages. The results indicated that Doxil administration during certain times in the mouse estrous cycle was crucial for drug retention in 4T1 tumor tissues. Significantly higher drug concentrations were detected in the tumor tissues when Doxil was administered during the diestrus stage, as compared to when the drug injection was given at all other estrous stages. Our study also showed that the tumor-bearing mice exhibited nearly normal rhythmicity of the estrous cycle post drug injection, indicating the feasibility of continual injection of Doxil at the same estrous cycle stage. By using 4T1 cells cultured in vitro, we showed that progesterone (P4) significantly inhibited cell proliferation and the production of six tumor-derived cytokines, eg, sTNF-RI, CXCL-16, GM-CSF, MIP-1α, MIP-1γ, and Flt3-L. Some of these factors have been shown to be vascular modulators in diverse tissues. In this report, we demonstrated that the concentration of P4 in the plasma and/or estrous cycle stage of 4T1 tumor-bearing mice can be used to select the best time for administrating the liposomal anticancer drugs. PMID:20463938

  3. Murine complement C4 is not required for experimental autoimmune encephalomyelitis.

    PubMed

    Boos, Laura A; Szalai, Alexander J; Barnum, Scott R

    2005-01-01

    In vitro studies have demonstrated that myelin and myelin-derived proteins activate both the classical and alternative complement pathways. More recently, studies have shown that mice deficient in factor B, a protein required for activation of the alternative pathway, have attenuated experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. The relative contribution of the classical pathway to the pathogenesis of EAE has remained unexplored. To address this question, we performed EAE using mice deficient in C4 (C4-/-), a protein required for full activation of the classical pathway. We found that deletion of the C4 gene does not significantly change either the time of onset or the severity and tempo of myelin oligodendrocyte-induced EAE compared with controls with a fully intact complement system. We observed similar levels of cellular infiltration (CD11b+ macrophages and CD3+ T cells) and demyelination in the two kinds of mice. Despite this, ribonuclease protection assays demonstrated a two- to fourfold increase in several pro-inflammatory cytokines in C4-/- mice with EAE, including interleukin-beta (IL-1beta), IL-18, tumor necrosis factor-alpha (TNF-alpha), IP-10, and RANTES. These results support the conclusion that the contribution of murine complement to the pathogenesis of demyelinating disease is realized via the alternative pathway. copyright (c) 2004 Wiley-Liss, Inc.

  4. Gender-Specific Transfusion Affects Tumor-Associated Neutrophil: Macrophage Ratios in Murine Pancreatic Adenocarcinoma

    PubMed Central

    Benson, Douglas D.; Kelher, Marguerite R.; Meng, Xianzhong; Fullerton, David A.; Lee, Joon H.; Silliman, Christopher C.

    2011-01-01

    Introduction Perioperative blood transfusion has been linked to decreased survival for pancreas cancer. Noting clinical data associating female blood products with increased morbidity, our lab has demonstrated that transfusion of female blood augments metastatic events compared to male blood in an immunocompetent murine pancreatic cancer model. It has been suggested that tumor-associated macrophages correlate with tumor progression by promoting angiogenesis. More recently, tumor-associated neutrophils have been implicated in aggressive tumor behavior. We hypothesize that differences in gender-specific transfusion-mediated pancreatic cancer progression are due to microenvironmental changes within the tumor. To test this hypothesis, we examined tumor-associated neutrophils and macrophage ratios in male and female mice with pancreatic cancer receiving blood transfusion from male or female donors. Methods C57/BL6 mice, age 7–9 weeks, underwent splenic inoculation with 2.5×105 PanO2 murine pancreatic adenocarcinoma cells. Mice were transfused on post-op day 7 with 1 ml/kg supernatant from day 42 male or female packed red cells. Necropsy was performed at 5 weeks or earlier for clinical deterioration, and tumors harvested. Frozen sections (5 μm) were stained for neutrophils and macrophages by immunofluorescence. Data were analyzed using ANOVA; p≤0.05 was used to determine significance; N≥3 per group. Results Clinically, male mice had greater morbidity and mortality than female mice when receiving female blood products, with roughened hair coat, development of ascites and death due to bowel obstruction. In evaluating the tumor microenvironment from mice receiving female blood products, male mice were noted to have a greater neutrophil to macrophage ratio than female mice, 0.176±0.028 vs. 0.073±0.012, p=0.03. When examining neutrophil to macrophage ratio in mice receiving male blood products, no difference was noted (p=0.48). Conclusions Male mice with pancreas

  5. Co-Encapsulation of Doxorubicin With Galactoxyloglucan Nanoparticles for Intracellular Tumor-Targeted Delivery in Murine Ascites and Solid Tumors

    PubMed Central

    Joseph, Manu M.; Aravind, S.R.; George, Suraj K.; Pillai, Raveendran K.; Mini, S.; Sreelekha, T.T.

    2014-01-01

    Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications. PMID:25389448

  6. Experimental infection of murine and human macrophages with Cystoisospora belli.

    PubMed

    Resende, Deisy V; Lages-Silva, Eliane; Assis, Dnieber C; Prata, Aluízio; Oliveira-Silva, Márcia B

    2009-08-01

    Extraintestinal cystoisosporosis by Cystoisospora belli has already been reported in HIV/AIDS patients, generally involving preferential invasion of mesenteric and trachaeobronchial lymph nodes, liver and spleen by unizoic cysts of this parasite, which may infect macrophages. To test this hypothesis, murine and human macrophages were exposed to sporozoites of C. belli and cultures were observed daily after contact with these cells. The parasites penetrated and multiplied by endodyogeny in both cell types and inserted themselves inside perinuclear vacuoles. After 48 h, extracellular parasites were removed from macrophage cultures and incubated in Monkey Kidney Rhesus cells (MK2) where there was intense multiplication. This is the first report of infection of macrophages by this parasite, which supports the hypothesis that these could act as C. belli host cells in extraintestinal sites.

  7. Role of curcumin-dependent modulation of tumor microenvironment of a murine T cell lymphoma in altered regulation of tumor cell survival

    SciTech Connect

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Singh, Sukh Mahendra

    2011-05-01

    Using a murine model of a T cell lymphoma, in the present study, we report that tumor growth retarding action of curcumin involves modulation of some crucial parameters of tumor microenvironment regulating tumor progression. Curcumin-administration to tumor-bearing host caused an altered pH regulation in tumor cells associated with alteration in expression of cell survival and apoptosis regulatory proteins and genes. Nevertheless, an alteration was also observed in biophysical parameters of tumor microenvironment responsible for modulation of tumor growth pertaining to hypoxia, tumor acidosis, and glucose metabolism. The study thus sheds new light with respect to the antineoplastic action of curcumin against a tumor-bearing host with progressively growing tumor of hematological origin. This will help in optimizing application of the drug and anticancer research and therapy. - Graphical Abstract: Display Omitted

  8. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  9. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

    PubMed Central

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2016-01-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase (GGDPS), reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100%), adrenal glands (72%), mesentery (22%), liver (17%), and the thoracic cavity (6%). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed areduction in adrenal gland tumors corresponding to a 54% (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis. PMID:26070429

  10. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis.

    PubMed

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2015-08-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.

  11. The Relationship between the Antitumor Effect of the IL-12 Gene Therapy and the Expression of Th1 Cytokines in an HPV16-Positive Murine Tumor Model

    PubMed Central

    García Paz, Flor; Madrid Marina, Vicente; Morales Ortega, Ausencio; Santander González, Abimelec; Peralta Zaragoza, Oscar; Burguete García, Ana; Torres Poveda, Kirvis; Moreno, José; Alcocer González, Juan; Hernandez Marquez, Eva; Bermúdez Morales, Victor

    2014-01-01

    Objective. The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Methods. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Results. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. Conclusions. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer. PMID:24808638

  12. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells.

    PubMed

    Español, Alejandro Javier; Jacob, Guillermina; Dmytrenko, Ganna; Sales, María Elena

    2013-10-01

    Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment.

  13. Partial characterization of n-butanol-solubilized rejection-type antigens of syngeneic murine colon tumors.

    PubMed

    Sato, N; Kikuchi, K

    1985-04-01

    Previous investigation of the transplantation immunity of 2 cultured murine colon lines of BALB/c origin, C-C36 and C-C26, showed these tumor lines to be immunogenic against individual tumors and to have possibly cross-reactive, tumor-rejection-type antigens. For characterization of the molecular features of tumor-rejection antigens expressed on the colon tumor cells, n-butanol was used for the extraction of rejection-type antigens from tumor cells and immunogenic molecules were analyzed on transplantation immunity. The data demonstrated that extraction of the rejection-type antigens from C-C36 and C-C26 surface membrane without cellular lysis was possible with n-butanol treatment of these cells, and immunogenic activities of these extracts from C-C36 and C-C26 cells were more potent than those of nonionic detergent Nonidet P40 extracts in the tumor-rejection assays. The extracts were partially characterized by chromatographic separation on Sephadex G-200 gel filtration and lectin-affinity chromatography. It was suggested that the C-C36 antigens responsible for tumor-rejection activity against the same tumor cells had a molecular weight range of approximately 150,000 to 250,000 (fraction II) in the presence of 5 mM EDTA and had been eluted into unbound fractions to lens culinaris lectin on affinity chromatography. Moreover, immunization of mice with antigens from the same fractions (fraction II) of n-butanol extracts of C-C26 tumor on the gel filtration could induce the resistance against challenged C-C36 as well as against challenged C-C26 tumor growth. These results may indicate that solubilized tumor-rejection-type antigens found in C-C36 and C-C26 colon tumors have a size similar to that of the molecules and that cross-reacting, rejection-type antigens between these cells are the products of the same gene clusters or somatic derivatives of a single gene.

  14. Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.

    PubMed

    Rothweiler, Sonja; Dill, Michael T; Terracciano, Luigi; Makowska, Zuzanna; Quagliata, Luca; Hlushchuk, Ruslan; Djonov, Valentin; Heim, Markus H; Semela, David

    2015-03-01

    Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.

  15. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis.

    PubMed Central

    Coughlin, C M; Salhany, K E; Wysocka, M; Aruga, E; Kurzawa, H; Chang, A E; Hunter, C A; Fox, J C; Trinchieri, G; Lee, W M

    1998-01-01

    The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18. PMID:9502787

  16. Anti-tumor immunity generated by photodynamic therapy in a metastatic murine tumor model

    NASA Astrophysics Data System (ADS)

    Castano, Ana P.; Hamblin, Michael R.

    2005-04-01

    Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of photosensitizers with harmless visible light producing reactive oxygen species. The major biological effects of PDT are apoptosis of tumor cells, destruction of the blood supply and activation of the immune system. The objective of this study is to compare in an animal model of metastatic cancer, PDT alone and PDT combined with low-dose cyclophosphamide (CY). Since the tumor we used is highly metastatic, it is necessary to generate anti-tumor immunity using PDT to both cure the primary tumor and prevent death from metastasis. This immunity may be potentiated by low dose CY. In our model we used J774 cells (a Balb/c reticulum cell sarcoma line with the characteristics of macrophages) and the following PDT regimen: benzoporphyrin derivative monoacid ring A (BPD, 2mg/kg injected IV followed after 15 min by 150 J/cm2 of 690-nm light). CY (50 mg/kg i.p.) was injected 48 hours before light delivery. BPD-PDT led to complete regression of the primary tumor in more than half the mice but no permanent cures were obtained. BPD-PDT in combination with CY led to 60% permanent cures. CY alone gave no permanent cures but did provide a survival advantage. To probe permanent immunity cured animals were rechallenged with the same tumor cell line and the tumors were rejected in 71% of mice cured with BPD-PDT plus CY. We conclude that BPD-PDT in combination with CY gives best overall results and that this is attributable to immunological response activation in addition to PDT-mediated destruction of the tumor.

  17. Tert-butylhydroquinone compromises survival in murine experimental stroke.

    PubMed

    Sun, Jiahong; Hu, Heng; Ren, Xuefang; Simpkins, James W

    2016-01-01

    Tert-butylhydroquinone (tBHQ), an Nrf2 signaling pathway inducer that is widely used as a food additive in the U.S., prevents oxidative stress-induced cytotoxicity in neurons. This study assesses the effects of tBHQ on ischemic stroke outcomes in mice. We measured infarct size, neurological deficits, and brain volume after tBHQ treatments in murine permanent middle cerebral artery occlusion (pMCAO) model in vivo. Further, we evaluated the regulation of tBHQ on mitochondrial function in cerebrovascular endothelial cells in vitro, which is critical to the blood-brain barrier (BBB) permeability. Our results demonstrated that tBHQ increased post-stroke mortality and worsened stroke outcomes. Mitochondrial function was suppressed by tBHQ treatment of cerebrovascular endothelial cells, and this suppression was potentiated by co-treatment with lipopolysaccharide (LPS), the bacterial mimic. These data indicate that tBHQ-exacerbated stroke damage might due to the compromised BBB permeability in permanent stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tert-butylhydroquinone Compromises Survival in Murine Experimental Stroke

    PubMed Central

    Sun, Jiahong; Hu, Heng; Ren, Xuefang; Simpkins, James W.

    2016-01-01

    tert-butylhydroquinone (tBHQ), an Nrf2 signaling pathway inducer that is widely used as a food additive in the U.S., prevents oxidative stress-induced cytotoxicity in neurons. This study assesses the effects of tBHQ on ischemic stroke outcomes in mice. We measured infarct size, neurological deficits, and brain volume after tBHQ treatments in murine permanent middle cerebral artery occlusion (pMCAO) model in vivo. Further, we evaluated the regulation of tBHQ on mitochondrial function in cerebrovascular endothelial cells in vitro, which is critical to the blood–brain barrier (BBB) permeability. Our results demonstrated that tBHQ increased post-stroke mortality and worsened stroke outcomes. Mitochondrial function was suppressed by tBHQ treatment of cerebrovascular endothelial cells, and this suppression was potentiated by co-treatment with lipopolysaccharide (LPS), the bacterial mimic. These data indicate that tBHQ-exacerbated stroke damage might due to the compromised BBB permeability in permanent stroke. PMID:26827673

  19. SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

    NASA Astrophysics Data System (ADS)

    Reeves, Russell; Petryk, Alicia A.; Kastner, Elliot J.; Zhang, Jinjin; Ring, Hattie; Garwood, Michael; Hoopes, P. Jack

    2015-03-01

    Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

  20. Effects of inhibitors of radiation-induced potentially lethal damage repair on chemotherapy in murine tumors

    SciTech Connect

    Nakatsugawa, S.; Sugahara, T.

    1982-09-01

    Enhancement of various antitumor drugs effects by inhibitors of radiation-induced potentially lethal damage (PLD) repair was studied in three murine tumors (EMT-6, RIF-1 and SQ-1). In EMT-6 tumors, PLD repair inhibitors, 3'-deoxyguanosine (3'dG) and 7904 (a derivative of 3'-deoxyadenosine) showed a marked enhancement of tumor growth inhibition by anticancerous drugs (FT-207 (a derivative of 5-FU), bleomycin, Ara-C, ACNU). However, the effects of mitomycin-C and vincristine were not potentiated by the inhibitors. In SQ-1 carcinomas, another repair inhibitor, ara-A (1-..beta..-D-arabinofuranosyladenine) (32 mg/kg) potentiated the effect of ACNU. In RIF-1 sarcomas, in which a low PLD repair function has been reported after ionizing radiation exposure, the potentiation was not so marked as in EMT-6 or SQ-1 tumors. Thus, as a possibility, the potentiation by inhibitors of radiation-induced PLD repair might be a result of the inhibition of chemical-induced PLD repair. The study of this field may contribute to the improvement of cancer treatment not only by radiotherapy but also by chemotherapy.

  1. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells.

    PubMed

    Yoshii, J; Yoshiji, H; Kuriyama, S; Ikenaka, Y; Noguchi, R; Okuda, H; Tsujinoue, H; Nakatani, T; Kishida, H; Nakae, D; Gomez, D E; De Lorenzo, M S; Tejera, A M; Fukui, H

    2001-12-15

    Angiogenesis is now recognized as a crucial process in tumor development, including hepatocellular carcinoma (HCC). Since HCC is known as a hypervascular tumor, anti-angiogenesis is a promising approach to inhibit the HCC development. Trientine dihydrochloride (trientine) is used in clinical practice as an alternative copper (Cu)-chelating agent for patients with Wilson's disease of penicillamine intolerance. In our study, we examined the effect of Cu-chelating agents on tumor development and angiogenesis in the murine HCC xenograft model. Although both trientine and penicillamine in the drinking water suppressed the tumor development, trientine exerted a more potent inhibitory effect than penicillamine. In combination with a Cu-deficient diet, both trientine and penicillamine almost abolished the HCC development. Trientine treatment resulted in a marked suppression of neovascularization and increase of apoptosis in the tumor, whereas tumor cell proliferation itself was not altered. In vitro studies also exhibited that trientine is not cytotoxic for the tumor cells. On the other hand, it significantly suppressed the endothelial cell proliferation. These results suggested that Cu plays a pivotal role in tumor development and angiogenesis in the murine HCC cells, and Cu-chelators, especially trientine, could inhibit angiogenesis and enhance apoptosis in the tumor with consequent suppression of the tumor growth in vivo. Since trientine is already used in clinical practice without any serious side effects as compared to penicillamine, it may be an effective new strategy for future HCC therapy. Copyright 2001 Wiley-Liss, Inc.

  2. Tephrosia purpurea alleviates phorbol ester-induced tumor promotion response in murine skin.

    PubMed

    Saleem, M; Ahmed Su; Alam, A; Sultana, S

    2001-02-01

    In recent years, considerable emphasis has been placed on identifying new cancer chemopreventive agents, which could be useful for the human population. Tephrosia purpurea has been shown to possess significant activity against hepatotoxicity, pharmacological and physiological disorders. Earlier we showed that Tephrosia purpurea inhibits benzoyl peroxide-mediated cutaneous oxidative stress and toxicity. In the present study, we therefore assessed the effect of Tephrosia purpurea on 12-O-tetradecanoyl phorbal-13-acetate (TPA; a well-known phorbol ester) induced cutaneous oxidative stress and toxicity in murine skin. The pre-treatment of Swiss albino mice with Tephrosia purpurea prior to application of croton oil (phorbol ester) resulted in a dose-dependent inhibition of cutaneous carcinogenesis. Skin tumor initiation was achieved by a single topical application of 7,12-dimethyl benz(a)anthracene (DMBA) (25 microg per animal per 0.2 ml acetone) to mice. Ten days later tumor promotion was started by twice weekly topical application of croton oil (0.5% per animal per 0.2 ml acetone, v /v). Topical application of Tephrosia purpurea 1 h prior to each application of croton oil (phorbol ester) resulted in a significant protection against cutaneous carcinogenesis in a dose-dependent manner. The animals pre-treated with Tephrosia purpurea showed a decrease in both tumor incidence and tumor yield as compared to the croton oil (phorbol ester)-treated control group. In addition, a significant reduction in TPA-mediated induction in cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation was also observed in animals pre-treated with a topical application of Tephrosia purpurea. The effect of topical application of Tephrosia purpurea on TPA-mediated depletion in the level of enzymatic and non-enzymatic molecules in skin was also evaluated and it was observed that topical application of Tephrosia purpurea prior to TPA resulted in the significant recovery of

  3. In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models

    PubMed Central

    Phillips, Kevin G.; Samatham, Ravikant; Choudhury, Niloy; Gladish, James C.; Thuillier, Philippe; Jacques, Steven L.

    2010-01-01

    The characterization of tissue morphology in murine models of pathogenesis has traditionally been carried out by excision of affected tissues with subsequent immunohistological examination. Excision-based histology provides a limited two-dimensional presentation of tissue morphology at the cost of halting disease progression at a single time point and sacrifice of the animal. We investigate the use of noninvasive reflectance mode confocal scanning laser microscopy (rCSLM) as an alternative tool to biopsy in documenting epidermal hyperplasia in murine models exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). An automated technique utilizing average axial rCSLM reflectance profiles is used to extract epidermal thickness values from rCSLM data cubes. In comparisons to epidermal thicknesses determined from hematoxylin and eosin (H&E) stained tissue sections, we find no significant correlation to rCSLM-derived thickness values. This results from method-specific artifacts: physical alterations of tissue during H&E preparation in standard histology and specimen-induced abberations in rCSLM imaging. Despite their disagreement, both histology and rCSLM methods reliably measure statistically significant thickness changes in response to TPA exposure. Our results demonstrate that in vivo rCSLM imaging provides epithelial biologists an accurate noninvasive means to monitor cutaneous pathogenesis. PMID:20799792

  4. In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Samatham, Ravikant; Choudhury, Niloy; Gladish, James C.; Thuillier, Philippe; Jacques, Steven L.

    2010-07-01

    The characterization of tissue morphology in murine models of pathogenesis has traditionally been carried out by excision of affected tissues with subsequent immunohistological examination. Excision-based histology provides a limited two-dimensional presentation of tissue morphology at the cost of halting disease progression at a single time point and sacrifice of the animal. We investigate the use of noninvasive reflectance mode confocal scanning laser microscopy (rCSLM) as an alternative tool to biopsy in documenting epidermal hyperplasia in murine models exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). An automated technique utilizing average axial rCSLM reflectance profiles is used to extract epidermal thickness values from rCSLM data cubes. In comparisons to epidermal thicknesses determined from hematoxylin and eosin (H&E) stained tissue sections, we find no significant correlation to rCSLM-derived thickness values. This results from method-specific artifacts: physical alterations of tissue during H&E preparation in standard histology and specimen-induced abberations in rCSLM imaging. Despite their disagreement, both histology and rCSLM methods reliably measure statistically significant thickness changes in response to TPA exposure. Our results demonstrate that in vivo rCSLM imaging provides epithelial biologists an accurate noninvasive means to monitor cutaneous pathogenesis.

  5. Phenotypes of murine leukemia virus-induced tumors: influence of 3' viral coding sequences.

    PubMed Central

    Ott, D E; Keller, J; Sill, K; Rein, A

    1992-01-01

    Murine leukemia viruses (MuLVs) induce leukemias and lymphomas in mice. We have used fluorescence-activated cell sorter analysis to determine the hematopoietic phenotypes of tumor cells induced by a number of MuLVs. Tumor cells induced by ecotropic Moloney, amphotropic 4070A, and 10A1 MuLVs and by two chimeric MuLVs, Mo(4070A) and Mo(10A1), were examined with antibodies to 13 lineage-specific cell surface markers found on myeloid cell, T-cell, and B-cell lineages. The chimeric Mo(4070A) and Mo(10A1) MuLVs, consisting of Moloney MuLV with the carboxy half of the Pol region and nearly all of the Env region of 4070A and 10A1, respectively, were constructed to examine the possible influence of these sequences on Moloney MuLV-induced tumor cell phenotypes. In some instances, these phenotypic analyses were supplemented by Southern blot analysis for lymphoid cell-specific genomic DNA rearrangements at the immunoglobulin heavy-chain, the T-cell receptor gamma, and the T-cell receptor beta loci. The results of our analysis showed that Moloney MuLV, 4070A, Mo(4070A), and Mo(10A1) induced mostly T-cell tumors. Moloney MuLV and Mo(4070A) induced a wide variety of T-cell phenotypes, ranging from immature to mature phenotypes, while 4070A induced mostly prothymocyte and double-negative (CD4- CD8-) T-cell tumors. The tumor phenotypes obtained with 10A1 and Mo(10A1) were each less variable than those obtained with the other MuLVs tested. 10A1 uniformly induced a tumor consisting of lineage marker-negative cells that lack lymphoid cell-specific DNA rearrangements and histologically appear to be early undifferentiated erythroid cell-like precursors. The Mo(10A1) chimera consistently induced an intermediate T-cell tumor. The chimeric constructions demonstrated that while 4070A 3' pol and env sequences apparently did not influence the observed tumor cell phenotypes, the 10A1 half of pol and env had a strong effect on the phenotypes induced by Mo(10A1) that resulted in a phenotypic

  6. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS AND DNA ADDUCTS OF 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    Strain-dependent susceptibility to transplacentally-induced murine lung tumors and DNA adducts of 3methylcholanthrene G B Nelson, J A Ross, J E Moore, M Xu, N D Kock, M S Miller Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC.

    It has been de...

  7. STRAIN-DEPENDENT SUSCEPTIBILITY TO TRANSPLACENTALLY-INDUCED MURINE LUNG TUMORS AND DNA ADDUCTS OF 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    Strain-dependent susceptibility to transplacentally-induced murine lung tumors and DNA adducts of 3methylcholanthrene G B Nelson, J A Ross, J E Moore, M Xu, N D Kock, M S Miller Wake Forest University, Winston-Salem, NC and USEPA, Research Triangle Park, NC.

    It has been de...

  8. Multiple steps are required for the induction of tumors by Abelson murine leukemia virus.

    PubMed Central

    Green, P L; Kaehler, D A; Bennett, L M; Risser, R

    1989-01-01

    Helper virus-free Abelson murine leukemia virus (A-MuLV) was used to induce monoclonal pre-B-cell tumors in mice. The clonality, patterns of immunoglobulin heavy-chain gene rearrangement, tumorigenicity, and v-abl oncogene expression in individual preleukemic and leukemic colonies were compared. Our results indicate that A-MuLV preleukemic cells with low or undetectable tumorigenic potential give rise to leukemic cells with high tumorigenic potential by a process of subclone selection. The levels of v-abl oncogene product in preleukemic and leukemic cell populations were not significantly different. These results suggest that an additional event(s) unrelated to the level of the v-abl protein product is required for A-MuLV-transformed cells to become fully malignant. Images PMID:2539498

  9. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.

    PubMed

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A; Besenbacher, Flemming; Nielsen, Niels Chr; Kjems, Jørgen

    2012-04-07

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.

  10. In vitro activation of murine Kupffer cells by lymphokines or endotoxins to lyse syngeneic tumor cells.

    PubMed Central

    Xu, Z. L.; Bucana, C. D.; Fidler, I. J.

    1984-01-01

    Murine Kupffer cells (RC) were isolated in sufficient number and purity to allow in vitro investigations of their tumoricidal capabilities. The identity of the adherent cells as KCs was established by morphologic, histochemical, and functional criteria. The yield of KCs varied from young (high) to old (low) mice but was not affected by the mouse strain. KCs activated in vitro by either endotoxins (lipopolysaccharide) or lymphokines were rendered highly cytotoxic against syngeneic melanoma or fibrosarcoma target cells. These studies indicate that KCs may indeed play a role in destruction of tumor cells in vivo and thus be important in host defense against developing hepatic cancer metastases. Images Figure 1 Figure 2 Figure 3 PMID:6391188

  11. Interaction between omega 3 PUFA and UVB radiation: Photoprotective effect in normal and tumoral murine melanocytes?

    PubMed

    Vasconcelos, Renata Ottes; Bustos, Silvina Odete; Gonzalez, Juliana Ramos; Soares, Camila Wink; Barbosa, Makely Daiane; Chammas, Roger; Votto, Ana Paula de Souza; Trindade, Gilma Santos

    2016-11-01

    Omega 3 polyunsaturated fatty acids (omega 3 PUFA) are attracting a growing interest as potential adjuvants for cancer prevention and treatment. There is evidence about photoprotection in normal cells, but few previous studies have evaluated it in tumoral cells. Therefore, this study investigated the effect of α-linolenic acid (ALA) in normal murine melanocytic cells (Melan-a) and in tumoral murine melanocytic cells (B16F10) exposed to UVB radiation. Our results showed that ALA exhibited an antiproliferative effect in B16F10 cells, and had minimal effect in Melan-a cells, as demonstrated by MTT assay. On the other hand, the combination of ALA (7.5μM) and UVB (0.01J/cm(2)) showed a protective effect for both cell lines, Melan-a and B16F10. ALA and UVB combined or UVB alone induced an accumulation of cell lines at the S/G2/M phase. In addition, the combination of ALA and UVB, and UVB alone, both induced cell death in 24h; and in 48h, ALA attenuated this effect in both cells. Further to these findings, it was demonstrated that ALA did not alter ROS levels in both cells exposed to UVB radiation. The effect of an omega 6 PUFA, linoleic acid, under the same conditions of ALA were tested. It was not protective in either cell line. Therefore, our results can be very important since it was shown another role to an omega 3 PUFA as a photoprotective agent in a melanoma cell.

  12. Automated segmentation of murine lung tumors in x-ray micro-CT images

    NASA Astrophysics Data System (ADS)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  13. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    NASA Astrophysics Data System (ADS)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R.; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A.; Besenbacher, Flemming; Nielsen, Niels Chr.; Kjems, Jørgen

    2012-03-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20 000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (Mw) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating Mw of 10 000 Da.Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20 000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (Mw) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating Mw of 10 000 Da. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11554a

  14. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    PubMed Central

    Franco-Molina, Moisés A; Miranda-Hernández, Diana F; Mendoza-Gamboa, Edgar; Zapata-Benavides, Pablo; Coronado-Cerda, Erika E; Sierra-Rivera, Crystel A; Saavedra-Alonso, Santiago; Taméz-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2016-01-01

    Forkhead box p3 (Foxp3) expression was believed to be specific for T-regulatory cells but has recently been described in non-hematopoietic cells from different tissue origins and in tumor cells from both epithelial and non-epithelial tissues. The aim of this study was to elucidate the role of Foxp3 in murine melanoma. The B16F10 cell line Foxp3 silenced with small interference Foxp3 plasmid transfection was established and named B16F10.1. These cells had lower levels of Foxp3 mRNA (quantitative real-time reverse transcription-polymerase chain reaction [0.235-fold]), protein (flow cytometry [0.02%]), CD25+ expression (0.06%), cellular proliferation (trypan blue staining), and interleukin (IL)-2 production (enzyme-linked immunosorbent assay [72.35 pg/mL]) than those in B16F10 wild-type (WT) cells (P<0.05). Subcutaneous inoculation of the B16F10.1 cell line into C57BL/6 mice delayed the time of visible tumor appearance, increased the time of survival, and affected the weight of tumors, and also decreased the production of IL-10, IL-2, and transforming growth factor beta compared with mice inoculated with the B16F10 WT cell line. The B16F10.1 cells derived from tumors and free of T-cells (isolated by Dynabeads and plastic attachment) expressed relatively lower levels of Foxp3 and CD25+ than B16F10 WT cells (P<0.05) in a time-dependent manner. The population of tumor-infiltrating lymphocytes of T CD4+ cells (CD4+, CD4+CD25+, and CD4+CD25+Foxp3+) increased in a time-dependent manner (P<0.05) in tumors derived from B16F10 WT cells and decreased in tumors derived from B16F10.1 cells. Similar data were obtained from spleen cells. These results suggest that, in melanomas, Foxp3 partly induces tumor growth by modifying the immune system at the local and peripheral level, shifting the environment toward an immunosuppressive profile. Therapies incorporating this transcription factor could be strategies for cancer treatment. PMID:26834483

  15. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses.

    PubMed

    Cabrales, Luis E Bergues; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra

    2010-10-28

    Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice.

  16. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    PubMed Central

    2010-01-01

    Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411

  17. Cloning of the murine counterpart of the tumor-associated antigen H-L6: Epitope mapping of the human and murine L6 antigens

    SciTech Connect

    Edwards, C.P.; Farr, A.G.; Marken, J.S. |

    1995-10-03

    The murine monoclonal antibody (mAb) L6 was raised against human lung carcinoma cells and found to recognize an antigen which is highly expressed on lung, breast, colon, and ovarian carcinomas. Promising results in phase 1 clinical studies with this antibody or its chimerized counterpart suggest the antigen recognized by mAb L6 (H-L6) is an attractive target for monoclonal antibody-based cancer therapy. Further development of L6 as an anti-tumor-targeting agent would benefit from the development of a murine model. However, initial attempts to develop such a model were hampered by our inability to generate antibodies against the murine homologue of the L6 antigen, M-L6. Here we describe the preparation of the mAb 12A8, which was raised against murine thymic epithelial cells, the tissue distribution of the murine antigen recognized by 12A8, the cloning of a cDNA encoding the 12A8 target antigen, and the demonstration that this antigen is M-L6. Using H-L6/M-L6 chimeric proteins, we show that the region of the M-L6 protein recognized by mAb 12A8 corresponds to the region of H-L6 recognized by mAb L6. There are five amino acid differences in the regions of the H-L6 and M-L6 proteins recognized by L6 and 12A8, respectively. We further mapped the protein epitope recognized by L6 by individually exchanging each of these residues in H-L6 with the corresponding residue found in M-L6. Substitution of the single H-L6 residue Leu122 with Ser resulted in the H-L6 mutant HL6-L122S which failed to bind L6. The HL6-L122S mutant also failed to bind 12A8. Substituting residue Ser122 in M-L6 with Leu did not prevent 12A8 binding and did not result in L6 binding. The availability of mAb 12A8 and the finding that it recognizes the same region of M-L6 that is recognized by L6 on H-L6 might allow the development of a murine tumor model in which the L6 antigen can be further evaluated as a therapeutic target. 31 refs., 7 figs.

  18. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis

    PubMed Central

    Zanvit, Peter; Konkel, Joanne E.; Jiao, Xue; Kasagi, Shimpei; Zhang, Dunfang; Wu, Ruiqing; Chia, Cheryl; Ajami, Nadim J.; Smith, Daniel P.; Petrosino, Joseph F.; Abbatiello, Brittany; Nakatsukasa, Hiroko; Chen, Qianming; Belkaid, Yasmine; Chen, Zi-Jiang; Chen, WanJun

    2015-01-01

    Psoriasis is an inflammatory skin disease affecting ∼2% of the world's population, but the aetiology remains incompletely understood. Recently, microbiota have been shown to differentially regulate the development of autoimmune diseases, but their influence on psoriasis is incompletely understood. We show here that adult mice treated with antibiotics that target Gram-negative and Gram-positive bacteria develop ameliorated psoriasiform dermatitis induced by imiquimod, with decreased pro-inflammatory IL-17- and IL-22-producing T cells. Surprisingly, mice treated neonatally with these antibiotics develop exacerbated psoriasis induced by imiquimod or recombinant IL-23 injection when challenged as adults, with increased IL-22-producing γδ+ T cells. 16S rRNA gene compositional analysis reveals that neonatal antibiotic-treatment dysregulates gut and skin microbiota in adults, which is associated with increased susceptibility to experimental psoriasis. This link between neonatal antibiotic-mediated imbalance in microbiota and development of experimental psoriasis provides precedence for further investigation of its specific aetiology as it relates to human psoriasis. PMID:26416167

  19. High-dose dietary zinc promotes prostate intraepithelial neoplasia in a murine tumor induction model.

    PubMed

    Ko, Young Hwii; Woo, Yu Jeong; Kim, Jin Wook; Choi, Hoon; Kang, Seok Ho; Lee, Jeong Gu; Kim, Je Jong; Park, Hong Seok; Cheon, Jun

    2010-03-01

    To evaluate the role of high-dose dietary zinc in the process of prostate malignancy, 60 Sprague-Dawley rats were randomly divided into four groups: tumor induction with carcinogen and hormone (group 1), oral zinc administration without tumor induction (group 2), oral zinc administration with tumor induction (group 3) and a control without zinc administration or tumor induction (group 4). Zinc was supplied orally in the form of zinc sulfate heptahydrate dissolved in drinking water to groups 2 and 3 for 20 weeks. Although the serum level of zinc measured at 20 weeks was maintained similarly in each group (P = 0.082), intraprostatic zinc concentrations were statistically different. Group 1 prostates contained the least amount of zinc in both the dorsolateral and ventral lobes at levels of 36.3 and 4.8 microg g(-1), respectively. However, in group 3, zinc levels increased in both lobes to 59.3 and 12.1 microg g(-1), respectively, comparable with that of group 4 (54.5 +/- 14.6 and 14.1 +/- 2.4 microg g(-1)). In spite of these increases in zinc concentration, the prevalence of prostate intraepithelial neoplasm was rather increased in group 3 (53.3% and 46.7%) compared with group 1 (33.3% and 33.3%) in both dorsolateral and ventral prostate lobes. Although prostate intraepithelial neoplasm did not develop in any prostate in group 4, zinc administration did induce prostate intraepithelial neoplasm in group 2 (46.7% and 40.0%). Thus, although high dietary zinc increased intraprostatic zinc concentrations, it promoted, instead of preventing, prostate intraepithelial neoplasm in a murine prostate malignancy induction model.

  20. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors

    SciTech Connect

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami; Kaneda, Hideki; Sakuraba, Yoshiyuki; Saiki, Yuriko; Wakana, Shigeharu; Suzuki, Hiroshi; Gondo, Yoichi; Shiroishi, Toshihiko; Noda, Tetsuo

    2016-08-05

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.

  1. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer.

    PubMed

    Jones, Lee W; Antonelli, Jodi; Masko, Elizabeth M; Broadwater, Gloria; Lascola, Christopher D; Fels, Diane; Dewhirst, Mark W; Dyck, Jason R B; Nagendran, Jeevan; Flores, Catherine T; Betof, Allison S; Nelson, Erik R; Pollak, Michael; Dash, Rajesh C; Young, Martin E; Freedland, Stephen J

    2012-07-01

    The purpose of this study is to investigate the effects of exercise on cancer progression, metastasis, and underlying mechanisms in an orthotopic model of murine prostate cancer. C57BL/6 male mice (6-8 wk of age) were orthotopically injected with transgenic adenocarcinoma of mouse prostate C-1 cells (5 × 10(5)) and randomly assigned to exercise (n = 28) or a non-intervention control (n = 31) groups. The exercise group was given voluntary access to a wheel 24 h/day for the duration of the study. Four mice per group were serially killed on days 14, 31, and 36; the remaining 38 mice (exercise, n = 18; control, n = 20) were killed on day 53. Before death, MRI was performed to assess tumor blood perfusion. Primary tumor growth rate was comparable between groups, but expression of prometastatic genes was significantly modulated in exercising animals with a shift toward reduced metastasis. Exercise was associated with increased activity of protein kinases within the MEK/MAPK and PI3K/mTOR signaling cascades with subsequent increased intratumoral protein levels of HIF-1α and VEGF. This was associated with improved tumor vascularization. Multiplex ELISAs revealed distinct reductions in plasma concentrations of several angiogenic cytokines in the exercise group, which was associated with increased expression of angiogenic and metabolic genes in the skeletal muscle. Exercise-induced stabilization of HIF-1α and subsequent upregulation of VEGF was associated with "productive" tumor vascularization with a shift toward suppressed metastasis in an orthotopic model of prostate cancer.

  2. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer

    PubMed Central

    Antonelli, Jodi; Masko, Elizabeth M.; Broadwater, Gloria; Lascola, Christopher D.; Fels, Diane; Dewhirst, Mark W.; Dyck, Jason R. B.; Nagendran, Jeevan; Flores, Catherine T.; Betof, Allison S.; Nelson, Erik R.; Pollak, Michael; Dash, Rajesh C.; Young, Martin E.; Freedland, Stephen J.

    2012-01-01

    The purpose of this study is to investigate the effects of exercise on cancer progression, metastasis, and underlying mechanisms in an orthotopic model of murine prostate cancer. C57BL/6 male mice (6–8 wk of age) were orthotopically injected with transgenic adenocarcinoma of mouse prostate C-1 cells (5 × 105) and randomly assigned to exercise (n = 28) or a non-intervention control (n = 31) groups. The exercise group was given voluntary access to a wheel 24 h/day for the duration of the study. Four mice per group were serially killed on days 14, 31, and 36; the remaining 38 mice (exercise, n = 18; control, n = 20) were killed on day 53. Before death, MRI was performed to assess tumor blood perfusion. Primary tumor growth rate was comparable between groups, but expression of prometastatic genes was significantly modulated in exercising animals with a shift toward reduced metastasis. Exercise was associated with increased activity of protein kinases within the MEK/MAPK and PI3K/mTOR signaling cascades with subsequent increased intratumoral protein levels of HIF-1α and VEGF. This was associated with improved tumor vascularization. Multiplex ELISAs revealed distinct reductions in plasma concentrations of several angiogenic cytokines in the exercise group, which was associated with increased expression of angiogenic and metabolic genes in the skeletal muscle. Exercise-induced stabilization of HIF-1α and subsequent upregulation of VEGF was associated with “productive” tumor vascularization with a shift toward suppressed metastasis in an orthotopic model of prostate cancer. PMID:22604887

  3. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors

    PubMed Central

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O.; Burzio, Verónica A.

    2016-01-01

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy. PMID:27507060

  4. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor.

    PubMed

    Broder, Howard; Anderson, Andrea; Kremen, Thomas J; Odesa, Sylvia K; Liau, Linda M

    2003-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that have been shown to play a critical role in the initiation of host immune responses against tumor antigens. In this study, a recombinant adenovirus vector encoding the melanoma-associated antigen, MART-1, was used to transduce murine DCs, which were then tested for their ability to activate cytotoxic T lymphocytes (CTLs) and induce protective immunity against B16 melanoma tumor cells implanted intracranially. Genetic modifications of murine bone marrow-derived DCs to express MART-1 was achieved through the use of an E1-deficient, recombinant adenovirus vector. Sixty-two C57BL/6 mice were immunized subcutaneously with AdVMART-1-transduced DCs (n = 23), untransduced DCs (n = 17), or sterile saline (n = 22). Using the B16 murine melanoma, which naturally expresses the MART-1 antigen, all the mice were then challenged intracranially with viable, unmodified syngeneic B16 tumor cells 7 days later. Splenocytes from representative animals in each group were harvested for standard cytotoxicity (CTL) and enzyme-linked immunospot (ELISPOT) assays. The remaining mice were followed for survival. Immunization of C57BL/6 mice with DCs transduced with an adenoviral vector encoding the MART-1 antigen elicited the development of antigen-specific CTL responses. As evidenced by a prolonged survival curve when compared to control-immunized mice with intracranial B16 tumors, AdMART-1-DC vaccination was able to elicit partial protection against central nervous system tumor challenge in vivo.

  5. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    PubMed

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  6. Tumor-associated macrophages favor C26 murine colon carcinoma cell proliferation in an oxidative stress-dependent manner.

    PubMed

    Luput, Lavinia; Licarete, Emilia; Sesarman, Alina; Laura, Patras; Alupei, Marius Costel; Banciu, Manuela

    2017-02-17

    The role of tumor-associated macrophages (TAMs) in the development of colon carcinoma is still controversial. Therefore, the present study aimed to investigate the TAM‑driven processes that may affect colon cancer cell proliferation. To achieve this purpose, murine macrophages were co-cultured with C26 murine colon carcinoma cells at a cell density ratio that approximates physiological conditions for colon carcinoma development in vivo. In this respect, the effects of TAM-mediated angiogenesis, inflammation and oxidative stress on the proliferative capacity of C26 murine colon carcinoma cells were studied. To gain insight into the TAM-driven oxidative stress, NADPH oxidase, the main pro-oxidant enzyme in macrophages, was inhibited. Our data revealed that the stimulatory effects of TAMs on C26 cell proliferation may be related mainly to their pro-oxidant actions exerted by NADPH oxidase activity, which maintains the redox status and the angiogenic capacity of the tumor microenvironment. Additionally, the anti-inflammatory and pro-angiogenic effects of TAMs on tumor cells were found to create a favorable microenvironment for C26 colon carcinoma development and progression. In conclusion, our data confirmed the protumor role of TAMs in the development of colon carcinoma in an oxidative stress-dependent manner that potentiates the angiogenic capacity of the tumor microenvironment. These data may offer valuable information for future tumor-targeted therapies based on TAM 're-education' strategies.

  7. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    PubMed

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.

  8. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis

    PubMed Central

    Schneeberger, Valentina E.; Allaj, Viola; Gardner, Eric E.; Rudin, Charles M.

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  9. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  10. Topical levamisole hydrochloride therapy attenuates experimental murine allergic rhinitis.

    PubMed

    Wang, Heyao; Zhang, Jiali; Gao, Chunsheng; Zhu, Ying; Wang, Chen; Zheng, Wenjie

    2007-12-22

    Allergic rhinitis is one of the most common chronic diseases. There are a number of effective therapeutic options for allergic rhinitis patients, such as intranasal corticosteroids. How to avoid the adverse effects of these traditional medicines has come to public attention and started the search for effective and safe medicine. We used BALB/c mice with experimental allergic rhinitis, and determined that levamisole delivered locally (intranasal, i.n.) could attenuate early-phase inflammatory response, decrease histamine, suppress edema and eosinophil infiltration, and diminish the ovalbumin-specific serum IgE level. Detailed analysis of cytokine gene expression showed that levamisole can decrease IL-4, IL-5 and IL-13 mRNA and increase IL-12, IL-18 and IFN-gamma mRNA. Levamisole showed analogous effects of down-regulating Th2 cytokines with budesonide and distinct up-regulating effects on Th1 cytokines gene expression. Our findings offer potential options for allergic rhinitis therapy.

  11. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.

    PubMed

    Zitvogel, L; Regnault, A; Lozier, A; Wolfers, J; Flament, C; Tenza, D; Ricciardi-Castagnoli, P; Raposo, G; Amigorena, S

    1998-05-01

    Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.

  12. A novel combination immunotherapy for cancer by IL-13Rα2-targeted DNA vaccine and immunotoxin in murine tumor models.

    PubMed

    Nakashima, Hideyuki; Terabe, Masaki; Berzofsky, Jay A; Husain, Syed R; Puri, Raj K

    2011-11-15

    Optimum efficacy of therapeutic cancer vaccines may require combinations that generate effective antitumor immune responses, as well as overcome immune evasion and tolerance mechanisms mediated by progressing tumor. Previous studies showed that IL-13Rα2, a unique tumor-associated Ag, is a promising target for cancer immunotherapy. A targeted cytotoxin composed of IL-13 and mutated Pseudomonas exotoxin induced specific killing of IL-13Rα2(+) tumor cells. When combined with IL-13Rα2 DNA cancer vaccine, surprisingly, it mediated synergistic antitumor effects on tumor growth and metastasis in established murine breast carcinoma and sarcoma tumor models. The mechanism of synergistic activity involved direct killing of tumor cells and cell-mediated immune responses, as well as elimination of myeloid-derived suppressor cells and, consequently, regulatory T cells. These novel results provide a strong rationale for combining immunotoxins with cancer vaccines for the treatment of patients with advanced cancer.

  13. Redundancy between Cysteine Cathepsins in Murine Experimental Autoimmune Encephalomyelitis.

    PubMed

    Allan, Euan Ramsay Orr; Yates, Robin Michael

    2015-01-01

    The cysteine cathepsins B, S, and L are functionally linked to antigen processing, and hence to autoimmune disorders such as multiple sclerosis. Stemming from several studies that demonstrate that mice can be protected from experimental autoimmune encephalomyelitis (EAE) through the pharmacologic inhibition of cysteine cathepsins, it has been suggested that targeting these enzymes in multiple sclerosis may be of therapeutic benefit. Utilizing mice deficient in cysteine cathepsins both individually and in combination, we found that the myelin-associated antigen myelin oligodendrocyte glycoprotein (MOG) was efficiently processed and presented by macrophages to CD4+ T cells in the individual absence of cathepsin B, S or L. Similarly, mice deficient in cathepsin B or S were susceptible to MOG-induced EAE and displayed clinical progression and immune infiltration into the CNS, similar to their wild-type counterparts. Owing to a previously described CD4+ T cell deficiency in mice deficient in cathepsin L, such mice were protected from EAE. When multiple cysteine cathepsins were simultaneously inhibited via genetic deletion of both cathepsins B and S, or by a cathepsin inhibitor (LHVS), MHC-II surface expression, MOG antigen presentation and EAE were attenuated or prevented. This study demonstrates the functional redundancy between cathepsin B, S and L in EAE, and suggests that the inhibition of multiple cysteine cathepsins may be needed to modulate autoimmune disorders such as multiple sclerosis.

  14. Hybrid liposomes inhibit tumor growth and lung metastasis of murine osteosarcoma cells.

    PubMed

    Kitajima, Hideki; Komizu, Yuji; Ichihara, Hideaki; Goto, Koichi; Ueoka, Ryuichi

    2013-06-01

    Antitumor effects of hybrid liposomes (HL) composed of l-α-dimyristoylphosphatidylcholine (DMPC) and polyoxyethylene(23) dodecyl ether (C₁₂(EO)₂₃) on the metastatic growth of murine osteosarcoma (LM8) cells were investigated in vitro and in vivo. Remarkable inhibitory effects of HL-23 on the growth of LM8 cells were obtained through the induction of apoptotic cell death in vitro. It was also indicated that HL-23 should dramatically suppress the invasion of LM8 cells and the formation of filopodia on the cell surface in vitro. Furthermore, significantly high therapeutic effects were observed in the homograft mouse models of LM8 cells with lung metastasis after the treatment with HL-23 in vivo. That is, the histological analysis demonstrated that the primary tumor growth of LM8 cells implanted subcutaneously into the mice was inhibited along with the induction of apoptosis. In addition, it was found that HL-23 significantly decreased the lung metastasis of LM8 cells in the mouse models through the inhibition of primary tumor invasion. These results suggest that HL-23 could be a novel agent for the chemotherapy of osteosarcoma.

  15. Role for Tumor Necrosis Factor Alpha in Murine Cytomegalovirus Transcriptional Reactivation in Latently Infected Lungs

    PubMed Central

    Simon, Christian O.; Seckert, Christof K.; Dreis, Doris; Reddehase, Matthias J.; Grzimek, Natascha K. A.

    2005-01-01

    Interstitial pneumonia is a major clinical manifestation of primary or recurrent cytomegalovirus (CMV) infection in immunocompromised recipients of a bone marrow transplant. In a murine model, lungs were identified as a prominent site of CMV latency and recurrence. Pulmonary latency of murine CMV is characterized by high viral genome burden and a low incidence of variegated immediate-early (IE) gene expression, reflecting a sporadic activity of the major IE promoters (MIEPs) and enhancer. The enhancer-flanking promoters MIEP1/3 and MIEP2 are switched on and off during latency in a ratio of ∼2:1. MIEP1/3 latency-associated activity generates the IE1 transcript of the ie1/3 transcription unit but not the alternative splicing product IE3 that encodes the essential transactivator of early gene expression. Splicing thus appeared to be an important checkpoint for maintenance of latency. In accordance with previous work of others, we show here that signaling by the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) activates IE1/3 transcription in vivo. As an addition to current knowledge, Poisson distribution analysis revealed an increased incidence of IE1/3 transcriptional events as well as a higher amount of transcripts per event. Notably, TNF-α promoted the splicing to IE3 transcripts, but transcription did not proceed to the M55/gB early gene. Moreover, the activated transcriptional state induced by TNF-α did not predispose latently infected mice to a higher incidence of virus recurrence after hematoablative treatment. In conclusion, TNF-α is an important inductor of IE gene transcriptional reactivation, whereas early genes downstream in the viral replicative cycle appear to be the rate-limiting checkpoint(s) for virus recurrence. PMID:15596827

  16. Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model

    PubMed Central

    Biswas, Tanuka; Gu, Xiang; Yang, Junhua; Ellies, Lesley G; Sun, Lu-Zhe

    2014-01-01

    Previous studies have suggested that TGF-β functions as a tumor promoter in metastatic, mesenchymal-like breast cancer cells and that TGF-β inhibitors can effectively abrogate tumor progression in several of these models. Here we report a novel observation with the use of genetic and pharmacological approaches, and murine mammary cell injection models in both syngeneic and immune compromised mice. We found that TGF-β receptor II (TβRII) knockdown in the MMTV-PyMT derived Py8119, a mesenchymal-like murine mammary tumor cell line, resulted in increased orthotopic tumor growth potential in a syngeneic background and a similar trend in an immune compromised background. Systemic treatment with a small-molecule TGF-β receptor I kinase inhibitor induced a trend towards increased metastatic colonization of distant organs following intra cardiac inoculation of Py8119 cells, with little effect on the colonization of luminal-like Py230 cells, also derived from MMTV-PyMT tumors. Taken together, our data suggest that the attenuation of TGF-β signaling in mesenchymal-like mammary tumors does not necessarily inhibit their malignant potential, and anti-TGF-β therapeutic intervention requires greater precision in identifying molecular markers in tumors with an indication of functional TGF-β signaling. PMID:24368187

  17. Bidirectional Estrogen-Like Effects of Genistein on Murine Experimental Autoimmune Ovarian Disease.

    PubMed

    Ding, Qiao; Wang, Yuxiao; Li, Na; Zhu, Kexue; Hu, Jielun; Wang, Sunan; Zhu, Fan; Nie, Shaoping

    2016-11-08

    This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD.

  18. Bidirectional Estrogen-Like Effects of Genistein on Murine Experimental Autoimmune Ovarian Disease

    PubMed Central

    Ding, Qiao; Wang, Yuxiao; Li, Na; Zhu, Kexue; Hu, Jielun; Wang, Sunan; Zhu, Fan; Nie, Shaoping

    2016-01-01

    This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD. PMID:27834809

  19. A new experimental murine aspergillosis model to identify strains of Aspergillus fumigatus with reduced virulence.

    PubMed

    Sarfati, J; Diaquin, M; Debeaupuis, J P; Schmidt, A; Lecaque, D; Beauvais, A; Latge, J P

    2002-01-01

    Experimental animals are an obligate screen to investigate microorganism pathogenicity. Numerous animal models have been used to analyse the virulence of the opportunistic human pathogen Aspergillus fumigatus but none of the experimental models used previously have been satisfactory. This report discuss these models and presents a murine model of pulmonary aspergillosis that is very easy and the most adapted to compare the pathogenicity of A. fumigatus strains. Strains to be tested are inoculated intranasally and synchronously to mice and strains isolated from the lung of mice killed by the infection are typed. The number of colonies recovered is directly correlated to the virulence of the strain.

  20. The mechanism of local tumor irradiation combined with interleukin 2 therapy in murine renal carcinoma: histological evaluation of pulmonary metastases.

    PubMed

    Dezso, B; Haas, G P; Hamzavi, F; Kim, S; Montecillo, E J; Benson, P D; Pontes, J E; Maughan, R L; Hillman, G G

    1996-09-01

    We have demonstrated that tumor irradiation enhanced the therapeutic effect of interleukin 2 (IL-2) on pulmonary metastases from a murine renal adenocarcinoma, Renca. To investigate the mechanism of interaction between tumor irradiation and IL-2 therapy, we have histologically evaluated the effects of each therapy alone or in combination on Renca pulmonary metastases. Following treatment of established lung metastases with irradiation and IL-2 therapy, lung sections were processed for H&E or immunohistochemical staining. We found that tumor irradiation or IL-2 therapy locally induced vascular damage, resulting in multifocal hemorrhages and mononuclear cell mobilization in the lung tissue. This effect was amplified in lungs treated with the combined therapy. Immunohistochemistry showed that irradiation produced a macrophage influx into irradiated tumor nodules, and systemic IL-2 therapy induced T-cell infiltration in tumor nodules. Lungs treated with the combined therapy exhibited massive macrophage, T-cell, and natural killer cell mobilization in disintegrating tumor nodules and in the lung tissue. This combined therapy caused a decrease in the number of proliferating tumor cells and an increase in the number of apoptotic cells, which were more marked than with either therapy alone. We suggest that the macrophages mobilized by radiation-induced tissue injury could play a role in phagocytosis of apoptotic tumor cells, processing and presenting of tumor antigens for a systemic immune response activated by IL-2. Tumor destruction may result from the concomitant action of activated T cells, natural killer cells, and macrophages infiltrating the tumor nodules.

  1. Optimized fluorescence diagnosis of tumors by comparing five-ALA-induced xenofluorescence and autofluorescence intensities of a murine tumor/nontumor tissue system cultivated on the CAM

    NASA Astrophysics Data System (ADS)

    Stroebele, Simone; Dressler, Cathrin; Ismail, M. Samy; Daskalaki, Anita; Philipp, Carsten M.; Berlien, Hans-Peter; Weitzel, H.; Liebsch, M.; Spielmann, H.

    1995-12-01

    The in vivo model of the chorioallantoic membrane of fertilized chicken embryos (CAM) was employed for studying the fluorescence characteristics of tumor tissue in comparison with non tumorous tissue. Tumors were grown from the murine fibrosarcoma cell line SSK II and murine 3T3 fibroblasts (clone A31) were used for cultivating non tumorous tissue. Autofluorescence and xenofluorescence intensities induced by 5-aminolaevulinic acid (5-ALA) were compared. Exogenous administration of 5-ALA, an early precursor in haem synthesis, induces accumulation of endogenous photoactive porphyrins, in particular protoporphyrin IX (PpIX). Fluorescence investigations were performed after 3-4d of incubation, when the tissues had reached macroscopically three dimensional stages of growth. Fluorescences were excited with a HBO-X 100 W lamp (Carl Zeiss) at a wavelength (lambda) equals 405 plus or minus 5 nm. Emissions were detected in the spectral range above 630 nm and visualized by real time digital image processing (Argus 10, HAMAMATSU) using an ICCD camera (HAMAMATSU). After administration of 0.4 mmolar 5-ALA solution to the CAM inoculated tissues the SSK II tumors exhibited higher fluorescence intensities than the 3T3 non tumorous tissues. Autofluorescence intensities of both types of tissues were not distinguishable. Furthermore, the effects of several biochemicals on the xenofluorescence intensities of the fibrosarcoma and fibroblast tissues were investigated.

  2. Radiation-induced effects on murine kidney tumor cells: role in the interaction of local irradiation and immunotherapy.

    PubMed

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Montecillo, E; Pontes, J E; Hillman, G G

    1995-06-01

    Local tumor irradiation enhances the effect of interleukin-2 (IL-2) therapy in the Renca murine renal adenocarcinoma model. To investigate the mechanism(s) of this interaction, we studied the in vitro and in vivo effects of irradiation on the tumor cells. Tumor cells from in situ irradiated renal tumors had diminished proliferation in vitro. A similar growth inhibition was noted following injection of irradiated Renca cells into naive mice, but this effect could be overcome by injecting more cells. Histologic evaluation of tumors derived from irradiated cells revealed a decrease in mitosis and an increase in multinucleated giant cells, apoptosis and micronecrosis. The presence of irradiated tumor reduced the growth of nonirradiated tumor cells when both were injected into separate flanks of the same animal, suggesting that irradiated tumor cells may trigger a systemic antitumor response. Interleukin-2 therapy given after injection of irradiated tumor cells caused a significant increase in leukocytic infiltrates and micronecrosis. Our findings indicate that radiation directly affects tumor growth and induces a systemic mechanism which could be enhanced by IL-2.

  3. Embryonal mass and hormone-associated effects of pregnancy inducing a differential growth of four murine tumors.

    PubMed

    Bustuoabad, Oscar D; di Gianni, Pedro D; Franco, Marcela; Kordon, Edith C; Vanzulli, Silvia I; Meiss, Roberto P; Grion, Lorena C; Díaz, Graciela S; Nosetto, Sergio H; Hockl, Pablo; Lombardi, M Gabriela; Pasqualini, Christiane Dosne; Ruggiero, Raúl A

    2002-01-01

    A differential effect of pregnancy on the growth of subcutaneous implants of four murine tumors has been observed. Two tumors lacking receptors for progesterone and estrogen [methylcholanthrene-induced fibrosarcoma (MC-C) and spontaneous lymphoid leukemia (LB)] exhibited slow kinetics throughout the course of pregnancy, although inhibition was stronger beyond day 10. On the other hand, one of two tumors bearing receptors for progesterone and estrogen [medroxyprogesterone (MPA)-induced mammary adenocarcinoma (C7HI)] exhibited three phases: up to days 8-10 of gestation the tumor grew faster than in virgins, between days 8-10 and 15 it reached a plateau, and beyond day 15 a sharp reduction in tumor mass was observed. The other tumor [mouse mammary tumor virus (MMTV)-induced mammary carcinoma(T2280)] behaved as a typical pregnancy-dependent tumor (i.e., it grew in pregnant but not in virgin mice, regressed soon after delivery, and reassumed its growth at the middle of a second round of pregnancy). Neither MPA nor estrogen affected MC-C and LB tumor growth. On the other hand, MPA-treated mice enhanced C7HI tumor and reciprocally C7HI tumor-bearing mice treated with estrogen strongly inhibited tumor growth. As for T2280, neither MPA nor estrogen alone could promote tumor growth and, in consequence, no tumor developed. However, when MPA plus estrogen was administered in a schedule simulating the successive appearance of these hormones in pregnancy, T2280 grew even faster than in pregnant mice. When the four tumors were implanted in mice bearing grafts of embryonal tissues (teratomas), all of them were inhibited. This antitumor effect was similar to that observed in pregnancy when tumors unresponsive to progesterone and estrogen were tested. On the other hand, with tumors bearing progesterone and estrogen receptors, differences in tumor growth were detected in pregnant and teratoma-bearing mice. This suggested the existence during pregnancy of two factors potentially

  4. Effect of recombinant human interferon-alpha A/D on in vivo murine tumor cell growth.

    PubMed

    Uno, K; Shimizu, S; Inaba, K; Kitaura, M; Nakahira, K; Kato, T; Yamaguchi, Y; Muramatsu, S

    1988-05-01

    We investigated the effect of human recombinant interferon-alpha A/D A/D-IFN), which is known to delay the growth of murine tumor cells, on the growth of S1 and R1 subline cells of murine Meth A fibrosarcoma in the peritoneal cavity of mice. In vitro growth of S1 cells was sensitive to, and that of R1 cells was resistant to, the direct effect of A/D-IFN, as with murine natural IFN-alpha/beta, which was used originally to isolate these sublines. In vivo, however, the growth of not only S1 cells but also R1 cells was suppressed by the administration of A/D-IFN, and the survival time of tumor-bearing mice was prolonged. Although A/D-IFN had a direct effect on S1 cells in vivo, R1 cells were susceptible only to the indirect effect via the host cells. Macrophages (M phi) harvested from the peritoneal cavity of A/D-IFN-treated mice bearing ascitic R1 cells were very effective in suppressing the in vitro growth of R1 cells; those from non-R1-bearing A/D-IFN-treated mice were less effective. The results of in vitro experiments indicate that M phi are very probably activated by the synergism of A/D-IFN and M phi diameter-activating factor(s) produced by lymphoid cells in tumor-bearing mice.

  5. Anti-Tumor Necrosis Factor Ameliorates Joint Disease in Murine Collagen- Induced Arthritis

    NASA Astrophysics Data System (ADS)

    Williams, Richard O.; Feldmann, Marc; Maini, Ravinder N.

    1992-10-01

    There is considerable evidence implicating tumor necrosis factor α (TNF-α) in the pathogenesis of rheumatoid arthritis. This evidence is based not only on the universal presence of TNF-α in arthritic joints accompanied by the upregulation of TNF-α receptors but also on the effects of neutralizing TNF-α in joint cell cultures. Thus, neutralization of TNF-α in vitro results in inhibition of the production of interleukin 1, which like TNF-α, is believed to contribute to joint inflammation and erosion. To determine the validity of this concept in vivo, the effect of administering TNF-neutralizing antibodies to mice with collagen-induced arthritis has been studied. This disease model was chosen because of its many immunological and pathological similarities to human rheumatoid arthritis. TN3-19.12, a hamster IgG1 monoclonal antibody to murine TNF-α/β, was injected i.p. into mice either before the onset of arthritis or after the establishment of clinical disease. Anti-TNF administered prior to disease onset significantly reduced paw swelling and histological severity of arthritis without reducing the incidence of arthritis or the level of circulating anti-type II collagen IgG. More relevant to human disease was the capacity of the antibody to reduce the clinical score, paw swelling, and the histological severity of disease even when injected after the onset of clinical arthritis. These results have implications for possible modes of therapy of human arthritis.

  6. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia.

    PubMed Central

    Laichalk, L L; Kunkel, S L; Strieter, R M; Danforth, J M; Bailie, M B; Standiford, T J

    1996-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine which has recently been shown to have beneficial effects in the setting of acquired host immunity. However, the role of TNF in innate immune responses, as in the setting of bacterial pneumonia, has been incompletely characterized. To determine the role of TNF in gram-negative bacterial pneumonia, CBA/J mice were challenged with 10(2) CFU of Klebsiella pneumoniae intratracheally, resulting in the time-dependent expression of TNF MRNA and protein within the lung. Passive immunization of animals with a soluble TNF receptor-immunoglobulin (Ig) construct (sTNFR:Fc) intraperitoneally 2 h prior to K. pneumoniae inoculation resulted in a significant reduction in bronchoalveolar lavage neutrophils, but not macrophages, at 48 h, as compared with animals receiving control IgG1. Furthermore, treatment with sTNFR:Fc resulted in 19.6- and 13.5-fold increases in K. pneumoniae CFU in lung homogenates and plasma, respectively, as compared with animals receiving control IgG1. Finally, treatment of Klebsiella-infected mice with sTNFR:Fc markedly decreased both short- and long-term survival of these animals. In conclusion, our studies indicate that endogenous TNF is a critical component of antibacterial host defense in murine Klebsiella pneumonia. PMID:8945568

  7. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system

    PubMed Central

    Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram

    2017-01-01

    In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor. PMID:28301575

  8. Antigenicity of UV radiation-induced murine tumors correlates positively with the level of adenosine deaminase activity.

    PubMed

    Aukerman, S L; Fidler, I J

    1987-01-01

    The specific activities of adenosine deaminase (ADA) in 16 murine tumor cell lines derived from seven UV light-induced neoplasms (melanoma and fibrosarcoma) were determined. In each case, the specific activity of ADA correlated positively with the antigenicity of the tumor cells. Highly antigenic cell lines that regress upon introduction into syngeneic hosts had on average 4- to 6-fold higher ADA specific activities than cell lines of low antigenicity that grow progressively in syngeneic hosts. The antigenic differences are probably not related to intracellular cAMP levels, as the level of cAMP differed only 2-fold between the two groups of cell lines.

  9. Assessment of resistance to paclitaxel of murine tumors by (99m)Tc-MIBI/(201)Tl dual-radionuclide imaging.

    PubMed

    Oriuchi, N; Jibu, T; Milas, L; Choe, J; Kuang, L; Kim, E E; Hunter, N R; Wallace, S; Podoloff, D A

    2000-02-01

    This study investigated P-glycoprotein (Pgp) expression by murine tumors with and without resistance to paclitaxel and the role of (99m)Tc-2-methoxyisobutylisonitrile (MIBI)/(201)Tl imaging in predicting the effect of paclitaxel. Antitumor effect of paclitaxel and biodistribution of the radiopharmaceuticals were evaluated in mice bearing four tumor types. Pgp expression did not correlate with the antitumor efficacy of paclitaxel. Although the absolute uptake of (99m)Tc-MIBI did not correlate with Pgp expression, (99m)Tc-MIBI could predict paclitaxel sensitivity by its higher uptake.

  10. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  11. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses.

    PubMed

    Renner, Danielle N; Jin, Fang; Litterman, Adam J; Balgeman, Alexis J; Hanson, Lisa M; Gamez, Jeffrey D; Chae, Michael; Carlson, Brett L; Sarkaria, Jann N; Parney, Ian F; Ohlfest, John R; Pirko, Istvan; Pavelko, Kevin D; Johnson, Aaron J

    2015-01-01

    Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.

  12. Mucosal gene therapy using a pseudotyped lentivirus vector encoding murine interleukin-10 (mIL-10) suppresses the development and relapse of experimental murine colitis

    PubMed Central

    2014-01-01

    Background Therapeutic gene transfer is currently being evaluated as a potential therapy for inflammatory bowel disease. This study investigates the safety and therapeutic benefit of a locally administered lentiviral vector encoding murine interleukin-10 in altering the onset and relapse of dextran sodium sulfate induced murine colitis. Methods Lentiviral vectors encoding the reporter genes firefly-luciferase and murine interleukin-10 were administered by intrarectal instillation, either once or twice following an ethanol enema to facilitate mucosal uptake, on Days 3 and 20 in Balb/c mice with acute and relapsing colitis induced with dextran sulfate sodium (DSS). DSS colitis was characterized using clinical disease activity, macroscopic, and microscopic scores. Bioluminescence optical imaging analysis was employed to examine mucosal lentiviral vector uptake and transgene expression. Levels of tumor necrosis factor-α and interleukin-6 in homogenates of rectal tissue were measured by ELISA. Biodistribution of the lentiviral vector to other organs was evaluated by real time quantitative PCR. Results Mucosal delivery of lentiviral vector resulted in significant transduction of colorectal mucosa, as shown by bioluminescence imaging analysis. Lentiviral vector-mediated local expression of interleukin-10 resulted in significantly increased levels of this cytokine, as well as reduced levels of tumor necrosis factor-α and interleukin-6, and significantly reduced the clinical disease activity, macroscopic, and microscopic scores of DSS colitis. Systemic biodistribution of locally instilled lentiviral vector to other organs was not detected. Conclusions Topically-delivered lentiviral vectors encoding interleukin-10 safely penetrated local mucosal tissue and had therapeutic benefit in this DSS model of murine colitis. PMID:24712338

  13. PD-1 Blockade and OX40 Triggering Synergistically Protects against Tumor Growth in a Murine Model of Ovarian Cancer

    PubMed Central

    Guo, Zhiqiang; Wang, Xin; Cheng, Dali; Xia, Zhijun; Luan, Meng; Zhang, Shulan

    2014-01-01

    The co-inhibitory receptor Programmed Death-1 (PD-1) curtails immune responses and prevent autoimmunity, however, tumors exploit this pathway to escape from immune destruction. The co-stimulatory receptor OX40 is upregulated on T cells following activation and increases their clonal expansion, survival and cytokine production when engaged. Although antagonistic anti-PD-1 or agonistic anti-OX40 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In the present study, we evaluated the antitumor effects and mechanisms of combinatorial PD-1 blockade and OX40 triggering in a murine ID8 ovarian cancer model. Although individual anti-PD-1 or OX40 mAb treatment was ineffective in tumor protection against 10-day established ID8 tumor, combined anti-PD-1/OX40 mAb treatment markedly inhibited tumor outgrowth with 60% of mice tumor free 90 days after tumor inoculation. Tumor protection was associated with a systemic immune response with memory and antigen specificity and required CD4+ cells and CD8+ T cells. The anti-PD-1/OX40 mAb treatment increased CD4+ and CD8+ cells and decreased immunosuppressive CD4+FoxP3+ regulatory T (Treg) cells and CD11b+Gr-1+ myeloid suppressor cells (MDSC), giving rise to significantly higher ratios of both effector CD4+ and CD8+ cells to Treg and MDSC in peritoneal cavity; Quantitative RT-PCR data further demonstrated the induction of a local immunostimulatory milieu by anti-PD-1/OX40 mAb treatment. The splenic CD8+ T cells from combined mAb treated mice produced high levels of IFN-γ upon tumor antigen stimulation and exhibited antigen-specific cytolytic activity. To our knowledge, this is the first study testing the antitumor effects of combined anti-PD-1/OX40 mAb in a murine ovarian cancer model, and our results provide a rationale for clinical trials evaluating ovarian cancer immunotherapy using this combination of mAb. PMID:24586709

  14. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer.

    PubMed

    Guo, Zhiqiang; Wang, Xin; Cheng, Dali; Xia, Zhijun; Luan, Meng; Zhang, Shulan

    2014-01-01

    The co-inhibitory receptor Programmed Death-1 (PD-1) curtails immune responses and prevent autoimmunity, however, tumors exploit this pathway to escape from immune destruction. The co-stimulatory receptor OX40 is upregulated on T cells following activation and increases their clonal expansion, survival and cytokine production when engaged. Although antagonistic anti-PD-1 or agonistic anti-OX40 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In the present study, we evaluated the antitumor effects and mechanisms of combinatorial PD-1 blockade and OX40 triggering in a murine ID8 ovarian cancer model. Although individual anti-PD-1 or OX40 mAb treatment was ineffective in tumor protection against 10-day established ID8 tumor, combined anti-PD-1/OX40 mAb treatment markedly inhibited tumor outgrowth with 60% of mice tumor free 90 days after tumor inoculation. Tumor protection was associated with a systemic immune response with memory and antigen specificity and required CD4(+) cells and CD8(+) T cells. The anti-PD-1/OX40 mAb treatment increased CD4(+) and CD8(+) cells and decreased immunosuppressive CD4(+)FoxP3(+) regulatory T (Treg) cells and CD11b(+)Gr-1(+) myeloid suppressor cells (MDSC), giving rise to significantly higher ratios of both effector CD4(+) and CD8(+) cells to Treg and MDSC in peritoneal cavity; Quantitative RT-PCR data further demonstrated the induction of a local immunostimulatory milieu by anti-PD-1/OX40 mAb treatment. The splenic CD8(+) T cells from combined mAb treated mice produced high levels of IFN-γ upon tumor antigen stimulation and exhibited antigen-specific cytolytic activity. To our knowledge, this is the first study testing the antitumor effects of combined anti-PD-1/OX40 mAb in a murine ovarian cancer model, and our results provide a rationale for clinical trials evaluating ovarian cancer immunotherapy using this combination of mAb.

  15. Micro-computed tomography derived anisotropy detects tumor provoked deviations in bone in an orthotopic osteosarcoma murine model.

    PubMed

    Cole, Heather A; Ohba, Tetsuro; Ichikawa, Jiro; Nyman, Jeffry S; Cates, Justin M M; Haro, Hirotaka; Schwartz, Herbert S; Schoenecker, Jonathan G

    2014-01-01

    Radiographic imaging plays a crucial role in the diagnosis of osteosarcoma. Currently, computed-tomography (CT) is used to measure tumor-induced osteolysis as a marker for tumor growth by monitoring the bone fractional volume. As most tumors primarily induce osteolysis, lower bone fractional volume has been found to correlate with tumor aggressiveness. However, osteosarcoma is an exception as it induces osteolysis and produces mineralized osteoid simultaneously. Given that competent bone is highly anisotropic (systematic variance in its architectural order renders its physical properties dependent on direction of load) and that tumor induced osteolysis and osteogenesis are structurally disorganized relative to competent bone, we hypothesized that μCT-derived measures of anisotropy could be used to qualitatively and quantitatively detect osteosarcoma provoked deviations in bone, both osteolysis and osteogenesis, in vivo. We tested this hypothesis in a murine model of osteosarcoma cells orthotopically injected into the tibia. We demonstrate that, in addition to bone fractional volume, μCT-derived measure of anisotropy is a complete and accurate method to monitor osteosarcoma-induced osteolysis. Additionally, we found that unlike bone fractional volume, anisotropy could also detect tumor-induced osteogenesis. These findings suggest that monitoring tumor-induced changes in the structural property isotropy of the invaded bone may represent a novel means of diagnosing primary and metastatic bone tumors.

  16. Experimental chemotherapy of human tumors heterotransplanted in nude mice.

    PubMed

    Giovanella, B C

    1980-01-01

    Human tumors heterotransplanted in nude mice offer the most realistic model for experimental chemotherapy of human neoplasms. Almost all the known human malignancies have been successfully transplanted in the nudes, although the rate of takes varies considerably between different tumor types. So far, a good correlation has been observed between the results obtained treating with the same drug the same tumor in the patient and in the nude mouse. Our experience in this field is, however, still too limited for the direct extrapolation of chemotherapeutic results obtained in the nudes to human tumors.

  17. Lessons from probiotic-host interaction studies in murine models of experimental colitis.

    PubMed

    Claes, Ingmar J J; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Lebeer, Sarah

    2011-10-01

    In inflammatory bowel diseases (IBD), it is known that besides genetic and environmental factors (e.g. diet, drugs, stress), the microbiota play an important role in the pathogenesis. Patients with IBD have an altered microbiota (dysbiosis) and therefore, probiotics, defined as 'live micro-organisms that when administered in adequate amounts can confer a health benefit on the host', have been suggested as nutritional supplements to restore these imbalances. The best response on probiotics among the different types of IBD appears to be in the case of ulcerative colitis. Although probiotics show promise in IBD in both clinical and animal studies, further mechanistic studies are necessary to optimize the use of probiotics as supporting therapy in IBD. Murine models of experimental colitis have been used for decades to study this pathology, and these models have been proven useful to search for new therapeutic approaches. The purpose of this review is to summarize probiotic-host interaction studies in murine models of experimental colitis and to evaluate how these models can further help in understanding these complex interactions. Unraveling the molecular mechanisms behind the beneficial effects will assist in better and possibly more efficient probiotic formulations.

  18. Methotrexate treatment in murine experimental systemic lupus erythematosus (SLE); clinical benefits associated with cytokine manipulation.

    PubMed Central

    Segal, R; Dayan, M; Zinger, H; Mozes, E

    1995-01-01

    The objective of this study was to determine the effects of Methotrexate (MTX) on the development and the course of experimental murine SLE, as well as on the cytokine profile involved in the disease. SLE was induced in naive BALB/c female mice by injection of the human anti-DNA MoAb bearing a common idiotype (16/6 Id). Six weeks following immunization, when high levels of autoantibodies were demonstrated, the mice were treated with MTX (2 mg/kg once a week) for a period of 10 months. MTX treatment had no effect on 16/6 Id-induced autoantibody production. However, MTX treatment had beneficial effects on the clinical manifestations of the experimental disease (i.e. leucocyte counts, levels of protein in the urine and immune complex deposits in the kidneys). Thus, only 20% of 16/6 Id-immunized BALB/c mice that were treated with MTX had immune complex deposits in their kidneys compared with 100% of SLE-afflicted BALB/c mice that were not treated. We have observed a significant elevation in IL-1, tumour necrosis factor (TNF) and IL-10 secretion in BALB/c mice afflicted with experimental SLE. IL-2, IL-4, IL-6 and interferon-gamma (INF-gamma) levels were decreased in these mice compared with the levels detected in healthy controls. Treatment with MTX reversed the levels of all the above cytokines to normal levels observed in control mice. These studies demonstrate therapeutic effects of MTX on murine experimental SLE. The normal cytokine profile observed following treatment with MTX is suggested to play a role in the amelioration of the clinical manifestations of experimental SLE. Images Fig. 1 PMID:7621594

  19. Immunotherapy of a murine tumor with interleukin 2. Increased sensitivity after MHC class I gene transfection.

    PubMed

    Weber, J S; Jay, G; Tanaka, K; Rosenberg, S A

    1987-12-01

    We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.

  20. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment.

    PubMed

    Pearl-Yafe, Michal; Mizrahi, Keren; Stein, Jerry; Yolcu, Esma S; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2010-07-01

    Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

  1. Isolation of plasma membranes from murine ependymoblastoma and subcellular distribution of amphotericin B in this tumor.

    PubMed

    Laurent, G; Doriaux, M; Hildebrand, J

    1977-04-01

    A method for the isolation of plasma membranes from an experimental murine ependymoblastoma is described. In this procedure, 5'-nucleotidase was used as the plasma membrane marker, since cytochemical methods demonstrated that the enzyme was present on this subcellular structure only. The final plasma membrane preparation showed a 15-fold enrichment in 5'-nucleotidase activity and a 17-fold enrichment in the activity of phosphodiesterase I, another plasma membrane marker. The specific activity of beta-glucuronidase (lysosomal enzyme) was twice that of the whole homogenate, the specific activity of arylesterase (microsomal enzyme) was similar to that of the whole homogenate and succinate dehydrogenase (mitochondrial marker) was not detected. Electron microscopy of this fraction showed vesicles on which 5'-nucleotidase activity could be demonstrated. The subcellular distribution of [3H]amphotericin B per mg of protein was similar in the plasma membrane preparation and in the whole homogenate. It is concluded that, in ependymoblastoma, amphotericin B shows no selective affinity for the plasma membrane.

  2. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  3. Enhancing effect of new biological response modifier sulfoethylated (1-->3)-beta-D-glucan on antitumor activity of cyclophosphamide in the treatment of experimental murine leukoses.

    PubMed

    Khalikova, T A; Korolenko, T A; Zhanaeva, S Ya; Kaledin, V I; Kogan, G

    2006-12-01

    One of the advanced methodologies of the tumor therapy is the application of the so-called biological response modifiers used for activation of the endogenous antitumor mechanisms and combined with classical cytotoxic agents. The aim of this work was the investigation of the effect of sulfoethylated (1-->3)-beta-D-glucan (SEG) in the treatment of experimental murine leukoses in combination with cyclophosphamide (CPA) and its ability to modulate the activity of lysosomal enzymes in tumor tissues. The solid forms of inoculated murine leukoses P388 and L1210/1 were transplantated to male DBA/2 mice. The therapy was performed by treating animals with CPA (Biokhimik, Saransk, Russia) alone or in combination with SEG (Institute of Chemistry, Slovak Academy of Sciences, Slovakia). CPA was administered in saline as a single intraperitoneal (ip) injection on the 10th day after tumor transplantation; SEG was administered to mice ip 3 days after tumor transplantation with the intervals in 3 days. The therapy effect was estimated by measuring of solid tumor volume. Activity of the cysteine proteases--cathepsins B and L--was measured fluorometrically using fluorescent substrates Z-Arg-Arg-MCA and Z-Phe-Arg-MCA (Sigma, USA), respectively. The apoptosis was estimated evaluating the number of cells with fragmented nuclei using optical microscope. It has been demonstrated that application SEG leads to inhibition of tumor growth and potentiates therapeutic action of CPA, especially at repeated administrations during the whole treatment/observation At addition of SEG, therapeutic effect of a one-half reduced dose of CPA is equal or higher than that of the full dose. Therapeutic action of CPA and SEG on the studied tumors is realized predominantly through induction of apoptosis and is accompanied by a substantial increase of the activity of cysteine proteases cathepsins B and L in tumor tissues. The highest cathepsin B and cathepsin L activity in tumor tissue accompanied with the

  4. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    PubMed

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  5. CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models.

    PubMed

    Cremers, Natascha; Neeb, Antje; Uhle, Tanja; Dimmler, Arno; Rothley, Melanie; Allgayer, Heike; Fodde, Riccardo; Sleeman, Jonathan Paul; Thiele, Wilko

    2016-01-01

    CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice.

  6. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  7. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models

    PubMed Central

    Parra Millán, R.; Jiménez Mejías, M. E.; Sánchez Encinales, V.; Ayerbe Algaba, R.; Gutiérrez Valencia, A.; Pachón Ibáñez, M. E.; Díaz, C.; Pérez del Palacio, J.; López Cortés, L. F.; Smani, Y.

    2016-01-01

    Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P < 0.05) compared with those for colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P < 0.05] and 2 μg/ml versus 3.4 μg/ml [P < 0.05], respectively). LPC treatment combined with colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both

  8. A murine model of experimental metastasis to bone and bone marrow.

    PubMed

    Arguello, F; Baggs, R B; Frantz, C N

    1988-12-01

    Bone is a common site of metastasis in human cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal model. In this paper, we describe an animal model in which B16 melanoma cells injected in the left cardiac ventricle reproducibly colonize specific sites of the skeletal system of mice. Injection of 10(5) cells resulted in melanotic tumor colonies in most organs, including the skeletal system. Injection of 10(4) or fewer cells resulted in experimental metastasis almost entirely restricted to the skeletal system and ovary. In contrast, i.v. injection of 10(5) cells resulted in tumor colonies in the lung only. Left cardiac injection of 10(2) cells caused bone colonization, but the same number of cells injected i.v. did not colonize the lung. The number of bones with tumor colonies increased with increasing number of cells injected. Melanotic tumor colonies in the bone were characteristically distributed in the metaphysis of long bones and in the periphery of flat bones. Most animals developed paraplegia due to spinal cord compression by bony metastasis to the spine. Tumor colonization of bone occurred only in regions of bone containing hematopoietic bone marrow. This suggests that the injected tumor cells lodge, survive in the hematopoietic bone marrow environment, and grow to destroy adjacent bone. This experimental model of metastasis to bone will facilitate future studies of the pathophysiology and treatment of bone and bone marrow metastasis.

  9. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  10. Hypoxia imaging predicts success of hypoxia-induced cytosine deaminase/5-fluorocytosine gene therapy in a murine lung tumor model.

    PubMed

    Lee, B-F; Lee, C-H; Chiu, N-T; Hsia, C-C; Shen, L-H; Shiau, A-L

    2012-04-01

    Tc-99m-HL91 is a hypoxia imaging biomarker. The aim of this study was to investigate the value of Tc-99m-HL91 imaging for hypoxia-induced cytosine deaminase (CD)/5-fluorocytosine (5-FC) gene therapy in a murine lung tumor model. C57BL/6 mice were implanted with Lewis lung carcinoma cells transduced with the hypoxia-inducible promoter-driven CD gene (LL2/CD) or luciferase gene (LL2/Luc) serving as the control. When tumor volumes reached 100 mm(3), pretreatment images were acquired after injection of Tc-99m-HL91. The mice were divided into low and high hypoxic groups based on the tumor-to-non-tumor ratio of Tc-99m-HL91. They were injected daily with 5-FC (500 mg kg(-1)) or the vehicle for 1 week. When tumor volumes reached 1000 mm(3), autoradiography and histological examinations were performed. Treatment with 5-FC delayed tumor growth and enhanced the survival of mice bearing high hypoxic LL2/CD tumors. The therapeutic effect of hypoxia-induced CD/5-FC gene therapy was more pronounced in high hypoxic tumors than in low hypoxic tumors. This study provides the first evidence that Tc-99m-HL91 can serve as an imaging biomarker for predicting the treatment responses of hypoxia-regulated CD/5-FC gene therapy in animal tumor models. Our results suggest that hypoxia imaging using Tc-99m-HL91 has the predictive value for the success of hypoxia-directed treatment regimens.

  11. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    PubMed

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  12. A murine model of K-ras and β-catenin induced renal tumors express high levels of E2F1 and resemble human Wilms Tumor

    PubMed Central

    Yi, Yajun; Polosukhina, Dina; Love, Harold D.; Hembd, Austin; Pickup, Michael; Moses, Harold L.; Lovvorn, Harold N.; Zent, Roy; Clark, Peter E.

    2016-01-01

    Background Wilms tumor (WT) is the most common renal neoplasm of childhood. We previously showed that restricted activation of the WNT/β-catenin pathway in renal epithelium late in kidney development is sufficient to induce small primitive neoplasms with features of epithelial WT. Metastatic disease progression required simultaneous addition of an activating mutation of the oncogene K-RAS. Here, we sought to define the molecular pathways activated in this process and their relationship to human renal malignancies. Methods Affymetrix expression microarray data from murine kidneys with activation of K-ras, Ctnnb1 (β-catenin), or both restricted to renal epithelium were analyzed and compared to publically available expression data from normal and neoplastic human renal tissue. Target genes were verified by immunoblot and immunohistochemistry. Results Mouse kidney tumors with activation of K-ras and Ctnnb1 and human renal malignancies have similar mRNA expression signatures and are associated with activation of networks centered on β-catenin and TP53. Up-regulation of WNT/β-catenin targets (MYC, Survivin, FOXA2, Axin2, Cyclin D1) was confirmed by immunoblotting. K-RAS/β-catenin murine kidney tumors were more similar to human WT than other renal malignancies and demonstrated activation of a TP53 dependent network of genes including the transcription factor E2F1. Up-regulation of E2F1 was confirmed in both murine and human WT samples. Conclusions Simultaneous activation of K-RAS and β-catenin in embryonic renal epithelium leads to neoplasms similar to human WT associated with activation of TP53 and up-regulation of E2F1. Further studies to evaluate the role of TP53 and E2F1 in human WT are warranted. PMID:25934441

  13. Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies.

    PubMed

    Treanor, Louise M; Volanakis, Emmanuel J; Zhou, Sheng; Lu, Taihe; Sherr, Charles J; Sorrentino, Brian P

    2011-05-19

    LMO2 is a target of chromosomal translocations in T-cell tumors and was activated by retroviral vector insertions in T-cell tumors from X-SCID patients in gene therapy trials. To better understand the cooperating genetic events in LMO2-associated T-cell acute lymphoblastic leukemia (T-ALL), we investigated the roles of Arf tumor suppressor loss and Notch activation in murine models of transplantation. Lmo2 overexpression enhanced the expansion of primitive DN2 thymocytes, eventually facilitating the stochastic induction of clonal CD4(+)/CD8(+) malignancies. Inactivation of the Arf tumor suppressor further increased the self-renewal capacity of the primitive, preleukemic thymocyte pool and accelerated the development of aggressive, Lmo2-induced T-cell lympholeukemias. Notch mutations were frequently detected in these Lmo2-induced tumors. The Arf promoter was not directly engaged by Lmo2 or mutant Notch, and use of a mouse model in which activation of a mutant Notch allele depends on previous engagement of the Arf promoter revealed that Notch activation could occur as a subsequent event in T-cell tumorigenesis. Therefore, Lmo2 cooperates with Arf loss to enhance self-renewal in primitive thymocytes. Notch mutation and Arf inactivation appear to independently cooperate in no requisite order with Lmo2 overexpression in inducing T-ALL, and all 3 events remained insufficient to guarantee immediate tumor development.

  14. Anti-tumor immunity induced by CDR3-based DNA vaccination in a murine B-cell lymphoma model.

    PubMed

    Rinaldi, Monica; Fioretti, Daniela; Iurescia, Sandra; Signori, Emanuela; Pierimarchi, Pasquale; Seripa, Davide; Tonon, Giancarlo; Fazio, Vito Michele

    2008-05-30

    The idiotypic structure present on B-cell neoplasms is a tumor-specific antigen and an attractive target for immunotherapy. Here, the tumor protective effects recruited by CDR3-based DNA vaccines in the poorly immunogenic, highly aggressive 38C13 murine B-cell lymphoma model were evaluated. The regions belonging to the idiotypic V(H) and V(L) CDR3 sequences were chosen for the design of two synthetic mini-genes and arranged in high-level expression plasmids. Syngeneic C3H/HeN mice were immunized by intramuscular electroporation with pV(H)CDR3-IL-2 and pV(L)CDR3-IL-2 naked DNAs. This approach provided protection in about 60% of animals challenged with a 2-fold lethal dose of tumor cells, as opposed to non-survivors in control groups. Furthermore, a long-term survival was induced in these mice since they were still alive and tumor-free 4 months following tumor challenge. Analysis of the humoral immunity revealed the presence of antibodies reactive with the peptides encompassing the CDR3 sequences in the sera of vaccinated mice. Moreover, immune sera specifically reacted with the parental 38C13 tumor cells in flow cytometry assays, indicating that such immunization elicited anti-idiotypic antibodies. These findings provide a basis for exploring the use of CDR3-based DNA vaccines against B-cell lymphoma.

  15. In vitro investigation of the roles of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 in murine osteoclastogenesis.

    PubMed

    Jules, Joel; Feng, Xu

    2014-01-01

    Whereas the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-кB ligand (RANKL) are essential and sufficient for osteoclastogenesis, a number of other cytokines including two proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1 (IL-1), can exert profound effects on the osteoclastogenic process. However, the precise mode of action of TNF-α and IL-1 in osteoclastogenesis remains controversial. While some groups demonstrated that these two cytokines can promote murine osteoclastogenesis in vitro in the presence of M-CSF only, we and others showed that TNF-α-/IL-1-mediated osteoclastogenesis requires permissive levels of RANKL. This chapter describes the method that we have used to investigate the effects of TNF-α and IL-1 on osteoclast formation in in vitro osteoclastogenesis assays using primary murine bone marrow macrophages (BMMs). Detailed experimental conditions are provided and critical points are discussed to help the reader use the method to independently evaluate the roles of TNF-α and IL-1 in osteoclastogenesis in vitro. Moreover, this method can be used to further elucidate the signaling mechanisms by which these two cytokines act in concert with RANKL or with each other to modulate osteoclastogenesis.

  16. Rapid Copper Acquisition by Developing Murine Mesothelioma: Decreasing Bioavailable Copper Slows Tumor Growth, Normalizes Vessels and Promotes T Cell Infiltration

    PubMed Central

    Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M.; Ricciardo, Belinda; Nelson, Delia J.

    2013-01-01

    Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes. PMID:24013775

  17. Generation of glucocorticoid-responsive Moloney murine leukemia virus by insertion of regulatory sequences from murine mammary tumor virus into the long terminal repeat.

    PubMed Central

    Overhauser, J; Fan, H

    1985-01-01

    The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone. Images PMID:2983110

  18. Application of mathematical model to experimental chemotherapy of fatal murine pneumonia.

    PubMed Central

    Hishikawa, T; Kusunoki, T; Tsuchiya, K; Uzuka, Y; Sakamoto, T; Nagatake, T; Matsumoto, K

    1990-01-01

    Two beta-lactam antibiotics, cefazolin and cefmenoxime, were administered in an experimental model of murine pneumonia caused by Klebsiella pneumoniae in a way which enabled us to approximate the serum antibiotic concentration time course in humans. Bacterial counts during the experiments were subjected to nonlinear least-squares analyses by using a mathematical model that explained the bacterial killing by the antibiotic concentration time course and other factors associated with antimicrobial potency and bacterial growth. Cefazolin gave a killing curve that changed synchronously with the drug levels in serum; in contrast, cefmenoxime gave a curve that was prolonged as compared with the change in the drug levels in serum. Multiple correlation coefficients were about 0.9, and the model worked well for bacterial count data. Parameters relating to antimicrobial potency of the drugs, bacterial growth rate, and drug distribution into the tissue were estimated numerically. PMID:2183718

  19. Differential induction of tumor necrosis factor alpha in murine and human leukocytes by Mycoplasma arthritidis-derived superantigen.

    PubMed Central

    Rink, L; Nicklas, W; Alvarez-Ossorio, L; Koester, M; Kirchner, H

    1994-01-01

    Mycoplasma arthritidis-derived superantigen (MAS) is exclusively produced by M. arthritidis, which is the only known mycoplasma to produce a superantigen. As a superantigen, MAS shows properties similar to those of the staphylococcal enterotoxins and related substances, such as binding to major histocompatibility complex (MHC) class II and V beta-specific stimulation of T cells. In this series of experiments, we demonstrate some differences between MAS and other superantigens. MAS induced the production of tumor necrosis factor alpha (TNF-alpha) mRNA in human as well as in murine leukocytes. However, only in murine leukocytes was the mRNA adequately translated into the protein. In human peripheral blood mononuclear cells, we found only small amounts of TNF, whereas in murine spleen cells we detected levels more than three times higher. The proliferative response to MAS has been shown to be restricted to I-E alpha in the murine MHC. Furthermore, TNF was induced in I-E alpha+ bone marrow-derived macrophages by MAS. In these cells, MAS rapidly induced very high levels of TNF and the amounts of mRNA detected correlated to the amount of protein produced. In comparison with other superantigens, including the staphylococcal enterotoxins, toxic shock syndrome toxin 1, and exfoliative toxin A, the failure of MAS to induce TNF-alpha in human peripheral blood mononuclear cells is specific for MAS and not common to all superantigens. The direct activation of bone marrow-derived macrophages also seems to be specific for MAS. These data suggest that the induction of TNF-alpha by MAS is dependent on the strength of binding to the MHC class II molecule. Images PMID:8300207

  20. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-04

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  1. Selective inhibition of cyclooxygenase-2 suppresses metastatic disease without affecting primary tumor growth in a murine model of Ewing sarcoma.

    PubMed

    Gendy, Amir S; Lipskar, Aaron; Glick, Richard D; Steinberg, Bettie M; Edelman, Morris; Soffer, Samuel Z

    2011-01-01

    Mammalian target of rapamycin suppression by rapamycin inhibits tumor growth and neovascularization via cyclooxygenase-2 (COX-2) downregulation with no effect on lung metastases. We hypothesize that combining a selective COX-2 antagonist (celecoxib) with rapamycin would decrease lung metastases. Ewing sarcoma cells (SK-NEP-1) were surgically implanted into the left kidney of athymic mice (n = 40). The mice were divided into 4 treatment groups (control, rapamycin only, celecoxib only, and combination) and then killed at 6 weeks. Primary tumors were weighed. Vasculature was examined using lectin angiography and immunohistochemistry, and lung metastases were examined using H&E and CD99 immunostaining. Tumor weight and lung metastases were analyzed. Mean primary tumor weights were significantly reduced in the rapamycin-treated groups but not in the celecoxib-only group. Lectin angiography and endothelial markers immunostaining showed markedly decreased vascularity in the rapamycin-treated groups but not in the celecoxib-only group. Celecoxib-treated groups showed significantly fewer mice with lung metastases than non-celecoxib-treated groups. Celecoxib prevents lung metastasis in a murine model of Ewing sarcoma with no effect on tumor size or neovascularization. Cyclooxygenase-2 may represent a future potential target for metastatic disease prevention. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Characterization of AKR murine leukemia virus sequences in AKR mouse substrains and structure of integrated recombinant genomes in tumor tissues.

    PubMed Central

    Quint, W; Quax, W; van der Putten, H; Berns, A

    1981-01-01

    A specific cDNA probe of AKR murine leukemia virus (AKR-MLV) was prepared to detect AKR-MLV sequences in normal and tumor tissues in a variety of AKR mouse substrains. AKR strains contained up to six endogenous AKR-MLV genomes. All substrains tested had one AKR-MLV locus in common, and closely related substrains had several proviruses integrated in an identical site. Virus-induced tumors in the AKR/FuRdA and AKR/JS strains showed a reintegration pattern of AKR-MLV sequences unique for the individual animal, suggesting a monoclonal origin for the outgrown tumors. An analysis of tumor DNAs from the AKR/FuRdA and AKR/JS substrains with restriction enzymes cleaving within the proviral genome revealed a new EcoRI restriction site and BamHI restriction site not present in normal tissues. The positions of these sites corresponded both with cleavage sites of EcoRI and BamHI in integrated Moloney recombinants and with the structure of isolated AKR mink cell focus-forming viruses. All tumors analyzed to data contain nearly identical integrated recombinant genomes, suggesting a causal relationship between the formation of recombinants and the leukemogenic process. Images PMID:6268802

  3. Contrast Enhanced Maximum Intensity Projection Ultrasound Imaging for Assessing Angiogenesis in Murine Glioma and Breast Tumor Models: A Comparative Study

    PubMed Central

    Forsberg, Flemming; Ro, Raymond J.; Fox, Traci B; Liu, Ji-Bin; Chiou, See-Ying; Potoczek, Magdalena; Goldberg, Barry B

    2010-01-01

    The purpose of this study was to prospectively compare noninvasive, quantitative measures of vascularity obtained from 4 contrast enhanced ultrasound (US) techniques to 4 invasive immunohistochemical markers of tumor angiogenesis in a large group of murine xenografts. Glioma (C6) or breast cancer (NMU) cells were implanted in 144 rats. The contrast agent Optison (GE Healthcare, Princeton, NJ) was injected in a tail vein (dose: 0.4ml/kg). Power Doppler imaging (PDI), pulse-subtraction harmonic imaging (PSHI), flash-echo imaging (FEI), and Microflow imaging (MFI; a technique creating maximum intensity projection images over time) was performed with an Aplio scanner (Toshiba America Medical Systems, Tustin, CA) and a 7.5 MHz linear array. Fractional tumor neovascularity was calculated from digital clips of contrast US, while the relative area stained was calculated from specimens. Results were compared using a factorial, repeated measures ANOVA, linear regression and z-tests. The tortuous morphology of tumor neovessels was visualized better with MFI than with the other US modes. Cell line, implantation method and contrast US imaging technique were significant parameters in the ANOVA model (p<0.05). The strongest correlation determined by linear regression in the C6 model was between PSHI and percent area stained with CD31 (r=0.37, p<0.0001). In the NMU model the strongest correlation was between FEI and COX-2 (r=0.46, p<0.0001). There were no statistically significant differences between correlations obtained with the various US methods (p>0.05). In conclusion, the largest study of contrast US of murine xenografts to date has been conducted and quantitative contrast enhanced US measures of tumor neovascularity in glioma and breast cancer xenograft models appear to provide a noninvasive marker for angiogenesis; although the best method for monitoring angiogenesis was not conclusively established. PMID:21144542

  4. Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma.

    PubMed

    Logani, Mahendra K; Bhanushali, Ashok; Anga, Altaf; Majmundar, Amar; Szabo, Imre; Ziskin, Marvin C

    2004-10-01

    The objective of the present studies was to investigate whether millimeter wave (MMW) therapy can increase the efficacy of cyclophosphamide (CPA), a commonly used anti-cancer drug. The effect of combined MMW-CPA treatment on melanoma growth was compared to CPA treatment alone in a murine model. MMWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 x 20 mm rectangular output horn. The animals, SKH-1 hairless female mice, were irradiated on the nasal area. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm2, respectively. The maximum skin surface temperature elevation measured at the end of 30 min irradiation was 1.5 degrees C. B16F10 melanoma cells (0.2 x 10(6)) were implanted subcutaneously into the left flank of mice on day 1 of the experiment. On days 4-8, CPA was administered intraperitoneally (30 mg/kg/day). MMW irradiation was applied concurrently with, prior to or following CPA administration. A significant reduction (P < .05) in tumor growth was observed with CPA treatment, but MMW irradiation did not provide additional therapeutic benefit as compared to CPA alone. Similar results were obtained when MMW irradiation was applied both prior to and following CPA treatment.

  5. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  6. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis

    PubMed Central

    Shang, Peng; Qian, Ai-Rong; Yang, Tie-Hong; Jia, Min; Mei, Qi-Bing; Cho, Chi-Hin; Zhao, Wen-Ming; Chen, Zhi-Nan

    2003-01-01

    AIM: To investigate the in vivo anti-tumor effects of total polysaccharide (AP-0) isolated from Angelica sinensis (Oliv.) Diels (Danggui) on mice and the in vitro inhibitory effects of AP-0 and its sub-constituents (AP-1, AP-2 and AP-3) on invasion and metastasis of human hepatocellular carcinoma. METHODS: Three kinds of murine tumor models in vivo, sarcoma 180 (S180), leukemia L1210 and Ehrlich ascitic cancer (EAC) were employed to investigate the anti-tumor effects of AP-0. For each kind of tumor model, three experimental groups were respectively given AP-0 at doses of 30, 100 and 300 mg/kg by ip once a day for 10 days. Positive control groups were respectively given Cy at a dose of 30 mg/kg for S180 and leukemia L1210, and 5-FU at a dose of 20 mg/kg for EAC. On d 11, mice bearing S180 were sacrificed and the masses of tumors, spleens and thymus were weighed. The average living days of mice bearing EAC and of mice bearing L1210 were observed, and the rates of life prolongation of each treatment were calculated, respectively. The inhibitory effects of APs on hepatoma invasion and metastasis in vitro were investigated by employing human hepatocellular carcinoma cell line (HHCC) with the Matrigel invasion chamber, adhesion to extracelluler matrix and chemotatic migration tests, respectively. RESULTS: AP-0 had no obviously inhibitory effect on the growth of S180, but it could significantly decrease the thymus weights of the mice bearing S180. AP-0 could significantly reduce the production of ascitic liquids and prolong the life of mice bearing EAC. AP-0 could also increase the survival time of mice bearing L1210. AP-0 and AP-2 had significantly inhibitory effects on the invasion of HHCC into the Matrigel reconstituted basement membrane with the inhibitory rates of 56.4% and 68.3%, respectively. AP-0, AP-1, AP-2 and AP-3 could influence the adhesion of HHCC to extracellular matrix proteins (Matrigel and fibronectin) at different degrees, among them only AP-3 had

  7. Acquired tumor cell resistance to sunitinib by increased invasion and epithelial-mesenchymal transition in LL/2 murine lung cancer.

    PubMed

    Du, Yang; Liu, Jia-Qi; Tang, Jie; Ge, Jun; Chen, Ye; Cheng, Ke; Ding, Jing; Li, Zhi-Ke; Liu, Ji-Yan

    2017-09-15

    This study aims to investigate biological behavior changes in a murine lung cancer cell characterized by acquired resistance to sunitinib, a potent inhibitor of multiple-targeted receptor tyrosine kinase. A lung cancer cell line resistant to sunitinib (LL/2-R) was developed from its parental cell line (LL/2-P). Differences in biological characteristics and associated molecular profiles between these two cells were compared in vitro and in vivo. LL/2-R cells showed an approximately 5-fold higher IC50 of sunitinib than LL/2-P cells and exhibited a reduced growth inhibition following sunitinib treatment compared with LL/2-P. In LL/2-R cells and tumors, increased migration, invasion and metastasis were observed, along with upregulation of MMP-2 and MMP-9. We also analyzed the molecular profiles involved in EMT, and found that E-cadherin was downregulated in LL/2-R tumors, and vimentin was upregulated in LL/2-R cells and tumors, along with β-catenin translocating to the nuclei in LL/2-R cells. Furthermore, transcriptional factors mediated EMT, snail and twist, and the secretion of TGFβ1 also increased in LL/2-R cells and tumors. We established a sunitinib-resistant lung cancer cell line and confirmed its drug-resistance to sunitinib in vivo. Our results implied that increased invasion and EMT may associate with the acquisition of resistant phenotype to sunitinib in cancer cells.

  8. Enhancement of the pro-apoptotic properties of Newcastle disease virus promotes tumor remission in syngeneic murine cancer models

    PubMed Central

    Cuadrado-Castano, Sara; Ayllon, Juan; Mansour, Mena; de la Iglesia-Vicente, Janis; Jordan, Stefan; Tripathi, Shashank; García-Sastre, Adolfo; Villar, Enrique

    2015-01-01

    Newcastle disease virus (NDV) is considered a promising agent for cancer therapy due to its oncolytic properties. These include preferential replication in transformed cells, induction of innate and adaptive immune responses within tumors and cytopathic effects in infected tumor cells due to the activation of apoptosis. In order to enhance the latter and thus possibly enhance the overall oncolytic activity of NDV, we generated a recombinant NDV encoding the human TNF receptor Fas (rNDV-B1/Fas). rNDV-B1/Fas replicates to similar titers as its wild type (rNDV-B1) counterpart, however overexpression of Fas in infected cells leads to higher levels of cytotoxicity correlated with faster and increased apoptosis responses in which both the intrinsic and extrinsic pathways are activated earlier. Furthermore, in vivo studies in syngeneic murine melanoma model show an enhancement of the oncolytic properties of rNDV-B1/Fas, with major improvements in survival and tumor remission. Altogether, our data suggest that up-regulation of the pro-apoptotic function of NDV is a viable approach to enhance its anti-tumor properties, and adds to the currently known, rationally-based strategies to design optimized therapeutic viral vectors for the treatment of cancer. PMID:25761895

  9. Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model.

    PubMed

    Abdalkader, Rodi; Kawakami, Shigeru; Unga, Johan; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2015-06-01

    In this study, a novel phospholipid-based microbubble formulation containing doxorubicin and perfluoropropane gas (DLMB) was developed. The DLMBs were prepared by mechanical agitation of a phospholipid dispersion in the presence of perfluoropropane (PFP) gas. An anionic phospholipid, distearoyl phosphatidylglycerol (DSPG) was selected to load doxorubicin in the microbubbles by means of electrostatic interaction. The particle size, zeta potential, echogenicity and stability of the DLMBs were measured. Drug loading was ⩾ 92%. The potential of the DLMBs for use as a theranostic modality was evaluated in tumor bearing mice. Gas chromatography analysis of PFP showed significant enhancement of PFP retention when doxorubicin was used at concentrations of 10-82% equivalent to DSPG. The inhibitory effects on the proliferation of B16BL6 melanoma murine cells in vitro were enhanced using a combination of ultrasound (US) irradiation and DLMBs. Moreover, in vivo DLMBs in combination with (US) irradiation significantly inhibited the growth of B16BL6 melanoma tumor in mice. Additionally, US echo imaging showed high contrast enhancement of the DLMBs in the tumor vasculature. These results suggest that DLMBs could serve as US triggered carriers of doxorubicin as well as tumor imaging agents in cancer therapy.

  10. Radio-attenuated leishmanial parasites as immunoprophylactic agent against experimental murine visceral leishmaniasis.

    PubMed

    Datta, Sanchita; Adak, Rupchand; Chakraborty, Priyanka; Haldar, Arun Kumar; Bhattacharjee, Surajit; Chakraborty, Anindita; Roy, Syamal; Manna, Madhumita

    2012-01-01

    The present study intends to evaluate the role of radio-attenuated leishmania parasites as immunoprophylactic agents for experimental murine visceral leishmaniasis. BALB/c mice were immunized with gamma (γ)-irradiated Leishmania donovani. A second immunization was given after 15 days of first immunization. After two immunizations, mice were infected with virulent L. donovani promastigotes. Protection against Kala-azar (KA) was estimated from spleen and liver parasitic burden along with the measurement of nitrite and superoxide anion generation by isolation of splenocytes and also by T-lymphocyte helper 1(Th1) and T-lymphocyte helper 2(Th2) cytokines release from the experimental groups. It was observed that BALB/c mice having prior immunization with radio-attenuated parasites showed protection against L. donovani infection through higher expression of Th1 cytokines and suppression of Th2 cytokines along with the generation of protective free radicals. The group of mice without prior priming with radio-attenuated parasites surrendered to the disease. Thus it can be concluded that radio-attenuated L. donovani may be used for. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    PubMed

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10(6) B16F10 melanoma cells or 2.5×10(5) Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Photodynamic therapy stimulates anti-tumor immunity in a murine mastocytoma model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2008-02-01

    Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species that eventually cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, recognition of tumor-specific antigens, and induction of heat-shock proteins, while the three commonest cancer therapies (surgery, chemotherapy and radiotherapy) all tend to suppress the immune system. Like many other immunotherapies, the extent of the immune response after PDT tends to depend on the antigenicity of the particular tumor, or in other words, whether the tumor contains proteins with the correct characteristics to provide peptides that can bind to MHC class I molecules and provide a target for cytolytic T lymphocytes. We have described certain mouse tumors containing defined or naturally occurring tumor associated antigens that respond particularly well to PDT, and potent immune responses capable of destroying distant untreated tumors can be induced. In this report we address the induction of immunity after PDT of the DBA2 mastocytoma known as P815. This tumor was the first mouse tumor to be shown to possess a tumor-rejection antigen capable of being recognized by cytotoxic T-cells.

  13. Differential effect of isotype on efficacy of anti-tumor necrosis factor alpha chimeric antibodies in experimental septic shock

    PubMed Central

    1994-01-01

    Immune complexes containing human gamma (g)1 or murine g2a antibodies generate secondary effector mechanisms via Fc receptor binding or complement activation, whereas those containing human g4 or murine g1 antibodies generally do not. Therefore, isotype selection of therapeutic antibodies may have important clinical consequences. In a rabbit model of human tumor necrosis factor (rhuTNF)-induced pyrexia, a murine/human chimeric g4 anti-human TNF-alpha monoclonal antibody (mAb) (cCB0011) showed a dose-dependent inhibition of pyrexia, whereas a g1 isotype variant of the same mAb gave a marked pyrexia that was seen at all doses indicative of an immune complex-mediated response. To investigate whether isotype difference could influence mAb efficacy in pathological disease states, hamster/murine chimeric g1 and g2a anti- murine TNF-alpha mAbs (TN3g1, TN3g2a) were studied in experimental shock in mice and rats. In lipopolysaccharide-induced shock in mice, treatment with TN3g1 mAb at 30 and 3 mg/kg resulted in 90% survival by 72 h (p < or = 0.004), and prolonged survival to 45 h (p < or = 0.05), respectively, compared with 100% mortality by 27 h in controls. In contrast, a g2a isotype variant of the same mAb (30 mg/kg) resulted in only 10% survival by 72 h (p < or = 0.05). In a neutropenic sepsis model in rats there was greater survival in animals receiving the g1 isotype of TN3 compared with g2a isotype variant (70 vs. 27%; p < or = 0.005) with 100% mortality in the controls. These differences were not due to the pharmacokinetic profiles of the mAbs. In models of experimental shock antibody isotype can affect outcome with inactive isotypes (human g4 and murine g1) being more efficacious than active isotypes (human g1 and murine g2a). PMID:8113678

  14. CpG oligonucleotide therapy cures subcutaneous and orthotopic tumors and evokes protective immunity in murine bladder cancer.

    PubMed

    Ninalga, Christina; Loskog, Angelica; Klevenfeldt, Magdalena; Essand, Magnus; Tötterman, Thomas H

    2005-01-01

    Bacillus Calmette-Guerin (BCG) instillation is standard immunotherapy for superficial bladder carcinoma. However, many patients become refractory to BCG, giving impetus to the development of alternative therapies. CpG oligodeoxynucleotide (ODN) therapy has been shown to promote T(H)1-oriented antitumor responses in various tumor models. To investigate its therapeutic effect in bladder cancer, we used different CpG ODNs to treat C57BL/6 mice bearing the subcutaneous murine bladder tumor MB49. CpG type B ODN 1668 was superior at inhibiting tumor growth, leading to complete regression of large tumors. More importantly, CpG ODN 1668 also regressed orthotopically growing MB49 tumors for the first time. Rechallenge of CpG ODN-cured mice with MB49 showed that a majority of the mice were protected long term, demonstrating that CpG ODN therapy evokes a memory response. Adenoviral vectors (Ad) encoding CD40L, tumor necrosis factor-related activation-induced cytokine, lymphotactin, interleukin (IL) 2, and IL-15 were also investigated. AdCD40L and AdIL-15 transduction could abolish MB49 tumorigenicity, and these vectors were combined with CpG ODN 1668 to investigate any enhanced effects. No such effects were seen. All groups of mice treated with CpG ODNs, alone or in combination with adenoviral vector, exhibited increased serum concentrations of IL-12, indicative of a T(H)1 response. Our results show that CpG ODN therapy cures established subcutaneous and orthotopic bladder cancer via a T(H)1-mediated response and provides long-lasting protective immunity.

  15. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    SciTech Connect

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-05-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN/sup -/) for murine Cu-Zn-SOD was determined to be 6.8 x 10/sup -6/ M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied.

  16. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model

    PubMed Central

    Kim, Woo Sik; Kim, Jong-Seok; Kim, Hong Min; Kwon, Kee Woong; Cho, Sang-Nae; Shin, Sung Jae; Koh, Won-Jung

    2015-01-01

    The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection. PMID:26406237

  17. Photodynamic therapy stimulates anti-tumor immunity in a murine model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2007-02-01

    Cancer is a leading cause of death among modern peoples largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with the minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. We here report on PDT of mice bearing tumors that either do or do not express an established TAA. We utilized a BALB/c colon adenocarcinoma cell line termed CT26.CL25 retrovirally transduced to stably express β-galactosidase ( β-gal, a bacterial protein), and its non-β-gal expressing wild-type counterpart termed CT26 WT, as well as the control cell line consisting of CT26 transduced with the empty retroviral vector termed CT26-neo. All cells expressed class I MHC restriction element H-2Ld syngenic to BALB/c mice. Vascular PDT with a regimen of 1mg/kg BPD injected IV, and 120 J/cm2 of 690-nm laser light after 15 minutes successfully cured 100% of CT26.CL25 tumors but 0% of CT26-neo tumors and 0% of CT26 WT tumors. After 90 days tumor free interval the CT26.CL25 cured mice were rechallenged with CT26.CL25 tumor cells and 96% rejected the rechallenge while the CT26.CL25 cured mice did not reject a CT26 WT tumor cell challenge. Experiments with mice bearing two CT26.CL25 tumors (one

  18. Obesity triggers enhanced MDSC accumulation in murine renal tumors via elevated local production of CCL2.

    PubMed

    Hale, Malika; Itani, Farah; Buchta, Claire M; Wald, Gal; Bing, Megan; Norian, Lyse A

    2015-01-01

    Obesity is one of the leading risk factors for developing renal cell carcinoma, an immunogenic tumor that is treated clinically with immunostimulatory therapies. Currently, however, the mechanisms linking obesity with renal cancer incidence are unclear. Using a model of diet-induced obesity, we found that obese BALB/c mice with orthotopic renal tumors had increased total frequencies of myeloid-derived suppressor cells (MDSC) in renal tumors and spleens by d14 post-tumor challenge, relative to lean counterparts. Renal tumors from obese mice had elevated concentrations of the known myeloid cell chemoattractant CCL2, which was produced locally by increased percentages of dendritic cells, macrophages, B cells, and CD45- cells in tumors. MDSC expression of the CCL2 receptor, CCR2, was unaltered by obesity but greater percentages of CCR2+ MDSCs were present in renal tumors from obese mice. Of note, the intracellular arginase levels and per-cell suppressive capacities of tumor-infiltrating and splenic MDSCs were unchanged in obese mice relative to lean controls. Thus, our findings suggest that obesity promotes renal tumor progression via development of a robust immunosuppressive environment that is characterized by heightened local and systemic MDSC prevalence. Targeted intervention of the CCL2/CCR2 pathway may facilitate immune-mediated renal tumor clearance in the obese.

  19. Toll-Like Receptor 9-Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis

    PubMed Central

    Kim, Paul D.; Xia-Juan, Xia; Crump, Katie E.; Abe, Toshiharu; Hajishengallis, George

    2015-01-01

    Chronic periodontitis is a local inflammatory disease induced by a dysbiotic microbiota and leading to destruction of the tooth-supporting structures. Microbial nucleic acids are abundantly present in the periodontium, derived through release after phagocytic uptake of microbes and/or from biofilm-associated extracellular DNA. Binding of microbial DNA to its cognate receptors, such as Toll-like receptor 9 (TLR9), can trigger inflammation. In this study, we utilized TLR9 knockout (TLR9−/−) mice and wild-type (WT) controls in a murine model of Porphyromonas gingivalis-induced periodontitis and report the first in vivo evidence that TLR9 signaling mediates the induction of periodontal bone loss. P. gingivalis-infected WT mice exhibited significantly increased bone loss compared to that in sham-infected WT mice or P. gingivalis-infected TLR9−/− mice, which were resistant to bone loss. Consistent with this, the expression levels of interleukin 6 (IL-6), tumor necrosis factor (TNF), and receptor-activator of nuclear factor kappa B ligand (RANKL) were significantly elevated in the gingival tissues of the infected WT mice but not in infected TLR9−/− mice compared to their levels in controls. Ex vivo studies using splenocytes and bone marrow-derived macrophages revealed significantly diminished cytokine production in TLR9−/− cells relative to the cytokine production in WT cells in response to P. gingivalis, thereby implicating TLR9 in inflammatory responses to this organism. Intriguingly, compared to the cytokine production in WT cells, TLR9−/− cells exhibited significantly decreased proinflammatory cytokine production upon challenge with lipopolysaccharide (LPS) (TLR4 agonist) or Pam3Cys (TLR2 agonist), suggesting possible cross talk between TLR9, TLR4, and TLR2. Collectively, our results provide the first proof-of-concept evidence implicating TLR9-triggered inflammation in periodontal disease pathogenesis, thereby identifying a new potential

  20. Protective Role of Interleukin-17 in Murine NKT Cell-Driven Acute Experimental Hepatitis

    PubMed Central

    Wondimu, Zenebech; Santodomingo-Garzon, Tania; Le, Tai; Swain, Mark G.

    2010-01-01

    NKT cells are highly enriched within the liver. On activation NKT cells rapidly release large quantities of different cytokines which subsequently activate, recruit, or modulate cells important for the development of hepatic inflammation. Recently, it has been demonstrated that NKT cells can also produce interleukin-17 (IL-17), a proinflammatory cytokine that is also known to have diverse immunoregulatory effects. The role played by IL-17 in hepatic inflammation is unclear. Here we show that during α-galactosylceramide (αGalCer)-induced hepatitis in mice, a model of hepatitis driven by specific activation of the innate immune system via NKT cells within the liver, NK1.1+ and CD4+ iNKT cells rapidly produce IL-17 and are the main IL-17-producing cells within the liver. Administration of IL-17 neutralizing monoclonal antibodies before αGalCer injection significantly exacerbated hepatitis, in association with a significant increase in hepatic neutrophil and proinflammatory monocyte (ie, producing IL-12, tumor necrosis factor-α) recruitment, and increased hepatic mRNA and protein expression for the relevant neutrophil and monocyte chemokines CXCL5/LIX and CCL2/MCP-1, respectively. In contrast, administration of exogenous recombinant murine IL-17 before α-GalCer injection ameliorated hepatitis and inhibited the recruitment of inflammatory monocytes into the liver. Our results demonstrate that hepatic iNKT cells specifically activated with α-GalCer rapidly produce IL-17, and IL-17 produced after α-GalCer administration inhibits the development of hepatitis. PMID:20847291

  1. Monitoring PDT effects in murine tumors by spectroscopic and imaging techniques

    NASA Astrophysics Data System (ADS)

    Ramaprasad, Subbaraya; Rzepka, Elzbieta; Pi, Jiaxiong; Joshi, Shantaram S.; Dobhal, Mahabeer; Missert, Joseph; Pandey, Ravindra K.

    2004-04-01

    The changes in the tumor that occur following photodynamic therapy (PDT) were studied using a small animal MR imager operating at 7Tesla. The animal model used in these studies was mice bearing radiation induced fibrosarcoma (RIF) tumor on the foot dorsum. The mice were injected with 10μM/kg of one of the photosensitizers: (1) Photofrin, (2) Non-fluorinated porphyrin photosensitizer (DOD-1), (3) Fluorinated porphyrin photosensitizer (DOD-2) and, (4) Fluorinated chlorin photosensitizer (DOD-6). Laser light at 630 or 650 nm (150 mW/cm2, 270 joules/cm2) was delivered to the tumor at 2-24 hours of photosensitizer administration. The MR spectroscopic and imaging examination of the tumors involved both the 1H and 31P nuclei. The tumor bioenergetics was measured by 31P spectroscopy. The water proton relaxivity and diffusion measurements were used to obtain local changes in different regions of the tumor. Changes in 31P MR spectra were observed following PDT using Photofrin and fluorinated chlorin sensitizer (DOD-6). However, no significant changes were observed when the fluorinated porphyrin and its nonfluorinated analog were used. The PDT induced changes in tumor volumes showed significant tumor regression with Photofrin, fluorinated porphyrin and chlorin sensitizers. No tumor regression was observed with the non labeled porphyrin sensitizer and the growth profile followed the general pattern of unperturbed tumors. Serial noninvasive measurements of tumor response to PDT are measurable by both MRI and MRS. The MR derived parameters that are characteristic of the tumor status before and after the therapy are discussed here.

  2. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major.

    PubMed

    Ahmed, Sami Ben Hadj; Bahloul, Chokri; Robbana, Cyrine; Askri, Souhir; Dellagi, Koussay

    2004-04-16

    Over the past few years, several reports of DNA vaccines against murine cutaneous experimental leishmaniasis came out with promising but sometimes discordant results. The present studies were designed to compare, under similar conditions, the protective effects in the highly susceptible BALB/c mice of DNA vaccine candidates encoding to various Leishmania major antigens. The candidate DNA vaccines encode to the following antigens: LACK, PSA2, Gp63, LeIF and two newly identified p20 and Ribosomal like protein, in addition to different truncated portions of the LACK antigen. The most promising gene was LACK and it is more protective when it is used as a p24 truncated form. Furthermore, the presence of a tandem repeats of immunostimulating sequences (ISS) in the plasmid backbone played an important adjuvant effect in the observed protective effect induced by the DNA vaccine encoding to the LACKp24. Nevertheless, neither of the DNA vaccine candidates was able to mount a full protection in BALB/c mice challenged with a highly virulent L. major strain. Further improvements of the DNA vaccination approach are still needed to design a fully protective vaccine against leishmaniasis. Three directions of investigations are currently explored: DNA vaccines using a cocktail of antigens; Prime/Boost approach; and association of immune modulators with the candidate antigens.

  3. Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Semon, Julie A.; Zhang, Xiujuan; Pandey, Amitabh C.; Alandete, Sandra M.; Maness, Catherine; Zhang, Shijia; Scruggs, Brittni A.; Strong, Amy L.; Sharkey, Steven A.; Beuttler, Marc M.; Gimble, Jeffrey M.

    2013-01-01

    Administration of adipose-derived stromal/stem cells (ASCs) represents a promising therapeutic approach for autoimmune diseases since they have been shown to have immunomodulatory properties. The uncultured, nonexpanded counterpart of ASCs, the stromal vascular fraction (SVF), is composed of a heterogeneous mixture of cells. Although administration of ex vivo culture-expanded ASCs has been used to study immunomodulatory mechanisms in multiple models of autoimmune diseases, less is known about SVF-based therapy. The ability of murine SVF cells to treat myelin oligodendrocyte glycoprotein35–55-induced experimental autoimmune encephalitis (EAE) was compared with that of culture-expanded ASCs in C57Bl/6J mice. A total of 1 × 106 SVF cells or ASCs were administered intraperitoneally concomitantly with the induction of disease. The data indicate that intraperitoneal administration of ASCs significantly ameliorated the severity of disease course. They also demonstrate, for the first time, that the SVF effectively inhibited disease severity and was statistically more effective than ASCs. Both cell therapies also demonstrated a reduction in tissue damage, a decrease in inflammatory infiltrates, and a reduction in sera levels of interferon-γ and interleukin-12. Based on these data, SVF cells effectively inhibited EAE disease progression more than culture-expanded ASCs. PMID:23981726

  4. Detection of antibodies against Theiler's murine encephalomyelitis virus GDVII strain in experimental guinea pigs.

    PubMed

    Häger, C; Glage, S; Held, N; Bleich, E M; Burghard, A; Mähler, M; Bleich, André

    2016-10-01

    A disease affecting guinea pigs called 'guinea pig lameness' characterized by clinical signs of depression, lameness of limbs, flaccid paralysis, weight loss and death within a few weeks was first described by Römer in 1911. After a research group in our facility kept laboratory guinea pigs from two different origins together in one room, lameness was observed in two animals. Further investigations revealed a serological immune response against Theiler's murine encephalomyelitis virus (TMEV; GDVII strain) in these animals. Histopathology of the lumbar spinal cord of these animals showed mononuclear cell infiltration and necrotic neurons in the anterior horn. Therefore, all guinea pigs from this contaminated animal unit, from other units in our facility, as well as from different European institutions and breeding centres were screened for antibodies directed against GDVII. Our investigations showed that approximately 80% of all guinea pigs from the contaminated animal unit were seropositive for GDVII, whereas animals from other separate units were completely negative. In addition, 43% of tested sera from the different European institutions and breeding centres contained antibodies against GDVII. The present data confirm that an unknown viral infection causes an immune response in experimental guinea pigs leading to seroconversion against GDVII and that guinea pigs from a commercial breeder are the source of the infection. © The Author(s) 2015.

  5. Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder

    PubMed Central

    Cannet, Arnaud; Akhoundi, Mohammad; Michel, Gregory; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Leishmaniasis is a vector-borne disease that is transmitted by sandflies and caused by obligate intracellular protozoa of the genus Leishmania. In the present study, we carried out a screening on the experimental infection of Phlebotomus pernioucus by bioluminescent Leishmania infantum using murine model and artificial feeder. We developed a real-time polymerase chain reaction (RT-PCR)-based method to determine individually the number of Leishmania promastigotes fed by infected flies. Among 1840 new emerged female sand flies, 428 were fed on the infected mice. After their death, they were analysed individually by RT-PCR. Our results demonstrated just a single Leishmania positive female at sixth day post meal. A total of 1070 female sand flies were exposed in contact with artificial feeder containing the human blood with two different quantities of Leishmania parasites: 2.106/mL and 1.107/mL. A blood meal including 1.107/mL LUC-promastigotes was proposed to 270 females and 75 (28%) flies were engorged. Among them, 44 (59%) were positive by RT-PCR analysis, with a relative average of 50551 Leishmania parasites. In case of blood feeding of females with 2.106/mL promastigotes, 57 out of 800 (7%) females succeed to feed from artificial feeder which 22 (39%) were positive with a relative average of 6487 parasites. PMID:27439032

  6. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis.

    PubMed

    Shen, Fengge; Feng, Jiaxuan; Wang, Xinhui; Qi, Zhimin; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Wang, Chao; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-02-10

    This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.

  7. Murine tumor necrosis factor-alpha sensitizes plasma corticosterone activity and the manifestation of shock: modulation by histamine.

    PubMed

    Hayley, Shawn; Kelly, O; Anisman, H

    2002-10-01

    Murine tumor necrosis factor-alpha (mTNF-alpha) results in the sensitization of mechanisms underlying plasma corticosterone activity and sickness behavior, the latter being reminiscent of septic or anaphylactic shock. The mTNF-alpha induced a sensitization of sickness and corticosterone in mice that was attenuated by pretreatment with the combinations of histamine H(1) (diphenhydramine, mepyramine) and H(2) (cimetidine) antagonists. Likewise, coadministration of diphenhydramine and cimetidine prevented the mTNF-alpha-provoked rise of monoamine activity within the posterior hypothalamus. Although dexamethasone ameliorated the mTNF-alpha-induced sensitization of corticosterone, illness behavior was unaffected. It is suggested that mTNF-alpha-induced illness and the neuroendocrine sensitization are mediated by endogenous histamine.

  8. Pomalidomide shows significant therapeutic activity against CNS lymphoma with a major impact on the tumor microenvironment in murine models.

    PubMed

    Li, Zhimin; Qiu, Yushi; Personett, David; Huang, Peng; Edenfield, Brandy; Katz, Jason; Babusis, Darius; Tang, Yang; Shirely, Michael A; Moghaddam, Mehran F; Copland, John A; Tun, Han W

    2013-01-01

    Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS

  9. Pomalidomide Shows Significant Therapeutic Activity against CNS Lymphoma with a Major Impact on the Tumor Microenvironment in Murine Models

    PubMed Central

    Li, Zhimin; Qiu, Yushi; Personett, David; Huang, Peng; Edenfield, Brandy; Katz, Jason; Babusis, Darius; Tang, Yang; Shirely, Michael A.; Moghaddam, Mehran F.; Copland, John A.; Tun, Han W.

    2013-01-01

    Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS

  10. Heterogeneous Blood-Tumor Barrier Permeability Determines Drug Efficacy in Experimental Brain Metastases of Breast Cancer

    PubMed Central

    Lockman, Paul R.; Mittapalli, Rajendar K.; Taskar, Kunal S.; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A.; Adkins, Chris E.; Roberts, Amanda; Thorsheim, Helen R.; Gaasch, Julie A.; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S.; Smith, Quentin R.

    2010-01-01

    Purpose Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases, however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental Design Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Results Analysis of >2000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) demonstrated partial BTB permeability compromise in >89% lesions, varying in magnitude within and between metastases. Brain metastasis uptake of 14C- paclitaxel and 14C- doxorubicin was generally greater than normal brain but <15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (~10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with over expression of the pericyte protein, desmin. Conclusions This work demonstrates that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. PMID:20829328

  11. Early Detection of Tumor Response by FLT/MicroPET Imaging in a C26 Murine Colon Carcinoma Solid Tumor Animal Model

    PubMed Central

    Lee, Wan-Chi; Chang, Chih-Hsien; Ho, Chung-Li; Chen, Liang-Cheng; Wu, Yu-Hsien; Chen, Jenn-Tzong; Wang, Ying-Ling; Lee, Te-Wei

    2011-01-01

    Fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine (18F-FLT) images cellular proliferation by entering the salvage pathway of DNA synthesis. In this study, we evaluate the early response of colon carcinoma to the chemotherapeutic drug, lipo-Dox, in C26 murine colorectal carcinoma-bearing mice by 18F-FDG and 18F-FLT. The male BALB/c mice were bilaterally inoculated with 1 × 105 and 1 × 106 C26 tumor cells per flank. Mice were intravenously treated with 10 mg/kg lipo-Dox at day 8 after 18F-FDG and 18F-FLT imaging. The biodistribution of 18F-FDG and 18F-FLT were followed by the microPET imaging at day 9. For the quantitative measurement of microPET imaging at day 9, 18F-FLT was superior to 18F-FDG for early detection of tumor response to Lipo-DOX at various tumor sizes (P < 0.05). The data of biodistribution showed similar results with those from the quantification of SUV (standard uptake value) by microPET imaging. The study indicates that 18F-FLT/microPET is a useful imaging modality for early detection of chemotherapy in the colorectal mouse model. PMID:21869861

  12. Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer.

    PubMed

    Ma, Yun-Feng; Chen, Chen; Li, Dongqing; Liu, Min; Lv, Zhuang-Wei; Ji, Yanhong; Xu, Jiru

    2017-01-31

    The expression of IL-17A and programmed death ligand 1 (PDL1) is increased in estrogen receptor-negative breast cancer. IL-17A promotes tumor cell survival and invasiveness and inhibits the antitumor immune response. The PDL1-PD1 (programmed death protein 1) signaling pathway promotes escape from immune surveillance in tumor cells. The pro-tumor properties of IL-17A and PDL1 in various cancers have been previously examined; however, the relationship and roles of IL-17A and PDL1 in ER-negative breast cancer have not been evaluated. Therefore, we assessed whether IL-17A promotes PDL1 expression in tumor cells and whether targeting of IL-17A could inhibit ER-negative breast cancer progression in a murine model. Our study revealed that IL-17A promoted PDL1 expression in human and mouse cells. In the murine cancer model, targeting of IL-17A inhibited PDL1 expression in the tumor microenvironment, decreased the percentage of Treg cells in tumor-infiltrating lymphocytes, and promoted CD4+ and CD8+ T cells to secrete interferon gamma. More importantly, treatment with combined anti-IL-17A and anti-PDL1 antibodies enhanced antitumor effects in favor of tumor eradication. Thus, our study established a pro-tumor role of IL-17A in promoting tumor immune escape and supports the development of a novel cytokine immunotherapy against breast cancer.

  13. Purification of Immune Cell Populations from Freshly Isolated Murine Tumors and Organs by Consecutive Magnetic Cell Sorting and Multi-parameter Flow Cytometry-Based Sorting.

    PubMed

    Salvagno, Camilla; de Visser, Karin E

    2016-01-01

    It is well established that tumors evolve together with nonmalignant cells, such as fibroblasts, endothelial cells, and immune cells. These cells constantly entangle and interact with each other creating the tumor microenvironment. Immune cells can exert both tumor-promoting and tumor-protective functions. Detailed phenotypic and functional characterization of intra-tumoral immune cell subsets has become increasingly important in the field of cancer biology and cancer immunology. In this chapter, we describe a method for isolation of viable and pure immune cell subsets from freshly isolated murine solid tumors and organs. First, we describe a protocol for the generation of single-cell suspensions from tumors and organs using mechanical and enzymatic strategies. In addition, we describe how immune cell subsets can be purified by consecutive magnetic cell sorting and multi-parameter flow cytometry-based cell sorting.

  14. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors.

    PubMed

    Sokol, Martin; Wabl, Matthias; Ruiz, Irene Rius; Pedersen, Finn Skou

    2014-05-19

    Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined. We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues. We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects

  15. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  16. Capillary blood flow in murine tumors, feet, and intestines during localized hyperthermia

    SciTech Connect

    Peck, J.W.; Gibbs, F.A. Jr.

    1983-10-01

    Changes in capillary blood flow were determined by serial measurements of xenon-133 (/sup 133/Xe) washout rates from Slow-line C/sub 3/H-mouse mammary carcinomas transplanted onto the flank or hindfoot, from non-tumor-bearing hindfeet, and from the lumen of a short portion of the proximal jejunum. Immersion in a 44/sup 0/C bath immediately doubled washout rates not only from the immersed tumor, but also from a contralatreral tumor that was not heated. This result and behavioral observations were consistent with an arousal-induced increase in cardiac output to the tumors that increased the capillary blood flow in them. In contrast, washout rates from the hindfeet or intestinal lumen did not increase unless the foot or intestine in question was itself heated, which is consistent with normal tissues having intrinsic mechanisms for regulating their own capillary blood flow that the Slow-line tumor lacks. This lack could complicate the design and interpretation of hyperthermia experiments in vivo. Immersion of Slow-line tumors in a 44/sup 0/C bath for 20 min did no microvascular damage detectable from /sup 133/Xe washout rates during the heating or for 1 hr subsequently. Washout rates from both foot and flank tumors had dropped by one-half after 41 to 43 min in the 44/sup 0/C bath. Equivalent declines had occurred after 60 min for the intestine and 100 min for the hindfeet.

  17. Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer.

    PubMed

    Khan, Anm Nazmul H; Kolomeyevskaya, Nonna; Singel, Kelly L; Grimm, Melissa J; Moysich, Kirsten B; Daudi, Sayeema; Grzankowski, Kassondra S; Lele, Sashikant; Ylagan, Lourdes; Webster, Gill A; Abrams, Scott I; Odunsi, Kunle; Segal, Brahm H

    2015-05-10

    Epithelial ovarian cancer (EOC) is typically diagnosed at advanced stages, and is associated with a high relapse rate. Patients in remission are ideal candidates for immunotherapy aimed at cure or prolonging disease-free periods. However, immunosuppressive pathways in the tumor microenvironment are obstacles to durable anti-tumor immunity. In a metastatic syngeneic mouse model of EOC, immunosuppressive macrophages and myeloid-derived suppressor cells (MDSCs) accumulate in the local tumor environment. In addition, resident peritoneal macrophages from non-tumor-bearing mice were highly immunosuppressive, abrogating stimulated T cell proliferation in a cell contact-dependent manner. Immunization with microparticles containing TLR9 and NOD-2 ligands (MIS416) significantly prolonged survival in tumor-bearing mice. The strategy of MIS416 immunization followed by anti-CD11b administration further delayed tumor progression, thereby establishing the proof of principle that myeloid depletion can enhance vaccine efficacy. In patients with advanced EOC, ascites analysis showed substantial heterogeneity in the relative proportions of myeloid subsets and their immunosuppressive properties. Together, these findings point to immunosuppressive myeloid cells in the EOC microenvironment as targets to enhance vaccination. Further studies of myeloid cell accumulation and functional phenotypes in the EOC microenvironment may identify patients who are likely to benefit from vaccination combined with approaches that deplete tumor-associated myeloid cells.

  18. Interaction between the microtubule inhibitor tubulozole and gamma-irradiation in murine tumors in vivo

    SciTech Connect

    Distelmans, W.; Van Ginckel, R.; Vanherck, W.; Willebrords, R.; De Brabander, M.; Wouters, L.; Van den Winkel, P.; De Backer, G.

    1989-01-01

    The combined effect of the microtubule inhibitor tubulozole and gamma-irradiation has been investigated in vivo in subcutaneous MO4 fibrosarcomas and Lewis Lung carcinomas. A marked interactive effect on tumor growth was observed when 160 mg/kg tubulozole was orally administered before the tumors were treated with 10 Gy radiation. Dose dependency and optimal effect were obtained on tumor growth of MO4 tumor bearing animals when the drug treatment was given 6 hr prior to the irradiation. The optimal pretreatment time coincided with the time at which a peak mitotic index in the tumor tissue was observed. An enhancing effect is also noticed at other doses of radiation in MO4 tumors pretreated 6 hr before with 160 mg/kg tubulozole. The interactive effect is maintained in a clinically relevant dose fractionation schedule whereby 8 fractions of 2 Gy each were pretreated 6 hr before with 80 mg/kg tubulozole. Tubulozole-T, the stereo-isomer of tubulozole, neither exhibits any antimicrotubular action nor exerts an antitumoral effect on its own or in combination with gamma-irradiation. The possible mechanisms of interaction between tubulozole and gamma-irradiation in tumor tissue are discussed.

  19. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  20. Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors.

    PubMed

    Kalmus, J; Okunieff, P; Vaupel, P

    1990-01-01

    The effects of the vasodilator hydralazine (HYD) on microcirculatory function and hyperthermic response were studied in early generation isotransplants of a spontaneous C3Hf/Sed mouse fibrosarcoma (FSall). Red blood cell flux (RBC flux) in superficial tumor regions was assessed using laser Doppler flowmetry. A differential microcirculatory response was seen between tumor and normal skin after 0.25 micrograms/g i.p. HYD, the tumor showing a transient increase in flow and the skin remaining almost stable. At 1.0 micrograms/g i.p., the differential response continued, this time with a transient fall in tumor blood flow but again no change in skin flow. High dose hydralazine (10.0 micrograms/g i.p.) was associated with a dramatic and prolonged decrease in tumor blood flow but a lesser and only transient decline in skin flow. Identical doses of hydralazine were given 30 min prior to heat treatment (43.5 degrees C for 15, 30, or 60 min). Tumor growth was measured daily and compared to controls (HT without hydralazine). Hydralazine at 0.25 micrograms/g i.p. did not affect heat induced growth delay. At 1.0 micrograms/g i.p., it significantly increased growth delay upon heat exposures of 15 min, but not after 30 or 60 min HT. Hydralazine at 10 micrograms/g i.p. increased growth delay for all heat doses (P less than 0.05). Hydralazine alone had no influence on growth delay of sham-heated tumors. The results obtained clearly indicate that tumor and normal tissues have microcirculatory differences in the time-course, degree and/or direction of response after hydralazine, and that hydralazine has potential for increasing the response of tumor to HT.

  1. Different processing of LH/hCG receptors in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1)

    SciTech Connect

    Kellokumpu, S.

    1987-02-01

    The metabolic fate of LH/hCG receptors after exposure to human chorionic gonadotropin (hCG) was examined in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1). Kinetic studies performed after pulse-labelling of the cells with (/sup 125/I)hCG indicated that the bound hormone was lost much more rapidly from the tumor cells than from the luteal cells. The tumor cells were also found to internalize and degrade the hormone more effectively than the luteal cells. Chemical cross-linking and analyses by SDS-PAGE of this material revealed that both cell types also released, in addition to intact hCG, two previously characterized receptor fragment-(/sup 125/I)hCG complexes (M/sub r/ 96,000 and 74,000) into the medium, although their amount was negligible in MLTC-1 cells. Possibly due to rapid discharge of the ligand from its receptor, no similar complexes could be detected inside the MLTC-1 cells, suggesting that they were released directly from the cell surface. However, the M/sub r/ 74,000 complex was observed inside MLTC-1 cells if chloroquine, a lysosomotropic agent, was present during the incubations. This suggests that the internalized receptor also becomes degraded, at least when complexed to hCG. The results thus provide evidence that there exist two different mechanisms for proteolytic processing of LH/hCG receptors in these target cells. In tumor cells, the degradation seems to occur almost exclusively intracellularly, whereas in luteal cells a substantial portion of the receptors is also degraded at the cell surface.

  2. Effects of Combined Soy Isoflavone Extract and Docetaxel Treatment on Murine 4T1 Breast Tumor Model

    PubMed Central

    Hejazi, Ehsan; Nasrollahzadeh, Javad; Fatemi, Ramina; Barzegar-Yar Mohamadi, Leila; Saliminejad, Kioomars; Amiri, Zohre; Kimiagar, Masoud; Houshyari, Mohammad; Tavakoli, Maryam; Idali, Farah

    2015-01-01

    Background Emergence of drug resistance has brought major problems in chemotherapy. Using nutrients in combination with chemotherapy could be beneficial for improvement of sensitivity of tumors to drug resistance. Soybean-derived isoflavones have been suggested as chemopreventive agents for certain types of cancer, particularly breast cancer. In this study, the synergistic effects of soy isoflavone extract in combination with docetaxel in murine 4T1 breast tumor model were investigated. Methods In this study, mice were divided into 4 groups (15 mice per group) of control, the dietary Soy Isoflavone Extract (SIE, 100 mg/kg diet), the Docetaxel (DOCE, 10 mg/kg) injection and the combination of dietary soy isoflavone extract and intravenous docetaxel injection (DOCE+SIE). After 3 injections of docetaxel (once a week), 7 mice were sacrificed to analyze MKI67 gene and protein expressions and the rest were monitored for diet consumption, tumor growth and survival rates. Results In DOCE+SIE group, diet consumption was significantly higher than DOCE group. While lifespan showed a trend towards improvement in DOCE+SIE group, no significant difference was observed among the 4 studied groups. Tumor volume was not significantly affected in treated groups. A lower but not significant MKI67 protein expression was detected in western blot in DOCE+SIE group. The mRNA expression was not significantly different among groups. Conclusion The results suggest that the combination of soy isoflavone as an adjunct to docetaxel chemotherapy can be effective in improving diet consumption in breast cancer. PMID:25926948

  3. Murine AIDS Protects Mice Against Experimental Cerebral Malaria: Down-Regulation by Interleukin 10 a T-Helper Type 1 CD4^+ Cell-Mediated Pathology

    NASA Astrophysics Data System (ADS)

    Eckwalanga, Michel; Marussig, Myriam; Dias Tavares, Marisa; Bouanga, Jean Claude; Hulier, Elisabeth; Henriette Pavlovitch, Jana; Minoprio, Paola; Portnoi, Denis; Renia, Laurent; Mazier, Dominique

    1994-08-01

    The retrovirus LP-BM5 murine leukemia virus induces murine AIDS in C57BL/6 mice that has many similarities with human AIDS; Plasmodium berghei ANKA causes experimental cerebral malaria in the same strain of mice. The outcome of malaria infection was studied in mice concurrently infected with the two pathogens. The retrovirus significantly reduced the gravity of the neurological manifestations associated with Plasmodium berghei ANKA infection. The protection against experimental cerebral malaria induced by murine AIDS increased with duration of viral infection and, hence, with the severity of the immunodeficiency. Interleukin 10, principally from splenic T cells, was shown to play a crucial role in this protection.

  4. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  5. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue.

    PubMed

    Durymanov, Mikhail O; Slastnikova, Tatiana A; Kuzmich, Alexey I; Khramtsov, Yuri V; Ulasov, Alexey V; Rosenkranz, Andrey A; Egorov, Sergey Y; Sverdlov, Eugene D; Sobolev, Alexander S

    2013-12-01

    Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI-PEG-MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 h after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 μm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated not more than 3 μm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent (123)I(-) intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8% ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT.

  6. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea

    PubMed Central

    Vilaseca, Antoni; Campillo, Noelia; Torres, Marta; Musquera, Mireia; Gozal, David; Montserrat, Josep M.; Alcaraz, Antonio; Touijer, Karim A.; Farré, Ramon; Almendros, Isaac

    2017-01-01

    We investigate the effects of intermittent hypoxia (IH), a characteristic feature of obstructive sleep apnea (OSA), on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50) of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF) and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001) and circulating VEGF (p<0.001) in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages. PMID:28594929

  7. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue

    PubMed Central

    Durymanov, Mikhail O; Slastnikova, Tatiana A; Kuzmich, Alexey I; Khramtsov, Yuri V; Ulasov, Alexey V; Rosenkranz, Andrey A1; Egorov, Sergey Y; Sverdlov, Eugene D; Sobolev, Alexander S

    2013-01-01

    Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI–PEG–MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 hours after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 μm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated less than 5 μm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent 123I- intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8 % ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT. PMID:24075405

  8. Regulatory B cells present in lymph nodes draining a murine tumor.

    PubMed

    Maglioco, Andrea; Machuca, Damián G; Camerano, Gabriela; Costa, Héctor A; Ruggiero, Raúl; Dran, Graciela I

    2014-01-01

    In cancer, B cells have been classically associated with antibody secretion, antigen presentation and T cell activation. However, a possible role for B lymphocytes in impairing antitumor response and collaborating with tumor growth has been brought into focus. Recent reports have described the capacity of B cells to negatively affect immune responses in autoimmune diseases. The highly immunogenic mouse tumor MCC loses its immunogenicity and induces systemic immune suppression and tolerance as it grows. We have previously demonstrated that MCC growth induces a distinct and progressive increase in B cell number and proportion in the tumor draining lymph nodes (TDLN), as well as a less prominent increase in T regulatory cells. The aim of this research was to study B cell characteristics and function in the lymph node draining MCC tumor and to analyze whether these cells may be playing a role in suppressing antitumor response and favoring tumor progression. Results indicate that B cells from TDLN expressed increased CD86 and MHCII co-stimulatory molecules indicating activated phenotype, as well as intracellular IL-10, FASL and Granzyme B, molecules with regulatory immunosuppressive properties. Additionally, B cells showed high inhibitory upon T cell proliferation ex vivo, and a mild capacity to secrete antibodies. Our conclusion is that even when evidence of B cell-mediated activity of the immune response is present, B cells from TDLN exhibit regulatory phenotype and inhibitory activity, probably contributing to the state of immunological tolerance characteristic of the advanced tumor condition.

  9. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model

    PubMed Central

    Meyer, Sandra; Burggraaf, Maroeska J.; Jose, Jithin; Molthoff, Carla F. M.

    2016-01-01

    Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new) agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics. PMID:27533303

  10. Antiinflammatory Effect of Phytosterols in Experimental Murine Colitis Model: Prevention, Induction, Remission Study

    PubMed Central

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects. PMID:25268769

  11. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication.

  12. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study.

    PubMed

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.

  13. Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model

    PubMed Central

    Zhu, Luping; Shimada, Takashi; Chen, Ruoxi; Lu, Meiping; Zhang, Qingzhao; Lu, Wenmin; Yin, Min; Enomoto, Tadao; Cheng, Lei

    2012-01-01

    In the current study, we sought to investigate whether lysed Enterococcus faecalis FK-23 (LFK), a heat-killed probiotic preparation, attenuated eosinophil influx into the upper airway and had immunomodulatory activity in a murine allergic rhinitis model. Eighteen BALB/c mice were divided into three groups; the ovalbumin (OVA)-sensitized/challenged group, which received saline orally for 6 weeks (OVA group), the OVA-sensitized/challenged group, which received LFK orally for 6 weeks (LFK-fed group), and the non-sensitized group, which received saline for 6 weeks (saline control group). Nasal rubbing and sneezing were monitored during the study. After the final challenge, interleukin (IL)-4, interferon (IFN)-γ, and OVA-specific IgE levels in the sera and splenocyte culture supernatants were determined, eosinophilic infiltrate into the upper airway was quantified, and splenic CD4+CD25+ regulatory T cells (Tregs) were examined by flow cytometry. We found that nasal rubbing was significantly reduced in LFK-fed mice compared to the OVA group on d 27 and 35, and sneezing was significantly inhibited by LFK administration for 35 d. LFK-fed mice had significantly less eosinophil influx into the nasal mucosa than the OVA group. There were no significant differences between the LFK-fed group and OVA group in the serum and splenocyte culture supernatant levels of IL-4, IFN-γ, and OVA-specific IgE. Interestingly, the LFK-fed mice had a significantly greater percentage of splenic CD4+CD25+ Tregs than OVA group. Our results indicate that oral administration of LFK may alleviate nasal symptoms, reduce nasal eosinophilia, and increase the percentage of CD4+CD25+ Tregs in experimental allergic rhinitis. PMID:23554753

  14. Lipid Alterations in Experimental Murine Colitis: Role of Ceramide and Imipramine for Matrix Metalloproteinase-1 Expression

    PubMed Central

    Bauer, Jessica; Liebisch, Gerhard; Hofmann, Claudia; Huy, Christian; Schmitz, Gerd; Obermeier, Florian; Bock, Jürgen

    2009-01-01

    Background Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. Methodology/Principal Findings Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4+CD62L+ cells into RAG1−/−-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS–induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1β in Caco-2-IEC and human intestinal fibroblasts. Conclusions/Significance Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1β is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions. PMID:19787068

  15. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression.

    PubMed

    Bauer, Jessica; Liebisch, Gerhard; Hofmann, Claudia; Huy, Christian; Schmitz, Gerd; Obermeier, Florian; Bock, Jürgen

    2009-09-29

    Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4(+)CD62L(+) cells into RAG1(-/-)-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions.

  16. Cellular basis of the genetic susceptibility of murine experimental allergic encephalomyelitis

    SciTech Connect

    Binder, T.A.; Greiner, D.L.; Goldschneider, I.

    1986-03-01

    Murine experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease that resembles human multiple sclerosis. The authors have investigated the cellular basis of the genetic predisposition and resistance of inbred strains of mice to EAE using an adoptive transfer system between two H-2 compatible, Thy 1 antigen disparate strains of mice. Genetically EAE susceptible SJL/J strain mice (H-2/sup s/, Thy 1.2) and resistant B10.S Thy 1.1 (H-2/sub s/, Thy 1.1) strain mice were lethally irradiated (700R) and reconstituted with 5-10 x 10/sup 6/ bone marrow cells from either SJL/J or congenic B10.S (Thy 1.1 or Thy 1.2) donors. After 30-45 days, more than 95% of the thymocytes and 75% of the peripheral T cells in the chimeras were of donor origin. These lymphohemopoietic chimeras were then sensitized in their hind footpads with porcine myelin basic protein in complete Freund's adjuvant containing M. tuberculosis H/sub 37/RA, followed at 24 and 72 hours by i.v. injection of B. pertussis. Clinical signs of EAE developed in unirradiated SJL/J, but not B10.S, controls, and in irradiated B10.S and SJL/J recipients of SJL/J, but not B10.S, bone marrow. These results indicate that bone marrow cells can transfer the predisposition to EAE from genetically susceptible to genetically resistant mouse strains. The cellular component in the bone marrow that is responsible for the transfer of the genetic susceptibility to EAE is under investigation.

  17. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models.

    PubMed

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Nguyen, Long V; Smith, Mark L; Palmer, Kenneth E; Pogue, Gregory P

    2006-09-29

    Fusion of peptides to viral carriers has proven an effective method for improving cellular immunity. In this study we explore the ability of a plant virus, Tobacco mosaic virus (TMV), to stimulate cellular immunity by interacting directly with immune cells. Fluorescently labeled TMV was incubated in vitro with murine spleen or lymph node cells, and near quantitative labeling of lymphocytes was achieved after 2 h, which persisted for up to 48 h. Direct TMV uptake and upregulation of the CD86 activation marker was measured in nearly all dendritic cells (DCs) by flow cytometry. To demonstrate that TMV can also provide functional antigen delivery and immune stimulation in vivo, two well-characterized T-cell epitopes that provide protection against tumor challenge in mice were fused to TMV coat protein by genetic manipulation, or by chemical conjugation. Vaccination of C57BL/6 mice elicited measurable cellular responses by interferon gamma (IFN gamma) ELISpot and resulted in significantly improved protection from tumor challenge in both the EG.7-Ova and B16 melanoma models. From these results we conclude that TMV was an effective antigen carrier for inducing cellular immune responses to less than 1 microg of peptide.

  18. Orthotopic murine model of a primary malignant bone tumor in the spine: functional, bioluminescence, and histological correlations.

    PubMed

    Fahim, Daniel K; Tatsui, Claudio E; Suki, Dima; Gumin, Joy; Lang, Frederick F; Rhines, Laurence D

    2014-09-01

    . The authors have developed the first orthotopic murine model of a primary malignant bone tumor in the spine, in which neurological decline reproducibly correlates with tumor progression as evidenced by pathological confirmation and noninvasive bioluminescence measurements. Although developed for osteosarcoma, this model can be expanded to study other types of primary malignant bone tumors in the spine. This model will potentially allow animal testing of targeted therapies against specific primary malignant tumor types.

  19. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Martin, John D; Chauhan, Vikash P; Jain, Saloni R; Diop-Frimpong, Benjamin; Bardeesy, Nabeel; Smith, Barbara L; Ferrone, Cristina R; Hornicek, Francis J; Boucher, Yves; Munn, Lance L; Jain, Rakesh K

    2012-09-18

    The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.

  20. Significant antitumor effect of a synthetic lipid A analogue, DT-5461, on murine syngeneic tumor models.

    PubMed

    Kumazawa, E; Tohgo, A; Soga, T; Kusama, T; Osada, Y

    1992-01-01

    The antitumor effect of a synthetic lipid A analogue, DT-5461, was investigated using syngeneic tumor models in mice. Intravenous injection of DT-5461 into mice transplanted with solid tumors of MethA fibrosarcoma, MH134 hepatoma, MM46 mammary carcinoma, Lewis lung carcinoma (3LL), and colon adenocarcinomas 26 and 38 resulted in significant reductions in the weight of all tumors except Colon 26, with marked hemorrhagic necrosis of tumor tissues. Efficacy was almost equal to that of an Escherichia coli-type synthetic lipid A (compound 506), and also to those of some chemotherapeutics including Adriamycin, mitomycin C, fluorouracil and cisplatin. Furthermore, DT-5461 was more effective than other immunotherapeutics, including picibanil (OK-432) and lentinan. However, its antitumor effects were inferior to those of Adriamycin or OK-432 against the malignant ascites caused by intraperitoneal inoculation with MethA or with MH134 cells; life span was not prolonged by either intraperitoneal or intravenous administration. In addition, although DT-5461 showed direct inhibitory effects on the in vitro growth of MethA or MH134, these were much weaker than those of Adriamycin. These findings clearly indicated that DT-5461 with systemic administration is a highly effective antitumor agent on solid tumors, and suggest that the antitumor effect of DT-5461 with potent necrotizing activity might derive from indirect mechanisms related to the activation of host immune systems and not to the weak direct cytotoxicity.

  1. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer

    PubMed Central

    Watkins, Stephanie K.; Zhu, Ziqiang; Riboldi, Elena; Shafer-Weaver, Kim A.; Stagliano, Katherine E.R.; Sklavos, Martha M.; Ambs, Stefan; Yagita, Hideo; Hurwitz, Arthur A.

    2011-01-01

    The limited success of cancer immunotherapy is often attributed to the loss of antigen-specific T cell function in situ. However, the mechanism for this loss of function is unknown. In this study, we describe a population of tumor-associated DCs (TADCs) in both human and mouse prostate cancer that tolerizes and induces suppressive activity in tumor-specific T cells. In tumors from human prostate cancer patients and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, TADCs expressed elevated levels of FOXO3 and Foxo3, respectively, which correlated with expression of suppressive genes that negatively regulate T cell function. Silencing FOXO3 and Foxo3 with siRNAs abrogated the ability of human and mouse TADCs, respectively, to tolerize and induce suppressive activity by T cells. Silencing Foxo3 in mouse TADCs was also associated with diminished expression of tolerogenic mediators, such as indoleamine-2,3-dioxygenase, arginase, and TGF-β, and upregulated expression of costimulatory molecules and proinflammatory cytokines. Importantly, transfer of tumor-specific CD4+ Th cells into TRAMP mice abrogated TADC tolerogenicity, which was associated with reduced Foxo3 expression. These findings demonstrate that FOXO3 may play a critical role in mediating TADC-induced immune suppression. Moreover, our results identify what we believe to be a novel target for preventing CTL tolerance and enhancing immune responses to cancer by modulating the immunosuppressive activity of TADCs found in the tumor microenvironment. PMID:21436588

  2. Radiosensitizing effect of misonidazole in combination with an inhibitor of glutathione synthesis in murine tumors

    SciTech Connect

    Ono, K.; Komuro, C.; Nishidai, T.; Shibamoto, Y.; Tsutsui, K.; Takahashi, M.; Abe, M.

    1986-09-01

    The radiosensitizing effects of misonidazole (MISO) in combination with D,L-buthionine-S, R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, were studied in NFSa tumors of C/sub 3/H/He mice. The radiation response of tumors was assayed by the tumor growth delay time. The GSH contents in tissues were assayed by high performance liquid chromatography (HPLC). GSH content in the tumors decreased to the minimum level (45% of the control), and then gradually recovered to 75% of the control, respectively, 12 and 24 hr after the intraperitoneal injection of 5 mmole/kg BSO. On the other hand, the maximum non-protein sulfhydryl (NPSH) depletion (29% of the control) in the liver of tumor bearing mice was achieved 6 hr after the administration of the same dose of BSO, but fully recovered 24 hr later. When 5 mmole/kg BSO was injected repeatedly 4 times at an interval of 6 hr, GSH content in the tumors decreased to 19% of the control 24 hr after the first injection of BSO. The radiosensitizing effect of 0.5 mmole/kg MISO was markedly increased by this BSO treatment. The enhancement ratio (ER) of this combined treatment was 1.93. On the other hand, ERs of 1.44 and 1.16 were obtained for MISO (0.5 mmole/kg) and for 4 injections of BSO (5 mmole/kg) in combination with radiation, respectively. Although a considerable increase in the radiosensitizing efficiency of MISO in vivo by the treatment with BSO was found without any notable side effects of the combination, more studies on toxicities are needed to get a definite conclusion on the clinical applicability of the combination.

  3. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    PubMed Central

    Than, BLN; Linnekamp, JF; Starr, TK; Largaespada, DA; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O’Sullivan, MG; Medema, JP; Fijneman, RJA; Meijer, GA; Van den Broek, E; Hodges, CA; Scott, PM; Vermeulen, L; Cormier, RT

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid–base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated ApcMin mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc+/+ mice aged to ~ 1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc+/+ Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  4. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    PubMed

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  5. Schedule dependency of the antitumor activity and toxicity of polyethylene glycol-modified interleukin 2 in murine tumor models.

    PubMed

    Zimmerman, R J; Aukerman, S L; Katre, N V; Winkelhake, J L; Young, J D

    1989-12-01

    Modification of recombinant human interleukin 2 (rhIL-2) with monomethoxy polyethylene glycol has been shown to alter its pharmacokinetic properties. Therefore, we investigated the pharmacological parameters of schedule and dose in order to assess the impact on the in vivo antitumor activity of this modification. The antitumor efficacy, as well as the toxicity, of polyethylene glycol-interleukin 2 (PEG-IL-2) was compared to that of rhIL-2 in three transplantable syngeneic murine tumor models, Meth A fibrosarcoma, B16 melanoma, and Pan-02 pancreatic carcinoma. At equitoxic dose levels, the antitumor activity of PEG-IL-2 was far superior to that of rhIL-2 in all three tumor models. This efficacy of PEG-IL-2 was dose dependent and was greatest on a Q7D x 2 schedule in Meth A and B16. When the same total doses were further divided and delivered on any of several alternative schedules, either the efficacy was reduced or the toxicity of the treatments was increased. In Pan-02, a rhIL-2-resistant tumor, PEG-IL-2 treatment on either the Q7D x 2, Q4D x 3, or Q3D x 4 schedule resulted in approximately a 200% increase in lifespan; however, the toxicity of the treatment increased as the interval between doses was shortened. Simulations of the pharmacokinetic profiles of these various regimens suggested that the toxicity of PEG-IL-2 and rhIL-2 was related to the minimum plasma concentration that was obtained and the time interval between peak levels. The efficacy of the treatment was associated with the interleukin 2 plasma peak height, since a dose response was observed; however, peak plasma concentration did not appear to be the only parameter which determined efficacy. We hypothesize that this observed schedule dependence is also affected by the kinetics of the host's biological response to rhIL-2.

  6. Nicotinamide treatment in a murine model of familial tumoral calcinosis reduces serum Fgf23 and raises heart calcium

    PubMed Central

    Reilly, Austin M.; Gray, Amie K.; Moe, Sharon M.; Ichikawa, Shoji

    2014-01-01

    Mutations in the GALNT3 gene result in familial tumoral calcinosis, characterized by persistent hyperphosphatemia and ectopic calcific masses in soft tissues. Since calcific masses often recur after surgical removal, a more permanent solution to the problem is required. Nicotinamide is reported to lower serum phosphate by decreasing sodium-dependent phosphate co-transporters in the gut and kidney. However, its effectiveness in tumoral calcinosis remains unknown. In this study, we investigated nicotinamide as a potential therapy for tumoral calcinosis, using a murine model of the disease–Galnt3 knockout mice. Initially, five different doses of nicotinamide were given to normal heterozygous mice intraperitoneally or orally. Treatment had no effect on serum phosphate levels; however, serum levels of a phosphaturic hormone, fibroblast growth factor 23 (Fgf23), decreased in a dose-dependent manner. Subsequently, high-dose nicotinamide (40 mM) was tested in Galnt3 knockout mice fed a high phosphate diet. The radiographic data pre- and post-treatment showed that nicotinamide did not reverse the calcification. However, the treatment retarded calcification growth after four weeks, while in the untreated animals, calcifications increased in size. The therapy did not affect serum phosphate levels, but intact Fgf23 decreased in the treated mice. The treated mice also had increased calcium in the heart. In summary, nicotinamide did not alter serum phosphate levels, likely due to compensatory decrease in Fgf23 to counteract the phosphate lowering effect of nicotinamide. Although increased calcium accumulation in the heart is a concern, the therapy appears to slow down the progression of ectopic calcifications. PMID:25007710

  7. Modulation of Murine Breast Tumor Vascularity, Hypoxia, and Chemotherapeutic Response by Exercise

    PubMed Central

    Betof, Allison S.; Lascola, Christopher D.; Weitzel, Douglas; Landon, Chelsea; Scarbrough, Peter M.; Devi, Gayathri R.; Palmer, Gregory; Jones, Lee W.; Dewhirst, Mark W.

    2015-01-01

    Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor–negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11–12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm2, 95% CI = 1223 to 1865 vs 2168 cells/mm2, 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer. PMID:25780062

  8. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.

    PubMed

    Betof, Allison S; Lascola, Christopher D; Weitzel, Douglas; Landon, Chelsea; Scarbrough, Peter M; Devi, Gayathri R; Palmer, Gregory; Jones, Lee W; Dewhirst, Mark W

    2015-05-01

    Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm(2), 95% CI = 1223 to 1865 vs 2168 cells/mm(2), 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer. © The Author 2015. Published by Oxford University Press.

  9. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor

    PubMed Central

    Liu, Ning-Ai; Jiang, Hong; Ben-Shlomo, Anat; Wawrowsky, Kolja; Fan, Xue-Mo; Lin, Shuo; Melmed, Shlomo

    2011-01-01

    Cushing disease caused by adrenocorticotropin (ACTH)-secreting pituitary adenomas leads to hypercortisolemia predisposing to diabetes, hypertension, osteoporosis, central obesity, cardiovascular morbidity, and increased mortality. There is no effective pituitary targeted pharmacotherapy for Cushing disease. Here, we generated germline transgenic zebrafish with overexpression of pituitary tumor transforming gene (PTTG/securin) targeted to the adenohypophyseal proopiomelanocortin (POMC) lineage, which recapitulated early features pathognomonic of corticotroph adenomas, including corticotroph expansion and partial glucocorticoid resistance. Adult Tg:Pomc-Pttg fish develop neoplastic coticotrophs and pituitary cyclin E up-regulation, as well as metabolic disturbances mimicking hypercortisolism caused by Cushing disease. Early development of corticotroph pathologies in Tg:Pomc-Pttg embryos facilitated drug testing in vivo. We identified a pharmacologic CDK2/cyclin E inhibitor, R-roscovitine (seliciclib; CYC202), which specifically reversed corticotroph expansion in live Tg:Pomc-Pttg embryos. We further validated that orally administered R-roscovitine suppresses ACTH and corticosterone levels, and also restrained tumor growth in a mouse model of ACTH-secreting pituitary adenomas. Molecular analyses in vitro and in vivo showed that R-roscovitine suppresses ACTH expression, induces corticotroph tumor cell senescence and cell cycle exit by up-regulating p27, p21 and p57, and downregulates cyclin E expression. The results suggest that use of selective CDK inhibitors could effectively target corticotroph tumor growth and hormone secretion. PMID:21536883

  10. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer.

    PubMed

    Hillebrand, Larissa E; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-09-06

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45-, showed a high tumorigenicity compared to non-CD24+CD90+CD45- cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45- TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45- cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45- cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas.

  11. Influence of WR 2721 on the efficacy of radiotherapy and chemotherapy of murine tumors

    SciTech Connect

    Clement, J.J.; Johnson, R.K.

    1982-03-01

    The effect of WR2721 on the response of tumors to radiation, antineoplastic alkylating drugs, and DNA binding agents was evaluated and compared to the degree of normal tissue protection provided by WR 2721 against these agents. WR 2721 administered to mice bearing P388 leukemia or Lewis lung carcinoma was found to reduce the radiosensitivity of the leukemia and lung tumor by dose modifying factors of 1.4 and 1.3, respectively. WR 2721 protected bone marow, intestine, and skin from radiation by factors of 1.9. 1.4 and 1.8. WR 2721 protected mice from the lethality of cyclophosphamide by a factor of only 1.2 whereas protection from melphalan toxicity was more dramatic with a dose modifying factor of 1.6. In chemotherapy studies of established M5076 ovarian tumor, the combination of WR 2721 plus cyclophosphamide was equivalent in activity to cyclophosphamide alone. WR 2721 did not modify the antitumor activity of melphalan in early Lewis lung carcinoma did not decrease the antileukemic effects of this agent by a factor of 2.6 indicating tumor protection greater than host protection in the leukemia. The antitumor activity of the DNA binding agents etoposide (VP16-213) and mitoxantrone against systemic P388 leukemia was not diminished by WR 2721, while a substantial increase in host toxicity was noted for the combinations. The protective effects of WR 2721 against radiation and drug damage were, therefore, not entirely selective for normal tissues. In some cases the degree of tumor protection can be similar to, or greater than, normal tissue protection.

  12. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer

    PubMed Central

    Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-01-01

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270

  13. Adriamycin effects and the interactions of adriamycin with x irradiation on murine mammary tumors

    SciTech Connect

    Dethlefsen, L.A.; Riley, R.M.

    1982-04-01

    The effects of a single intraperitoneal injection of adriamycin (10 mg/kg) on a slow-growing C3H mouse mammary tumor (Slow) were analyzed volumetrically, biochemically, autoradiographically, and flow cytometrically. Adriamycin, at this dose, did not induce regression in tumor volume but did inhibit the growth rate for several days. The (/sup 3/H)TdR pulse-labeling index was initially high (23% at 7 hr vs 16% for control) but then dropped to 8% at 96 hr postinjection. Qualitatively, the flow cytometric data supported these trends with the percentage of cells in S phase being about 95, 85, and 85%, respectively, at 7, 24, and 96 hr postinjection. In contrast, the (/sup 3/H)TdR incorporation even though quite valuable, was initially in agreement but at 96 hr postinjection, it was about 145% of control. The fraction of cells in G/sub 2/M was more than 350% of control at 72 hr and was still over 180% at 120 hr postinjection; however, the mitotic index per se was basically unchanged during this period. Thus the extended effect on the volumetric growth rate appears to be due primarily to the extensive G/sub 2/ arrest. Adriamycin also affects the subsequent X-irradiation response. The dose for local tumor control from a single irradiation was markedly elevated at 24 hr in the Slow line (slow growing) and at 96 hr after adriamycin injection in the S102F line (fast growing). These X-ray plus drug results are contrary to the results anticipated from the effects of adriamycin, as published in general, and specifically from the cytokinetic effects of adriamycin on the tumors reported here as well as those published previously. These results indicate that the interaction of drugs with X irradiation in solid tumors in vivo is much more complicated than expected from the numerous published in vitro studies.

  14. CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model.

    PubMed

    Espenschied, Jonathan; Lamont, Jeffrey; Longmate, Jeff; Pendas, Solange; Wang, Zhongde; Diamond, Don J; Ellenhorn, Joshua D I

    2003-03-15

    p53 is overexpressed by half of all cancers, and is an attractive target for a vaccine approach to immunotherapy. p53 overexpression is frequently the result of point mutations, which leaves the majority of the protein in its wild-type form. Therefore, the majority of p53 sequence is wild type, making it a self-protein for which tolerance plays a role in limiting immune responses. To overcome tolerance to p53, we have expressed wild-type murine p53 in the nonpathogenic attenuated poxvirus, modified vaccinia virus Ankara (recombinant modified vaccinia virus Ankara expressing wild-type murine p53 (rMVAp53)). Mice immunized with rMVAp53 vaccine developed vigorous p53-specific CTL responses. rMVAp53 vaccine was evaluated for its ability to inhibit the outgrowth of the syngeneic murine sarcoma Meth A, which overexpresses mutant p53. Mice were inoculated with a lethal dose (5 x 10(5) cells injected s.c.) of Meth A tumor cells and vaccinated by i.p. injection 3 days later with 5 x 10(7) PFU of rMVAp53. The majority of mice remained tumor free and resistant to rechallenge with Meth A tumor cells. We wished to determine whether rMVAp53 immunization could effect the rejection of an established, palpable Meth A tumor. In subsequent experiments, mice were injected with 10(6) Meth A tumor cells, and treated 6 days later with anti-CTLA-4 Ab (9H10) and rMVAp53. The majority of treated mice had complete tumor regression along with lasting tumor immunity. In vivo Ab depletion confirmed that the antitumor effect was primarily CD8 and to a lesser extent CD4 dependent. These experiments demonstrate the potential of a novel cell-free vaccine targeting p53 in malignancy.

  15. Phorbal esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction

    SciTech Connect

    Somers, S.D.; Weiel, J.E.; Hamilton, T.A.; Adams, D.O.

    1986-06-01

    Murine macrophages from sites of inflammation develop toward tumoricidal competence by exposure to a macrophage-activating factor such as interferon-..gamma.. (IFN-..gamma..). To explore the biochemical transductional events initiated by IFN-..gamma.., peritoneal macrophages from C57BL/6J mice elicited by various sterile irritants were treated in vitro with two pharmacologic agents that mimic the action of certain second messengers. Phorbol myristate acetate (PMA) and the ionophore A23187 cooperatively reproduced the ability of IFN-..gamma.. to prime macrophages for tumoricidal function. Neither agent alone was able to prime macrophages. The two agents acted on the macrophages, and target susceptibility to kill was not altered by PMA and A23187. Only active phorbol esters, which are known to bind and stimulate protein kinase C, were able to cooperate with A23187 to induce priming. A cell-permeable synthetic diacylglycerol (sn-1,2-dioctanoyl glycerol) could also prime for cytolysis. In the presence of PMA, A23187, and EGTA, addition of Ca/sup + +/ was sufficient for priming, whereas the addition of Mg/sup + +/ was much less efficient. Priming by IFN-..gamma.., however, was not blocked by EGTA. Efflux of /sup 45/Ca/sup + +/ from preloaded cells was significantly increased by A23187 and by IFN-..gamma... Quin-2/AM, an intracellular chelator of Ca/sup + +/, blocked priming by IFN-..gamma...

  16. Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic "metastases" in vivo.

    PubMed

    Broitman, S A; Wilkinson, J; Cerda, S; Branch, S K

    1996-01-01

    Tumors derived from the colonic epithelium exhibit cholesterol metabolism which is clearly different from that in fibroblasts, hepatocytes, adrenals, and ovaries. In hepatocytes and fibroblasts MEV inhibition of the rate limiting step in cholesterol synthesis HMG Co A reductase can be overcome by the uptake of LDL. Colon cancer cells however do not overcome MEV inhibition by LDL uptake but rather exhibit further growth suppression Mevinolin (Mevacor), a drug used to lower serum cholesterol levels has the advantage of accumulating in the liver to approximately 95% with the first pass. A small but variable percentage of non-sterol precursors may escape inhibition and be utilized for other pathways in the isoprenylation of certain proteins, among them members of the ras family. Mutated ras, an oncogene, is found in 40-50% of colon tumors and the expression of a functional gene product is dependent on isoprenylation for anchorage to the tumor cell membrane. d-Limonene, a relatively non-toxic monoterpene found in orange skin oil, selectively inhibits isoprenylation and also accumulates to some extent in the liver. It was hypothesized that the differences in mevalonate metabolism between hepatocytes and colon tumor cells could provide a chemotherapeutic advantage in which MEV and/or d-limonene could effectively inhibit cholesterol synthesis and post-translational modification of proteins with non-sterol cholesterol precursors in colon tumor derived hepatic metastases and thus inhibit their growth. Since each drug affects aspects of mevalonate synthesis at different points, the effects of the combination of their agents on inhibiting tumor metastases was investigated to ascertain if these could be additive. In tissue culture, MEV and d-limonene significantly inhibited the growth of CT-26, a murine transplantable colon tumor. Cholesterol synthesis assessed in these cells indicated that in lipid deficient media the following additions-25-hydroxycholesterol, and LDL

  17. Nitric Oxide Is an Important Mediator of Renal Tubular Epithelial Cell Death in Vitro and in Murine Experimental Hydronephrosis

    PubMed Central

    Kipari, Tiina; Cailhier, Jean-Francois; Ferenbach, David; Watson, Simon; Houlberg, Kris; Walbaum, David; Clay, Spike; Savill, John; Hughes, Jeremy

    2006-01-01

    Macrophages play a pivotal role in tissue injury and fibrosis during renal inflammation. Although macrophages may induce apoptosis of renal tubular epithelial cells, the mechanisms involved are unclear. We used a microscopically quantifiable co-culture assay to dissect the cytotoxic interaction between murine bone marrow-derived macrophages and Madin-Darby canine kidney cells and primary murine renal tubular epithelial cells. The induction of tubular cell apoptosis by cytokine-activated macrophages was reduced by inhibitors of nitric oxide synthase whereas tubular cell proliferation was unaffected. Furthermore, cytokine-activated macrophages derived from mice targeted for the deletion of inducible nitric oxide synthase were noncytotoxic. We then examined the role of nitric oxide in vivo by inhibiting inducible nitric oxide synthase in the model of murine experimental hydronephrosis. l-N6-(1-iminoethyl)-lysine was administered in the drinking water between days 5 and 7 after ureteric obstruction. Macrophage infiltration was comparable between groups, but treatment significantly inhibited tubular cell apoptosis at day 7. Tubular cell proliferation was unaffected. Inducible nitric oxide synthase blockade also reduced interstitial cell apoptosis and increased collagen III deposition. These data indicate that nitric oxide is a key mediator of macrophage-directed tubular cell apoptosis in vitro and in vivo and also modulates tubulointerstitial fibrosis. PMID:16877341

  18. Therapeutic effects of garenoxacin in murine experimental secondary pneumonia by Streptococcus pneumoniae after influenza virus infection.

    PubMed

    Fukuda, Yoshiko; Furuya, Yuri; Nozaki, Yusuke; Takahata, Masahiro; Nomura, Nobuhiko; Mitsuyama, Junichi

    2014-02-01

    In a pneumococcal pneumonia murine model following influenza virus infection, garenoxacin was more effective than other fluoroquinolones and demonstrated high levels of bacterial eradication in the lung, low mortality, and potent histopathological improvements. Garenoxacin could potentially be used for the treatment of secondary pneumococcal pneumonia following influenza.

  19. Assessment and In Vivo Scoring of Murine Experimental Autoimmune Uveoretinitis Using Optical Coherence Tomography

    PubMed Central

    Chu, Colin J.; Herrmann, Philipp; Carvalho, Livia S.; Liyanage, Sidath E.; Bainbridge, James W. B.; Ali, Robin R.; Dick, Andrew D.; Luhmann, Ulrich F. O.

    2013-01-01

    Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r2 = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r2 = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with

  20. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  1. Different efficacy of in vivo herpes simplex virus thymidine kinase gene transduction and ganciclovir treatment on the inhibition of tumor growth of murine and human melanoma cells and rat glioblastoma cells.

    PubMed

    Berenstein, M; Adris, S; Ledda, F; Wolfmann, C; Medina, J; Bravo, A; Mordoh, J; Chernajovsky, Y; Podhajcer, O L

    1999-01-01

    Initial studies have demonstrated the therapeutic efficacy for cancer treatment of in vivo transfer of the herpes simplex virus thymidine kinase gene followed by ganciclovir (GCV) treatment. However, recent studies have questioned the validity of this approach. Using retroviral vector-producing cells (VPC) as a source for in vivo gene transfer, we evaluated the efficacy of in vivo transduction of malignant cells using three different tumor cell models: B16 murine and IIB-MEL-LES human melanomas and a C6 rat glioblastoma. In vitro studies showed a bystander effect only in C6 cells. In vivo studies showed an inhibition of tumor growth in the two melanoma models when tumor cells were coinjected with VPC-producing retroviral vectors carrying the herpes simplex virus thymidine kinase gene, followed by GCV treatment; however, 100% of mice developed tumors in both models. Under similar experimental conditions, 70% (7 of 10) of syngeneic rats completely rejected stereotactically transferred C6 tumor cells; most of them (5 of 10) showed a prolonged survival. Treating established C6 tumors with VPC-producing retroviral vectors carrying the herpes simplex virus thymidine kinase gene and GCV led to the cure of 33% (4 of 12) of the animals. Rats that rejected tumor growth developed an antitumor immune memory, leading to a rejection of a stereotactic contralateral challenge with parental cells. The immune infiltrate, which showed the presence of T lymphocytes, macrophages, and polymorphonuclear cells at the site of the first injection and mainly T lymphocytes and macrophages at the site of tumor challenge, strengthened the importance of the immune system in achieving complete tumor rejection.

  2. B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models.

    PubMed

    Kim, Samuel; Fridlender, Zvi G; Dunn, Robert; Kehry, Marilyn R; Kapoor, Veena; Blouin, Aaron; Kaiser, Larry R; Albelda, Steven M

    2008-06-01

    The role played by B cells in cancer biology is complex and somewhat controversial. Previous studies using genetically engineered mice suggest that B cells may be immunosuppressive and inhibit tumor rejection. However, the effects of B-cell depletion employing an antibody in mice bearing solid tumors has not been tested owing to difficulties in making an effective antimouse CD20 antibody (similar to rituximab). Injection of a newly developed antimouse CD20 antibody was effective in depleting circulating B cells from blood and lymph nodes, although depletion was less complete in the spleen. B-cell depletion slowed the growth of new solid tumors (not expressing CD20) and retarded the growth of established tumors but did not induce tumor regression. However, when the antibody was combined with an active immunotherapy approach using an adenovirus vaccine expressing the human papilloma virus-E7 gene (Ad.E7) in mice bearing TC1 tumors (murine lung cancer cells expressing human papilloma virus-E7), we noted enhanced antitumor effects and increased numbers of tetramer+/CD8+ T cells within the spleens and activated CD8+ T cells within tumors. B-cell depletion using an anti-CD20 antibody was thus effective in retarding tumor growth in multiple solid tumor models and augmenting immunotherapy in a tumor vaccine model. These studies raise the possibility that B-cell depletion may be a useful adjunct in human immunotherapy trials.

  3. Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: Implication in antitumor activation of tumor-associated macrophages.

    PubMed

    Vishvakarma, Naveen Kumar; Singh, Sukh Mahendra

    2010-11-30

    Proton pump inhibitors (PPI) are being considered for antineoplastic therapeutic regimens due to their ability to reverse H(+) homeostasis in tumor microenvironment and induce tumor cell death. In order to explore additional mechanism(s) underlying antitumor action of PPI, the present investigation was undertaken to investigate the effect of a PPI pantoprazole (PPZ) on the activation of tumor-associated macrophages (TAM) to tumoricidal state in a murine model of a transplantable T cell lymphoma of spontaneous origin growing in ascitic form. In vivo administration of PPZ to tumor-bearing mice resulted in an enhanced TAM recruitment in tumor microenvironment with M1 macrophage phenotype and augmented activation of TAM to tumoricidal state along with expression of tumor cytotoxic molecules. The study also demonstrates that TAM activating action of PPZ is of indirect nature mediated via its antitumor activity, reversal of tumor-induced immunosuppression and a consequent shift of cytokine balance in the tumor microenvironment favoring polarization of macrophages to M1 type. The study further shows that adoptive transfer of TAM harvested from PPZ-administered tumor-bearing hosts causes an efficient retardation of tumor growth. Possible mechanisms and significance of these observations with respect to the designing of antitumor therapy using PPI are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Solanum lyratum Extracts Induce Extrinsic and Intrinsic Pathways of Apoptosis in WEHI-3 Murine Leukemia Cells and Inhibit Allograft Tumor.

    PubMed

    Yang, Jai-Sing; Wu, Chia-Chun; Kuo, Chao-Lin; Lan, Yu-Hsuan; Yeh, Chin-Chung; Yu, Chien-Chih; Lien, Jin-Cherng; Hsu, Yuan-Man; Kuo, Wei-Wen; Wood, W Gibson; Tsuzuki, Minoru; Chung, Jing-Gung

    2012-01-01

    We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE) or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G(0)/G(1) phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨ(m)). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G(0)/G(1) phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.

  5. Solanum lyratum Extracts Induce Extrinsic and Intrinsic Pathways of Apoptosis in WEHI-3 Murine Leukemia Cells and Inhibit Allograft Tumor

    PubMed Central

    Yang, Jai-Sing; Wu, Chia-Chun; Kuo, Chao-Lin; Lan, Yu-Hsuan; Yeh, Chin-Chung; Yu, Chien-Chih; Lien, Jin-Cherng; Hsu, Yuan-Man; Kuo, Wei-Wen; Wood, W. Gibson; Tsuzuki, Minoru; Chung, Jing-Gung

    2012-01-01

    We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE) or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G0/G1 phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G0/G1 phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future. PMID:22611426

  6. Radiation dose fractionation studies with hypoxic cell radiosensitizers using a murine tumor. [X-ray; mice

    SciTech Connect

    Hill, R.P.

    1982-03-01

    The ability of five nitroimidazoles, metronidazole (MET), misonidazole (MISO), desmethymisonidazole (DMM), SR 2508 and SR 2555, to sensitize the KHT sarcoma to radiation treatment has been compared for drug doses in the range 0-1.5 g/Kg. Single radiation doses or two different daily fractionation schedules (4 fractions of 5 Gy each or 7 fraction of 3 Gy each) were used; the tumor cell survival was determined using either an in vivo or in vitro colony assay. Each radiation (100 kVp X rays at 11 Gy/min) treatment was given locally, 60-70 min (MET) or 30-40 min (other drugs) after either intraperitoneal (MET, MISO, DMM) or intraveous (SR 2508, SR 2555) injection of the drugs; these times have been shown to be optimum for this tumor. For the single doses and both fractionation schedules the tumor cell survival, following the irradiation treatment, declined as the drug dose increased in the range 0 to 0.75 g/Kg for all the drugs, but above this dose level a plateau was reached and the amount of sensitization remained essentially constant. In this plateau region the reduction in survival achieved was similar for single doses and 5 Gy fraction but was less for 3 Gy fractions, indicating that sensitization was smaller for the smaller dose fractions. For the 4 x 5 Gy fractionation schedule the plateau level of survival was lowest for MISO, DMM and SR 2508, slightly higher for SR 2555 and much higher for MET. For the 3 Gy fractions SR 2508 appeared slightly less effective than MISO and DMM.

  7. O2 -sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models.

    PubMed

    Beeman, Scott C; Shui, Ying-Bo; Perez-Torres, Carlos J; Engelbach, John A; Ackerman, Joseph J H; Garbow, Joel R

    2016-06-01

    The goal of this study was to quantify the relationship between the (1) H longitudinal relaxation rate constant, R1 , and oxygen (O2 ) concentration (relaxivity, r1 ) in tissue and to quantify O2 -driven changes in R1 (ΔR1 ) during a breathing gas challenge in normal brain, radiation-induced lesions, and tumor lesions. R1 data were collected in control-state mice (n = 4) during three different breathing gas (and thus tissue O2 ) conditions. In parallel experiments, pO2 was measured in the thalamus of control-state mice (n = 4) under the same breathing gas conditions using an O2 -sensitive microprobe. The relaxivity of tissue O2 was calculated using the R1 and pO2 data. R1 data were collected in control-state (n = 4) mice, a glioma model (n = 7), and a radiation necrosis model (n = 6) during two breathing gas (thus tissue O2 ) conditions. R1 and ΔR1 were calculated for each cohort. O2 r1 in the brain was 9 × 10(-4)  ± 3 × 10(-4) mm Hg(-1) · s(-1) at 4.7T. R1 and ΔR1 measurements distinguished radiation necrosis from tumor (P< 0.03 and P< 0.01, respectively). The relaxivity of O2 in the brain is determined. R1 and ΔR1 measurements differentiate tumor lesions from radiation necrosis lesions in the mouse models. These pathologies are difficult to distinguish by traditional imaging techniques; O2 -driven changes in R1 holds promise in this regard. Magn Reson Med 75:2442-2447, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors

    PubMed Central

    Jacob, Allison P.; Dougall, William C.; Ittmann, Michael M.; Lydon, John P.

    2015-01-01

    Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer. PMID:26061636

  9. Tumor necrosis factor-alpha antagonism by the murine tumor necrosis factor-alpha receptor 2-Fc fusion protein exacerbates histoplasmosis in mice.

    PubMed

    Deepe, George S

    2007-06-01

    Treatment of some inflammatory conditions with tumor necrosis factor-alpha (TNF-alpha) antagonists is efficacious, but such treatments are associated with infections with intracellular pathogens, including Histoplasma capsulatum. We explored protective immunity to H. capsulatum in mice given a fusion protein consisting of TNF-alpha receptor 2 (TNFR2) bound to the Fc portion of mouse IgG1. Intraperitoneal administration of this inhibitor exacerbated primary or secondary pulmonary infection at dosages ranging from 1 to 5 mg/kg. All mice with primary infection given the inhibitor succumbed to infection within 10-21 days of treatment. In secondary histoplasmosis, mice receiving 1, but not 5, mg/kg survived treatment. Fungal burden was increased even if treatment with the inhibitor was initiated after the onset of infection. The inflammatory response of the lungs of mice given the inhibitor did not differ from that of mice given control vehicle. Susceptibility was not associated with major alterations in cytokines known to protect or exacerbate infection. However, expression of nitric oxide synthase 2 (NOS2) was depressed early in primary infection. These results demonstrate that antagonism of endogenous TNF-alpha by this fusion protein modulates susceptibility. Impaired immunity is not a result of altered cytokine responses or changes in the inflammation and may not be demonstrable in other murine strains.

  10. Paricalcitol, a Vitamin D Receptor Activator, Inhibits Tumor Formation in a Murine Model of Uterine Fibroids

    PubMed Central

    Halder, Sunil K.; Sharan, Chakradhari; Al-Hendy, Omar

    2014-01-01

    We examined the antitumor and therapeutic potentials of paricalcitol, an analog of 1,25-dihydroxyvitamin D3 with lower calcemic activity, against uterine fibroids using in vitro and in vivo evaluations in appropriate uterine fibroid cells and animal models. We found that paricalcitol has potential to reduce the proliferation of the immortalized human uterine fibroid cells. For the in vivo study, we generated subcutaneous tumors by injecting the Eker rat-derived uterine leiomyoma cell line (ELT-3) rat uterine fibroid-derived cell line in athymic nude mice supplemented with estrogen pellets. These mice were administered with vehicle versus paricalcitol (300 ng/kg/d) or 1,25-dihydroxyvitamin D3 (500 ng/kg/d) for 4 consecutive weeks, and the data were analyzed. We found that while both paricalcitol and 1,25-dihydroxyvitamin D3 significantly reduced fibroid tumor size, the shrinkage was slightly higher in the paricalcitol-treated group. Together, our results suggest that paricalcitol may be a potential candidate for effective, safe, and noninvasive medical treatment option for uterine fibroids. PMID:24925855

  11. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma

    PubMed Central

    Binder Gallimidi, Adi; Nussbaum, Gabriel; Hermano, Esther; Weizman, Barak; Meirovitz, Amichay; Vlodavsky, Israel; Götte, Martin; Elkin, Michael

    2017-01-01

    Syndecan-1 (Sdc1) is an important member of the cell surface heparan sulfate proteoglycan family, highly expressed by epithelial cells in adult organisms. Sdc1 is involved in the regulation of cell migration, cell-cell and cell-matrix interactions, growth-factor, chemokine and integrin activity, and implicated in inflammatory responses and tumorigenesis. Gastrointestinal tract represents an important anatomic site where loss of Sdc1 expression was reported both in inflammation and malignancy. However, the biological significance of Sdc1 in chronic colitis-associated tumorigenesis has not been elucidated. To the best of our knowledge, this study is the first to test the effects of Sdc1 loss on colorectal tumor development in inflammation-driven colon tumorigenesis. Utilizing a mouse model of colitis-related colon carcinoma induced by the carcinogen azoxymethane (AOM), followed by the inflammatory agent dextran sodium sulfate (DSS), we found that Sdc1 deficiency results in increased susceptibility to colitis-associated tumorigenesis. Importantly, colitis-associated tumors developed in Sdc1-defficient mice were characterized by increased local production of IL-6, activation of STAT3, as well as induction of several STAT3 target genes that act as important effectors of colonic tumorigenesis. Altogether, our results highlight a previously unknown effect of Sdc1 loss in progression of inflammation-associated cancer and suggest that decreased levels of Sdc1 may serve as an indicator of colon carcinoma progression in the setting of chronic inflammation. PMID:28350804

  12. Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model.

    PubMed Central

    Blanchard, D K; Friedman, H; Stewart, W E; Klein, T W; Djeu, J Y

    1988-01-01

    Legionella pneumophila has been shown to induce gamma interferon (IFN-gamma) both in vitro and in vivo during experimental infections of mice. With complement-mediated serologic depletion of murine splenocytes, the cellular sources of IFN-gamma following in vitro stimulation with L. pneumophila antigens were Thy-1.2+, Lyt-2-, L3T4-, and asialo-GM1+, which is consistent with the natural killer (NK) cell phenotype. Additionally, Percoll density discontinuous centrifugation demonstrated that maximal production of IFN coincided with high NK activity in fractions which were enriched for large granular lymphocytes. Furthermore, 18- to 24-h incubation of splenocytes with L. pneumophila whole-cell vaccine resulted in augmented NK cytotoxic activity against YAC-1 tumor target cells in a 51Cr release assay. The addition of macrophages to purified large granular lymphocyte populations augmented both IFN-gamma production and NK activity, suggesting that antigen is required for optimal responses. In an experimental infection model using an intratracheal inoculation route, NK activity was enhanced in the spleen, peripheral blood, and lung cells of infected mice, with maximal stimulation in the lung leukocytes at the site of infection. The results of the present study indicate that NK cells respond in vivo and in vitro to stimulation by L. pneumophila by producing IFN-gamma and by increased cytolytic activity. PMID:3128479

  13. Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha.

    PubMed

    Theys, J; Nuyts, S; Landuyt, W; Van Mellaert, L; Dillen, C; Böhringer, M; Dürre, P; Lambin, P; Anné, J

    1999-10-01

    Recombinant plasmids were constructed to secrete mouse tumor necrosis factor alpha (mTNF-alpha) from Clostridium acetobutylicum. The shuttle plasmids contained the clostridial endo-beta1, 4-glucanase (eglA) promoter and signal sequence that was fused in frame to the mTNF-alpha cDNA. The construction was first tested in Escherichia coli and then introduced in C. acetobutylicum DSM792 by electroporation. Controls confirmed the presence and stability of the recombinant plasmids in this organism. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an in vitro cytotoxic assay were used to monitor expression and secretion of mTNF-alpha during growth. Significant levels of biologically active mTNF-alpha were measured in both lysates and supernatants. The present report deals with investigations on the elaboration of a gene transfer system for cancer treatment using anaerobic bacteria.

  14. The chemosensitizing and cytotoxic effects of RSU 1164 and RSU 1165 in a murine tumor model.

    PubMed

    Siemann, D W

    1989-04-01

    RSU 1069, the lead compound in a series of nitroimidazoles containing an alkylating aziridine function, has been shown to be a potent radiosensitizer and chemopotentiator both in vitro and in vivo. However, this agent also demonstrates significant in situ toxicity. Recently it has been shown that less toxic analogues of RSU 1069 can be produced by the introduction of alkyl substituents to moderate the reactivity of the aziridine function. The present investigations were undertaken to evaluate the in vivo cytotoxicity and chemosensitizing efficacy of two such analogues, RSU 1164 and RSU 1165. All experiments were performed with KHT sarcomas grown intra-muscularly. In the cytotoxicity studies, a range of sensitizer doses was utilized whereas in the chemopotentiation investigations a fixed sensitizer exposure was combined simultaneously with a range of doses of the nitrosourea CCNU. In both studies, tumor cell survival was determined 22-24 hr after treatment using a soft agar clonogenic assay. Normal tissue toxicity in the chemopotentiation studies was assessed by bone marrow CFU-S assay. Both analogues were found to be significantly less cytotoxic to KHT sarcoma cells than RSU 1169 (a factor of 4-6 in dose at 50% cell survival). Combining a 1.0 to 2.0 mmol/kg dose of RSU 1164 or RSU 1165 with a range of doses of CCNU increased tumor cell killing by a factor of 1.5-1.6 but did not enhance bone marrow stem cell toxicity. The addition of either sensitizer to CCNU treatment therefore led to a significant therapeutic benefit.

  15. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    PubMed Central

    Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723

  16. Estrogen decreases chemokine levels in murine mammary tissue: implications for the regulatory role of MIP-1 alpha and MCP-1/JE in mammary tumor formation.

    PubMed

    Fanti, Peter; Nazareth, Michael; Bucelli, Robert; Mineo, Michael; Gibbs, Kathleen; Kumin, Michael; Grzybek, Kevin; Hoeltke, Janice; Raiber, Lisa; Poppenberg, Kristin; Janis, Kelly; Schwach, Catherine; Aronica, Susan M

    2003-11-01

    Estrogen contributes to the development of breast cancer through mechanisms that are not completely understood. Estrogen influences the function of immune effector cells, primarily through alterations in cytokine expression. Chemokines are proinflammatory cytokines that attract various immune cells to the site of tissue injury or inflammation, and activate many cell types, including T lymphocytes and monocytes. As an initial step toward ultimately determining whether regulation of chemokine expression and/or biological activity by estrogen could potentially be a contributing factor to the development and progression of mammary tumors, we evaluated the effect of estrogen on the expression of specific chemokines in murine mammary tissue. We also evaluated whether exposure of female mice to various chemokines could alter the growth of mammary tumors in the presence of estrogen. We report here that estrogen significantly decreases levels of the chemokines MIP-1alpha and MCP-1/JE in murine mammary tissue. Co-treatment with 4-hydroxytamoxifen partially reverses the suppressive effect of estrogen on MIP-1alpha levels. Estrogen increases the growth of CCL- 51 cell-based tumors in the mammary glands of female mice. Co-treatment with the chemokine MIP-1alpha or MCP- 1/JE substantially decreases the ability of estrogen to stimulate the formation of CCL-51 cell-based tumors. Our results show that estrogen might influence the bioactivity of specific chemokines through alteration of chemokine expression in mammary tissue, and further suggest that decreases in murine chemokines evoked by estrogen exposure could contribute to the promotion of mammary tumor growth.

  17. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors.

    PubMed

    Castillero-Trejo, Yeny; Eliazer, Susan; Xiang, Lilin; Richardson, James A; Ilaria, Robert L

    2005-10-01

    Ewing sarcoma is the second most common malignant pediatric bone tumor. Over 80% of Ewing sarcoma contain the oncogene EWS/FLI-1, which encodes the EWS/FLI-1 oncoprotein, a hybrid transcription factor comprised of NH2-terminal sequences from the RNA-binding protein EWS and the DNA-binding and COOH-terminal regions of the Ets transcription factor FLI-1. Although numerous genes are dysregulated by EWS/FLI-1, advances in Ewing sarcoma cancer biology have been hindered by the lack of an animal model because of EWS/FLI-1-mediated cytotoxicity. In this study, we have developed conditions for the isolation and propagation of murine primary bone-derived cells (mPBDC) that stably express EWS/FLI-1. Early-passage EWS/FLI-1 mPBDCs were immortalized in culture but inefficient at tumor induction, whereas later-passage cells formed sarcomatous tumors in immunocompetent syngeneic mice. Murine EWS/FLI-1 tumors contained morphologically primitive cells that lacked definitive lineage markers. Molecular characterization of murine EWS/FLI-1 tumors revealed that some but not all had acquired a novel, clonal in-frame p53 mutation associated with a constitutive loss of p21 expression. Despite indications that secondary events facilitated EWS/FLI-1 mPBDC tumorigenesis, cells remained highly dependent on EWS/FLI-1 for efficient transformation in clonogenic assays. This Ewing sarcoma animal model will be a useful tool for dissecting the molecular pathogenesis of Ewing sarcoma and provides rationale for the broader use of organ-specific progenitor cell populations for the study of human sarcoma.

  18. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy

    PubMed Central

    MIKYŠKOVÁ, ROMANA; ŠTĚPÁNEK, IVAN; INDROVÁ, MARIE; BIEBLOVÁ, JANA; ŠÍMOVÁ, JANA; TRUXOVÁ, IVA; MOSEROVÁ, IRENA; FUČÍKOVÁ, JITKA; BARTŮŇKOVÁ, JIŘINA; ŠPÍŠEK, RADEK; REINIŠ, MILAN

    2016-01-01

    High hydrostatic pressure (HHP) has been shown to induce immunogenic cell death of cancer cells, facilitating their uptake by dendritic cells (DC) and subsequent presentation of tumor antigens. In the present study, we demonstrated immunogenicity of the HHP-treated tumor cells in mice. HHP was able to induce immunogenic cell death of both TC-1 and TRAMP-C2 tumor cells, representing murine models for human papilloma virus-associated tumors and prostate cancer, respectively. HHP-treated cells induced stronger immune responses in mice immunized with these tumor cells, documented by higher spleen cell cytotoxicity and increased IFNγ production as compared to irradiated tumor cells, accompanied by suppression of tumor growth in vivo in the case of TC-1 tumors, but not TRAMP-C2 tumors. Furthermore, HHP-treated cells were used for DC-based vaccine antigen pulsing. DC co-cultured with HHP-treated tumor cells and matured by a TLR 9 agonist exhibited higher cell surface expression of maturation markers and production of IL-12 and other cytokines, as compared to the DC pulsed with irradiated tumor cells. Immunization with DC cell-based vaccines pulsed with HHP-treated tumor cells induced high immune responses, detected by increased spleen cell cytotoxicity and elevated IFNγ production. The DC-based vaccine pulsed with HHP-treated tumor cells combined with docetaxel chemotherapy significantly inhibited growth of both TC-1 and TRAMP-C2 tumors. Our results indicate that DC-based vaccines pulsed with HHP-inactivated tumor cells can be a suitable tool for chemoimmunotherapy, particularly with regard to the findings that poorly immunogenic TRAMP-C2 tumors were susceptible to this treatment modality. PMID:26718011

  19. Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence

    PubMed Central

    Zhang, Yin; Hong, Hao; Nayak, Tapas R.; Valdovinos, Hector F.; Myklejord, Duane V.; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    The goal of this study was to develop a molecular imaging agent that can allow for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of CD105 expression in metastatic breast cancer. TRC105, a chimeric anti-CD105 monoclonal antibody, was labeled with both a NIRF dye (i.e., IRDye 800CW) and 64Cu to yield 64Cu-NOTA-TRC105-800CW. Flow cytometry analysis revealed no difference in CD105 binding affinity/specificity between TRC105 and NOTA-TRC105-800CW. Serial bioluminescence imaging (BLI) was carried out to non-invasively monitor the lung tumor burden in BALB/c mice, after intravenous injection of firefly luciferase-transfected 4T1 (i.e., fLuc-4T1) murine breast cancer cells to establish the experimental lung metastasis model. Serial PET imaging revealed that fLuc-4T1 lung tumor uptake of 64Cu-NOTA-TRC105-800CW was 11.9 ± 1.2, 13.9 ± 3.9, and 13.4 ± 2.1 %ID/g at 4, 24, and 48 h post-injection respectively (n = 3). Biodistribution studies, blocking fLuc-4T1 lung tumor uptake with excess TRC105, control experiments with 64Cu-NOTA-cetuximab-800CW (which served as an isotype-matched control), ex vivo BLI/PET/NIRF imaging, autoradiography, and histology all confirmed CD105 specificity of 64Cu-NOTA-TRC105-800CW. Successful PET/NIRF imaging of tumor angiogenesis (i.e., CD105 expression) in the breast cancer experimental lung metastasis model warrants further investigation and clinical translation of dual-labeled TRC105-based agents, which can potentially enable early detection of small metastases and image-guided surgery for tumor removal. PMID:23471463

  20. Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma.

    PubMed

    Chang, Hui-Hsin; Hsieh, Kuang-Yang; Yeh, Chen-Hao; Tu, Yuan-Ping; Sheu, Fuu

    2010-02-01

    FVE is a documented immunomodulatory protein purified from Enoki mushroom (Flammulina velutipes) and known as an activator for human T lymphocytes. This present study was aimed to investigate the anti-tumor effect and the related mechanisms of oral administration of FVE using a murine hepatoma model. Oral administration of FVE (10mg/kg) significantly increased the life span and inhibited the tumor size of BNL 1MEA.7R.1 (BNL) hepatoma-bearing mice. Tumor-bearing mice receiving oral FVE treatment had the highest tumoricidal capacity of peritoneal macrophages and tumor-specific splenocytes against BNL hepatoma cells. In addition, in vivo neutralization of interferon-gamma (IFN-gamma) demonstrated a significant decrease of FVE-induced anti-tumor effect (P<0.05). The expression levels of major histocompatibility complex (MHC) class I and II molecules and costimulatory molecule CD80 on peripheral blood mononuclear cells obtained from the FVE-treated mice were upregulated as compared with those of the PBS-treated mice. Furthermore, immunohistochemical staining showed a strong inhibition of tumor growth and angiogenesis in hepatoma tissues after oral administration of FVE. Taken together, oral administration of FVE displayed anti-tumor activity through activating both innate and adaptive immunity of the host to prime a cytotoxic immune response and IFN-gamma played a key role in the anti-tumor efficacy of FVE. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy.

    PubMed

    Kuthala, Naresh; Vankayala, Raviraj; Li, Yi-Nan; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2017-08-01

    Glioblastoma multiforme (GBM) is a very common type of "incurable" malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented (10) B-enriched (96% (10) B enrichment) boron nanoparticle nanomedicine ((10) BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg (10) B g(-1) cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The (10) BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Eradication of tumor colonization and invasion by a B cell-specific immunotoxin in a murine model for human primary intraocular lymphoma.

    PubMed

    Li, Zhuqing; Mahesh, Sankaranarayana P; Shen, De Fen; Liu, Baoying; Siu, Willie O; Hwang, Frank S; Wang, Qing-Chen; Chan, Chi-Chao; Pastan, Ira; Nussenblatt, Robert B

    2006-11-01

    Human primary intraocular lymphoma (PIOL) is predominantly a B cell-originated malignant disease with no appropriate animal models and effective therapies available. This study aimed to establish a mouse model to closely mimic human B-cell PIOL and to test the therapeutic potential of a recently developed immunotoxin targeting human B-cell lymphomas. Human B-cell lymphoma cells were intravitreally injected into severe combined immunodeficient mice. The resemblance of this tumor model to human PIOL was examined by fundoscopy, histopathology, immunohistochemistry, and evaluated for molecular markers. The therapeutic effectiveness of immunotoxin HA22 was tested by injecting the drug intravitreally. Results showed that the murine model resembles human PIOL closely. Pathologic examination revealed that the tumor cells initially colonized on the retinal surface, followed by infiltrating through the retinal layers, expanding preferentially in the subretinal space, and eventually penetrating through the retinal pigment epithelium into the choroid. Several putative molecular markers for human PIOL were expressed in vivo in this model. Tumor metastasis into the central nervous system was also observed. A single intravitreal injection of immunotoxin HA22 after the establishment of the PIOL resulted in complete regression of the tumor. This is the first report of a murine model that closely mimics human B-cell PIOL. This model may be a valuable tool in understanding the molecular pathogenesis of human PIOL and for the evaluation of new therapeutic approaches. The results of B cell-specific immunotoxin therapy may have clinical implications in treating human PIOL.

  3. The role of tumor protein 53 mutations in common human cancers and targeting the murine double minute 2-p53 interaction for cancer therapy.

    PubMed

    Hamzehloie, Tayebeh; Mojarrad, Majid; Hasanzadeh Nazarabadi, Mohammad; Shekouhi, Sahar

    2012-03-01

    The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2) protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA) approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclindependent kinase 2 (cdk2) by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1).

  4. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    PubMed

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  5. Multiorgan chronic inflammatory hepatobiliary pancreatic murine model deficient in tumor necrosis factor receptors 1 and 2

    PubMed Central

    Oz, Helieh S

    2016-01-01

    AIM: To provoke persistent/chronic multiorgan inflammatory response and to contribute to stones formation followed by fibrosis in hepatobiliary and pancreatic tissues. METHODS: Tumor necrosis factor receptors 1 and 2 (TNFR1/R2) deficient mice reared in-house were given dibutyltin dichloride (DBTC) twice within 10 d by oral gavage delivery. Sham control animals received vehicle treatment and naïve animals remained untreated throughout the study. Animals were monitored daily for symptoms of pain and discomfort. The abdominal and hindpaw hypersensitivity were assessed with von Frey microfilaments. Exploratory behaviors were recorded at the baseline, after initiation of treatment, and before study termination. Histopathological changes were examined postmortem in tissues. Collagen accumulation and fibrosis were confirmed with Sirius Red staining. RESULTS: Animals lost weight after oral administration of DBTC and developed persistent inflammatory abdominal and hindpaw hypersensitivity compared to sham-treated controls (P < 0.0001). These pain related secondary mechanical hypersensitivity responses increased more than 2-fold in DBTC-treated animals. The drastically diminished rearing and grooming rates persisted after DBTC administration throughout the study. Gross as well as micropathology at one month confirmed that animals treated with DBTC developed chronic hepatobiliary injuries evidenced with activation of stellate cells, multifocal necrosis, fatty degeneration of hepatocytes, periportal infiltration of inflammatory cells, and prominent biliary ductal dilation. The severity of hepatitis was scored 3.7 ± 0.2 (severe) in DBTC-treated animals vs score 0 (normal) in sham-treated animals. Fibrotic thickening was extensive around portal ducts, in hepatic parenchyma as well as in lobular pancreatic structures and confirmed with Sirius Red histopathology. In addition, pancreatic microarchitecture was presented with distortion of islets, and parenchyma, infiltration of

  6. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    PubMed Central

    2011-01-01

    Background Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd2 [S(-)C2, N-dmpa]2 (μ-dppe)Cl2} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. Methods B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Results Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. Conclusions The

  7. The antibody-based delivery of interleukin-12 to the tumor neovasculature eradicates murine models of cancer in combination with paclitaxel.

    PubMed

    Pasche, Nadine; Wulhfard, Sarah; Pretto, Francesca; Carugati, Elisa; Neri, Dario

    2012-08-01

    Interleukin-12 (IL12) is a potent proinflammatory cytokine with antitumor activity. Its heterodimeric nature makes it compatible with a large variety of different immunocytokine formats. Here we report the design, production, and characterization of a novel immunocytokine, based on the fusion of the F8 antibody (specific to the alternatively spliced EDA domain of fibronectin, a marker of tumor neovasculature) with IL12 (termed IL12-F8-F8). We developed a novel immunocytokine based on the sequential fusion of interleukin-12 as a single polypeptide with two F8 antibodies in single-chain Fv (scFv) format. The fusion protein was characterized in vitro, and its targeting performance was assessed in vivo. The immunocytokine antitumor activity was studied as monotherapy as well as in combination therapies in three different murine tumor models. Moreover, depletion experiments and tumor analysis revealed a dominant role of natural killer cells for the mechanism of action. IL12-F8-F8 can be produced in mammalian cells, yielding a product of good pharmaceutical quality, capable of selective localization on the tumor neovasculature in vivo, as judged by quantitative biodistribution analysis with radioiodinated protein preparations. The protein potently inhibited tumor growth in three different immunocompetent syngeneic models of cancer. The treatment was generally well tolerated. Moreover, the IL12-F8-F8 fusion protein could be produced both with murine IL12 (mIL12) and with human IL12 (hIL12). The potent antitumor activity of mIL12-F8-F8, studied alone or in combination with paclitaxel in different tumor models, paves the way to the clinical development of the fully human immunocytokine.

  8. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis.

    PubMed

    Jackson, D P; Percy, D H; Morris, V L

    1984-09-01

    When Wistar Furth rats are inoculated intracerebrally with the murine hepatitis virus JHM they often develop a demyelinating disease with resulting hind leg paralysis. Using an RNA transfer procedure and hybridization kinetic analysis, the virus-specific RNA in these rats was characterized. The pattern of JHM-specific RNA varied with individual infections of Wistar Furth rats. However, two species of JHM-specific RNA, the nucleocapsid and a 2.1-2.4 X 10(6)-Da RNA species were generally present. A general decrease in JHM-specific RNA in brains and spinal cord samples taken later than 20 days postinoculation was observed; however, JHM-specific RNA persisted in the spinal cord longer than in the brain of these rats.

  9. Experimental murine cryptococcal infection results in contamination of bedding with Cryptococcus neoformans.

    PubMed

    Nosanchuk, Joshua D; Mednick, Aron; Shi, Li; Casadevall, Arturo

    2003-07-01

    Cryptococcus neoformans is a fungal pathogen that survives in diverse environments. To determine whether cages of mice infected with C. neoformans posed an infection risk to animal caregivers, we investigated whether the fungus could be isolated from the bedding or stool of mice infected by intratracheal (i.t.), intravenous (i.v.), or intraperitoneal (i.p.) routes. The bedding of mice infected i.t. was contaminated with C. neoformans. In contrast, no contamination of bedding with C. neoformans was detected in cages of mice infected i.v. or i.p. C. neoformans was not isolated from murine feces. The C. neoformans strain recovered from bedding material was indistinguishable from the infecting strain by biochemical and molecular techniques. This result suggests that precautions may be warranted when disposing bedding from cages that housed mice with pulmonary C. neoformans infection.

  10. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.

    PubMed

    Petryk, Alicia A; Stigliano, Robert V; Giustini, Andrew J; Gottesman, Rachel E; Trembly, B Stuart; Kaufman, Peter A; Hoopes, P Jack

    2011-02-22

    the use of the cumulative equivalent minutes (CEM) algorithm. A CEM 60 was selected as the thermal dose for all experimental groups. 1) Preliminary mNP hyperthermia/cisplatinum results have shown a tumor growth delay greater than either modality alone at comparable doses. 2) mNP hyperthermia delivered 10 minutes post mNP injection and microwave hyperthermia, with the same thermal dose, demonstrate similar treatment efficacy.

  11. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model

    PubMed Central

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A.; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O.

    2017-01-01

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma. PMID:28620146

  12. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    PubMed

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  13. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    PubMed

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation

  14. Microvascular architecture of experimental colon tumors in the rat.

    PubMed

    Skinner, S A; Tutton, P J; O'Brien, P E

    1990-04-15

    Tumor cell proliferation is dependent upon concurrent growth of a supporting vasculature. This study aims to characterize the structural features of the microvasculature within a primary tumor model. There were 22 colon tumors induced in 16 rats by repeated administration of dimethylhydrazine. A cast of the microvessels was prepared by intraarterial administration of acrylic resin (Mercox). After corrosion of the tissue, the cast was examined by scanning electron microscopy. Tumors 2.6 to 12.0 mm in diameter were examined. Within polypoid carcinomas up to 5.7 mm in diameter, there were two distinct vascular zones, a luminal vascular zone continuous with the vasculature of normal mucosa and a central zone continuous with the normal submucosa and muscularis propria vessels. Within both vascular zones, the organization of microvessels had the same general pattern as in normal mucosa. However, in tumors with diameters greater than 5.7 mm, the vasculature was seen to be disorganized and of a greater density than normal. In the smallest tumors, few morphological changes were seen in the individual microvessels when compared to normal. However, with tumor growth, there was elongation and increased diameters of the microvessels within the tumor. Microvessels within the luminal zone of the tumors which could definitely be traced to veins had diameters of 50 to 100 microns (compared to 12 to 30 microns for normal venules). Individual microvessels varied in diameter along their course forming saccular dilations in places. Networks of frequently anastomosing microvessels were formed. Extravasation of resin occurred from some microvessels. Elongated vessels of uniform diameter which travel distances up to 2 mm without branching were seen and were probably arterioles. These appearances indicate that there are two distinct stages of development of the vasculature within primary tumors, an early phase where the tumor is supplied by the preexisting host microvessels, followed by a

  15. The utility of fecal corticosterone metabolites and animal welfare assessment protocols as predictive parameters of tumor development and animal welfare in a murine xenograft model.

    PubMed

    Jacobsen, Kirsten Rosenmaj; Jørgensen, Pernille; Pipper, Christian Bressen; Steffensen, Astrid Margrethe; Hau, Jann; Abelson, Klas S P

    2013-01-01

    The aim of the present study was to evaluate the utility of various non-invasive parameters for the prediction of tumor development and animal welfare in a murine xenograft model in male C.B-17 SCID (C.B-Igh-1(b)/IcrTac-Prkdc(scid)) mice. The study showed that body weight, food and water consumption, and an animal welfare assessment (AWA) protocol revealed marked differences between control and cancer lines as the size of the tumor increased. However, only the AWA protocol was effective in predicting the tumor size and the level of fecal corticosterone metabolites (FCM). FCM levels were, however, negatively-correlated to the AWA score, and the tumor size, both when evaluated on a given day and when accumulated over the entire period. In conclusion, the present study demonstrated that body weight and food and water consumption were negatively-affected as tumor developed but only the animal welfare protocol could be used to predict tumor size.

  16. Tumor necrosis factor plays a protective role in experimental murine cutaneous leishmaniasis

    PubMed Central

    1989-01-01

    The ability of mice to resist infection with L. major correlated directly with the capacity of their LNC to produce TNF in response to in vitro parasite challenge. Blocking TNF in vivo by passively administering anti-TNF antibodies exacerbated the course of L. major infection, resulting in substantially larger cutaneous lesions and elevated numbers of parasites within those lesions. In addition, treatment of infected mice with exogenous rHuTNF afforded host protection as evidenced by smaller lesion size and decreased parasite counts. Taken together, these results suggest a central role for TNF in resistance to L. major. PMID:2584936

  17. Combination bacteriolytic therapy for the treatment of experimental tumors

    PubMed Central

    Dang, Long H.; Bettegowda, Chetan; Huso, David L.; Kinzler, Kenneth W.; Vogelstein, Bert

    2001-01-01

    Current chemotherapeutic approaches for cancer are in part limited by the inability of drugs to destroy neoplastic cells within poorly vascularized compartments of tumors. We have here systematically assessed anaerobic bacteria for their capacity to grow expansively within avascular compartments of transplanted tumors. Among 26 different strains tested, one (Clostridium novyi) appeared particularly promising. We created a strain of C. novyi devoid of its lethal toxin (C. novyi-NT) and showed that intravenously injected C. novyi-NT spores germinated within the avascular regions of tumors in mice and destroyed surrounding viable tumor cells. When C. novyi-NT spores were administered together with conventional chemotherapeutic drugs, extensive hemorrhagic necrosis of tumors often developed within 24 h, resulting in significant and prolonged antitumor effects. This strategy, called combination bacteriolytic therapy (COBALT), has the potential to add a new dimension to the treatment of cancer. PMID:11724950

  18. Stat3 is a candidate epigenetic biomarker of perinatal Bisphenol A exposure associated with murine hepatic tumors with implications for human health

    PubMed Central

    Weinhouse, Caren; Bergin, Ingrid L.; Harris, Craig; Dolinoy, Dana C.

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that has been implicated as a potential carcinogen and epigenotoxicant. We have previously reported dose-dependent incidence of hepatic tumors in 10-month-old isogenic mice perinatally exposed to BPA. Here, we evaluated DNA methylation at 3 candidate genes (Esr1, Il-6st, and Stat3) in liver tissue of BPA-exposed mice euthanized at 2 time points: post-natal day 22 (PND22; n = 147) or 10-months of age (n = 78, including n = 18 with hepatic tumors). Additionally, DNA methylation profiles were analyzed at human homologs of murine candidate genes in human fetal liver samples (n = 50) with known liver tissue BPA levels. Candidate genes were chosen based on reported expression changes in both rodent and human hepatocellular carcinoma (HCC). Regions for bisulfite sequencing were chosen by mining whole genome next generation sequencing methylation datasets of both mice and human liver samples with known perinatal BPA exposures. One of 3 candidate genes, Stat3, displayed dose-dependent DNA methylation changes in both 10-month mice with liver tumors as compared to those without liver tumors and 3-week sibling mice from the same exposure study, implicating Stat3 as a potential epigenetic biomarker of both early life BPA exposure and adult disease in mice. DNA methylation profiles within STAT3 varied with liver tissue BPA level in human fetal liver samples as well, suggesting STAT3 may be a translationally relevant candidate biomarker. These data implicate Stat3 as a potential early life biomarker of adult murine liver tumor risk following early BPA exposure with early evidence of relevance to human health. PMID:26542749

  19. Stat3 is a candidate epigenetic biomarker of perinatal Bisphenol A exposure associated with murine hepatic tumors with implications for human health.

    PubMed

    Weinhouse, Caren; Bergin, Ingrid L; Harris, Craig; Dolinoy, Dana C

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that has been implicated as a potential carcinogen and epigenotoxicant. We have previously reported dose-dependent incidence of hepatic tumors in 10-month-old isogenic mice perinatally exposed to BPA. Here, we evaluated DNA methylation at 3 candidate genes (Esr1, Il-6st, and Stat3) in liver tissue of BPA-exposed mice euthanized at 2 time points: post-natal day 22 (PND22; n = 147) or 10-months of age (n = 78, including n = 18 with hepatic tumors). Additionally, DNA methylation profiles were analyzed at human homologs of murine candidate genes in human fetal liver samples (n = 50) with known liver tissue BPA levels. Candidate genes were chosen based on reported expression changes in both rodent and human hepatocellular carcinoma (HCC). Regions for bisulfite sequencing were chosen by mining whole genome next generation sequencing methylation datasets of both mice and human liver samples with known perinatal BPA exposures. One of 3 candidate genes, Stat3, displayed dose-dependent DNA methylation changes in both 10-month mice with liver tumors as compared to those without liver tumors and 3-week sibling mice from the same exposure study, implicating Stat3 as a potential epigenetic biomarker of both early life BPA exposure and adult disease in mice. DNA methylation profiles within STAT3 varied with liver tissue BPA level in human fetal liver samples as well, suggesting STAT3 may be a translationally relevant candidate biomarker. These data implicate Stat3 as a potential early life biomarker of adult murine liver tumor risk following early BPA exposure with early evidence of relevance to human health.

  20. Hydrodynamic properties of the gonadotropin receptor from a murine Leydig tumor cell line are altered by desensitization

    SciTech Connect

    Rebois, R.V.; Bradley, R.M.; Titlow, C.C.

    1987-10-06

    The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (G/sub s/). The binding of human choriogonadotropin (hGC) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H/sub 2/O and D/sub 2/O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (v/sub c/), sedimentation coefficient (s/sub 20,w/), and molecular weight (M/sub r/) of the detergent-solubilized hormone-receptor complex (hCG-GR). (/sup 125/I)hCG was bound to MLTC-1 cells under conditions that allow (37/sup 0/C) or prevent (0/sup 0/C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a M/sub r/ of 213,000, whereas desensitized hCG-GR had a M/sub r/ of 158,000. Deglycosylated hCG (DG-HCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. (/sup 125/I)DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or G/sub s/ with GR in Triton X-100 solubilized preparations. When hCG was cross-linked to GR and solubilized with sodium dodecyl sulfate (SDS), the M/sub r/ was found to be 116,000, which was similar to that determined by SDS-polyacrylamide gel electrophoresis and less than that of the Triton X-100 solubilized control hCG-GR.

  1. An in vivo transmission electron microscopy study of injected dextran-coated iron-oxide nanoparticle location in murine breast adenocarcinoma tumors versus time

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Ivkov, R.; Hoopes, P. J.

    2009-02-01

    Investigators are just beginning to use hyperthermia generated by alternating magnetic field (AMF) activated iron oxide nanoparticles (IONPs) as a promising avenue for targeted cancer therapy. An important step in understanding cell death mechanisms in nanoparticle AMF treatments is to determine the location of these nanoparticles in relation to cellular organelles. In this paper, we report on transmission electron microscopy (TEM) studies designed to define the position of 100 nm diameter dextran-coated iron oxide nanoparticles in murine breast adenocarcinoma (MTG-B) and human colon adenocarcinoma tumors propagated in mice. METHODS: Iron oxide nanoparticles (5 mg/g tumor) were injected into intradermal MTG-B flank tumors on female C3H/HEJ mice and into HT-29 flank tumors on female Nu/Nu mice. The IONPs were allowed to incubate for various times. The tumors were then excised and examined using TEM. RESULTS: In the MTG-B tumors, most of the nanoparticles reside in aggregates adjacent to cell plasma membranes prior to three hours post-injection. By four hours post injection, however, most of the nanoparticles have been endocytosed by the cells. At time periods after four hours post injection, few visible extracellular nanoparticles remain and intracellular nanoparticles have densely aggregated within endosomes. In the HT-29 tumor, however, endocytosis of nanoparticles has not progressed to the same extent as in the MTG-B tumors by four hours post injection. CONCLUSIONS: The time at which most of the nanoparticles transition from being extracellular to intracellular in the MTG-B system appears to be between two and four hours. The HT-29 cells, however, display different and delayed uptake pattern. These data show that there are IONP uptake differences between tumor types (cell lines) and that, based on known uptake kinetics, nanoparticle hyperthermia can be employed as an extracellular or intracellular modality. These data will be important in guiding future

  2. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  3. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2016-11-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αV β3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin αV β3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin αV β3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin αV β3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin αV β3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Study of cytokines involved in the prevention of a murine experimental breast cancer by kefir.

    PubMed

    de Moreno de LeBlanc, A; Matar, C; Farnworth, E; Perdigon, G

    2006-04-01

    Previous studies have shown that compounds released during milk fermentation by Lactobacillus helveticus are implicated in the antitumour effect of this product. Here the effects of the consumption, during 2 or 7 days, of kefir or kefir cell-free fraction (KF) on the systemic and local immune responses in mammary glands and tumours using a murine hormone-dependent breast cancer model were studied. In the tumour control group, mice did not receive these products. At the end of the feeding period, mice were injected subcutaneously with tumour cells in the mammary gland. Four days post-injection, they received kefir or KF on a cyclical basis. Rate of tumour development, cytokines in serum; mammary gland tissue, and tumour isolated cells were monitored. Two-day cyclical administration of both products delayed tumour growth. Both kefir and KF increased IL-10 in serum and decreased IL-6(+) cells (cytokine involved in oestrogen synthesis) in mammary glands. Two-day cyclical administration of KF increased IL-10(+) cells in mammary glands and in tumours and decreased IL-6(+) cells in tumour. This study demonstrated the modulatory capacity of KF on the immune response in mammary glands and tumours and the importance of the administration period to obtain this effect.

  5. Pathogenesis of pipe-stem fibrosis of the liver (experimental observation on murine schistosomiasis).

    PubMed

    Andrade, Z A

    1987-01-01

    Mice infected with 30 cercariae of Schistosoma mansoni developed portal and septal fibrosis due to the massive and concentrated deposition of eggs in the periportal areas which occurred following the 16th week after infection. The lesion resembled pipe-stem fibrosis seen in human hepatosplenic schistosomiasis in the following characters: portal fibrosis interconnecting portal spaces as well as portal spaces and central canals; portal inflammation; periovular granulomas; vascular obstruction and telangiectasia. The liver parenchyma maintained its normal architecture. Vascular injection techniques with Indian ink and vinylite revealed that the portal system developed numerous dilated collateral venules coming from the large and medium-sized portal branches, about 10 weeks after schistosome infection. The lodging of schistosome eggs into these collaterals resulted in granulomatous inflammation and fibrosis along all the portal tracts, thus forming the pipe-stem lesion. Although not readily demonstrable grossly, the pipe-stem fibrosis of murine schistosomiasis has many similarities with the human lesion and can be considered to have the same basic pathogenesis.

  6. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model.

    PubMed

    Brito, Marcelly M S; Conceição-Silva, Fatima; Morgado, Fernanda N; Raibolt, Priscila S; Schubach, Armando; Schubach, Tania P; Schäffer, Guido M V; Borba, Cintia M

    2007-12-01

    The virulence of two strains of Sporothrix schenckii isolated from patients with lymphocutaneous or disseminated sporotrichosis were examined in BALB/c mice (Group 1 and 2, respectively). The mice were inoculated subcutaneously into the left hind footpad with 4 x 10(6) S. schenckii yeast cells in order to evaluate (i) the development of cutaneous lesions, (ii) signs of inactivity, (iii) weight loss, (iv) survival rates, (v) number of viable yeast cells in the lungs and spleen, (vi) splenic index, (vii) extent of organ lesions, and (viii) immunological responses. Comparison of the two groups showed more severe disease in Group 2 mice that developed significant weight and hair loss associated with inactivity and left hind footpad lesions that extended close to the testicular area. The histopathology and large number of viable microorganisms isolated from the spleen confirmed the higher invasive ability of this strain. Moreover, a decrease of an in vitro specific lymphoproliferative response and IFN-gamma production were observed over time in Group 2 mice. As a result, at the end of the experiment, the S. schenckii-antigen (Ss-Ag) response was considered negative with a stimulation index (SI) = 2. In contrast, Group 1 mice presented a positive response to Ss-Ag (SI = 14.1). These results confirm the existence of different virulence profiles in S. schenckii strains. In addition, the use of subcutaneous inoculation as a suitable route for verification of the pathogenicity of this fungus in the murine model was confirmed.

  7. Combined effects of treatment with trientine, a copper-chelating agent, and x-irradiation on tumor growth in transplantation model of a murine fibrosarcoma.

    PubMed

    Hayashi, Masanobu; Hirai, Ryou; Ishihara, Yuusuke; Horiguchi, Noboru; Endoh, Daiji; Okui, Toyo

    2007-10-01

    Combined effects of treatment with trientine, a copper-chelating agent, and X-irradiation on development of fibrosarcoma using a murine transplantation model in vivo and on cellular survival in vitro were examined. Copper contents in the tumors and serum of trientine-treated mice were significantly lower than those of untreated mice. The tumor volumes of mouse fibrosarcoma QRsp-11 cells increased more slowly in the trientine-treated and the X-irradiated mice than in the control mice from 10 to 24 days postinoculation. The extent of inhibition of tumor growth by X-irradiation at 3 Gy was similar to that obtained by treatment with trientine. A combination of trientine and X-irradiation at 3 Gy showed inhibitory effects on tumor growth similar to those obtained by X-irradiation at 6 Gy. The results showed that trientine and X-irradiation interacted additively in inhibition of tumor growth. When QRsp-11 cells and mouse and bovine endothelial cells were treated with trientine after X-irradiation, the surviving fractions of the cells with combined treatments were essentially consistent with the products of the surviving fractions of trientine-treated cells and those of X-irradiated cells. When the cells were pretreated with trientine and X-irradiated, the surviving fractions of the pretreated cells were lower than those of cells without treatment.

  8. Effect of preexisting anti-herpes immunity on the efficacy of herpes simplex viral therapy in a murine intraperitoneal tumor model.

    PubMed

    Lambright, E S; Kang, E H; Force, S; Lanuti, M; Caparrelli, D; Kaiser, L R; Albelda, S M; Molnar-Kimber, K L

    2000-10-01

    HSV-1716, a replicating nonneurovirulent herpes simplex virus type 1, has shown efficacy in treating multiple types of human tumors in immunodeficient mice. Since the majority of the human population has been previously exposed to herpes simplex virus, the efficacy of HSV-based oncolytic therapy was investigated in an immunocompetent animal tumor model. EJ-6-2-Bam-6a, a tumor cell line derived from h-ras-transformed murine fibroblast, exhibit a diffuse growth pattern in the peritoneal cavity of BALB/c mice and replicate HSV-1716 to titers observed in human tumors. An established intraperitoneal (ip) tumor model of EJ-6-2-Bam-6a in naive and HSV-immunized mice was used to evaluate the efficacy of single or multiple ip administrations of HSV-1716 (4 x 10(6) pfu/treatment) or of carrier cells, which are irradiated, ex vivo virally infected EJ-6-2-Bam-6a cells that can amplify the viral load in situ. All treated groups significantly prolonged survival versus media control with an approximately 40% long-term survival rate (cure) in the multiply treated, HSV-naive animals. Prior immunization of the mice with HSV did not significantly decrease the median survival of the single or multiply treated HSV-1716 or the carrier cell-treated groups. These studies support the development of replication-selective herpes virus mutants for use in localized intraperitoneal malignancies.

  9. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia.

    PubMed

    Zhou, Qing; Bucher, Christoph; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Munn, David H; Levine, Bruce L; Riddle, Megan; June, Carl H; Vallera, Daniel A; Weigel, Brenda J; Blazar, Bruce R

    2009-10-29

    Tumor-induced immune suppression can permit tumor cells to escape host immune resistance. To elucidate host factors contributing to the poor response of adoptively transferred tumor-reactive cytotoxic T lymphocytes (CTLs), we used a systemic model of murine acute myeloid leukemia (AML). AML progression resulted in a progressive regulatory T-cell (Treg) accumulation in disease sites. The adoptive transfer of in vitro-generated, potently lytic anti-AML-reactive CTLs failed to reduce disease burden or extend survival. Compared with non-AML-bearing hosts, transferred CTLs had reduced proliferation in AML sites of metastases. Treg depletion by a brief course of interleukin-2 diphtheria toxin (IL-2DT) transiently reduced AML disease burden but did not permit long-term survival. In contrast, IL-2DT prevented anti-AML CTL hypoproliferation, increased the number of transferred CTLs at AML disease sites, reduced AML tumor burden, and resulted in long-term survivors that sustained an anti-AML memory response. These data demonstrated that Tregs present at AML disease sites suppress adoptively transferred CTL proliferation, limiting their in vivo expansion, and Treg depletion before CTL transfer can result in therapeutic efficacy in settings of substantial pre-existing tumor burden in which antitumor reactive CTL infusion alone has proven ineffective.

  10. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia

    PubMed Central

    Zhou, Qing; Bucher, Christoph; Munger, Meghan E.; Highfill, Steven L.; Tolar, Jakub; Munn, David H.; Levine, Bruce L.; Riddle, Megan; June, Carl H.; Vallera, Daniel A.; Weigel, Brenda J.

    2009-01-01

    Tumor-induced immune suppression can permit tumor cells to escape host immune resistance. To elucidate host factors contributing to the poor response of adoptively transferred tumor-reactive cytotoxic T lymphocytes (CTLs), we used a systemic model of murine acute myeloid leukemia (AML). AML progression resulted in a progressive regulatory T-cell (Treg) accumulation in disease sites. The adoptive transfer of in vitro–generated, potently lytic anti–AML-reactive CTLs failed to reduce disease burden or extend survival. Compared with non–AML-bearing hosts, transferred CTLs had reduced proliferation in AML sites of metastases. Treg depletion by a brief course of interleukin-2 diphtheria toxin (IL-2DT) transiently reduced AML disease burden but did not permit long-term survival. In contrast, IL-2DT prevented anti-AML CTL hypoproliferation, increased the number of transferred CTLs at AML disease sites, reduced AML tumor burden, and resulted in long-term survivors that sustained an anti-AML memory response. These data demonstrated that Tregs present at AML disease sites suppress adoptively transferred CTL proliferation, limiting their in vivo expansion, and Treg depletion before CTL transfer can result in therapeutic efficacy in settings of substantial pre-existing tumor burden in which antitumor reactive CTL infusion alone has proven ineffective. PMID:19724059

  11. Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing αvβ3 receptors

    NASA Astrophysics Data System (ADS)

    Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio

    2016-03-01

    A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy

  12. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    PubMed Central

    Vincent, Tonia L.; Marenzana, Massimo

    2017-01-01

    Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010

  13. Gan-Lu-Yin Inhibits Proliferation and Migration of Murine WEHI-3 Leukemia Cells and Tumor Growth in BALB/C Allograft Tumor Model

    PubMed Central

    Liu, Fon-Chang; Pan, Chun-Hsu; Lai, Ming-Tsung; Chang, Shu-Jen; Chung, Jing-Gung; Wu, Chieh-Hsi

    2013-01-01

    The aim of this study was to explore the antitumor effect of Gan-Lu-Yin (GLY), a traditional Chinese herbal formula, on leukemia. Ethanolic extract of GLY was applied to evaluate its regulatory mechanisms in proliferation, migration, and differentiation of WEHI-3 leukemic cells as well as antitumor effect on BALB/c mice model. The results showed that GLY markedly reduced cell proliferation and migration with induced differentiation of WEHI-3 cells. The expression level of phosphorylated FAK, Akt, ERK1/2, and Rb was decreased p21 expression while level was increased in WEHI-3 treated with GLY. The results of cell cycle analysis revealed that GLY treatment could markedly induce G1 phase arrest and decrease cell population in S phase. Moreover, experimental results demonstrated that GLY decreased the protein expression and enzyme activity of MMP-2 and MMP-9. GLY treatment also reduced WEHI-3 leukemic infiltration in liver and spleen and tumor growth in animal model. Accordingly, GLY demonstrated an inhibitory effect on tumor growth with a regulatory mechanism partially through inhibiting FAK, Akt, and ERK expression in WEHI-3 cells. GLY may provide a promising antileukemic approach in the clinical application. PMID:23573143

  14. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate.

    PubMed

    Ram, Z; Samid, D; Walbridge, S; Oshiro, E M; Viola, J J; Tao-Cheng, J H; Shack, S; Thibault, A; Myers, C E; Oldfield, E H

    1994-06-01

    Phenylacetate is a naturally occurring plasma component that suppresses the growth of tumor cells and induces differentiation in vitro. To evaluate the in vivo potential and preventive and therapeutic antitumor efficacy of sodium phenylacetate against malignant brain tumors, Fischer 344 rats (n = 50) bearing cerebral 9L gliosarcomas received phenylacetate by continuous s.c. release starting on the day of tumor inoculation (n = 10) using s.c. osmotic minipumps (550 mg/kg/day for 28 days). Rats with established brain tumors (n = 12) received continuous s.c. phenylacetate supplemented with additional daily i.p. dose (300 mg/kg). Control rats (n = 25) were treated in a similar way with saline. Rats were sacrificed during treatment for electron microscopic studies of their tumors, in vivo proliferation assays, and measurement of phenylacetate levels in the serum and cerebrospinal fluid. Treatment with phenylacetate extended survival when started on the day of tumor inoculation (P < 0.01) or 7 days after inoculation (P < 0.03) without any associated adverse effects. In the latter group, phenylacetate levels in pooled serum and cerebrospinal fluid samples after 7 days of treatment were in the therapeutic range as determined in vitro (2.45 mM in serum and 3.1 mM in cerebrospinal fluid). Electron microscopy of treated tumors demonstrated marked hypertrophy and organization of the rough endoplasmic reticulum, indicating cell differentiation, in contrast to the scant and randomly distributed endoplasmic reticulum in tumors from untreated animals. In addition, in vitro studies demonstrated dose-dependent inhibition of the rate of tumor proliferation and restoration of anchorage dependency, a marker of phenotypic reversion. Phenylacetate, used at clinically achievable concentrations, prolongs survival of rats with malignant brain tumors through induction of tumor differentiation. Its role in the treatment of brain tumors and other cancers should be explored further.

  15. Pathogenesis of paracoccidioidomycosis: a histopathological study of the experimental murine infection.

    PubMed

    Bedoya, V; McEwen, J G; Tabares, A M; Jaramillo, F U; Restrepo, A

    1986-06-01

    The pathogenesis of primary pulmonary P. brasiliensis infection, the systemic dissemination which followed, and the histopathology of the main organs involved was studied in a murine model of chronic paracoccidioidomycosis. Adult male BALB/C mice, were challenged intranasally with 26 X 10(-6) viable P. brasiliensis yeast cells. We inoculated 86 animals which were sacrificed from 0 h to 20 weeks. As controls, 11 mice were instilled with saline solution, and 48 with 26 X 10(-6) heat-killed. P. brasiliensis yeast cells. None of the animals receiving saline, exhibited pathologic alterations; 11.6% of those inoculated with the heat-killed cells, revealed mild, transitory acino-pulmonary neutrophilic infiltrates. The animals infected with viable cells, developed a systemic process affecting mainly the lungs (46.5%), liver (18.6%), lymph-nodes (18.6%), and spleen (3.5%). In this group of animals, lung lesions were detected regularly at all time periods from 3 h to 20 weeks. A multiple bronchopneumonic process was initially observed at 6 h, reached its maximum intensity around the third day, subsided thereafter but did not disappear and reactivated after the fifth week to become stationary until the end of experiments. Dissemination to other organs occurred early, and apparently by the hematogenous route. Initially the inflammatory cell infiltrate was mainly neutrophilic. With time, these cells were gradually replaced by lymphocytes, histiocytes and plasmocytes. Granuloma configuration of the cell infiltrate was distinctly seen around the fifth week, with multinucleated giant cells appearing at the ninth week. Hiliary lymph-node involvement was rare (7%) and primary lung lesions, as seen in tuberculosis and histoplasmosis, were not observed.

  16. Role of CCL7 in Type I Hypersensitivity Reactions in Murine Experimental Allergic Conjunctivitis

    PubMed Central

    Kuo, Chuan-Hui; Collins, Andrea M.; Boettner, Douglas R.; Yang, YanFen

    2017-01-01

    Molecules that are necessary for ocular hypersensitivity reactions include the receptors CCR1 and CCR3; CCL7 is a ligand for these receptors. Therefore, we explored the role of CCL7 in mast cell activity and motility in vitro and investigated the requirement for CCL7 in a murine model of IgE-mediated allergic conjunctivitis. For mast cells treated with IgE and Ag, the presence of CCL7 synergistically enhanced degranulation and calcium influx. CCL7 also induced chemotaxis in mast cells. CCL7-deficient bone marrow–derived mast cells showed decreased degranulation following IgE and Ag treatment compared with wild-type bone marrow–derived mast cells, but there was no difference in degranulation when cells were activated via an IgE-independent pathway. In vivo, CCL7 was upregulated in conjunctival tissue during an OVA-induced allergic response. Notably, the early-phase clinical symptoms in the conjunctiva after OVA challenge were significantly higher in OVA-sensitized wild-type mice than in control challenged wild-type mice; the increase was suppressed in CCL7-deficient mice. In the OVA-induced allergic response, the numbers of conjunctival mast cells were lower in CCL7-deficient mice than in wild-type mice. Our results demonstrate that CCL7 is required for maximal OVA-induced ocular anaphylaxis, mast cell recruitment in vivo, and maximal FcεRI-mediated mast cell activation in vitro. A better understanding of the role of CCL7 in mediating ocular hypersensitivity reactions will provide insights into mast cell function and novel treatments for allergic ocular diseases. PMID:27956527

  17. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model.

    PubMed

    Cruz, Lissa; Vivas, Angie; Montilla, Marleny; Hernández, Carolina; Flórez, Carolina; Parra, Edgar; Ramírez, Juan David

    2015-01-01

    Chagas disease is an endemic zoonosis in Latin America and caused by the parasite Trypanosoma cruzi. This kinetoplastid displays remarkable genetic variability, allowing its classification into six Discrete Typing Units (DTUs) from TcI to TcVI. T. cruzi I presents the broadest geographical distribution in the continent and has been associated to severe forms of cardiomyopathies. Recently, a particular genotype associated to human infections has been reported and named as TcIDOM (previously named TcIa-b). This genotype shows to be clonal and adapted to the domestic cycle but so far no studies have determined the biological properties of domestic (TcIDOM) and sylvatic TcI strains (previously named TcIc-e). Hence, the aim of this study was to untangle the biological features of these genotypes in murine models. We infected ICR-CD1 mice with five TcI strains (two domestic, two sylvatic and one natural mixture) and determined the course of infection during 91 days (acute and chronic phase of the disease) in terms of parasitemia, tissue tropism, immune response (IgG titers) and tissue invasion by means of histopathology studies. Statistically significant differences were observed in terms of parasitemia curves and prepatent period between domestic (TcIDOM) and sylvatic strains. There were no differences in terms of IgG antibodies response across the mice infected with the five strains. Regarding the histopathology, our results indicate that domestic strains present higher parasitemias and low levels of histopathological damage. In contrast, sylvatic strains showed lower parasitemias and high levels of histopathological damage. These results highlight the sympatric and behavioral differences of domestic and sylvatic TcI strains; the clinical and epidemiological implications are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR Positive Mammary Tumors Connecting Metabolism and Carcinogenesis

    DTIC Science & Technology

    2011-09-01

    conserved in human, murine, bovine, etc. (Figure 5A) as well as at position 121 in C. elegans. Interestingly, the MnSOD protein in four primates (Rhesus...macaque, Callithrix jacchus, common gibbon , and chimpanzee) contains an identical 13 amino acid consensus motif; however, it is located 24 amino

  19. Serial Low Doses of Sorafenib Enhance Therapeutic Efficacy of Adoptive T Cell Therapy in a Murine Model by Improving Tumor Microenvironment

    PubMed Central

    Liu, Ren-Shyan; Hwang, Jeng-Jong

    2014-01-01

    Requirements of large numbers of transferred T cells and various immunosuppressive factors and cells in the tumor microenvironment limit the applications of adoptive T cells therapy (ACT) in clinic. Accumulating evidences show that chemotherapeutic drugs could act as immune supportive instead of immunosuppressive agents when proper dosage is used, and combined with immunotherapy often results in better treatment outcomes than monotherapy. Controversial immunomodulation effects of sorafenib, a multi-kinases inhibitor, at high and low doses have been reported in several types of cancer. However, what is the range of the low-dose sorafenib will influence the host immunity and responses of ACT is still ambiguous. Here we used a well-established E.G7/OT-1 murine model to understand the effects of serial low doses of sorafenib on both tumor microenvironment and transferred CD8+ T cells and the underlying mechanisms. Sorafenib lowered the expressions of immunosuppressive factors, and enhanced functions and migrations of transferred CD8+ T cells through inhibition of STAT3 and other immunosuppressive factors. CD8+ T cells were transduced with granzyme B promoter for driving imaging reporters to visualize the activation and distribution of transferred CD8+ T cells prior to adoptive transfer. Better activations of CD8+ T cells and tumor inhibitions were found in the combinational group compared with CD8+ T cells or sorafenib alone groups. Not only immunosuppressive factors but myeloid derived suppressive cells (MDSCs) and regulatory T cells (Tregs) were decreased in sorafenib-treated group, indicating that augmentation of tumor inhibition and function of CD8+ T cells by serial low doses of sorafenib were via reversing the immunosuppressive microenvironment. These results revealed that the tumor inhibitions of sorafenib not only through eradicating tumor cells but modifying tumor microenvironment, which helps outcomes of ACT significantly. PMID:25333973

  20. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye.

    PubMed

    Xiao, Bing; Wang, Yu; Reinach, Peter S; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei

    2015-01-01

    Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren's Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland

  1. Anti-tumor necrosis factor VNAR single domains reduce lethality and regulate underlying inflammatory response in a murine model of endotoxic shock

    PubMed Central

    2013-01-01

    Background In sepsis, tumor necrosis factor (TNF) is the key factor triggering respiratory burst, tissue injury and disseminated coagulation. Anti-TNF strategies based on monoclonal antibodies or F(ab’)2 fragments have been used in sepsis with contradictory results. Immunoglobulin new antigen receptors (IgNAR) are a unique subset of antibodies consisting of five constant (CNAR) and one variable domains (VNAR). VNAR domains are the smallest, naturally occurring, antibody-based immune recognition units, having potential use as therapy. Our aim was to explore the impact of an anti-TNF VNAR on survival in an experimental model of endotoxic shock. Also, mRNA expression and serum protein of several inflammatory molecules were measured. Results Endotoxic shock was induced by lipopolysaccharide (LPS) in male Balb/c mice. Animals were treated with anti-TNF VNAR domains, F(ab’)2 antibody fragments, or saline solution 15 minutes before, 2 h and 24 h after lethal dose100 (LD100) LPS administration. TNF blockade with either VNAR domains or F(ab’)2 fragments were associated with lower mortality (60% and 75%, respectively) compared to LD100. Challenge with LPS induced significant production of serum TNF and interleukins -10 and -6 at 3 h. After that, significant reduction of IL-6 at 24 h (vs 3 h) was shown only in the VNAR group. Nitrites level also increased in response to LPS. In liver, TNF and IL-10 mRNA expression showed a pro-inflammatory imbalance in response to LPS. Blocking TNF was associated with a shift towards an anti-inflammatory status; however, polarization was more pronounced in animals receiving F(ab’)2 fragments than in those with VNAR therapy. With regard to IL-6, gene expression was increased at 3 h in all groups. TNF blockade was associated with rapid and sustained suppression of IL-6 expression, even more evident in the VNAR group. Finally, expression of inducible-nitric oxide synthase (iNOS) increased in response to LPS at 3 h, but this

  2. Anti-tumor necrosis factor VNAR single domains reduce lethality and regulate underlying inflammatory response in a murine model of endotoxic shock.

    PubMed

    Bojalil, Rafael; Mata-González, María Teresa; Sánchez-Muñoz, Fausto; Yee, Yepci; Argueta, Iván; Bolaños, Lucía; Amezcua-Guerra, Luis Manuel; Camacho-Villegas, Tanya Amanda; Sánchez-Castrejón, Edna; García-Ubbelohde, Walter Jakob; Licea-Navarro, Alexei Fedorovish; Márquez-Velasco, Ricardo; Paniagua-Solís, Jorge Fernando

    2013-04-02

    In sepsis, tumor necrosis factor (TNF) is the key factor triggering respiratory burst, tissue injury and disseminated coagulation. Anti-TNF strategies based on monoclonal antibodies or F(ab')₂ fragments have been used in sepsis with contradictory results. Immunoglobulin new antigen receptors (IgNAR) are a unique subset of antibodies consisting of five constant (CNAR) and one variable domains (VNAR). VNAR domains are the smallest, naturally occurring, antibody-based immune recognition units, having potential use as therapy. Our aim was to explore the impact of an anti-TNF VNAR on survival in an experimental model of endotoxic shock. Also, mRNA expression and serum protein of several inflammatory molecules were measured. Endotoxic shock was induced by lipopolysaccharide (LPS) in male Balb/c mice. Animals were treated with anti-TNF VNAR domains, F(ab')₂ antibody fragments, or saline solution 15 minutes before, 2 h and 24 h after lethal dose₁₀₀ (LD₁₀₀) LPS administration. TNF blockade with either VNAR domains or F(ab')₂ fragments were associated with lower mortality (60% and 75%, respectively) compared to LD₁₀₀. Challenge with LPS induced significant production of serum TNF and interleukins -10 and -6 at 3 h. After that, significant reduction of IL-6 at 24 h (vs 3 h) was shown only in the VNAR group. Nitrites level also increased in response to LPS. In liver, TNF and IL-10 mRNA expression showed a pro-inflammatory imbalance in response to LPS. Blocking TNF was associated with a shift towards an anti-inflammatory status; however, polarization was more pronounced in animals receiving F(ab')₂ fragments than in those with VNAR therapy. With regard to IL-6, gene expression was increased at 3 h in all groups. TNF blockade was associated with rapid and sustained suppression of IL-6 expression, even more evident in the VNAR group. Finally, expression of inducible-nitric oxide synthase (iNOS) increased in response to LPS at 3 h, but this was decreased

  3. Induction of murine tumors in adult mice by a combination of either avian sarcoma virus or human adenovirus and syngeneic mouse embryo cells.

    PubMed

    Takeuchi, M; Nitta, K

    1983-01-01

    Primary murine Rous sarcoma was produced in adult mice of seven strains, C57BL/6, DBA/2, BALB/c, C3H/He, CBAJ, AKR, and DDD, by s.c. inoculation of a mixture of 5 X 10(6) chicken tumor cells containing Schmidt-Ruppin Rous sarcoma virus and 9- to 12-day-old mouse embryo cells (MEC) (2 X 10(6) ) of the syngeneic strain. The sarcoma developed at the site of injection in almost all mice tested, but there were some differences in the latent period and the survival time among mouse strains. When the number of cells inoculated was reduced to 5 X 10(4) for chicken tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-CTC) and 2 X 10(4) for MEC, no tumor was produced in C3H/He mice. These tumors had strain specificity and the Schmidt-Ruppin strain of Rous sarcoma virus genome in masked form. The tumor at the site of injection originated in the embryo cells injected along with SR-CTC. This was confirmed by CBAT6/T6 marker chromosome analysis of the tumor cells of CBA mice induced with SR-CTC plus CBAT6/T6 MEC and also confirmed by transplantation of a C57BL/6 X C3H/He F1 tumor which had been induced with SR-CTC plus C3H/He or C57BL/6 MEC. Tumor induction in adult mouse by a mixture of virus and syngeneic 9- to 14-day-old embryo cells was tested for human adenovirus serotype 12 (Ad12) and simian virus 40. Primary Ad12 tumor was also induced in adult CBA, C3H/He, and DDD mice by 4 X 10(5 to 6) 50% tissue culture infective dose of Ad12 with 5 X 10(6) syngeneic embryo cells. This tumor contained Ad12 T-antigen-positive particles in cells. But in the case of simian virus 40, the tumor did not appear for about 300 days of observation.

  4. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  5. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in murine skin by systemic effects of ultraviolet irradiation.

    PubMed

    Gensler, H L; Simpson, P J; Powell, M B

    1992-07-01

    Systemic effects of UVB irradiation (280-320 nm) have been shown to prevent subsequent chemical tumorigenesis induced by an initiation-promotion protocol. The present investigation was designed to determine whether initiation or promotion is prevented by UV irradiation. Groups of 25 B6D2F1/J mice received 12 weeks of intermittent dorsal UVB radiation treatments administered before, or 3 weeks after, initiation with a single application of 7,12-dimethylbenz[a]anthracene on the ventral skin. All mice were promoted ventrally with 5 micrograms 12-O-tetradecanoylphorbol-13-acetate (TPA) applied three times weekly throughout the experiment. UV irradiation consisted of five 30-min exposures per week to a bank of 6 Westinghouse FS40 sunlamps. UV irradiation applied before or after initiation resulted in a decrease of 18-16 tumors per group of 25 mice, for a reduction of 61 and 50%, respectively, at 24 weeks after the first TPA treatment. Thus, prevention of tumor development was similar whether the UV influence was present or not during initiation. This finding suggests that the UV prevention of promotion could account for UV inhibition of skin tumors induced by an initiation-promotion regimen. Consistent with this concept, pretreatment of mice with dorsal UVB radiation was found to reduce DNA synthesis after exposure to TPA by 46%, although it did not decrease tritiated benzo[a]pyrene binding to DNA, in ventral epidermis. Thus, UVB irradiation systemically reduced TPA-induced tumor promotion in murine skin.

  6. Wedelolactone mitigates UVB induced oxidative stress, inflammation and early tumor promotion events in murine skin: plausible role of NFkB pathway.

    PubMed

    Ali, Farrah; Khan, Bilal Azhar; Sultana, Sarwat

    2016-09-05

    UVB (Ultra-violet B) radiation is one of the major etiological factors in various dermal pathology viz. dermatitis, actinic folliculitis, solar urticaria, psoriasis and cancer among many others. UVB causes toxic manifestation in tissues by inciting inflammatory and tumor promoting events. We have designed this study to assess the anti-inflammatory and anti-tumor promotion effect of Wedelolactone (WDL) a specific IKK inhibitor. Results indicate significant restoration of anti-oxidative enzymes due to WDL treatments. We also found that WDL was effective in mitigating inflammatory markers consisting of MPO (myeloperoxidase), Mast cells trafficking, Langerhans cells suppression and COX 2 expression up regulation due to UVB exposure. We also deduce that WDL presented a promising intervention in attenuating early tumor promotion events caused by UVB exposure as indicated by the results of ODC (Ornithine Decarboxylase), Thymidine assay, Vimentin and VEGF (Vascular-endothelial growth factor) expression. This study was able to provide substantial cues for the therapeutic ability of Wedelolactone against inflammatory and tumor promoting events in murine skin depicting plausible role of NFkB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Retrotransposition of long interspersed nucleotide element-1 is associated with colitis but not tumors in a murine colitic cancer model.

    PubMed

    Otsubo, Takeshi; Okamura, Tadashi; Hagiwara, Teruki; Ishizaka, Yukihito; Dohi, Taeko; Kawamura, Yuki I

    2015-01-01

    Long interspersed element-1 (L1) is a transposable element that can move within the genome, potentially leading to genome diversity and modified gene function. Although L1 activity in somatic cells is normally suppressed through DNA methylation, some L1s are activated in tumors including colorectal carcinoma. However, how L1-retrotransposition (L1-RTP) is involved in gastrointestinal disorders remains to be elucidated. We hypothesized that L1-RTP in somatic cells might contribute to colitis-associated cancer (CAC). To address this, we employed an experimental model of CAC using transgenic L1-reporter mice carrying a human L1-EGFP reporter gene. Mice were subjected to repeated cycles of colitis induced by administration of dextran sodium sulfate (DSS) in drinking water with injection of carcinogen azoxymethane (AOM). L1-RTP levels were measured by a quantitative polymerase chain reaction targeting the newly inserted reporter EGFP in various tissues and cell types, including samples obtained by laser microdissection and cell sorting with flow cytometry. DNA methylation levels of the human L1 promoter were analyzed by bisulfite pyrosequencing. AOM+DSS-treated mice exhibited significantly higher levels of L1-RTP in whole colon tissue during the acute phase of colitis when compared with control naïve mice. L1-RTP levels in whole colon tissue were positively correlated with the histological severity of colitis and degree of neutrophil infiltration into the lamina propria (LP), but not with tumor development in the colon. L1-RTP was enriched in LP mesenchymal cells rather than epithelial cells (ECs), myeloid, or lymphoid cells. DNA methylation levels of the human L1 promoter region showed a negative correlation with L1-RTP levels. L1-RTP was absent from most tumors found in 22-week-old mice. In conclusion, we demonstrated that L1-RTP was induced in the mouse CAC mucosa in accordance with the acute inflammatory response; however, retrotransposition appears not to have

  8. A Novel Tumor Antigen and Foxp3 Dual-Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    DTIC Science & Technology

    2014-10-01

    DATES COVERED t 4. TITLE AND SUBTITLE A Novel Tumor Antigen and Foxp3 Dual-Targeting Tumor Cell Vaccine 5a. CONTRACT NUMBER Enhances the...past year I have generated Foxp3-over expressing RENCA cells, as the source of candidate dual targeting tumor cells vaccine . We have performed...controlled vaccine therapy in RENCA model in three different schedules. When applied in a pre- vaccine schedule, RENCA and RENCA Foxp3 tumor cell vaccine

  9. Enhancement of survivin-specific anti-tumor immunity by adenovirus prime protein-boost immunity strategy with DDA/MPL adjuvant in a murine melanoma model.

    PubMed

    Wang, Yu-Qian; Zhang, Hai-Hong; Liu, Chen-Lu; Wu, Hui; Wang, Peng; Xia, Qiu; Zhang, Li-Xing; Li, Bo; Wu, Jia-Xin; Yu, Bin; Gu, Tie-Jun; Yu, Xiang-Hui; Kong, Wei

    2013-09-01

    As an ideal tumor antigen, survivin has been widely used for tumor immunotherapy. Nevertheless, no effective protein vaccine targeting survivin has been reported, which may be due to its poor ability to induce cellular immunity. Thus, a suitable immunoadjuvant and optimized immunization strategy can greatly enhance the cellular immune response to this protein vaccine. DDA/MPL (monophosphoryl lipid A formulated with cationic dimethyldioctadecylammonium) has been reported to enhance the antigen uptake and presentation to T cells as an adjuvant. Meanwhile, a heterologous prime-boost strategy can enhance the cellular immunity of a protein vaccine by applying different antigen-presenting systems. Here, DDA/MPL and an adenovirus prime-protein boost strategy were applied to enhance the specific anti-tumor immunity of a truncated survivin protein vaccine. Antigen-specific IFN-γ-secreting T cells were increased by 10-fold, and cytotoxic T lympohocytes (CTLs) were induced effectively when the protein vaccine was combined with the DDA/MPL adjuvant. Meanwhile, the Th1 type cellular immune response was strongly enhanced and tumor inhibition was significantly increased by 96% with the adenovirus/protein prime-boost strategy, compared to the protein homologous prime-boost strategy. Moreover, this adjuvanted heterologous prime-boost strategy combined with oxaliplatin could significantly enhance the efficiency of tumor growth inhibition through promoting the proliferation of splenocytes. Thus, our results provide a novel vaccine strategy for cancer therapy using an adenovirus prime-protein boost strategy in a murine melanoma model, and its combination with oxaliplatin may further enhance the anti-tumor efficacy while alleviating side effects of the drug.

  10. Brief Report: JNK-2 Controls Aggrecan Degradation in Murine Articular Cartilage and the Development of Experimental Osteoarthritis.

    PubMed

    Ismail, Heba M; Miotla-Zarebska, Jadwiga; Troeberg, Linda; Tang, Xiaodi; Stott, Bryony; Yamamoto, Kazuhiro; Nagase, Hideaki; Fosang, Amanda J; Vincent, Tonia L; Saklatvala, Jeremy

    2016-05-01

    The pathogenesis of osteoarthritis (OA) is poorly understood. Loss of the proteoglycan aggrecan from cartilage is an early event. Recently, we identified a role for the JNK pathway, particularly JNK-2, in human articular chondrocytes in vitro in regulating aggrecan degradation. The present study was undertaken to investigate whether JNK-2 has a similar function in vivo and to examine its role in gene expression. Aggrecan fragments were analyzed by Western blotting. OA was induced by destabilization of the medial meniscus (DMM) and assessed at 4, 8, and 12 weeks after surgery. Knee sections were stained with Safranin O. Medial compartments were scored by histologic grading for aggrecan loss and cartilage damage. RNA was extracted from JNK-2(-/-) and wild-type mouse knees 6 hours after DMM or after interleukin-1 stimulation of the proximal epiphysis, and expression of 33 DMM-regulated genes was analyzed with quantitative polymerase chain reaction-customized array cards. In vitro, basal and interleukin-1- or tumor necrosis factor-stimulated release of aggrecanase-generated aggrecan fragments was greatly reduced in cartilage from JNK-2(-/-) mice. In the OA model, JNK-2(-/-) mice exhibited significant reduction of aggrecanase-generated fragments and cartilage damage. Of 33 genes investigated, 13 were significantly down-regulated in JNK-2(-/-) mice compared with wild-type mice, following DMM. These included Has1, Adamts4, Tnf, Il6, Il18, Il18rap, Il1a, Inhba, Cd68, Ngf, Ccr2, Wnt16, and Tnfaip6, but not Adamts5. Our results demonstrate that JNK-2 regulates aggrecan degradation in cultured murine cartilage and surgically induced OA in vivo following mechanical destabilization of the knee joint. This implicates the JNK signaling pathway in OA and suggests potential novel approaches to therapy. © 2016, American College of Rheumatology.

  11. Timing of chemotherapy and surgery in a murine osteosarcoma model.

    PubMed

    Bell, R S; Roth, Y F; Gebhardt, M C; Bell, D F; Rosenberg, A E; Mankin, H J; Suit, H D

    1988-10-01

    The sequential use of chemotherapy and surgery in the treatment of osteosarcoma developed in an empirical fashion without the benefit of investigations in animal models. The MGH-OGS murine osteosarcoma is a transplantable tumor that resembles the human disease with respect to histology, local invasiveness, metastatic characteristics, tumor ploidy, and its response to chemotherapy. We have used this tumor model to investigate the efficacy of preoperative, perioperative, and postoperative chemotherapy on the development of pulmonary metastases in three different experimental protocols. In each experimental design, perioperative chemotherapy demonstrated a significant advantage in preventing systemic relapse.

  12. Prevention of murine experimental autoimmune orchitis by recombinant human interleukin-6.

    PubMed

    Li, Lu; Itoh, Masahiro; Ablake, Maila; Macrì, Battesimo; Bendtzen, Klaus; Nicoletti, Ferdinando

    2002-02-01

    We studied the effect of exogenously administered recombinant human interleukin (IL)-6 on the development of experimental autoimmune orchitis (EAO) in C3H/Hej mice. IL-6 significantly reduced histological signs of EAO and appearance of delayed type hypersensitivity against the immunizing testicular germinal cells. The effect was seen even though the cytokine was administered for only 6 consecutive days and 2 weeks after immunization.

  13. Ultrastructural Study on Tissue Alterations Caused by Trypanosomatids in Experimental Murine Infections

    PubMed Central

    Finol, Héctor J.; Roschman-González, Antonio

    2014-01-01

    The ultrastructural study in different tissues of mice experimentally infected with isolates of Trypanosoma evansi, Trypanosoma cruzi, and Leishmania mexicana reveals changes in cardiac myocytes, skeletal muscle fibers, and hepatic, adrenal, kidney, and spleen cells. Some of these changes were cytoarchitectural and others consisted of necrosis. Alterations in the microvasculature were also found. The mononuclear cell infiltrate included neutrophils, eosinophils, and macrophages. This work shows that diverse mice tissues are important target for trypanosomatids. PMID:25072046

  14. Evaluation of azithromycin, trovafloxacin and grepafloxacin as prophylaxis for experimental murine melioidosis.

    PubMed

    Kenny, Dermot J; Sefton, Armine M; Brooks, Timothy J G; Laws, Thomas R; Simpson, Andrew J H; Atkins, Helen S

    2010-07-01

    The efficacies of the azalide azithromycin and the fluoroquinolones trovafloxacin and grepafloxacin for pre- and post-exposure prophylaxis of infection with high or low challenge doses of Burkholderia pseudomallei strain 576 were assessed in an experimental mouse model. Trovafloxacin and grepafloxacin afforded significant levels of protection, whereas azithromycin was ineffective and potentially detrimental. Overall, the data suggest that some fluoroquinolones may have potential utility in prophylaxis of melioidosis and suggest that azithromycin would not be effective in prophylaxis of B. pseudomallei infection.

  15. The effectiveness of domestic cook on inactivation of murine norovirus in experimentally infected Manila clams (Ruditapes philippinarum).

    PubMed

    Toffan, A; Brutti, A; De Pasquale, A; Cappellozza, E; Pascoli, F; Cigarini, M; Di Rocco, M; Terregino, C; Arcangeli, G

    2014-01-01

    The aim of this work was to evaluate the efficacy of domestic cooking in inactivating Manila clams experimentally infected with murine norovirus (MNV). A cooking pan was modified to enable electronic temperature probes to be positioned to record both flesh and environment temperature. Manila clams were infected with 10(4) TCID 50% ml(-1) of MNV. The infected whole-in-shell clams, divided into three replicates, were cooked on an electric stove, and groups of nine clams were removed from the pan at fixed intervals. Pools of three digestive glands were examined by virus isolation to ascertain residual viral load. Results showed that 10 min of cooking by a traditional domestic method at a temperature close to 100°C, for at least 2 min, can completely devitalize the MNV in infected clams. This is generally the time needed for the majority of valves to open up. At present, it is highly recommended to label all lagoon products as 'requiring cooking before consumption', but no specifications are given on how long and at what temperature they should be cooked. Our results can provide the consumer with useful indications on how to cook clams to prevent any risk of foodborne illness. © 2013 The Society for Applied Microbiology.

  16. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  17. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model.

    PubMed

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  18. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model

    PubMed Central

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  19. Evaluation of azithromycin, trovafloxacin and grepafloxacin as prophylaxis against experimental murine Brucella melitensis infection.

    PubMed

    Atkins, Helen S; Spencer, Stephen; Brew, Simon D; Jenner, Dominic C; Sefton, Armine M; MacMillan, Alastair P; Brooks, Timothy J G; Simpson, Andrew J H

    2010-07-01

    The prophylactic potential of the azalide azithromycin as well as the fluoroquinolones trovafloxacin and grepafloxacin was assessed for the control of infection with Brucella melitensis in an experimental mouse model, determined by reduction in splenic bacterial burden. Trovafloxacin showed limited protective efficacy when administered 2h following a low-dose B. melitensis challenge, whereas grepafloxacin was ineffective. In comparison, azithromycin provided significant control of infection both following low- and high-dose challenges. Overall, the data confirm the potential utility of azithromycin in the prophylaxis of brucellosis and suggest that neither trovafloxacin nor grepafloxacin would likely be valuable for post-exposure prophylaxis of Brucella infection.

  20. In vivo therapy of a murine B cell tumor (BCL1) using antibody-ricin A chain immunotoxins

    SciTech Connect

    Krolick, K.A.; Uhr, J.W.; Slavin, S.; Vitetta, E.S.

    1982-06-01

    Prolonged remissions were induced in mice bearing advanced BCL1 tumors by the combined approach of nonspecific cytoreductive therapy and administration of a tumor-reactive immunotoxin. Thus, the vast majority of the tumor cells (approximately 95%) were first killed by nonspecific cytoreductive therapy using total lymphoid irradiation (TLI) and splenectomy. The residual tumor cells were then eliminated by intravenous administration of an anti-delta immunotoxin. In three of four experiments, all animals treated in the above fashion appeared tumor free 12-16 wk later. In one experiment, blood cells from the mice in remission were transferred to normal BALB/c recipients, and the latter animals have not developed detectable tumor for the 6 mo of observation. Because 1-10 adoptively transferred BCL1 cells will cause tumor in normal BALB/c mice by 12 wk, the inability to transfer tumor to recipients might indicate that the donor animals were tumor free. In the remainder of the animals treated with the tumor-reactive immunotoxin there was a substantial remission in all animals, but the disease eventually reappeared. In contrast, all mice treated with the control immunotoxin or antibody alone relapsed significantly earlier (3-4 wk after splenectomy).

  1. Combination therapy with metformin and coenzyme Q10 in murine experimental autoimmune arthritis.

    PubMed

    Jhun, JooYeon; Lee, SeungHoon; Kim, Se-Young; Na, Hyun Sik; Kim, Eun-Kyung; Kim, Jae-Kyung; Jeong, Jeong-Hee; Park, Sung Hwan; Cho, Mi-La

    2016-01-01

    Metformin (Met) and coenzyme Q10 (CoQ10) are reported to have therapeutic functions in several inflammatory diseases. These drugs have shown anti-inflammatory effects and have been utilized in mouse models of rheumatoid arthritis (RA). However, there is no evidence of the additive effect of Met and CoQ10 in RA. Although Met and CoQ10 may be involved in the improvement of mitochondrial dysfunction, limited information is available regarding whether this effect can improve mitochondrial dysfunction in RA in particular. In this study, we sought to determine whether Met and CoQ10 attenuate the severity of collagen-induced arthritis (CIA) and show an additive effect in a mouse model. The combination of Met and CoQ10 improved CIA, reducing joint inflammation, Th17 differentiation and IgG production. In contrast, the combination of Met and CoQ10 induced Treg differentiation. Osteoclastogenesis was reduced by the combination of Met and CoQ10. The protein expression of interleukin-1β, interleukin-6 and tumor necrosis factor-alpha in mice splenocytes exposed to lipopolysaccharide decreased after drug combination therapy. We also found that the expression of JC-1 and COX IV were enhanced by treatment with the combination of Met and CoQ10. Moreover, the combination of Met and CoQ10 promoted mitochondrial O2 consumption. These findings suggest that the combination of Met and CoQ10 reduced CIA severity, improving mitochondrial dysfunction compared to Met or CoQ10 alone. These results present a novel, significant preventive targets in RA and may enhance our understanding of its pathogenesis.

  2. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    PubMed

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  3. Combining Theoretical and Experimental Techniques to Study Murine Heart Transplant Rejection

    PubMed Central

    Arciero, Julia C.; Maturo, Andrew; Arun, Anirudh; Oh, Byoung Chol; Brandacher, Gerald; Raimondi, Giorgio

    2016-01-01

    The quality of life of organ transplant recipients is compromised by complications associated with life-long immunosuppression, such as hypertension, diabetes, opportunistic infections, and cancer. Moreover, the absence of established tolerance to the transplanted tissues causes limited long-term graft survival rates. Thus, there is a great medical need to understand the complex immune system interactions that lead to transplant rejection so that novel and effective strategies of intervention that redirect the system toward transplant acceptance (while preserving overall immune competence) can be identified. This study implements a systems biology approach in which an experimentally based mathematical model is used to predict how alterations in the immune response influence the rejection of mouse heart transplants. Five stages of conventional mouse heart transplantation are modeled using a system of 13 ordinary differential equations that tracks populations of both innate and adaptive immunity as well as proxies for pro- and anti-inflammatory factors within the graft and a representative draining lymph node. The model correctly reproduces known experimental outcomes, such as indefinite survival of the graft in the absence of CD4+ T cells and quick rejection in the absence of CD8+ T cells. The model predicts that decreasing the translocation rate of effector cells from the lymph node to the graft delays transplant rejection. Increasing the starting number of quiescent regulatory T cells in the model yields a significant but somewhat limited protective effect on graft survival. Surprisingly, the model shows that a delayed appearance of alloreactive T cells has an impact on graft survival that does not correlate linearly with the time delay. This computational model represents one of the first comprehensive approaches toward simulating the many interacting components of the immune system. Despite some limitations, the model provides important suggestions of

  4. Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors

    PubMed Central

    Wang, Shutao; Shin, In Soo; Hancock, Hilary; Jang, Beom-su; Kim, Hyung-sub; Lee, Sang Myung; Zderic, Vesna; Frenkel, Victor; Pastan, Ira; Paik, Chang H.; Dreher, Matthew R.

    2014-01-01

    The success of radioimmunotherapy for solid tumors remains elusive due to poor biodistribution and insufficient tumor accumulation, in part, due to the unique tumor microenvironment resulting in heterogeneous tumor antibody distribution. Pulsed high intensity focused ultrasound (pulsed-HIFU) has previously been shown to increase the accumulation of 111In labeled B3 antibody (recognizes Lewisy antigen). The objective of this study was to investigate the tumor penetration and therapeutic efficacy of pulsed-HIFU exposures combined with 90Y labeled B3 mAb in an A431 solid tumor model. The ability of pulsed-HIFU (1 MHz, spatial averaged temporal peak intensity = 2685 Wcm−2; pulse repetition frequency = 1 Hz; duty cycle = 5%) to improve the tumor penetration and therapeutic efficacy of 90Y labeled B3 mAb (90Y-B3) was evaluated in Ley-positive A431 tumors. Antibody penetration from the tumor surface and blood vessel surface was evaluated with fluorescently labeled B3, epi-fluorescent microscopy, and custom image analysis. Tumor size was monitored to determine treatment efficacy, indicated by survival, following various treatments with pulsed-HIFU and/or 90Y-B3. The pulsed-HIFU exposures did not affect the vascular parameters including microvascular density, vascular size, and vascular architecture; although 1.6-fold more antibody was delivered to the solid tumors when combined with pulsed-HIFU. The distribution and penetration of the antibodies were significantly improved (p-value < 0.05) when combined with pulsed-HIFU, only in the tumor periphery. Pretreatment with pulsed-HIFU significantly improved (p-value < 0.05) survival over control treatments. PMID:22732476

  5. Comparative study of four antifungal drugs in an experimental model of murine cryptococcosis.

    PubMed

    Bava, A J; Iovannitti, C; Negroni, R

    1989-11-01

    A comparative study among amphotericin B, 5-fluorocytosine, itraconazole and fluconazole in the treatment of experimental cryptococcosis in mice, was carried out. Seventy male Balb C mice were inoculated intraperitoneally with 10(7) cells of Cryptococcus neoformans var. neoformans. They were divided in 7 groups of 10 animals each one: 1) treated with fluconazole by gavage at a daily dose of 16 mg/kg; 2) treated with itraconazole by gavage at a daily dose of 16 mg/kg; 3) treated with 5-fluorocytosine by gavage at a daily dose of 300 mg/kg; 4) treated with amphotericin B intraperitoneally at a dose of 6 mg/kg every other day; 5) control animals receiving polietilenglicol 200 by gavage; 6) control animals receiving distilled water by gavage and 7) control animals receiving sterile distilled water by intraperitoneal route. All the treatments started 5 days after the challenge inoculation and they were given for 2 weeks. The following parameters were taken into account: survival time, macroscopic aspect of the organ after the complete autopsy, microscopic investigation of yeasts in brain, lungs, spleen and liver, histopathology studies of these organs, the colony forming units per gram and massive seeding of brain and lungs. The survival index of the different groups was the most efficient method to measure the antifungal compounds activity. Amphotericin B increased significantly the animals survival and modified the histopathologic response in the studied organs. The colony forming units and the massive seeding in brain and lung showed that this antifungal agent is unable of producing the biological cure of this experimental model.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Comparison of the antitumor activity of DTIC and 1-p-(3,3-dimethyl-1-triazeno) benzoic acid potassium salt on murine transplantable tumors and their hematological toxicity.

    PubMed

    Colombo, T; D'Incalci, M

    1984-01-01

    This study describes a comparison of 1-p-(3,3-dimethyl-1-triazeno)benzoic acid potassium salt (DM-COOK) and imidazole-4-carboxamide,5-(3,3-dimethyl-1-triazeno) (DTIC) with reference to antitumor activity on different murine tumors and hematological toxicity. DM-COOK appeared comparably or slightly more effective in L1210, P388, and M5 tumors in the mouse. However, when the treatment of mice bearing M5 with DM-COOK was combined with surgical removal of the primary tumor, the host's life-span was highly significantly prolonged. The two drugs showed similar activity in an M5 variant selected for resistance to cyclophosphamide. In L1210 Ha, a leukemia that is spontaneously resistant to DTIC, DM-COOK was not effective. Both DM-COOK and DTIC caused transient leukopenia with a maximum WBC fall of 57% and 71% compared with control values. DM-COOK's greater chemical stability might be an advantage, as the decomposition of DTIC is thought to lead to products responsible for some toxic effects in humans. Like other phenyldimethyltriazenes DM-COOK, is a good candidate for clinical trials because its water solubility eliminates formulation problems.

  7. The Effects of Pulsed Radiation Therapy on Tumor Oxygenation in 2 Murine Models of Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Wobb, Jessica; Krueger, Sarah A.; Kane, Jonathan L.; Galoforo, Sandra; Grills, Inga S.; Wilson, George D.; Marples, Brian

    2015-07-15

    Purpose: To evaluate the efficacy of low-dose pulsed radiation therapy (PRT) in 2 head and neck squamous cell carcinoma (HNSCC) xenografts and to investigate the mechanism of action of PRT compared with standard radiation therapy (SRT). Methods and Materials: Subcutaneous radiosensitive UT-SCC-14 and radioresistant UT-SCC-15 xenografts were established in athymic NIH III HO female mice. Tumors were irradiated with 2 Gy/day by continuous standard delivery (SRT: 2 Gy) or discontinuous low-dose pulsed delivery (PRT: 0.2 Gy × 10 with 3-min pulse interval) to total doses of 20 Gy (UT14) or 40 Gy (UT15) using a clinical 5-day on/2-day off schedule. Treatment response was assessed by changes in tumor volume, {sup 18}F-fluorodeoxyglucose (FDG) (tumor metabolism), and {sup 18}F-fluoromisonidazole (FMISO) (hypoxia) positron emission tomography (PET) imaging before, at midpoint, and after treatment. Tumor hypoxia using pimonidazole staining and vascular density (CD34 staining) were assessed by quantitative histopathology. Results: UT15 and UT14 tumors responded similarly in terms of growth delay to either SRT or PRT. When compared with UT14 tumors, UT15 tumors demonstrated significantly lower uptake of FDG at all time points after irradiation. UT14 tumors demonstrated higher levels of tumor hypoxia after SRT when compared with PRT as measured by {sup 18}F-FMISO PET. By contrast, no differences were seen in {sup 18}F-FMISO PET imaging between SRT and PRT for UT15 tumors. Histologic analysis of pimonidazole staining mimicked the {sup 18}F-FMISO PET imaging data, showing an increase in hypoxia in SRT-treated UT14 tumors but not PRT-treated tumors. Conclusions: Differences in {sup 18}F-FMISO uptake for UT14 tumors after radiation therapy between PRT and SRT were measurable despite the similar tumor growth delay responses. In UT15 tumors, both SRT and PRT were equally effective at reducing tumor hypoxia to a significant level as measured by {sup 18}F-FMISO and pimonidazole.

  8. The antioxidant response induced by Lonicera caerulaea berry extracts in animals bearing experimental solid tumors.

    PubMed

    Gruia, Maria Iuliana; Oprea, Eliza; Gruia, Ion; Negoita, Valentina; Farcasanu, Ileana Cornelia

    2008-03-27

    Lonicera caerulea is a species of bush native to the Kamchatka Peninsula (Russian Far East) whose berries have been extensively studied due to their potential high antioxidant activity. The aim of our work was to investigate the in vivo effects of the antioxidant action of Lonicera caerulea berry extracts on the dynamics of experimentally-induced tumors. Our data showed that aqueous Lonicera caerulaea extracts reduced the tumor volume when administered continuously during the tumor growth and development stages, but augmented the tumor growth when the administration of extracts started three weeks before tumor grafting. Prolonged administration of Lonicera caerulaea berry extracts induced the antioxidant defense mechanism in the tumor tissues, while surprisingly amplifying the peripheral oxidative stress.

  9. Infection of murine macrophages with Toxoplasma gondii is associated with release of transforming growth factor beta and downregulation of expression of tumor necrosis factor receptors.

    PubMed Central

    Bermudez, L E; Covaro, G; Remington, J

    1993-01-01

    Toxoplasma gondii is capable of invading and multiplying within murine peritoneal macrophages. Previous studies have shown that treatment of macrophage monolayers with recombinant gamma interferon but not tumor necrosis factor (TNF) is associated with intracellular killing of T. gondii by macrophages. Furthermore, infection of macrophages with T. gondii prevents their stimulation for mycobactericidal activity by TNF. Since transforming growth factor beta (TGF-beta) is known to suppress a number of functions in macrophages, we investigated the influence of infection with T. gondii on macrophage TNF receptors and on production of TGF-beta. Infection with T. gondii was associated with increased production of TGF-beta and downregulation of TNF receptors. This effect was observed early after infection and was partially inhibited by anti-TGF-beta 1 antibody. PMID:8406801

  10. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum.

    PubMed

    Al-Mathal, Ebtisam M; Alsalem, Afaf M

    2012-07-01

    Cryptosporidiosis, a major health issue for neonatal calves, is caused by the parasite Cryptosporidium parvum, which is highly resistant to drug treatments. To date, many anti-parasitic drugs have been tested, but only a few have been shown to be partially effective in treating cryptosporidiosis. Previous studies have indicated that pomegranate (Punica granatum) possesses anti-plasmodium, anti-cestode, and anti-nematode activities. Therefore, the aim of this study was to evaluate the effect of P. granatum peel on suckling mice infected with experimental C. parvum. At 4days of age, 72 neonatal albino mice were randomly divided into five groups: G1: healthy controls, G2: infected/untreated controls, G3: uninfected/distilled water-treated, G4: uninfected/P. granatum peel-treated, and G5: infected/P. granatum peel-treated. Mice were experimentally-infected by oral administration of 1×10(3)C. parvum oocysts per animal. On day 7 post-inoculation (pi), treated mice received an aqueous suspension of P. granatum peel orally (3g/kg body weight). The presence of diarrhea, oocyst shedding, and weight gain/loss, and the histopathology of ileal sections were examined. Infected mice treated with the P. granatum peel suspension showed improvement in all parameters examined. Additionally, these mice did not exhibit any clinical symptoms and no deaths occurred. Oocyst shedding was very significantly reduced in the P. granatum-treated mice by day 14 pi (P<.05), and was completely eliminated by day 28 pi. The mean weight gain of the P. granatum-treated mice was significantly higher than that of the infected/untreated controls throughout the study (P<.01). Histopathological analysis of ileal sections further supported the clinical and parasitological findings. The histological architecture of villi from the P. granatum-treated mice on day 14 pi showed visible improvement in comparison with the infected/untreated controls, including renewed brush borders, reduced numbers of C. parvum

  11. Notch signalling suppresses regulatory T-cell function in murine experimental autoimmune uveitis.

    PubMed

    Rong, Hua; Shen, Hongjie; Xu, Yueli; Yang, Hai

    2016-12-01

    Autoimmune uveitis is an intraocular inflammatory disorder in developed countries. Understanding the mechanisms underlying the development and modulation of immune reaction in uveitic eyes is critical for designing therapeutic interventions. Here we investigated the role of Notch signalling in regulatory T-cell (Treg cell) function during experimental autoimmune uveitis (EAU). Using the Foxp3-GFP reporter mouse strain, the significance of Notch signalling for the function of infiltrating Treg cells was characterized in an EAU model. We found that infiltrating Treg cells substantially expressed Notch-1, Notch-2, JAG1 and DLL1 in uveitic eyes. Activation of Notch signalling, represented by expression of HES1 and HES5, was enhanced in infiltrating Treg cells. Treatment with JAG1 and DLL1 down-regulated Foxp3 expression and immunosuppressive activity of isolated infiltrating Treg cells in vitro, whereas neutralizing antibodies against JAG1 and DLL1 diminished Notch ligand-mediated negative effects on Treg cells. To investigate the significance of Notch signalling for Treg cell function in vivo, lentivirus-derived Notch short hairpin RNAs were transduced into in vitro expanded Treg cells before adoptive transfer of Treg cells into EAU mice. Transfer of Notch-1-deficient Treg cells remarkably reduced pro-inflammatory cytokine production and inflammatory cell infiltration in uveitic eyes. Taken together, Notch signalling negatively modulates the immunosuppressive function of infiltrating Treg cells in mouse EAU.

  12. Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Zheng, Jianzheng; Bizzozero, Oscar A.

    2010-01-01

    Recent work from our laboratory has implicated protein carbonylation in the pathophysiology of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The present study was designed to determine the changes in protein carbonylation during the disease progression, and to identify the target cells and modified proteins in the cerebellum of EAE animals, prepared by active immunization of C57/BL6 mice with MOG35-55 peptide. In this model, protein carbonylation was maximal at the peak of the disease (acute phase) to decrease thereafter (chronic phase). Double immunofluorescence microscopy of affected cerebella showed that carbonyls accumulate in white matter astrocytes, and to a lesser extent in microglia/macrophages, both in the acute and chronic phase. Surprisingly, T cells, oligodendrocytes and neurons were barely stained. By 2D-oxyblot and mass spectrometry, β-actin, β-tubulin, GFAP and HSC-71 were identified as the major targets of carbonylation throughout disease. Using a pull-down/western blot method we found a significant increase in the proportion of carbonylated β-actin, β-tubulin and GFAP in the chronic phase but not in the acute phase. These results suggest that as disease progresses from the inflammatory to the neurodegenerative phase there may be an inappropriate removal of oxidized cytoskeletal proteins. Additionally, the extensive accumulation of carbonylated GFAP in the chronic phase of EAE may be responsible for the abnormal shape of astrocytes observed at this stage. PMID:20857508

  13. The Membrane Attack Complex of Complement is Required for the Development of Murine Experimental Cerebral Malaria

    PubMed Central

    Ramos, Theresa N.; Darley, Meghan M.; Hu, Xianzhen; Billker, Oliver; Rayner, Julian C.; Ahras, Malika; Wohler, Jillian E.; Barnum, Scott R.

    2011-01-01

    Cerebral malaria (CM) is the most severe complication of Plasmodium falciparum infection and accounts for a large number of malaria fatalities worldwide. Recent studies demonstrated that C5−/− mice are resistant to experimental CM (ECM) and suggested that protection was due to loss of C5a-induced inflammation. Surprisingly, we observed that C5aR−/− mice were fully susceptible to disease, indicating that C5a is not required for ECM. C3aR−/− and C3aR−/− × C5aR−/− mice were equally as susceptible to ECM as wild type mice, indicating that neither complement anaphylatoxin receptor is critical for ECM development. In contrast, C9 deposition in the brains of mice with ECM suggested an important role for the terminal complement pathway. Treatment with anti-C9 antibody significantly increased survival time and reduced mortality in ECM. Our data indicate that protection from ECM in C5−/− mice is mediated through inhibition of MAC formation and not through C5a-induced inflammation. PMID:21572031

  14. Expression Analysis of Cytokine and Chemokine Genes during the Natural Course of Murine Experimental Autoimmune Uveoretinitis

    PubMed Central

    Hashida, Noriyasu; Ohguro, Nobuyuki; Nishida, Kohji

    2012-01-01

    C57BL/6 mice were immunized with human interphotoreceptor retinoid-binding protein peptides to induce experimental autoimmune uveoretinitis (EAU). From the day of immunization to 30 days later, RNA was isolated daily from the mouse eyes. Dynamic changes in gene expression during the pathogenesis of EAU were analyzed by TaqMan gene expression assay that contained most chemokines/cytokines and their receptors, and signal transducer and activator of transcription (STAT) family genes, using beta-actin as the endogenous control. Gene clusters based on their expression profiles were analyzed to determine the candidate genes for the pathogenesis of inflammation. Hierarchical cluster analysis showed gene expression during EAU development in seven clustering patterns. Hierarchical cluster analysis also identified four distinct phases in daily expression: entrance, acceleration, deceleration, and remission. Gene expression changes in the EAU active phase showed synergetic upregulation of Th1-type genes (IFN-gamma and CXCL10/IP-10) with elevated Th2-type genes (CCL17/TARC and IL-5). Sequential expression changes of STAT1, STAT6, and STAT3 genes represented the dynamic changes of Th1, Th2, and Th17-type inflammatory genes, respectively. The expression pattern of STAT1 was representative of many gene movements. Our results suggested that coordinated action of Th1, Th2, and Th17 genes and STAT family genes are involved in EAU development and resolution. PMID:24049648

  15. Experimental Demyelination and Remyelination of Murine Spinal Cord by Focal Injection of Lysolecithin

    PubMed Central

    Keough, Michael B.; Jensen, Samuel K.; Yong, V. Wee

    2015-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system characterized by plaque formation containing lost oligodendrocytes, myelin, axons, and neurons. Remyelination is an endogenous repair mechanism whereby new myelin is produced subsequent to proliferation, recruitment, and differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes, and is necessary to protect axons from further damage. Currently, all therapeutics for the treatment of multiple sclerosis target the aberrant immune component of the disease, which reduce inflammatory relapses but do not prevent progression to irreversible neurological decline. It is therefore imperative that remyelination-promoting strategies be developed which may delay disease progression and perhaps reverse neurological symptoms. Several animal models of demyelination exist, including experimental autoimmune encephalomyelitis and curprizone; however, there are limitations in their use for studying remyelination. A more robust approach is the focal injection of toxins into the central nervous system, including the detergent lysolecithin into the spinal cord white matter of rodents. In this protocol, we demonstrate that the surgical procedure involved in injecting lysolecithin into the ventral white matter of mice is fast, cost-effective, and requires no additional materials than those commercially available. This procedure is important not only for studying the normal events involved in the remyelination process, but also as a pre-clinical tool for screening candidate remyelination-promoting therapeutics. PMID:25867716

  16. Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis.

    PubMed

    Owais, M; Sharad, K S; Shehbaz, A; Saleemuddin, M

    2005-03-01

    In the present study, we evaluated the antibacterial activity of ashwagandha [Withania somnifera L. Dunal (Solanaceae; root and leaves)], an Indian traditional medicinal plant against pathogenic bacteria. Both aqueous as well as alcoholic extracts of the plant (root as well as leaves) were found to possess strong antibacterial activity against a range of bacteria, as revealed by in vitro Agar Well Diffusion Method. The methanolic extract was further subfractionated using various solvents and the butanolic sub-fraction was found to possess maximum inhibitory activity against a spectrum of bacteria including Salmonella typhimurium. Moreover, in contrast to the synthetic antibiotic (viz. chloramphenicol), these extracts did not induce lysis on incubation with human erythrocytes, advocating their safety to the living cells. Finally, the antibacterial efficacy of the extracts isolated from plant (both root and leaves) was determined against experimental salmonellosis in Balb/C mice. Oral administration of the aqueous extracts successfully obliterated salmonella infection in Balb/C mice as revealed by increased survival rate as well as less bacterial load in various vital organs of the treated animals.

  17. Influences of aortic motion and curvature on vessel expansion in murine experimental aneurysms

    PubMed Central

    Goergen, Craig J.; Azuma, Junya; Barr, Kyla N.; Magdefessel, Lars; Kallop, Dara Y.; Gogineni, Alvin; Grewall, Amarjeet; Weimer, Robby M.; Connolly, Andrew J.; Dalman, Ronald L.; Taylor, Charles A.; Tsao, Philip S.; Greve, Joan M.

    2010-01-01

    Objective The purpose of this study was to quantitatively compare aortic curvature and motion to resulting aneurysm location, direction of expansion, and pathophysiology in experimental abdominal aortic aneurysms (AAAs). Methods and Results Magnetic resonance imaging was performed at 4.7T with: 1) a 3D acquisition for vessel geometry and 2) a 2D cardiac-gated acquisition to quantify luminal motion. Male 24-week-old mice were imaged before and after AAA formation induced by angiotensin II (AngII)-filled osmotic pump implantation or infusion of elastase. AngII-induced AAAs formed near the location of maximum abdominal aortic curvature, and the leftward direction of expansion was correlated with the direction of suprarenal aortic motion. Elastase-induced AAAs formed in a region of low vessel curvature and had no repeatable direction of expansion. AngII significantly increased mean blood pressure (22.7mmHg; p<0.05), while both models showed a significant two-fold decrease in aortic cyclic strain (p<0.05). Differences in patterns of elastin degradation and localization of fluorescent signal from protease-activated probes were also observed. Conclusions The direction of AngII aneurysm expansion correlated with the direction of motion, medial elastin dissection, and adventitial remodeling. Anterior infrarenal aortic motion correlated with medial elastin degradation in elastase-induced aneurysms. Results from both models suggest a relationship between aneurysm pathology and aortic geometry and motion. PMID:21071686

  18. Platelet Induction of the Acute Phase Response Is Protective in Murine Experimental Cerebral Malaria

    PubMed Central

    Aggrey, Angela A.; Srivastava, Kalyan; Field, David J.; Morrell, Craig N.

    2013-01-01

    Platelets are most recognized as the cellular mediator of thrombosis, but they are increasingly appreciated for their immunomodulatory roles, including responses to Plasmodium infection. Platelet interactions with endothelial cells and leukocytes contribute significantly to the pathogenesis of experimental cerebral malaria (ECM). Recently it has been suggested that platelets not only have an adverse role in cerebral malaria, but platelets may also be protective in animal models of uncomplicated malaria. We now demonstrate that these diverse and seemingly contradictory roles for platelets extend to cerebral malaria models and are dependent on the timing of platelet activation during infection. Our data shows that platelets are activated very early in ECM and have a central role in initiation of the acute phase response to blood stage infection. Unlike platelet depletion or inhibition post infection, pre-infection platelet depletion or treatment with a platelet inhibitor is not protective. Additionally, we show that platelet driven acute phase responses have a major role in protecting mice from ECM by limiting parasite growth. Our data now suggests that platelets have a complex role in ECM pathogenesis: platelets help limit parasite growth early post infection, but with continued platelet activation as the disease progresses, platelets contribute to ECM associated inflammation. PMID:23536632

  19. Mechanisms of reduction of tumor recurrence with carbon dioxide laser in experimental mammary tumors.

    PubMed

    Lanzafame, R J; McCormack, C J; Rogers, D W; Naim, J O; Herrera, H R; Hinshaw, J R

    1988-12-01

    This study compares local tumor recurrence after low energy CO2 laser wound sterilization with recurrence after scalpel, laser or electrocautery excision. Wound histologic changes were studied to understand the mechanism of the interaction between the laser and wound. Single implants of R3230AC mammary tumor were grown to an average diameter of 24 millimeters in the mammary ridge of 80 female fisher 344 rats. Rats were anesthesized with pentobarbital and randomized into groups, each with similar tumor size: scalpel (S), laser (L), laser with wound sterilization (LV), scalpel with sterilization (SV) and electrocautery (E). All surgical procedures were performed by the same surgeon with the same technique, with the exception of the instruments used. Tow rats from each group were sacrificed immediately and the wounds examined histologically. The Sharplan 1100 CO2 laser was used with a 125 millimeter hand piece in focus and in continuous wave for groups L and LV. Sterilization in groups LV and SV was performed with 5 millimeter spot size by heating the site gently without causing blanching of tissue. Excision in group E was performed with coagulating current from a monopolar cautery (Valley Lab). Rats were examined periodically for 30 days and those dying during this period were excluded from analysis. The incidence of wound recurrence was eight of 12 in group S; five of eight, L; four of 13, E; three of 12, LV, and two of nine, SV (p less than 0 .05). Histologic changes in the wound demonstrated viable tumor in all groups, with fewer areas present in groups E, SV and LV. Local thermal effects and the noncontact nature of the CO2 laser make it an effective adjunct in reducing local tumor recurrence by enhancing the cytoreductive capability of surgical procedures.

  20. Studies on the mechanisms responsible for inhibition of experimental metastasis of B16-F10 murine melanoma by pentoxifylline.

    PubMed

    Gude, R P; Binda, M M; Presas, H L; Klein-Szanto, A J; Bonfil, R D

    1999-01-01

    Pentoxifylline (PTX), a methylxanthine derivative widely used as a hemorheological agent in the treatment of peripheral vascular disease, was studied to unveil the mechanisms responsible for its inhibitory action on B16-F10 experimental metastasis. In vitro pretreatment of B16-F10 cells with noncytotoxic concentrations of PTX significantly inhibited their adhesion to reconstituted basement membrane Matrigel(R) and type IV collagen as well as the relative activity of secreted 92 kD metalloproteinase. However, PTX pretreatment of B16-F10 cells did not affect their in vitro invasiveness. Heterotypic organ adhesion assays carried out with B16-F10 cells and suspended organ tissues demonstrated that pretreatment with noncytotoxic concentrations of PTX of both, tumor cells or lung tissue, brought about a dose-dependent inhibition of melanoma cell adhesion to lung. Immunohistochemical studies using antibodies against CD31 adhesion molecule (PECAM-1) revealed that B16-F10 cells adhere to lung endothelial cells. Our results suggest that PTX may exert its inhibitory effect on tumor lodgment, and as a consequence of that on experimental metastases, through an inhibitory action on cell adhesion molecules.

  1. Disseminated growth of murine plasmacytoma: similarities to multiple myeloma.

    PubMed

    Roschke, V; Hausner, P; Kopantzev, E; Pumphrey, J G; Riminucci, M; Hilbert, D M; Rudikoff, S

    1998-02-01

    Murine plasma cell tumors share a number of common features with human multiple myeloma, suggesting their possible use as a model for this disease. However, one major difference between the two is the peritoneal localization of murine tumors as opposed to bone marrow residence of malignant plasma cells in early stages of multiple myeloma. We have thus examined the ability of murine plasmacytoma to produce disseminated growth similar to that seen in myeloma or other lymphoid neoplasias. Of four murine cell lines evaluated, all were demonstrated to effect highly metastatic disease involving multiple organs, although variation was observed between lines. A temporal analysis was accordingly performed with the S107 line to assess the pattern of cellular localization. Both light microscopy and PCR analysis revealed that engraftment of plasma cells occurs first in the bone marrow, followed by dissemination to other sites including the spleen, lung, and liver. Cells passaged in vivo through the bone marrow display an entirely different metastatic pattern with no homing preference to bone marrow or any other organ, suggesting the occurrence of a phenotypic change. Microscopic osteolytic lesions were observed adjacent to plasma cell tumor masses in the bone marrow, indicating early stages of bone disease. These findings demonstrate previously unrecognized similarities between the murine and human diseases and suggest the use of this in vivo model for experimental approaches to the treatment of human disease.

  2. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  3. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma

    PubMed Central

    Wrobel, Ludovic Jean; Bod, Lloyd; Lengagne, Renée; Kato, Masashi

    2016-01-01

    In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells. PMID:27788481

  4. Effects of Different Electroacupuncture Scheduling Regimens on Murine Bone Tumor-Induced Hyperalgesia: Sex Differences and Role of Inflammation

    PubMed Central

    Smeester, Branden A.; Al-Gizawiy, Mona; Beitz, Alvin J.

    2012-01-01

    Previous studies have shown that electroacupuncture (EA) is able to reduce hyperalgesia in rodent models of persistent pain, but very little is known about the analgesic effects and potential sex differences of different EA treatment regimens. In the present study, we examined the effects of five different EA treatments on tumor-induced hyperalgesia in male and female mice. EA applied to the ST-36 acupoint either twice weekly (EA-2X/3) beginning on postimplantation day (PID) 3 or prophylactically three times prior to implantation produced the most robust and longest lasting antinociceptive effects. EA treatment given once per week beginning at PID 7 only produced an antinociceptive effect in female animals. The analgesic effect of EA-2X/3 began earlier in males, but lasted longer in females indicating sex differences in EA. We further demonstrate that EA-2X/3 elicits a marked decrease in tumor-associated inflammation as evidenced by a significant reduction in tumor-associated neutrophils at PID 7. Moreover, EA-2X/3 produced a significant reduction in tumor-associated PGE2 as measured in microperfusate samples. Collectively, these data provide evidence that EA-2X/3 treatment reduces tumor-induced hyperalgesia, which is associated with a decrease in tumor-associated inflammation and PGE2 concentration at the tumor site suggesting possible mechanisms by which EA reduces tumor nociception. PMID:23320035

  5. Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma.

    PubMed

    Malvicini, Mariana; Fiore, Esteban; Ghiaccio, Valentina; Piccioni, Flavia; Rizzo, Miguel; Olmedo Bonadeo, Lucila; García, Mariana; Rodríguez, Marcelo; Bayo, Juan; Peixoto, Estanislao; Atorrasagasti, Catalina; Alaniz, Laura; Aquino, Jorge; Matar, Pablo; Mazzolini, Guillermo

    2015-09-01

    We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy.

  6. Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma

    PubMed Central

    Malvicini, Mariana; Fiore, Esteban; Ghiaccio, Valentina; Piccioni, Flavia; Rizzo, Miguel; Olmedo Bonadeo, Lucila; García, Mariana; Rodríguez, Marcelo; Bayo, Juan; Peixoto, Estanislao; Atorrasagasti, Catalina; Alaniz, Laura; Aquino, Jorge; Matar, Pablo; Mazzolini, Guillermo

    2015-01-01

    We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy. PMID:26105158

  7. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  8. Supplementation by vitamin D compounds does not affect colonic tumor development in vitamin D sufficient murine models

    PubMed Central

    Irving, Amy A.; Halberg, Richard B.; Albrecht, Dawn M.; Plum, Lori A.; Krentz, Kathleen J.; Clipson, Linda; Drinkwater, Norman; Amos-Landgraf, James M.; Dove, William F.; DeLuca, Hector F.

    2012-01-01

    Epidemiological studies indicate that sunlight exposure and vitamin D are each associated with a lower risk of colon cancer. The few controlled supplementation trials testing vitamin D in humans reported to date show conflicting results. We have used two genetic models of familial colon cancer, the ApcPirc/+ (Pirc) rat and the ApcMin/+ (Min) mouse, to investigate the effect of 25-hydroxyvitamin D3 [25(OH)D3] and two analogs of vitamin D hormone on colonic tumors. Longitudinal endoscopic monitoring allowed us to test the efficacy of these compounds in preventing newly arising colonic tumors and in affecting established colonic tumors. 25(OH)D3 and two analogs of vitamin D hormone each failed to reduce tumor multiplicities or alter the growth patterns of colonic tumors in the Pirc rat or the Min mouse. PMID:21907701

  9. Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection.

    PubMed

    Banerjee, Soumya; Guedj, Jeremie; Ribeiro, Ruy M; Moses, Melanie; Perelson, Alan S

    2016-04-01

    West Nile virus (WNV) is an emerging pathogen that has decimated bird populations and caused severe outbreaks of viral encephalitis in humans. Currently, little is known about the within-host viral kinetics of WNV during infection. We developed mathematical models to describe viral replication, spread and host immune response in wild-type and immunocompromised mice. Our approach fits a target cell-limited model to viremia data from immunocompromised knockout mice and an adaptive immune response model to data from wild-type mice. Using this approach, we first estimate parameters governing viral production and viral spread in the host using simple models without immune responses. We then use these parameters in a more complex immune response model to characterize the dynamics of the humoral immune response. Despite substantial uncertainty in input parameters, our analysis generates relatively precise estimates of important viral characteristics that are composed of nonlinear combinations of model parameters: we estimate the mean within-host basic reproductive number,R0, to be 2.3 (95% of values in the range 1.7-2.9); the mean infectious virion burst size to be 2.9 plaque-forming units (95% of values in the range 1.7-4.7); and the average number of cells infected per infectious virion to be between 0.3 and 0.99. Our analysis gives mechanistic insights into the dynamics of WNV infection and produces estimates of viral characteristics that are difficult to measure experimentally. These models are a first step towards a quantitative understanding of the timing and effectiveness of the humoral immune response in reducing host viremia and consequently the epidemic spread of WNV.

  10. Efficacy of Lychnopholide Polymeric Nanocapsules after Oral and Intravenous Administration in Murine Experimental Chagas Disease.

    PubMed

    de Mello, Carlos Geraldo Campos; Branquinho, Renata Tupinambá; Oliveira, Maykon Tavares; Milagre, Matheus Marques; Saúde-Guimarães, Dênia Antunes; Mosqueira, Vanessa Carla Furtado; Lana, Marta de

    2016-09-01

    The etiological treatment of Chagas disease remains neglected. The compounds available show several limitations, mainly during the chronic phase. Lychnopholide encapsulated in polymeric nanocapsules (LYC-NC) was efficacious in mice infected with Trypanosoma cruzi and treated by intravenous administration during the acute phase (AP). As the oral route is preferred for treatment of chronic infections, such as Chagas disease, this study evaluated the use of oral LYC-NC in the AP and also compared it with LYC-NC administered to mice by the oral and intravenous routes during the chronic phase (CP). The therapeutic efficacy was evaluated by fresh blood examination, hemoculture, PCR, and enzyme-linked immunosorbent assay (ELISA). The cure rates in the AP and CP were 62.5% and 55.6%, respectively, upon oral administration of LYC-poly(d,l-lactide)-polyethylene glycol nanocapsules (LYC-PLA-PEG-NC) and 57.0% and 30.0%, respectively, with LYC-poly-ε-caprolactone nanocapsules (LYC-PCL-NC). These cure rates were significantly higher than that of free LYC, which did not cure any animals. LYC-NC formulations administered orally during the AP showed cure rates similar to that of benznidazole, but only LYC-NC cured mice in the CP. Similar results were achieved with intravenous treatment during the CP. The higher cure rates obtained with LYC loaded in PLA-PEG-NC may be due to the smaller particle size of these NC and the presence of PEG, which influence tissue diffusion and the controlled release of LYC. Furthermore, PLA-PEG-NC may improve the stability of the drug in the gastrointestinal tract. This work is the first report of cure of experimental Chagas disease via oral administration during the CP. These findings represent a new and important perspective for oral treatment of Chagas disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Efficacy of Lychnopholide Polymeric Nanocapsules after Oral and Intravenous Administration in Murine Experimental Chagas Disease

    PubMed Central

    de Mello, Carlos Geraldo Campos; Branquinho, Renata Tupinambá; Oliveira, Maykon Tavares; Milagre, Matheus Marques; Saúde-Guimarães, Dênia Antunes; Mosqueira, Vanessa Carla Furtado

    2016-01-01

    The etiological treatment of Chagas disease remains neglected. The compounds available show several limitations, mainly during the chronic phase. Lychnopholide encapsulated in polymeric nanocapsules (LYC-NC) was efficacious in mice infected with Trypanosoma cruzi and treated by intravenous administration during the acute phase (AP). As the oral route is preferred for treatment of chronic infections, such as Chagas disease, this study evaluated the use of oral LYC-NC in the AP and also compared it with LYC-NC administered to mice by the oral and intravenous routes during the chronic phase (CP). The therapeutic efficacy was evaluated by fresh blood examination, hemoculture, PCR, and enzyme-linked immunosorbent assay (ELISA). The cure rates in the AP and CP were 62.5% and 55.6%, respectively, upon oral administration of LYC–poly(d,l-lactide)–polyethylene glycol nanocapsules (LYC-PLA-PEG-NC) and 57.0% and 30.0%, respectively, with LYC–poly-ε-caprolactone nanocapsules (LYC-PCL-NC). These cure rates were significantly higher than that of free LYC, which did not cure any animals. LYC-NC formulations administered orally during the AP showed cure rates similar to that of benznidazole, but only LYC-NC cured mice in the CP. Similar results were achieved with intravenous treatment during the CP. The higher cure rates obtained with LYC loaded in PLA-PEG-NC may be due to the smaller particle size of these NC and the presence of PEG, which influence tissue diffusion and the controlled release of LYC. Furthermore, PLA-PEG-NC may improve the stability of the drug in the gastrointestinal tract. This work is the first report of cure of experimental Chagas disease via oral administration during the CP. These findings represent a new and important perspective for oral treatment of Chagas disease. PMID:27324760

  12. Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes.

    PubMed Central

    Shelly, K; Feakes, D A; Hawthorne, M F; Schmidt, P G; Krisch, T A; Bauer, W F

    1992-01-01

    The successful treatment of cancer by boron neutron-capture therapy (BNCT) requires the selective concentration of boron-10 within malignant tumors. The potential of liposomes to deliver boron-rich compounds to tumors has been assessed by the examination of the biodistribution of boron delivered by liposomes in tumor-bearing mice. Small unilamellar vesicles with mean diameters of 70 nm or less, composed of a pure synthetic phospholipid (distearoyl phosphatidylcholine) and cholesterol, have been found to stably encapsulate high concentrations of water-soluble ionic boron compounds. The hydrolytically stable borane anions B10H10(2-), B12H11SH2-, B20H17OH4-, B20H19(3-), and the normal form and photoisomer of B20H18(2-) were encapsulated in liposomes as their soluble sodium salts. The tissue concentration of boron in tumor-bearing mice was measured at several time points over 48 h after i.v. injection of emulsions of liposomes containing the borane anions. Although the boron compounds used do not exhibit an affinity for tumors and are normally rapidly cleared from the body, liposomes were observed to selectively deliver the borane anions to tumors. The highest tumor concentrations achieved reached the therapeutic range (greater than 15 micrograms of boron per g of tumor) while maintaining high tumor-boron/blood-boron ratios (greater than 3). The most favorable results were obtained with the two isomers of B20H18(2-). These boron compounds have the capability to react with intracellular components after they have been deposited within tumor cells by the liposome, thereby preventing the borane ion from being released into blood. PMID:1409600

  13. A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth

    PubMed Central

    Wen, Frank T.; Thisted, Ronald A.; Rowley, Donald A.; Schreiber, Hans

    2012-01-01

    We conducted a systematic analysis to determine the reason for the apparent disparity of success of immunotherapy between clinical and experimental cancers. To do this, we performed a search of PubMed using the keywords “immunotherapy” AND “cancer” for the years of 1980 and 2010. The midspread of experimental tumors used in all the relevant literature published in 2010 were between 0.5–121 mm3 in volume or had grown for four to eight days. Few studies reported large tumors that could be considered representative of clinical tumors, in terms of size and duration of growth. The predominant effect of cancer immunotherapies was slowed or delayed outgrowth. Regression of tumors larger than 200 mm3 was observed only after passive antibody or adoptive T cell therapy. The effectiveness of other types of immunotherapy was generally scattered. By comparison, very few publications retrieved by the 1980 search could meet our selection criteria; all of these used tumors smaller than 100 mm3, and none reported regression. In the entire year of 2010, only 13 used tumors larger than 400 mm3, and nine of these reported tumor regression. Together, these results indicate that most recent studies, using many diverse approaches, still treat small tumors only to report slowed or delayed growth. Nevertheless, a few recent studies indicate effective therapy against large tumors when using passive antibody or adoptive T cell therapy. For the future, we aspire to witness the increased use of experimental studies treating tumors that model clinical cancers in terms of size and duration of growth. PMID:22720238

  14. Thiolated Recombinant Human Tumor Necrosis Factor-Alpha Protects against Plasmodium berghei K173-Induced Experimental Cerebral Malaria in Mice

    PubMed Central

    Postma, Nancy S.; Hermsen, Rob C.; Crommelin, Daan J. A.; Eling, Wijnand M. C.; Zuidema, Jan

    1999-01-01

    The introduction of reactive thiol groups in recombinant human tumor necrosis factor (TNF) alpha (rhTNF-α) by the reagent succinimidyl-S-acetylthioacetate resulted in the formation of a chemically stabilized rhTNF-α trimer (rhTNFα-AT; as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis). rhTNFα-AT showed a substantially enhanced protective efficacy against the development of experimental murine cerebral malaria (ECM) after intravenous injection compared to the protective efficacy of nonmodified rhTNF-α. Administration of thiolated rhTNF-α with protected thiol groups (rhTNFα-ATA; no stabilized trimers in vitro) exhibited the same protective efficacy against ECM, while in vitro bioactivity was reduced. Parasitemia was significantly suppressed in rhTNF-treated mice that were protected against ECM but not in treated mice that developed ECM. Protection against ECM was not related to increased concentrations in plasma of soluble TNF receptor 1 and 2 directly after injection or at the moment of development of ECM in nontreated mice. The results indicate that thiolation of rhTNF-α leads to the formation of stable trimers with increased potential in vivo. PMID:10223910

  15. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage.

    PubMed

    Bachmann, Malte; Waibler, Zoe; Pleli, Thomas; Pfeilschifter, Josef; Mühl, Heiko

    2017-01-01

    Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.

  16. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Liao, Wenbin; Pham, Victor; Liu, Linan; Riazifar, Milad; Pone, Egest J; Zhang, Shirley Xian; Ma, Fengxia; Lu, Mengrou; Walsh, Craig M.; Zhao, Weian

    2015-01-01

    Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewisx (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4+ T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders. PMID:26584349

  17. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation.

    PubMed

    Kuijk, Loes M; Klaver, Elsenoor J; Kooij, Gijs; van der Pol, Susanne M A; Heijnen, Priscilla; Bruijns, Sven C M; Kringel, Helene; Pinelli, Elena; Kraal, Georg; de Vries, Helga E; Dijkstra, Christine D; Bouma, Gerd; van Die, Irma

    2012-06-01

    The increased incidence of auto-inflammatory and autoimmune diseases in the developed countries seems to be caused by an imbalance of the immune system due to the lack of proper regulation. Helminth parasites are well known modulators of the immune system and as such are of great interest for the treatment of these disorders. Clinical studies showed that administration of eggs of the pig nematode Trichuris suis to patients with inflammatory bowel disease reduces the disease severity. Here we demonstrate that treatment with soluble products from the nematodes T. suis and Trichinella spiralis induces significant suppression of symptoms in murine experimental autoimmune encephalomyelitis, a validated animal model for multiple sclerosis. These data show that infection with live nematodes is not a prerequisite for suppression of inflammation. To translate these results to the human system, the effects of soluble products of T. suis, T. spiralis and Schistosoma mansoni on the phenotype and function of human dendritic cells (DCs) were compared. Our data show that soluble products of T. suis, S. mansoni and T. spiralis suppress TNF-α and IL-12 secretion by TLR-activated human DCs, and that T. suis and S. mansoni, but not T. spiralis, strongly enhance expression of OX40L. Furthermore, helminth-primed human DCs differentially suppress the development of Th1 and/or Th17 cells. In conclusion, our data demonstrate that soluble helminth products have strong immunomodulatory capacities, but might exert their effects through different mechanisms. The suppressed secretion of pro-inflammatory cytokines together with an upregulation of OX40L expression on human DCs might contribute to achieve this modulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8(+) T cells.

    PubMed

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8(+) T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8(+) T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1(+) CD8(+) T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8(+) T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8(+) T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8(+) T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models.

    PubMed

    Jang, Julie K; Khawli, Leslie A; Canter, David C; Hu, Peisheng; Zhu, Tian H; Wu, Brian W; Angell, Trevor E; Li, Zhongjun; Epstein, Alan L

    2016-05-01

    CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.

  20. Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    PubMed Central

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-01-01

    Background Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A2 (PLA2), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. Methodology/Principal Findings We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. Conclusion/Significance In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion. PMID:20856806

  1. Experimental models for the study of drug resistance in osteosarcoma: P-glycoprotein-positive, murine osteosarcoma cell lines.

    PubMed

    Takeshita, H; Gebhardt, M C; Springfield, D S; Kusuzaki, K; Mankin, H J

    1996-03-01

    P-glycoprotein is an adenosine triphosphate-dependent drug-efflux pump that extrudes drugs from cells and causes drug-resistance. P-glycoprotein is believed to mediate drug-resistance in a wide variety of tumors. In this study, we developed two P-glycoprotein-positive, murine osteosarcoma cell lines that were resistant to Adriamycin (doxorubicin) (MOS/ADR1 and MOS/ADR2). We created the cell lines by short-term pulse exposures of the parent cell line to Adriamycin followed by single-cell cloning. The MOS/ADR1 and MOS/ADR2 cells were sevenfold and eighteenfold more resistant to Adriamycin than the cells from the parent line. Expression of P-glycoprotein, as examined with an immunofluorescence method, was detected in most of the MOS/ADR1 and MOS/ADR2 cells but not in the parent cells. After the cells had been incubated with Adriamycin for one hour, there was less accumulation of the drug in the resistant cell lines than in the parent cell line. The reduced accumulation was due to the increased efflux of Adriamycin. The Adriamycin-resistant cell lines demonstrated greater alkaline phosphatase activity than the parent cell line and produced more differentiated osteoblastic sarcomas in mice. Dose survival studies with use of a tetrazolium colorimetric assay showed that the MOS/ADR1 cells were cross-resistant to vincristine, vinblastine, etoposide, bleomycin, mitomycin C, and actinomycin D but not to dacarbazine, cisplatin, carboplatin, cytosine arabinoside, carmustine, cyclophosphamide, ifosfamide, methotrexate, and 5-fluorouracil. Although the MOS/ADR2 cells exhibited a similar spectrum of cross-resistance, they were more resistant than the MOS/ADR1 cells. We also tested the effect of three different resistance-modifying agents on the reversal of resistance to Adriamycin. We found that verapamil and trifluoperazine substantially reversed resistance to Adriamycin in the P-glycoprotein positive cell lines, whereas cyclosporin A was relatively ineffective. Because these

  2. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells.

    PubMed

    Braun, S E; Chen, K; Foster, R G; Kim, C H; Hromas, R; Kaplan, M H; Broxmeyer, H E; Cornetta, K

    2000-04-15

    CK beta-11 chemoattracts T cells, B cells, dendritic cells, macrophage progenitors, and NK cells and facilitates dendritic cell and T cell interactions in secondary lymphoid tissues. We hypothesized that expression of CK beta-11 in tumor cells may generate antitumor immunity through these interactions. After transduction with the retroviral vector L(CK beta 11)SN, the murine breast cancer cell line C3L5 (C3L5-CK beta 11) showed expression of retroviral mRNA by Northern analysis and production of functional CK beta-11 by chemotaxis of human NK cells to C3L5-CK beta 11 supernatant. Only 10% of mice injected with C3L5-CK beta 11 developed tumors, compared with 100% of mice injected with a transduced control C3L5 line (C3L5-G1N). Importantly, the in vitro growth characteristics of the CK beta-11-transduced cell line were unaffected, suggesting the difference in growth in vivo was a result of chemokine production. Vaccination with C3L5-CK beta 11 partially protected animals from parental C3L5 challenge. Immunodepletion with anti-asialo-GM1 or anti-CD4 during C3L5-CK beta 11 vaccination significantly reduced CK beta-11 antitumor activity compared with control and anti-CD8-treated groups. Splenocytes from NK-depleted animals transferred the acquired immunity generated with C3L5-CK beta 11 vaccination, while splenocytes from the CD4-depleted animals did not. These results indicate, for the first time, that expression of CK beta-11 in a breast cancer cell line mediates rejection of the transduced tumor through a mechanism involving NK and CD4+ cells. Furthermore, CK beta-11-transduced tumor cells generate long-term antitumor immunity that requires CD4+ cells. These studies demonstrate the potential role of CK beta-11 as an adjuvant in stimulating antitumor responses.

  3. Targeting the PI3K/mTOR pathway in murine endocrine cell lines: in vitro and in vivo effects on tumor cell growth.

    PubMed

    Couderc, Christophe; Poncet, Gilles; Villaume, Karine; Blanc, Martine; Gadot, Nicolas; Walter, Thomas; Lepinasse, Florian; Hervieu, Valérie; Cordier-Bussat, Martine; Scoazec, Jean-Yves; Roche, Colette

    2011-01-01

    The mammalian target of rapamycin (mTOR) inhibitors, such as rapalogues, are a promising new tool for the treatment of metastatic gastroenteropancreatic endocrine tumors. However, their mechanisms of action remain to be established. We used two murine intestinal endocrine tumoral cell lines, STC-1 and GLUTag, to evaluate the antitumor effects of rapamycin in vitro and in vivo in a preclinical model of liver endocrine metastases. In vitro, rapamycin inhibited the proliferation of cells in the basal state and after stimulation by insulin-like growth factor-1. Simultaneously, p70S6 kinase and 4EBP1 phosphorylation was inhibited. In vivo, rapamycin substantially inhibited the intrahepatic growth of STC-1 cells, irrespectively of the timing of its administration and even when the treatment was administered after cell intrahepatic engraftment. In addition, treated animals had significantly prolonged survival (mean survival time: 47.7 days in treated animals versus 31.8 days in controls) and better clinical status. Rapamycin treatment was associated with a significant decrease in mitotic index and in intratumoral vascular density within STC-1 tumors. Furthermore, the antitumoral effect obtained after treatment with a combination of rapamycin and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 was more significant than with rapamycin alone in both cell lines. Our results suggest that the antitumor efficacy of rapamycin in neuroendocrine tumors results from a combination of antiproliferative and antiangiogenic effects. Interestingly, a more potent antitumor efficiency could be obtained by simultaneously targeting several levels of the PI3K/mTOR pathway. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects

    PubMed Central

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined. PMID:25909447

  5. Experimental Transmission of Bighorn Sheep Sinus Tumors to Bighorn Sheep (Ovis canadensis canadensis) and Domestic Sheep.

    PubMed

    Fox, K A; Wootton, S; Marolf, A; Rouse, N; LeVan, I; Spraker, T; Miller, M; Quackenbush, S

    2016-11-01

    Bighorn sheep sinus tumors are a recently described disease affecting the paranasal sinuses of Rocky Mountain bighorn sheep (Ovis canadensis canadensis). Several features of this disease suggest an infectious cause, although a specific etiologic agent has not been identified. To test the hypothesis that bighorn sheep sinus tumors are caused by an infectious agent, we inoculated 4 bighorn sheep lambs and 4 domestic sheep lambs intranasally with a cell-free filtrate derived from a naturally occurring bighorn sheep sinus tumor; we held 1 individual of each species as a control. Within 18 months after inoculation, all 4 inoculated domestic sheep (100%) and 1 of the 4 inoculated bighorn sheep (25%) developed tumors within the ethmoid sinuses or nasal conchae, with features similar to naturally occurring bighorn sheep sinus tumors. Neither of the uninoculated sheep developed tumors. Histologically, the experimentally transmitted tumors were composed of stellate to spindle cells embedded within a myxoid matrix, with marked bone production. Tumor cells stained positively with vimentin, S100, alpha smooth muscle actin, and osteocalcin, suggesting origin from a multipotent mesenchymal cell. A periosteal origin for these tumors is suspected. Immunohistochemical staining for the envelope protein of JSRV (with cross-reactivity to ENTV) was equivocal, and PCR assays specific for these agents were negative.

  6. Molecular changes in bone marrow, tumor and serum after conductive ablation of murine 4T1 breast carcinoma.

    PubMed

    Przybyla, Beata D; Shafirstein, Gal; Vishal, Sagar J; Dennis, Richard A; Griffin, Robert J

    2014-02-01

    Thermal ablation of solid tumors using conductive interstitial thermal therapy (CITT) produces coagulative necrosis in the center of ablation. Local changes in homeostasis for surviving tumor and systemic changes in circulation and distant organs must be understood and monitored in order to prevent tumor re-growth and metastasis. The purpose of this study was to use a mouse carcinoma model to evaluate molecular changes in the bone marrow and surviving tumor after CITT treatment by quantification of transcripts associated with cancer progression and hyperthermia, serum cytokines, stress proteins and the marrow/tumor cross-talk regulator stromal-derived factor 1. Analysis of 27 genes and 22 proteins with quantitative PCR, ELISA, immunoblotting and multiplex antibody assays revealed that the gene and protein expression in tissue and serum was significantly different between ablated and control mice. The transcripts of four genes (Cxcl12, Sele, Fgf2, Lifr) were significantly higher in the bone marrow of treated mice. Tumors surviving ablation showed significantly lower levels of the Lifr and Sele transcripts. Similarly, the majority of transcripts measured in tumors decreased with treatment. Surviving tumors also contained lower levels of SDF-1α and HIF-1α proteins whereas HSP27 and HSP70 were higher. Of 16 serum chemokines, IFNγ and GM-CSF levels were lower with treatment. These results indicate that CITT ablation causes molecular changes which may slow cancer cell proliferation. However, inhibition of HSP27 may be necessary to control aggressiveness of surviving cancer stem cells. The changes in bone marrow are suggestive of possible increased recruitment of circulatory cancer cells. Therefore, the possibility of heightened bone metastasis after thermal ablation needs to be further investigated and inhibition strategies developed, if warranted.

  7. Potent activity of soluble B7RP-1-Fc in therapy of murine tumors in syngeneic hosts.

    PubMed

    Ara, Gulshan; Baher, Angelo; Storm, Neal; Horan, Tom; Baikalov, Claudia; Brisan, Emil; Camacho, Reuben; Moore, Alison; Goldman, Hartt; Kohno, Tadahiko; Cattley, Russell C; Van, Gwyneth; Gaida, Kevin; Zhang, Ming; Whoriskey, John S; Fong, David; Yoshinaga, Steven K

    2003-02-10

    We have characterized a receptor:ligand pair, ICOS:B7RP-1, that is structurally and functionally related to CD28:B7.1/2. We reported previously that B7RP-1 costimulates T cell proliferation and immune responses (Yoshinaga et al., Nature 1999;402:827-32; Guo et al., J Immunol 2001;166:5578-84; Yoshinaga et al., Int Immunol 2000;12:1439-47). We report that B7RP-1-Fc causes rejection or growth inhibition of Meth A, SA-1 and EMT6 tumors in syngeneic mice. Established Meth A tumors were rejected effectively with a single dose of B7RP-1-Fc, however, the treatment was less effective on larger tumors. Mice that rejected Meth A tumors previously by Day 30, also rejected a subsequent Meth A challenge on Day 60, without additional B7RP-1-Fc treatment, indicating a long-lived memory response. Tumor cells believed to be less immunogenic, such as P815 and EL-4 cells, were less responsive to this treatment. The EL-4 responsiveness to the B7RP-1-Fc treatment was enhanced, however, by pre-treatment of the mice with cyclophosphamide. As expected, T cells appeared to be targeted by B7RP-1-Fc treatment. Thus, the administration of soluble B7RP-1-Fc may have therapeutic value in generating or enhancing anti-tumor activity in a clinical setting. Copyright 2002 Wiley-Liss, Inc.

  8. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain

    PubMed Central

    Khasabov, Sergey G.; Hamamoto, Darryl T.; Harding-Rose, Catherine; Simone, Donald A.

    2009-01-01

    Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize changes in response properties of nociceptive dorsal horn neurons following implantation of fibrosarcoma cells into and around the calcaneus bone, an established model of cancer pain. Extracellular electrophysiological recordings were made from wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons in mice with tumor-evoked hyperalgesia and control mice. WDR and HT neurons were examined for ongoing activity and responses to mechanical, heat, and cold stimuli applied to the plantar surface of the hind paw. Behavioral experiments showed that mice exhibited hyperalgesia to mechanical and heat stimuli applied to their tumor-bearing hind paw. WDR, but not HT, nociceptive dorsal horn neurons in tumor-bearing mice exhibited sensitization to mechanical, heat, and cold stimuli and may contribute to tumor-evoked hyperalgesia. Specifically, the proportion of WDR neurons that exhibited ongoing activity and their evoked discharge rates were greater in tumor-bearing than in control mice. In addition, WDR neurons exhibited lower response thresholds for mechanical and heat stimuli, and increased responses to suprathreshold mechanical, heat, and cold stimuli. Our findings show that sensitization of WDR neurons contribute to cancer pain and support the notion that the mechanisms underlying cancer pain differ from those that contribute to inflammatory and neuropathic pain. PMID:17935703

  9. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    PubMed

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  10. A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma

    PubMed Central

    Fang, Jinxu; Hu, Biliang; Li, Si; Zhang, Chupei; Liu, Yarong; Wang, Pin

    2016-01-01

    A therapeutically effective cancer vaccine must generate potent antitumor immune responses and be able to overcome tolerance mechanisms mediated by the progressing tumor itself. Previous studies showed that glycoprotein 100 (gp100), tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) are promising immunogens for melanoma immunotherapy. In this study, we administered these three melanoma-associated antigens via lentiviral vectors (termed LV-3Ag) and found that this multi-antigen vaccine strategy markedly increased functional T-cell infiltration into tumors and generated protective and therapeutic antitumor immunity. We also engineered a novel immunotoxin, αFAP-PE38, capable of targeting fibroblast activation protein (FAP)-expressing fibroblasts within the tumor stroma. When combined with αFAP-PE38, LV-3Ag exhibited greatly enhanced antitumor effects on tumor growth in an established B16 melanoma model. The mechanism of action underlying this combination treatment likely modulates the immune suppressive tumor microenvironment and, consequently, activates cytotoxic CD8+ T cells capable of specifically recognizing and destroying tumor cells. Taken together, these results provide a strong rationale for combining an immunotoxin with cancer vaccines for the treatment of patients with advanced cancer. PMID:27119119

  11. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    DTIC Science & Technology

    2015-12-01

    mature DCs. Immuno-fluorescent staining and flow cytometry have been performed to phenotype resulted DCs (Figure 1). Result showed that 89.3% of live... staining and flow cytometry. Live cells were gated and percentage of CD11c positive DCs was determined. B. DCs were gated, and mouse H2 (MHC) or CD86 (co...performed immunofluorescence staining and flow cytometry to access the composition in the tumor infiltrates (tumor microenvironment). Test of CD4 cells

  12. CD4⁺ T cells play a crucial role for lenalidomide in vivo anti-tumor activity in murine multiple myeloma.

    PubMed

    Zhang, Liang; Bi, Enguang; Hong, Sungyoul; Qian, Jianfei; Zheng, Chengyun; Wang, Michael; Yi, Qing

    2015-11-03

    Lenalidomide modulates the host immune response against myeloma via multiple actions. Although these effects have been elucidated in vitro, the central action of lenalidomide-mediated anti-myeloma immune response in vivo is not clear. To investigate its immune action in vivo, we selected the murine myeloma cell line 5TGM1, which is resistant to direct tumoricidal effects of lenalidomide in vitro and in immunodeficient mice, but sensitive to lenalidomide treatment in 5TGM1-bearing immunocompetent mice. Depletion of CD4+ T cells, but not NK cells, B cells, or CD8+ T cells, deprived lenalidomide of its therapeutic effects on 5TGM1-bearing immunocompetent mice. Lenalidomide significantly increased the numbers of IFN-γ-secreting CD4+ and CD8+ T cells but had no effects on NK cells and B cells in this mouse model. Lenalidomide slightly decreased the number of CD25+Foxp3+ T cells but increased perforin expression in CD8+ T cells in vivo. Using this mouse model for investigation of anti-tumor immune action of lenalidomide, we demonstrated that lenalidomide facilitated a type-1 anti-tumor immune response in vivo. The CD4+ T cell subset may play a critical role in the lenalidomide-mediated anti-myeloma immune response in vivo.

  13. Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results

    PubMed Central

    Quarles, C. Chad; Whisenant, Jennifer G.; Hanker, Ariella B.; McIntyre, J. Oliver; Sanchez, Violeta M.; Yankeelov, Thomas E.

    2016-01-01

    To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter Ktrans) and the extravascular extracellular volume fraction (ve) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in Ktrans (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in ve (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging method

  14. Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results.

    PubMed

    Sorace, Anna G; Quarles, C Chad; Whisenant, Jennifer G; Hanker, Ariella B; McIntyre, J Oliver; Sanchez, Violeta M; Yankeelov, Thomas E

    2016-01-01

    To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter K (trans) ) and the extravascular extracellular volume fraction (v e ) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in K (trans) (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in v e (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging

  15. BIODISTRIBUTION AND TARGETING POTENTIAL OF POLY(ETHYLENE GLYCOL)-MODIFIED GELATIN NANOPARTICLES IN SUBCUTANEOUS MURINE TUMOR MODEL

    PubMed Central

    KAUL, GOLDIE; AMIJI, MANSOOR

    2005-01-01

    Purpose In order to develop a safe and effective systemically-administered biodegradable nanoparticle delivery system for solid tumors, the comparative biodistribution profiles of gelatin and poly(ethylene-glycol)-modified (PEGylated) gelatin nanoparticles was examined in subcutaneous Lewis lung carcinoma (LLC)-bearing female C57BL/6J mice. Methods Type B gelatin and PEGylated gelatin nanoparticles were radiolabeled (125I) for the in vivo biodistribution studies after intravenous (i.v.) administration through the tail vein in LLC-bearing mice. At various time intervals, the mice were sacrificed and blood, tumor, and major organs harvested for analysis of radioactivity corresponding to the localization of the nanoparticles. Percent recovered dose was determined and normalized to the weight of the fluid or tissue sample. Non-compartmental pharmacokinetic analysis was performed to determine the long-circulating property and preferential tumor targeting potential of PEGylated gelatin nanoparticles in vivo. Results From the radioactivity in plasma and various organs collected, it was evident that the majority of PEGylated nanoparticles were present either in the blood pool or taken up by the tumor mass and liver. For instance, after 3 hours, the PEGylated gelatin nanoparticles were almost 2-fold higher in the blood pool than the control gelatin nanoparticles. PEGylated gelatin nanoparticles remained in the blood pool for a longer period of time due to the steric repulsion effect of the PEG chains as compared to the gelatin nanoparticles. In addition, approximately 4–5% of the recovered dose of PEGylated gelatin nanoparticles was present in the tumor mass for up to 12 hours. The plasma and the tumor half-lives, the mean residence time, and the area-under-the-curve of the PEGylated gelatin nanoparticles were significantly higher than those for the gelatin nanoparticles. Conclusions The results of this study show that PEGylated gelatin nanoparticles do possess long

  16. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model.

    PubMed

    Oghumu, Steve; Varikuti, Sanjay; Terrazas, Cesar; Kotov, Dmitri; Nasser, Mohd W; Powell, Catherine A; Ganju, Ramesh K; Satoskar, Abhay R

    2014-09-01

    Tumor associated macrophages play a vital role in determining the outcome of breast cancer. We investigated the contribution of the chemokine receptor CXCR3 to antitumor immune responses using a cxcr3 deficient mouse orthotopically injected with a PyMT breast cancer cell line. We observed that cxcr3 deficient mice displayed increased IL-4 production and M2 polarization in the tumors and spleens compared to WT mice injected with PyMT cells. This was accompanied by larger tumor development in cxcr3(-/-) than in WT mice. Further, tumor-promoting myeloid derived immune cell populations accumulated in higher proportions in the spleens of cxcr3 deficient mice. Interestingly, cxcr3(-/-) macrophages displayed a deficiency in up-regulating inducible nitric oxide synthase after stimulation by either IFN-γ or PyMT supernatants. Stimulation of bone marrow derived macrophages by PyMT supernatants also resulted in greater induction of arginase-1 in cxcr3(-/-) than WT mice. Further, cxcr3(-/-) T cells activated with CD3/CD28 in vitro produced greater amounts of IL-4 and IL-10 than T cells from WT mice. Our data suggests that a greater predisposition of cxcr3 deficient macrophages towards M2 polarization contributes to an enhanced tumor promoting environment in cxcr3 deficient mice. Although CXCR3 is known to be expressed on some macrophages, this is the first report that demonstrates a role for CXCR3 in macrophage polarization and subsequent breast tumor outcomes. Targeting CXCR3 could be a potential therapeutic approach in the management of breast cancer tumors.

  17. Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy.

    PubMed

    Guibal, Aymeric; Taillade, Laurent; Mulé, Sébastien; Comperat, Eva; Badachi, Yasmina; Golmard, Jean Louis; Le Guillou-Buffello, Delphine; Rixe, Olivier; Bridal, S Lori; Lucidarme, Olivier

    2010-02-01

    ) in the discontinued-treatment group after therapy ceased (day 22). Noninvasively measured contrast-enhanced US parameters demonstrated tumor revascularization after stopping antiangiogenic therapy in this murine tumor model. (c) RSNA, 2010.

  18. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  19. GK-1 peptide reduces tumor growth, decreases metastatic burden, and increases survival in a murine breast cancer model.

    PubMed

    Torres-García, D; Pérez-Torres, A; Manoutcharian, K; Orbe, U; Servín-Blanco, R; Fragoso, G; Sciutto, E

    2017-10-09

    GK-1 is a parasite-derived peptide adjuvant of 18 amino acid-length that enhances T-cell function and increases survival in B16-F10 melanoma tumor-bearing mice. This study was designed to evaluate in vivo the antitumor efficacy of GK-1 on 4T1 mouse mammary carcinoma. BALB/c mice with palpable primary tumors were weekly intravenously injected three times with saline solution or three different concentrations (10, 50, or 100μg per mouse) of GK-1. GK-1 significantly increased lifespan (p<0.0001) and reduced the primary tumor weight (p=0.014) and volume (p<0.0001) with respect to control mice, with no statistically significant differences among GK-1 doses. At the primary tumor, we found increased necrotic areas associated with a reduction in tumor mass, as well as an increase in the antitumor cytokine IL-12. Especially encouraging is the ability of GK-1 to reduce the number of lung metastasis (p=0.006) disregarding the dose used. The participation of IL-6 in metastasis development and the decreased levels of CCL-2, CCL-3, TNF-α, CXCL-9, GM-CSF, and b-FGF found in lungs of GK-1-treated mice is discussed. Our study supports the effectiveness of GK-1 as an antineoplastic agent that merits further exploration in combination with other therapeutic approaches in future translational studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sexual dimorphism of liver metastasis by murine pancreatic neuroendocrine tumors is affected by expression of complement C5.

    PubMed

    Contractor, Tanupriya; Kobayashi, Shinta; da Silva, Edaise; Clausen, Richard; Chan, Chang; Vosburgh, Evan; Tang, Laura H; Levine, Arnold J; Harris, Chris R

    2016-05-24

    In a mouse model for neuroendocrine tumors of the pancreas (PanNETs), liver metastasis occurred at a higher frequency in males. Male mice also had higher serum and intratumoral levels of the innate immunity protein complement C5. In mice that lost the ability to express complement C5, there was a lower frequency of metastasis, and males no longer had a higher frequency of metastasis than females. Treatment with PMX53, a small molecule antagonist of C5aR1/CD88, the receptor for complement C5a, also reduced metastasis. Mice lacking a functional gene for complement C5 had smaller primary tumors, which were less invasive and lacked the CD68+ macrophages that have previously been associated with metastasis in this type of tumor. This is the first report of a gene that causes sexual dimorphism of metastasis in a mouse model. In the human disease, which also shows sexual dimorphism for metastasis, clinically advanced tumors expressed more complement C5 than less advanced tumors.

  1. Effect of polychromatic visible light on proliferation of tumor cells under conditions in vitro and in vivo—after implantation to experimental animals

    NASA Astrophysics Data System (ADS)

    Knyazev, N. A.; Samoilova, K. A.; Filatova, N. A.; Galaktionova, A. A.

    2009-06-01

    The question of the character of effect of visible and near infrared (IR) radiation of Sun and artificial sources on growth of malignant tumors remains open due to controversy and a relatively small amount of available data, which restricts use of this most important environmental and the efficient physiotherapeutic factors at various human pathological states and first of all at the rehabilitation of oncological patients after radical methods of cancer treatment (surgical removal of tumor, intensive medication and radiation therapy), when immunomodulatory antiinflamatory, wound-healing and analgesic properties of visible and near IR light can be drawn. In the present work, using polychromatic visible light, close to this dominant component of the terrestrial solar radiation (380-750 nm, 40 mW/cm2) we irradiated tumor cells of the murine hepatoma (MH-22a line) under conditions in vitro (the monolayer of cells in Petri dishes) and in vivo (after subcutaneous implantation of these cells to mice of the C3HA line). A high resistance of the MH-22a cells to polychromatic visible radiation has been established under conditions in vitro: irradiation at dose 24 J/cm2 did not inhibit their proliferation whereas a dose of 9.6 J/cm2, stimulated statistically significantly proliferation of the cells (by 24-40%). However, stimulation of the tumor cell proliferation, did not develop under conditions in vivo, when mice were irradiated (9.6 J/cm2)—daily for 5 days before the implantation of tumor cells and for 5 days after implantation (in the latter case there was a probability of transcutaneous irradiation of tumor cells). By implanting to the animals of tumor cells at various concentrations (from 2ṡ105 to 25ṡ103 cells per mouse), we did not revealed at any of 10 terms of observations for 41-45 days both an increase of incidence of the tumor development and acceleration of tumor growth as well as a decrease of the animals survival as compared with group of non

  2. Experimental studies of combination of PDT and tumor chemotherapy or 60Co irradiation

    NASA Astrophysics Data System (ADS)

    Didziapetriene, Janina; Prasmickiene, Grazina; Sukeliene, Dalija; Rotomskis, Ricardas; Streckyte, Giedre; Atkocius, Vydmantas; Staciokiene, Laima; Smilgevicius, Valerijus

    1995-01-01

    We present experimental results obtained by combining photodynamic therapy (PDT) with tumor chemotherapy or radiotherapy. Dimethoxyhematoporphyrin (DMHp) and photosan (PS) were used as photosensitizers, pharanoxi and vincristine as antitumor drugs. The therapeutic effect of the combination of PDT and antitumor drugs (pharanoxi, vincristine) slightly increases as compared to the treatment of PDT or antitumor drug alone. The additive therapeutic effect is achieved under the combination of PDT and 60Co irradiation. It seems that the sensitizers DMHp and PS regulate lipid peroxidation in blood serum of experimental animals, which becomes more active under the influence of alkylating antitumor drugs. Therefore, they could protect an organism from negative influence of tumor chemotherapy.

  3. Immunotherapy of murine sarcomas with auto-anti-idiotypic monoclonal antibodies which bind to tumor-specific T cells.

    PubMed

    Nelson, K A; George, E; Swenson, C; Forstrom, J W; Hellström, K E

    1987-09-15

    Hybridomas producing monoclonal antibodies (mAb) were obtained from BALB/c mice immunized against either of two transplanted, chemically induced syngeneic sarcomas, MCA-1490 or MCA-1511. Two mAb, 4.72 and 5.96, were obtained, one from each immunization. They were found to have apparent anti-idiotypic specificity in that they, when injected s.c., primed naive BALB/c mice for delayed-type hypersensitivity that was specific for the immunizing tumor and required homology at genes linked to the Igh-1 allotype locus. Neither mAb bound tumor antigen. When mice with established transplants of MCA-1490 or MCA-1511 were treated by repeated i.p. injections of the appropriate anti-idiotypic mAb (4.72 and 5.96, respectively), a significant reduction in tumor growth was observed in those mice that had received the appropriate mAb. The idiotope defined by mAb 4.72 was expressed by T cells in mice responding to MCA-1490. mAb 4.72 bound to T cell suppressor factors that were specific for MCA-1490 and were derived from T cell hybridomas or sera of mice bearing MCA-1490. mAb 4.72 also bound to cells from lymph nodes draining the area of a growing MCA-1490 tumor. It was used, in combination with cell sorting, to establish a T cell line, which mediated delayed-type hypersensitivity to MCA-1490 and inhibited the outgrowth of MCA-1490 in BALB/c mice. Thus, mAb specific for idiotopes on T cells responding to syngeneic tumor antigen had both direct immunotherapeutic activity and could be used to establish cultures of tumor-reactive T cells.

  4. Targeted oncolytic herpes simplex virus type 1 eradicates experimental pancreatic tumors.

    PubMed

    Gayral, Marion; Lulka, Hubert; Hanoun, Naima; Biollay, Coline; Sèlves, Janick; Vignolle-Vidoni, Alix; Berthommé, Hervé; Trempat, Pascal; Epstein, Alberto L; Buscail, Louis; Béjot, Jean-Luc; Cordelier, Pierre

    2015-02-01

    As many other cancers, pancreatic ductal adenocarcinoma (PDAC) progression is associated with a series of hallmark changes for cancer cells to secure their own growth success. Yet, these very changes render cancer cells highly sensitive to viral infection. A promising strategy may rely on and exploit viral replication for tumor destruction, whereby infection of tumor cells by a replication-conditional virus may lead to cell destruction and simultaneous release of progeny particles that can spread and infect adjacent tumor cells, while sparing healthy tissues. In the present study, we used Myb34.5, a second-generation replication-conditional herpes simplex virus type 1 (HSV-1) mutant in which ICP6 gene expression is defective and expression of the HSV-1 γ134.5 gene is regulated by the cellular B-myb promoter. We found that B-myb is present in experimental PDAC and tumors, and is overexpressed in patients' tumors, as compared with normal adjacent pancreas. Myb34.5 replicates to high level in human PDAC cell lines and is associated with cell death by apoptosis. In experimental models of PDAC, mice receiving intratumoral Myb34.5 injections appeared healthy and tumor progression was inhibited, with evidence of tumor necrosis, hemorrhage, viral replication, and cancer cell death by apoptosis. Combining standard-of-care chemotherapy with Myb34.5 successfully led to a very impressive antitumoral effect that is rarely achieved in this experimental model, and resulted in a greater reduction in tumor growth than chemotherapy alone. These promising results warrant further evaluation in early phase clinical trial for patients diagnosed with PDAC for whom no effective treatment is available.

  5. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity.

    PubMed

    Guo, J; Wang, B; Zhang, M; Chen, T; Yu, Y; Regulier, E; Homann, H E; Qin, Z; Ju, D W; Cao, X

    2002-06-01

    Chemokine gene transfer represents a promising approach in the treatment of malignancies. Macrophage-derived chemokine (MDC) (CCL22) belongs to the CC chemokine family and is a strong chemoattractant for dendritic cells (DC), NK cells and T cells. Using adenoviral vectors, human MDC gene was transferred in vivo to investigate its efficacy to induce an antitumor response and to determine the immunologic mechanisms involved. We observed that intratumoral injection of recombinant adenovirus encoding human MDC (AdMDC) resulted in marked tumor regression in a murine model with pre-established subcutaneous 3LL lung carcinoma and induced significant CTL activity. The antitumor response was demonstrated to be CD4+ T cell- and CD8+ T cell-dependent. Administration of AdMDC induced chemoattraction of DC to the tumor site, facilitated DC migration to draining lymph nodes or spleen, and finally activated DC to produce high levels of IL-12. Furthermore, a significant increase of IL-4 production within the tumors was observed early after the AdMDC administration and was followed by the increase of IL-12 and IL-2 production. The levels of IL-2, IL-12 and IFN-gamma in serum, lymph nodes and spleen were also found to be higher in mice treated with AdMDC as compared with that in AdLacZ- or PBS-treated mice. The antitumor response induced by AdMDC was markedly impaired in IL-4 knockout mice, suggesting an important role of IL-4 in the induction of antitumor immunity by MDC. These results suggest that MDC gene transfer might elicit significant antitumor effects through efficient induction of antitumor immunity and might be of therapeutic potentials for cancer.

  6. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans.

  7. Therapeutic Anti-Tumor Vaccines: From Tumor Inhibition to Enhancement

    PubMed Central

    Chiarella, Paula; Reffo, Verónica; Bruzzo, Juan; Bustuoabad, Oscar D.; Ruggiero, Raúl A.

    2008-01-01

    Numerous immunization trials have proved successful in preventing the growth of experimental animal tumors and human hepatocarcinomas induced by hepatitis B virus. These results have prompted researchers and physicians to use vaccines in a therapeutic mode but the results have, in general, been disappointing even when strongly immunogenic murine tumors were concerned. Data presented herein suggest that immunotherapy induced by a single dose of a dendritic cell-based vaccine against a murine established tumor or against residual tumor cells after debulking the primary tumor, can render not only inhibitory or null but also stimulatory effects on tumor growth. These different effects might be dependent on where the system is located in the immune response curve that relates the quantity of the immune response to the quantity of target tumor cells. We suggest that high ratios render tumor inhibition, medium and very low ratios render null effects and low ratios—between medium and very low ones—render tumor stimulation. Since the magnitude of these ratios would depend on the antigenic profile of the tumor, the immunogenic strength of the vaccine used and the immunological state of the host, studies aimed to determine the magnitude of these variables in each particular case, seem to be necessary as a pre-condition to design rational immunotherapeutic approaches to cancer. In contrast, if these studies are neglected, the worst thing that an immunotherapist could face is not merely a null effect but enhancement of tumor growth. PMID:21892285

  8. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  9. Correlation of ultrasound contrast agent derived blood flow parameters with immunohistochemical angiogenesis markers in murine xenograft tumor models.

    PubMed

    Eisenbrey, John R; Wilson, Christian C; Ro, Raymond J; Fox, Traci B; Liu, Ji-Bin; Chiou, See-Ying; Forsberg, Flemming

    2013-09-01

    In this study we used temporal analysis of ultrasound contrast agent (UCA) estimate blood flow dynamics and demonstrate their improved correlation to angiogenesis markers relative to previously reported, non-temporal fractional vascularity estimates. Breast tumor (NMU) or glioma (C6) cells were implanted in either the abdomen or thigh of 144 rats. After 6, 8 or 10 days, rats received a bolus UCA injection of Optison (GE Healthcare, Princeton, NJ; 0.4 ml/kg) during power Doppler imaging (PDI), harmonic imaging (HI), and microflow imaging (MFI) using an Aplio ultrasound scanner with 7.5 MHz linear array (Toshiba America Medical Systems, Tustin, CA). Time-intensity curves of contrast wash-in were constructed on a pixel-by-pixel basis and averaged to calculate maximum intensity, time to peak, perfusion, and time integrated intensity (TII). Tumors were then stained for four immunohistochemical markers (bFGF, CD31, COX-2, and VEGF). Correlations between temporal parameters and the angiogenesis markers were investigated for each imaging mode. Effects of tumor model and implant location on these correlations were also investigated. Significant correlation over the entire dataset was only observed between TII and VEGF for all three imaging modes (R=-0.35, -0.54, -0.32 for PDI, HI and MFI, respectively; p<0.0001). Tumor type and location affected these correlations, with the strongest correlation of TII to VEGF found to be with implanted C6 cells (R=-0.43, -0.54, -0.52 for PDI, HI and MFI, respectively; p<0.0002). While UCA-derived temporal blood flow parameters were found to correlate strongly with VEGF expression, these correlations were also found to be influenced by both tumor type and implant location. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ethanol and aloe emodin alter the p53 mutational spectrum in ultraviolet radiation-induced murine skin tumors.

    PubMed

    Badgwell, Donna B; Walker, Christopher M; Baker, Whitney T; Strickland, Faith M

    2004-03-01

    Mutations in the p53 tumor-suppressor gene contribute to the development of skin cancer, and the spectrum of mutations in this gene correlates with specific physical and chemical carcinogens in the environment. Cosmetics may contain alcohols and/or aloe emodin (AE). Although these compounds are not carcinogenic when applied to the skin, they may increase the carcinogenicity of ultraviolet (UV) radiation. We investigated whether ethanol (EtOH) and AE alone or combined with UV radiation cause mutations in the p53 gene. In the absence of UV radiation, C3H/HeN mice chronically treated for up to 33 wk with AE in 25% EtOH-in-water vehicle or vehicle alone failed to develop tumors and had no mutations in exons 4-8 of the p53 gene. UV radiation alone induced skin tumors, which had mutations predominantly in p53 exons 5 and 8. In contrast, mutations arising in UV + EtOH-or UV + AE-treated groups were more broadly distributed throughout the p53 gene. Mutations were found in exons 4, 6, and 7, as well as in exons 5 and 8. This altered distribution of mutations across the p53 DNA sequence more closely resembles the pattern observed in TP53 from human skin tumors at sun-exposed sites than that in the p53 gene of mice treated with UV alone. Thus, treatment with UV radiation in combination with two chemicals not thought to be carcinogenic, alcohol, and AE results in a broader distribution of mutations in a critical tumor-suppressor gene.

  11. SIRT3 Is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis

    DTIC Science & Technology

    2012-09-01

    and determine if these targets are regulated by extracellular stimuli known to activate sirtuin function (e.g., resveratrol ). These targets will... resveratrol or overexpression of a MnSOD gene will prevent increases in ROS in MEFs and/or decrease the development of mammary tumors in Sirt3

  12. Intratesticular expression of mRNAs of both interferon γ and tumor necrosis factor α is significantly increased in experimental autoimmune orchitis in mice.

    PubMed

    Terayama, Hayato; Naito, Munekazu; Qu, Ning; Hirai, Shuichi; Kitaoka, Miyuki; Ogawa, Yuki; Itoh, Masahiro

    2011-04-01

    Experimental autoimmune orchitis (EAO) is one of the models of immunological male infertility. Murine EAO is CD4+T cell-dependent and classically induced by immunization with a testicular homogenate and adjuvants. We previously established that immunization with viable syngeneic testicular germ cells (TGC) can also induce murine EAO with no use of any adjuvant. Analyses of this EAO model have already revealed that cultured spleen cells of immunized mice secreted interferon (IFN)-γ and that treatment of the immunized mice with anti-IFN-γ monoclonal antibodies significantly suppressed the EAO. It is known that both IFN-γ and tumor necrosis factor (TNF)-α are representative cytokines of Th1 cells and exhibit local toxicity toward the seminiferous epithelium in vivo. However, changes in these two cytokines in EAO-affected testes have not yet been investigated. Therefore, in the present study, we investigated the expression of intratesticular IFN-γ and TNF- α mRNAs in TGC-induced EAO using real-time RT-PCR. The results demonstrated that the intratesticular mRNAs for both IFN-γ and TNF-α significantly increased, while other cytokines such as IL-1α, IL-1β, IL-6 and TGF-β did not show dramatic changes in the immunized mice. These results suggest that secretion of significant amounts of IFN-γ and TNF-α in situ contributes to the spermatogenic disturbance in EAO.

  13. Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model.

    PubMed

    Vincent, S; DePace, D; Finkelstein, S

    1988-02-01

    The distribution of anionic domains on the capillary endothelium of experimental brain tumors was determined using cationic ferritin (CF) in order to ascertain whether the pattern of these domains is different from that on normal cerebral capillaries. Tumors were induced by stereotaxic injection of cultured neoplastic glial cells, A15A5, into the caudate nucleus of Sprague-Dawley rats. Following a 14-21 day growth period tumors appeared as vascularized, sharply circumscribed masses which caused compression of the surrounding brain tissue. Anionic domains were distributed in a patchy and irregular pattern on the luminal plasma membrane of the endothelia of blood vessels in the tumors. Some variability in this pattern was observed infrequently in limited regions of the tumor where there was either a continuous layer of CF or an absence of CF binding. Plasmalemmal vesicles, coated vesicles, coated pits, multivesicular bodies, and some junctional complexes showed varying degrees of labeling with the probe. Capillaries in the tumor periphery and normal cerebral vessels showed a uniform distribution of anionic groups. These results indicate that there is an altered surface charge on the endothelial luminal plasma membrane of blood vessels in brain tumors. A correlation may exist between the altered surface charge and the degree to which the blood-brain barrier is impaired in these vessels.

  14. A cytomegalovirus-based vaccine expressing a single tumor-specific CD8+ T-cell epitope delays tumor growth in a murine model of prostate cancer.

    PubMed

    Klyushnenkova, Elena N; Kouiavskaia, Diana V; Parkins, Christopher J; Caposio, Patrizia; Botto, Sara; Alexander, Richard B; Jarvis, Michael A

    2012-06-01

    Cytomegalovirus (CMV) is a highly immunogenic virus that results in a persistent, life-long infection in the host typically with no ill effects. Certain unique features of CMV, including its capacity to actively replicate in the presence of strong host CMV-specific immunity, may give CMV an advantage compared with other virus-based vaccine delivery platforms. In the present study, we tested the utility of mouse CMV (mCMV)-based vaccines expressing human prostate-specific antigen (PSA) for prostate cancer immunotherapy in double-transgenic mice expressing PSA and HLA-DRB1*1501 (DR2bxPSA F1 mice). We assessed the capacity of 2 mCMV-based vectors to induce PSA-specific CD8 T-cell responses and affect the growth of PSA-expressing Transgenic Adenocarcinoma of the Mouse Prostate tumors (TRAMP-PSA). In the absence of tumor challenge, immunization with mCMV vectors expressing either a H2-D(b)-restricted epitope PSA(65-73) (mCMV/PSA(65-73)) or the full-length gene for PSA (mCMV/PSA(FL)) induced comparable levels of CD8 T-cell responses that increased (inflated) with time. Upon challenge with TRAMP-PSA tumor cells, animals immunized with mCMV/PSA(65-73) had delay of tumor growth and increased PSA-specific CD8 T-cell responses, whereas animals immunized with mCMV/PSA(FL) showed progressive tumor growth and no increase in number of splenic PSA(65-73)-specific T cells. The data show that a prototype CMV-based prostate cancer vaccine can induce an effective antitumor immune response in a "humanized" double-transgenic mouse model. The observation that mCMV/PSA(FL) is not effective against TRAMP-PSA is consistent with our previous findings that HLA-DRB1*1501-restricted immune responses to PSA are associated with suppression of effective CD8 T-cell responses to TRAMP-PSA tumors.

  15. The EP1 receptor for prostaglandin E2 promotes the development and progression of malignant murine skin tumors

    PubMed Central

    Surh, Inok; Rundhaug, Joyce E.; Pavone, Amy; Mikulec, Carol; Abel, Erika; Simper, Melissa; Fischer, Susan M.

    2011-01-01

    High levels of prostaglandin E2 (PGE2) synthesis resulting from the upregulation of COX-2 has been shown to be critical for the development of non-melanoma skin tumors. This effect of PGE2 is likely mediated by one or more of its 4 G-protein coupled membrane receptors, EP1–4. A previous study showed that BK5.EP1 transgenic mice produced more carcinomas than wild type (WT) mice using initiation/promotion protocols, although the tumor response was dependent on the type of tumor promoter used. In this study, a single topical application of either 7,12-dimethylbenz[a]anthracene (DMBA) or benzo[a]pyrene (B[a]P), alone, was found to elicit squamous cell carcinomas (SCC) in the BK5.EP1 transgenic mice, but not in WT mice. While the epidermis of both WT and transgenic mice was hyperplastic several days after DMBA, this effect regressed in the WT mice while proliferation continued in the transgenic mice. Several parameters associated with carcinogen initiation were measured and were found to be similar between genotypes, including CYP1B1 and aromatase expression, B[a]P adduct formation, Ras activity and keratinocyte stem cell numbers. However, EP1 transgene expression elevated COX-2 levels in the epidermis and SCC could be completely prevented in DMBA-treated BK5.EP1 mice either by feeding the selective COX-2 inhibitor celecoxib in their diet or by crossing them onto a COX-2 null background. These data suggest that the tumor promoting/progressing effects of EP1 require the PGE2 synthesized by COX-2. PMID:21739481

  16. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Stigliano, Robert V.; Giustini, Andrew J.; Gottesman, Rachel E.; Trembly, B. S.; Kaufman, Peter A.; Hoopes, P. Jack

    2011-03-01

    Surgery, radiation and chemotherapy are currently the most commonly used cancer therapies. Hyperthermia has been shown to work effectively with radiation and chemotherapy cancer treatments. The major obstacle faced by previous hyperthermia techniques has been the inability to deliver heat to the tumor in a precise manner. The ability to deliver cytotoxic hyperthermia to tumors (from within individual cells) via iron oxide magnetic nanoparticles (mNP) is a promising new technology that has the ability to greatly improve the therapeutic ratio of hyperthermia as an individual modality and as an adjuvant therapy in combination with other modalities. Although the parameters have yet to be conclusively defined, preliminary data suggests mNP hyperthermia can achieve greater cytotoxicity (in vitro) than conventional water bath hyperthermia methods. At this time, our theory is that intracellular nanoparticle heating is more effective in achieving the combined effect than extracellular heating techniques.1 However, understanding the importance of mNP association and uptake is critical in understanding the potential novelty of the heating modality. Our preliminary data suggests that the mNP heating technique, which did not provide time for particle uptake by the cells, resulted in similar efficacy to microwave hyperthermia. mNP hyperthermia/cisplatinum results have shown a tumor growth delay greater than either modality alone at comparable doses.

  17. Inhibitory effect of sesquiterpene lactones from Saussurea lappa on tumor necrosis factor-alpha production in murine macrophage-like cells.

    PubMed

    Cho, J Y; Park, J; Yoo, E S; Baik, K U; Jung, J H; Lee, J; Park, M H

    1998-10-01

    Total methanol extract of Saussurea lappa radix (Compositae) showed potent inhibitory effect on the production of tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, in murine macrophage-like cell (RAW264.7 cells) in our previous screening studies on 120 Korean medicinal plants. The activity-guided purification of the plant resulted in the isolation of three components. The chemical structures of the components isolated were established by spectroscopic analyses as sesquiterpene lactones [cynaropicrin (1), reynosin (2), and santamarine (3)]. These three compounds inhibited TNF-alpha production in a dose-dependent manner. The molar concentrations of cynaropicrin, reynosin, and santamarine producing 50% inhibition (IC50) of TNF-alpha production were 2.86 micrograms/ml (8.24 microM), 21.7 micrograms/ml (87.4 microM), and 26.2 micrograms/ml (105 microM), respectively. However, treatment with sulphydryl (SH) compounds such as L-cysteine, dithiothreitol, and 2-mercaptoethanol abrogated the inhibitory effect of cynaropicrin on TNF-alpha production. Therefore, we conclude that the principal inhibitory component of Saussurea lappa is cynaropicrin and its inhibitory effect is mediated through conjugation with SH-groups of target proteins.

  18. Separate sequences in a murine retroviral envelope protein mediate neuropathogenesis by complementary mechanisms with differing requirements for tumor necrosis factor alpha.

    PubMed

    Peterson, Karin E; Hughes, Scott; Dimcheff, Derek E; Wehrly, Kathy; Chesebro, Bruce

    2004-12-01

    The innate immune response, through the induction of proinflammatory cytokines and antiviral factors, plays an important role in protecting the host from pathogens. Several components of the innate response, including tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein 1, interferon-inducible protein 10, and RANTES, are upregulated in the brain following neurovirulent retrovirus infection in humans and in animal models. However, it remains unclear whether this immune response is protective, pathogenic, or both. In the present study, by using TNF-alpha(-/-) mice we analyzed the contribution of TNF-alpha to neurological disease induced by four neurovirulent murine retroviruses, with three of these viruses encoding portions of the same neurovirulent envelope protein. Surprisingly, only one retrovirus (EC) required TNF-alpha for disease induction, and this virus induced less TNF-alpha expression in the brain than did the other retroviruses. Analysis of glial fibrillary acidic protein and F4/80 in EC-infected TNF-alpha(-/-) mice showed normal activation of astrocytes but not of microglia. Thus, TNF-alpha-mediated microglial activation may be important in the pathogenic process initiated by EC infection. In contrast, TNF-alpha was not required for pathogenesis of the closely related BE virus and the BE virus induced disease in TNF-alpha(-/-) mice by a different mechanism that did not require microglial activation. These results provide new insights into the multifactorial mechanisms involved in retrovirus-induced neurodegeneration and may also have analogies to other types of neurodegeneration.

  19. Therapeutic potential of tonsil-derived mesenchymal stem cells in dextran sulfate sodium-induced experimental murine colitis.

    PubMed

    Yu, Yeonsil; Song, Eun Mi; Lee, Ko Eun; Joo, Yang-Hee; Kim, Seong-Eun; Moon, Chang Mo; Kim, Ha Yeong; Jung, Sung-Ae; Jo, Inho

    2017-01-01

    The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSC) prepared from human tonsillar tissue has been studied in animal models for several diseases such as hepatic injury, hypoparathyroidism, diabetes and muscle dystrophy. In this study, we examined the therapeutic effects of TMSC in a dextran sulfate sodium (DSS)-induced colitis model. TMSC were injected in DSS-induced colitis mice via intraperitoneal injection twice (TMSC[x2]) or four times (TMSC[x4]). Control mice were injected with either phosphate-buffered saline or human embryonic kidney 293 cells. Body weight, stool condition and disease activity index (DAI) were examined daily. Colon length, histologic grading, and mRNA expression of pro-inflammatory cytokines, interleukin 1β (IL-1β), IL-6, IL-17 and tumor necrosis factor α, and anti-inflammatory cytokines, IL-10, IL-11 and IL-13, were also measured. Our results showed a significant improvement in survival rates and body weight gain in colitis mice injected with TMSC[x2] or TMSC[x4]. Injection with TMSC also significantly decreased DAI scores throughout the experimental period; at the end of experiment, almost complete reversal of DAI scores to normal was found in colitis mice treated with TMSC[x4]. Colon length was also significantly recovered in colitis mice treated with TMSC[x4]. However, histopathological alterations induced by DSS treatment were not apparently improved by injection with TMSC. Finally, treatment with TMSC[x4] significantly reversed the mRNA levels of IL-1β and IL-6, although expression of all pro-inflammatory cytokines tested was induced in colitis mice. Under our experimental conditions, however, no apparent alterations in the mRNA levels of all the anti-inflammatory cytokines tested were found. In conclusion, our findings demonstrate that multiple injections with TMSC produced a therapeutic effect in a mouse model of DSS-induced colitis.

  20. Murine models of breast cancer bone metastasis

    PubMed Central

    Wright, Laura E; Ottewell, Penelope D; Rucci, Nadia; Peyruchaud, Olivier; Pagnotti, Gabriel M; Chiechi, Antonella; Buijs, Jeroen T; Sterling, Julie A

    2016-01-01

    Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone. PMID:27867497

  1. Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma.

    PubMed

    Xu, Yu; Hou, Jinxuan; Liu, Zhengchun; Yu, Haijun; Sun, Wenjie; Xiong, Jie; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2011-04-11

    Gene therapy is a promising therapeutic approach for cancer. Targeted expression of desired therapeutic proteins within the tumor is the best approach to reduce toxicity and improve survival. This study is to establish a more effective and less toxic gene therapy of cancer. Combined gene therapy strategy with recombinant adenovirus expressing horseradish peroxidase (HRP) mediated by human telomerase reverse transcriptase (hTERT) promoter (AdhTERTHRP) and murine interleukin-12 (mIL-12) under the control of Cytomegalovirus (CMV) promoter (AdCMVmIL-12) was developed and evaluated against Lewis lung carcinoma (LLC) both in vivo and in vitro. The mechanism of action and systemic toxicities were also investigated. The combination of AdhTERTHRP/indole-3-acetic acid (IAA) treatment and AdCMVmIL-12 resulted in significant tumor growth inhibition and survival improvement compared with AdhTERTHRP/IAA alone (tumor volume, 427.4 ± 48.7 mm3 vs 581.9 ± 46.9 mm3, p = 0.005 on day 15; median overall survival (OS), 51 d vs 33 d) or AdCMVmIL-12 alone (tumor volume, 362.2 ± 33.8 mm3 vs 494.4 ± 70.2 mm3, p = 0.046 on day 12; median OS, 51 d vs 36 d). The combination treatment stimulated more CD4+ and CD8+ T lymphocyte infiltration in tumors, compared with either AdCMVmIL-12 alone (1.3-fold increase for CD4+ T cells and 1.2-fold increase for CD8+ T cells, P < 0.01) or AdhTERTHRP alone (2.1-fold increase for CD4+ T cells and 2.2-fold increase for CD8+ T cells, P < 0.01). The apoptotic cells in combination group were significantly increased in comparison with AdCMVmIL-12 alone group (2.8-fold increase, P < 0.01) or AdhTERTHRP alone group (1.6-fold increase, P < 0.01). No significant systematic toxicities were observed. Combination gene therapy with AdhTERTHRP/IAA and AdCMVmIL-12 could significantly inhibit tumor growth and improve host survival in LLC model, without significant systemic adverse effects.

  2. Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts.

    PubMed

    Chang, Edwin; Liu, Shuangdong; Gowrishankar, Gayatri; Yaghoubi, Shahriar; Wedgeworth, James Patrick; Chin, Frederick; Berndorff, Dietmar; Gekeler, Volker; Gambhir, Sanjiv S; Cheng, Zhen

    2011-04-01

    An (18)F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[(18)F]FPP(RGD)(2)} has been used to image tumor α(v)β(3) integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin α(v)β(3)-targeted PET probe, [(18)F]FPP(RGD)(2,) using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [(18)F]FPP(RGD)(2) (1.9-3.8 MBq, 50-100 μCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean±SD) for %ID(mean)/g and %ID(max)/g values between [(18)F]FPP(RGD)(2) small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %ID(mean)/g and %ID(max)/g values between scans were -0.025 ± 0.067 and -0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of α(ν)β(3) integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not

  3. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor

    PubMed Central

    Masuda, Yuki; Nakayama, Yoshiaki; Tanaka, Akihiro; Naito, Kenta; Konishi, Morichika

    2017-01-01

    Maitake α-glucan, YM-2A, isolated from Grifola frondosa, has been characterized as a highly α-1,6-branched α-1,4 glucan. YM-2A has been shown to possess an anti-virus effect in mice; however, it does not directly inhibit growth of the virus in vitro, indicating that the anti-virus effect of YM-2A might be associated with modulation of the host immune system. In this study, we found that oral administration of YM-2A could inhibit tumor growth and improve survival rate in two distinct mouse models of colon-26 carcinoma and B16 melanoma. Orally administered YM-2A enhanced antitumor immune response by increasing INF-γ-expressing CD4+ and CD8+ cells in the spleen and INF-γ-expressing CD8+ cells in tumor-draining lymph nodes. In vitro study showed that YM-2A directly activated splenic CD11b+ myeloid cells, peritoneal macrophages and bone marrow-derived dendritic cells, but did not affect splenic CD11b- lymphocytes or colon-26 tumor cells. YM-2A is more slowly digested by pancreatic α-amylase than are amylopectin and rabbit liver glycogen, and orally administered YM-2A enhanced the expression of MHC class II and CD86 on dendritic cells and the expression of MHC class II on macrophages in Peyer’s patches. Furthermore, in vitro stimulation of YM-2A increased the expression of pro-inflammatory cytokines in Peyer’s patch CD11c+ cells. These results suggest that orally administered YM-2A can activate dendritic cells and macrophages in Peyer’s patches, inducing systemic antitumor T-cell response. Thus, YM-2A might be a candidate for an oral therapeutic agent in cancer immunotherapy. PMID:28278221

  4. Murine responses to recombinant MVA versus ALVAC vaccines against tumor-associated antigens, gp100 and 5T4.

    PubMed

    Hanwell, David G; McNeil, Bryan; Visan, Lucian; Rodrigues, Lauren; Dunn, Pamela; Shewen, Patricia E; Macallum, Grace E; Turner, Patricia V; Vogel, Thorsten U

    2013-05-01

    Virally vectored cancer vaccines comprise a new form of immunotherapy that aim to generate anti-tumor immune responses with potential for tumor clearance and enhanced patient survival. Here, we compared 2 replication-deficient poxviruses modified vaccinia Ankara (MVA) and ALVAC(2) in their ability to induce antigen expression and immunogenicity of the tumor-associated antigens (TAAs) 5T4 and gp100. To facilitate the comparison, recombinant MVA-gp100M and ALVAC(2)-5T4 were constructed to complement existing ALVAC(2)-gp100M and MVA-5T4 vectors. Recombinant TAA expression in chicken embryo fibroblast cells was confirmed by Western blot analysis. 5T4 expression was approximately equal for both viruses, whereas ALVAC-derived gp100 was quickly degraded, at a time point when MVA-derived gp100 was still stable and expressed at high levels. Human leukocyte antigen-A2 transgenic mice were vaccinated with recombinant viruses and the CD8 T-cell responses elicited against each TAA were monitored by interferon-γ enzyme-linked immunospot. No 5T4 peptide responses were detected using splenocytes from mice vaccinated with either vector, whereas vaccination with MVA elicited a significantly higher gp100-specific response than ALVAC(2) at 10 PFU (P<0.001). In CD-1 mice, each vector elicited similar 5T4 antibody responses, whereas MVA was more potent and induced gp100 antibody responses at a lower immunization dose than ALVAC (P<0.001). In this study, immunogenicity varied depending on the viral vector used and reflected vector-associated differences in in vitro TAA expression and stability. These findings suggest that novel vector-transgene combinations must be assessed individually when designing vaccines, and that stability of vector-encoded proteins produced in vitro may be useful as a predictor for in vitro immunogenicity.

  5. Hepatitis C Virus-Induced Cancer Stem Cell-Like Signatures in Cell Culture and Murine Tumor Xenografts▿

    PubMed Central

    Ali, Naushad; Allam, Heba; May, Randal; Sureban, Sripathi M.; Bronze, Michael S.; Bader, Ted; Umar, Shahid; Anant, Srikant; Houchen, Courtney W.

    2011-01-01

    Hepatitis C virus (HCV) infection is a prominent risk factor for the development of hepatocellular carcinoma (HCC). Similar to most solid tumors, HCCs are believed to contain poorly differentiated cancer stem cell-like cells (CSCs) that initiate tumorigenesis and confer resistance to chemotherapy. In these studies, we demonstrate that the expression of an HCV subgenomic replicon in cultured cells results in the acquisition of CSC traits. These traits include enhanced expression of doublecortin and CaM kinase-like-1 (DCAMKL-1), Lgr5, CD133, α-fetoprotein, cytokeratin-19 (CK19), Lin28, and c-Myc. Conversely, curing of the replicon from these cells results in diminished expression of these factors. The putative stem cell marker DCAMKL-1 is also elevated in response to the overexpression of a cassette of pluripotency factors. The DCAMKL-1-positive cells isolated from hepatoma cell lines by fluorescence-activated cell sorting (FACS) form spheroids in Matrigel. The HCV RNA abundance and NS5B levels are significantly reduced by the small interfering RNA (siRNA)-led depletion of DCAMKL-1. We further demonstrate that HCV replicon-expressing cells initiate distinct tumor phenotypes compared to the tumors initiated by parent cells lacking the replicon. This HCV-induced phenotype is characterized by high-level expression/coexpression of DCAMKL-1, CK19, α-fetoprotein, and active c-Src. The results obtained by the analysis of liver tissues from HCV-positive patients and liver tissue microarrays reiterate these observations. In conclusion, chronic HCV infection appears to predispose cells toward the path of acquiring cancer stem cell-like traits by inducing DCAMKL-1 and hepatic progenitor and stem cell-related factors. DCAMKL-1 also represents a novel cellular target for combating HCV-induced hepatocarcinogenesis. PMID:21937640

  6. Blood flow in an experimental rat brain tumor by tissue equilibration and indicator fractionation.

    PubMed

    Graham, M M; Spence, A M; Abbott, G L; O'Gorman, L; Muzi, M

    1987-01-01

    The tissue equilibration technique (Kety) was compared with the indicator fractionation technique for the measurement of blood flow to normal brain and an experimental brain tumor in the rat. The tumor was a cloned astrocytic glioma implanted in the cerebral hemisphere of F-344 rats. I-125 Iodoantipyrine, using a rising infusion for one minute, was used for the tissue equilibration technique. C-14 butanol, injected as a bolus 8 seconds before sacrifice, was used for the indicator fractionation technique. Samples were assayed using liquid scintillation counting and the iodoantipyrine results were regressed against the butanol results. For normal tissue R = 0.832, SEE = 0.115 ml/g/min, and Slope = 0.626. For tumor R = 0.796, SEE = 0.070 ml/g/min, and Slope = 0.441. The iodoantipyrine tissue/blood partition coefficient for normal hemisphere (gray and white matter) was 0.861 +/-0.037 (SD) and for tumor was 0.876 +/-0.042. The indicator fractionation technique with C-14 butanol underestimated blood flow in a consistent manner, probably because of incomplete extraction, early washout of activity from tissue and from evaporation of butanol during processing. Our experiments revealed no differences between tumor and normal brain tissue that might invalidate the comparison of iodoantipyrine blood flow results in brain tumors and surrounding normal brain.

  7. Trial opens to evaluate experimental cancer drug against solid tumors | Center for Cancer Research

    Cancer.gov

    Chemotherapy drugs have long been the mainstay of treatment for advanced solid tumors, but the toxic side effects of these drugs often limit the amount that can safely be given to patients. Doctors hope that PEN-866, an experimental cancer drug, can help to overcome this difficulty. Anish Thomas, M.D., who is leading this new trial, says, “This is a first-of-its-kind approach to facilitate tumor targeted delivery of chemotherapy drugs, which, if successful, would be a big step forward for cancer therapy.” Learn more...

  8. Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine.

    PubMed

    Wang, Lu-Lu; Feng, Chen-Lin; Zheng, Wen-Sheng; Huang, Shuai; Zhang, Wen-Xuan; Wu, Hong-Na; Zhan, Yun; Han, Yan-Xing; Wu, Song; Jiang, Jian-Dong

    2017-10-01

    Small active RNA (saRNA)-induced gene activation (RNAa) is a novel strategy to treat cancer. Our previous work proved that the p21-saRNA-322 successfully hindered colorectal cancer growth by activating p21 gene. However, the barrier for successful saRNA therapy is lack of efficient drug delivery. In the present study, a rectal delivery system entitled p21-saRNA-322 encapsulated tumor-selective lipopolyplex (TSLPP-p21-saRNA-322) which consist of PEI/p21-saRNA-322 polyplex core and hyaluronan (HA) modulated lipid shell was developed to treat colorectal cancer. Our results showed that this system maintained at the rectum for more than 6 h and preferentially accumulated at tumor site. CD44 knock down experiment instructed that the superb cellular uptake of TSLPP-p21-saRNA-322 attributed to HA-CD44 recognition. An orthotopic model of bio-luminescence human colorectal cancer in mice was developed using microsurgery and TSLPP-p21-saRNA-322 demonstrated a superior antitumor efficacy in vitro and in vivo. Our results provide preclinical proof-of-concept for a novel method to treat colorectal cancer by rectal administration of TSLPP formulated p21-saRNA-322. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge?

    PubMed

    Friedrich, Juergen; Ebner, Reinhard; Kunz-Schughart, Leoni A

    2007-01-01

    To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.

  10. Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice.

    PubMed

    Seleme, Maria C; Kosmac, Kate; Jonjic, Stipan; Britt, William J

    2017-04-15

    Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45(+) Ly6C(hi) CD11b(+) CCR2(+) activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a

  11. Canonical Wnt Signaling Drives Tumor-Like Lesions from Sox2-Positive Precursors of the Murine Olfactory Epithelium

    PubMed Central

    Engel, Nils W.; Neumann, Julia E.; Ahlfeld, Julia; Wefers, Annika K.; Merk, Daniel J.; Ohli, Jasmin

    2016-01-01

    Canonical Wnt signaling is known to promote proliferation of olfactory stem cells. In order to investigate the effects of a constitutive activation of Wnt signaling in Sox2-positive precursor cells of the olfactory epithelium, we used transgenic mice that allowed an inducible deletion of exon 3 of the Ctnnb1 gene, which is responsible for the phosphorylation and degradation of Ctnnb1 protein. After induction of aberrant Wnt activation by Ctnnb1 deletion at embryonic day 14, such mice developed tumor-like lesions in upper parts of the nasal cavity. We still observed areas of epithelial hyperplasia within the olfactory epithelium following early postnatal Wnt activation, but the olfactory epithelial architecture remained unaffected in most parts when Wnt was activated at postnatal day 21 or later. In summary, our results suggest an age-dependent tumorigenic potential of aberrant Wnt signaling in the olfactory epithelium of mice. PMID:27902722

  12. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion

    PubMed Central

    Alexander, Carla-Maria; Xiong, Ka-Na; Velmurugan, Kalpana; Xiong, Julie; Osgood, Ross S.; Bauer, Alison K.

    2017-01-01

    Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4Lps-d/J (BALBLpsd; Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT treated BALBLpsd mice compared to BALB mice. BHT treated BALBLpsd mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALBLpsd mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression and cell surface markers collectively demonstrated a more plastic phenotype in BALBLpsd mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis. PMID:27093379

  13. Compatibility of the Linear-Quadratic Formalism and Biologically Effective Dose Concept to High-Dose-Per-Fraction Irradiation in a Murine Tumor

    SciTech Connect

    Otsuka, Shinya; Shibamoto, Yuta; Iwata, Hiromitsu; Murata, Rumi; Sugie, Chikao; Ito, Masato; Ogino, Hiroyuki

    2011-12-01

    Purpose: To evaluate the compliance of linear-quadratic (LQ) model calculations in the high-dose range as used in stereotactic irradiation in a murine tumor model. Methods and Materials: Female 10-week-old Balb/c mice bearing 1-cm-diameter EMT6 tumors in the hind legs were used. Single doses of 10-25 Gy were compared with 2-5 fractions of 4-13 Gy given at 4-hour intervals. Cell survival after irradiation was determined by an in vivo-in vitro assay. Using an {alpha}/{beta} ratio determined for in vitro EMT6 cells and the LQ formalism, equivalent single doses for the hypofractionated doses were calculated. They were then compared with actually measured equivalent single doses for the hypofractionated doses. These fractionation schedules were also compared simultaneously to investigate the concordance/divergence of dose-survival curves plotted against actual radiation doses and biologically effective doses (BED). Results: Equivalent single doses for hypofractionated doses calculated from LQ formalism were lower than actually measured doses by 21%-31% in the 2- or 3-fraction experiments and by 27%-42% in the 4- or 5-fraction experiments. The differences were all significant. When a higher {alpha}/{beta} ratio was assumed, the discrepancy became smaller. In direct comparison of the 2- to 5-fraction schedules, respective dose-response curves almost overlapped when cell survival was plotted against actual radiation doses. However, the curves tended to shift downward by increasing the fraction number when cell survival was plotted against BED calculated using an {alpha}/{beta} ratio of 3.5 Gy for in vitro EMT6 cells. Conclusion: Conversion of hypofractionated radiation doses to single doses using the LQ formalism underestimated the in vivo effect of hypofractionated radiation by approximately 20%-40%. The discrepancy appeared to be larger than that seen in the previous in vitro study and tended to increase with the fraction number. BED appeared to be an unreliable measure

  14. Experimental Study of Yeast RNA Preparation as a Possible Radioprotective Agent for Radiotherapy of Malignant Tumors.

    PubMed

    Nikolin, V P; Bogachev, S S; Popova, N A; Tornuev, Yu V; Vinogradova, E V

    2017-09-25

    We studied radioprotective effects of a preparation based on yeast RNA and its influence on therapeutic efficiency of ionizing radiation against transplanted tumors. Parenteral administration of yeast RNA preparation to mice in a dose of 10 mg 1 h prior to exposure to ionizing γ-radiation ((137)Cs) in a lethal dose (LD80/30) increased 30-day survival by 66%; by day 80, 80% of animals survived (vs. 2.5% in the control). Whole-body exposure to ionizing γ-radiation in a dose of 7 Gy significantly increased the mean lifespan of mice with experimental lung metastases or intraperitoneally transplanted leukemia L-1210 by 42 and 20.8%, respectively. RNA preparation injected to the mice with tumors 1 h before irradiation did not affect the therapeutic efficiency of ionizing radiation or significantly potentiated it (in mice with transplanted leukemia L-1210). These results suggest that yeast RNA preparation protects healthy tissues during radiotherapy of malignant tumors.

  15. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling.

    PubMed

    Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio

    2016-10-01

    Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation.

  16. ED-110, a novel indolocarbazole, prevents the growth of experimental tumors in mice.

    PubMed

    Arakawa, H; Iguchi, T; Yoshinari, T; Kojiri, K; Suda, H; Okura, A

    1993-05-01

    A new indolocarbazole compound, ED-110, which was obtained by glucosylating a microbial product (BE-13793C) and is a potent topoisomerase I inhibitor, showed characteristic inhibitory effects on the growth of 12 human tumor cell lines tested. The IC50 values of ED-110 against 9 of the 12 lines ranged from 11.5 micrograms/ml to 0.07 microgram/ml, while the remaining 3 lines were quite resistant (IC50, > 100 micrograms/ml). In in vivo experiments, i.p. treatment with ED-110 increased the survival period by more than two-fold in mice implanted i.p. with P388, L1210, L5178Y or EL4 murine leukemic cells. The minimum effective dose increasing the life-span of mice bearing P388 leukemia by 25% was < 2.5 mg/kg/day x 10 and the maximum tolerated dose was > 160 mg/kg/day x 10. ED-110 was also effective against the spontaneous metastasis of mouse Meth A fibrosarcoma cells and the growth of xenografted MKN-45 human stomach cancer cells as well as s.c. implanted mouse colon 26 and IMC carcinoma cells. These results indicated that ED-110 may have potential as a new antineoplastic agent with a large chemotherapeutic index and a wide range of effective doses.

  17. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems.

    PubMed

    Gagandeep; Dhanalakshmi, Sivanandhan; Méndiz, Ester; Rao, Agra Ramesha; Kale, Raosaheb Kathalupant

    2003-01-01

    Lately, a strong correlation has been established between diet and cancer. For ages, cumin has been a part of the diet. It is a popular spice regularly used as a flavoring agent in a number of ethnic cousins. In the present study, cancer chemopreventive potentials of different doses of a cumin seed-mixed diet were evaluated against benzo(a)pyrene [B(a)P]-induced forestomach tumorigenesis and 3-methylcholanthrene (MCA)-induced uterine cervix tumorigenesis. Results showed a significant inhibition of stomach tumor burden (tumors per mouse) by cumin. Tumor burden was 7.33 +/- 2.10 in the B(a)P-treated control group, whereas it reduced to 3.10 +/- 0.57 (P < 0.001) by a 2.5% dose and 3.11 +/- 0.60 (P <0.001) by a 5% dose of cumin seeds. Cervical carcinoma incidence, compared with the MCA-treated control group (66.67%), reduced to 27.27% (P < 0.05) by a diet of 5% cumin seeds and to 12.50% (P < 0.05) by a diet of 7.5% cumin seeds. The effect of 2.5 and 5% cumin seed-mixed diets was also examined on carcinogen/xenobiotic metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase (LDH), and lipid peroxidation in the liver of Swiss albino mice. Levels of cytochrome P-450 (cyt P-450) and cytochrome b5 (cyt b(5)) were significantly augmented (P < 0.05) by the 2.5% dose of cumin seed diet. The levels of cyt P-450 reductase and cyt b(5) reductase were increased (significance level being from P < 0.05 to P < 0.01) by both doses of cumin. Among the phase II enzymes, glutathione S-transferase specific activity increased (P < 0.005) by the 5% dose, whereas that of DT-diaphorase increased significantly (P < 0.05) by both doses used (2.5 and 5%). In the antioxidant system, significant elevation of the specific activities of superoxide dismutase (P < 0.01) and catalase (P < 0.05) was observed with the 5% dose of cumin. The activities of glutathione peroxidase and glutathione reductase remained unaltered by both doses of cumin. The level

  18. An implantable rat liver tumor model for experimental transarterial chemoembolization therapy and its imaging features

    PubMed Central

    Li, Xin; Zheng, Chuan-Sheng; Feng, Gan-Sheng; Zhuo, Chen-Kai; Zhao, Jun-Gong; Liu, Xi

    2002-01-01

    AIM: To establish an ideal implantable rat liver tumor model for interventional therapy study and examine its angiographic signs and MRI, CT features before and after embolization. METHODS: Forty male Wistar rats were implanted with Walker-256 tumor in the left lateral lobe of liver. Digital subtraction angiography (DSA) and transarterial chemoembolization were performed on day 14 after implantation. Native computer tomography (CT, n = 8) and native magnetic resonance (MR, n = 40) were performed between the day 8 and day 21 after implantation. The radiological morphological characteristics were correlated with histological findings. RESULTS: Successful implantation was achieved in all forty rats, which was confirmed by CT and MRI. MR allowed tumor visualization from day 8 while CT from day 11 after implantation. The tumors were hypodensity on CT, hypointense on MR T1-weighted and hyperintense on T2-weighted. The model closely resembled human hepatocarcinoma in growth pattern and the lesions were rich in vasculature on angiography and got its filling mainly from the hepatic artery. Before therapy, tumor size was 211.9 ± 48.7 mm3. No ascites, satellite liver nodules or lung metastasis were found. One week after therapy, tumor size was 963.6 ± 214.8 mm3 in the control group and 356.5 ± 78.4 mm3 in TACE group. Ascites (4/40), satellite liver nodules (7/40) or lung metastasis (3/40) could be seen on day 21. CONCLUSION: Walker-256 tumor rat model is suitable for the interventional experiment. CT and MRI are helpful in animal optioning and evaluating experimental results. PMID:12439920

  19. A comparative evaluation of EPR and OxyLite oximetry using a random sampling of pO(2) in a murine tumor.

    PubMed

    Vikram, Deepti S; Bratasz, Anna; Ahmad, Rizwan; Kuppusamy, Periannan

    2007-09-01

    Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO(2) measurements were taken from random locations at a depth of approximately 3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness.

  20. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  1. First-in-Human Phase 1 Trial of Agarose Beads Containing Murine RENCA Cells in Advanced Solid Tumors.

    PubMed

    Smith, Barry H; Parikh, Tapan; Andrada, Zoe P; Fahey, Thomas J; Berman, Nathaniel; Wiles, Madeline; Nazarian, Angelica; Thomas, Joanne; Arreglado, Anna; Akahoho, Eugene; Wolf, David J; Levine, Daniel M; Parker, Thomas S; Gazda, Lawrence S; Ocean, Allyson J

    2016-01-01

    Agarose macrobeads containing mouse renal adenocarcinoma cells (RMBs) release factors, suppressing the growth of cancer cells and prolonging survival in spontaneous or induced tumor animals, mediated, in part, by increased levels of myocyte-enhancing factor (MEF2D) via EGFR-and AKT-signaling pathways. The primary objective of this study was to determine the safety of RMBs in advanced, treatment-resistant metastatic cancers, and then its efficacy (survival), which is the secondary objective. Thirty-one patients underwent up to four intraperitoneal implantations of RMBs (8 or 16 macrobeads/kg) via laparoscopy in this single-arm trial (FDA BB-IND 10091; NCT 00283075). Serial physical examinations, laboratory testing, and PET-CT imaging were performed before and three months after each implant. RMBs were well tolerated at both dose levels (mean 660.9 per implant). AEs were (Grade 1/2) with no treatment-related SAEs. The data support the safety of RMB therapy in advanced-malignancy patients, and the preliminary evidence for their potential efficacy is encouraging. A Phase 2 efficacy trial is ongoing.

  2. Antitumor efficacy of interleukin-2 alone and in combination with adriamycin and dacarbazine in murine solid tumor systems.

    PubMed

    LoRusso, P M; Aukerman, S L; Polin, L; Redman, B G; Valdivieso, M; Biernat, L; Corbett, T H

    1990-09-15

    Recombinant interleukin-2 (IL-2)/chemotherapy combinations have recently entered clinical trial. The rationale f