Sample records for experimental observations based

  1. Development of a Lumped Element Circuit Model for Approximation of Dielectric Barrier Discharges

    DTIC Science & Technology

    2011-08-01

    dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond pulsed DBDs, which have been proposed...species for pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond...momentum-based approaches. Given the fundamental differences between the novel pulsed discharge approach and the more conventional momentum-based

  2. A multiscale strength model for tantalum over an extended range of strain rates

    NASA Astrophysics Data System (ADS)

    Barton, N. R.; Rhee, M.

    2013-09-01

    A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].

  3. Observational studies using propensity score analysis underestimated the effect sizes in critical care medicine.

    PubMed

    Zhang, Zhongheng; Ni, Hongying; Xu, Xiao

    2014-08-01

    Propensity score (PS) analysis has been increasingly used in critical care medicine; however, its validation has not been systematically investigated. The present study aimed to compare effect sizes in PS-based observational studies vs. randomized controlled trials (RCTs) (or meta-analysis of RCTs). Critical care observational studies using PS were systematically searched in PubMed from inception to April 2013. Identified PS-based studies were matched to one or more RCTs in terms of population, intervention, comparison, and outcome. The effect sizes of experimental treatments were compared for PS-based studies vs. RCTs (or meta-analysis of RCTs) with sign test. Furthermore, ratio of odds ratio (ROR) was calculated from the interaction term of treatment × study type in a logistic regression model. A ROR < 1 indicates greater benefit for experimental treatment in RCTs compared with PS-based studies. RORs of each comparison were pooled by using meta-analytic approach with random-effects model. A total of 20 PS-based studies were identified and matched to RCTs. Twelve of the 20 comparisons showed greater beneficial effect for experimental treatment in RCTs than that in PS-based studies (sign test P = 0.503). The difference was statistically significant in four comparisons. ROR can be calculated from 13 comparisons, of which four showed significantly greater beneficial effect for experimental treatment in RCTs. The pooled ROR was 0.71 (95% CI: 0.63, 0.79; P = 0.002), suggesting that RCTs (or meta-analysis of RCTs) were more likely to report beneficial effect for the experimental treatment than PS-based studies. The result remained unchanged in sensitivity analysis and meta-regression. In critical care literature, PS-based observational study is likely to report less beneficial effect of experimental treatment compared with RCTs (or meta-analysis of RCTs). Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  5. Behavioral Assessment of Hearing in 2 to 4 Year-old Children: A Two-interval, Observer-based Procedure Using Conditioned Play-based Responses.

    PubMed

    Bonino, Angela Yarnell; Leibold, Lori J

    2017-01-23

    Collecting reliable behavioral data from toddlers and preschoolers is challenging. As a result, there are significant gaps in our understanding of human auditory development for these age groups. This paper describes an observer-based procedure for measuring hearing sensitivity with a two-interval, two-alternative forced-choice paradigm. Young children are trained to perform a play-based, motor response (e.g., putting a block in a bucket) whenever they hear a target signal. An experimenter observes the child's behavior and makes a judgment about whether the signal was presented during the first or second observation interval; the experimenter is blinded to the true signal interval, so this judgment is based solely on the child's behavior. These procedures were used to test 2 to 4 year-olds (n = 33) with no known hearing problems. The signal was a 1,000 Hz warble tone presented in quiet, and the signal level was adjusted to estimate a threshold corresponding to 71%-correct detection. A valid threshold was obtained for 82% of children. These results indicate that the two-interval procedure is both feasible and reliable for use with toddlers and preschoolers. The two-interval, observer-based procedure described in this paper is a powerful tool for evaluating hearing in young children because it guards against response bias on the part of the experimenter.

  6. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  7. Physiotherapists use a small number of behaviour change techniques when promoting physical activity: A systematic review comparing experimental and observational studies.

    PubMed

    Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E

    2018-06-01

    Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Observation of shock transverse waves in elastic media.

    PubMed

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  9. Study of reflection and transport in the microwave photo-excited GaAs/AlGaAs two dimensional electron system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, Ramesh G.; Wegscheider, Werner

    2013-12-04

    We present the results of a concurrent experimental study of microwave reflection and transport in the GaAs/AlGaAs two dimensional electron gas system and correlate observed features in the reflection with the observed transport features. The experimental results are compared with expectations based on theory.

  10. The effectiveness of research-based physics learning module with predict-observe-explain strategies to improve the student’s competence

    NASA Astrophysics Data System (ADS)

    Usmeldi

    2018-05-01

    The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.

  11. 77 FR 60637 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... made in 2004, when the fishery was being reopened under an experimental regulatory regime that was... NMFS based the information on Atlantic experimental results. Based on 100 percent observer coverage... quasi-extinction threshold within one generation (25 years) due largely to climate-forcing factors. As...

  12. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    PubMed

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  13. EXPERIMENTAL AND THEORETICAL EVALUATIONS OF OBSERVATIONAL-BASED TECHNIQUES

    EPA Science Inventory

    Observational Based Methods (OBMs) can be used by EPA and the States to develop reliable ozone controls approaches. OBMs use actual measured concentrations of ozone, its precursors, and other indicators to determine the most appropriate strategy for ozone control. The usual app...

  14. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    NASA Astrophysics Data System (ADS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leszczynski, Jerzy; Sponer, Judit; Sponer, Jiri

    Recent experimental studies on the Watson Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two NH O hydrogen bonds separated by one NH N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the basesmore » and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non-natural bases.« less

  16. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-01

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  17. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances.

    PubMed

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-22

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  18. Retrocausation Or Extant Indefinite Reality?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.

    2006-10-01

    The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.

  19. Measuring how typical and atypical minds read other's intentions. Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds" by Cristina Becchio et al.

    NASA Astrophysics Data System (ADS)

    Parma, Valentina; Sartori, Luisa; Castiello, Umberto

    2018-03-01

    Becchio et al. [1] propose a model to render other's minds observable against the Unobservability Principle. Such model develops over four, distinct steps. First, it provides experimental evidence indicating that mental states (i.e., intentions) can be encoded in behavioral patterns (e.g., movement kinematics). Second, it provides strategies to test the efficiency of the quantification of such intention-related behavioral manifestations (i.e., resolution of the uncertainty between two intentions based on different patterns of accumulation of kinematic parameters). Third, it indicates specific features of the observed behavior that viewers use to detect different intentions (i.e., a series of decision rules based on kinematic features through which intention categorization occurs). Fourth, it proposes a manner to manipulate such specific behavioral features so that an observer can detect different intentions, based on how informative such behavioral features are. We see in this operational/experimental approach a significant contribution to the theoretical debate on the possibility to observe mental states, allowing the direct testing of the unobservability principle and therefore providing falsifiable hypotheses. Besides this already central aspect, we believe this approach holds promise to the elucidation of clinical open questions, such as those posed by autism spectrum disorders (ASD). Indeed, experimentally evaluating the ability to observe and manipulate other's intentions allow us to quantify with high accuracy the deficits in the representation of other people's minds that so chiefly characterize ASD as well as the outcomes of treatment options focusing on this aspect. Here we suggest a few clarifications and extensions of the proposed model which will make it possibly tailored for clinical applications.

  20. Effect of particle shape and slip mechanism on buoyancy induced convective heat transport with nanofluids

    NASA Astrophysics Data System (ADS)

    Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind

    2017-12-01

    Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.

  1. Experimental validation of a transformation optics based lens for beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianjia; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  2. Sample size considerations for paired experimental design with incomplete observations of continuous outcomes.

    PubMed

    Zhu, Hong; Xu, Xiaohan; Ahn, Chul

    2017-01-01

    Paired experimental design is widely used in clinical and health behavioral studies, where each study unit contributes a pair of observations. Investigators often encounter incomplete observations of paired outcomes in the data collected. Some study units contribute complete pairs of observations, while the others contribute either pre- or post-intervention observations. Statistical inference for paired experimental design with incomplete observations of continuous outcomes has been extensively studied in literature. However, sample size method for such study design is sparsely available. We derive a closed-form sample size formula based on the generalized estimating equation approach by treating the incomplete observations as missing data in a linear model. The proposed method properly accounts for the impact of mixed structure of observed data: a combination of paired and unpaired outcomes. The sample size formula is flexible to accommodate different missing patterns, magnitude of missingness, and correlation parameter values. We demonstrate that under complete observations, the proposed generalized estimating equation sample size estimate is the same as that based on the paired t-test. In the presence of missing data, the proposed method would lead to a more accurate sample size estimate comparing with the crude adjustment. Simulation studies are conducted to evaluate the finite-sample performance of the generalized estimating equation sample size formula. A real application example is presented for illustration.

  3. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less

  4. Effects of the Sense-Based Science Education Program on Scientific Process Skills of Children Aged 60-66 Months

    ERIC Educational Resources Information Center

    Tekerci, Hacer; Kandir, Adalet

    2017-01-01

    Purpose: This study aimed to examine the effects of the Sense-Based Science Education Program on 60-66 months old children's scientific process skills. Research Methods: In this study, which carries experimental attribute features, the pre-test/final-test/observing-test control grouped experimental pattern, and qualitative research were used.…

  5. Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes

    PubMed Central

    Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua

    2015-01-01

    Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175

  6. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  7. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  8. Diffraction-Based Density Restraints for Membrane and Membrane-Peptide Molecular Dynamics Simulations

    PubMed Central

    Benz, Ryan W.; Nanda, Hirsh; Castro-Román, Francisco; White, Stephen H.; Tobias, Douglas J.

    2006-01-01

    We have recently shown that current molecular dynamics (MD) atomic force fields are not yet able to produce lipid bilayer structures that agree with experimentally-determined structures within experimental errors. Because of the many advantages offered by experimentally validated simulations, we have developed a novel restraint method for membrane MD simulations that uses experimental diffraction data. The restraints, introduced into the MD force field, act upon specified groups of atoms to restrain their mean positions and widths to values determined experimentally. The method was first tested using a simple liquid argon system, and then applied to a neat dioleoylphosphatidylcholine (DOPC) bilayer at 66% relative humidity and to the same bilayer containing the peptide melittin. Application of experiment-based restraints to the transbilayer double-bond and water distributions of neat DOPC bilayers led to distributions that agreed with the experimental values. Based upon the experimental structure, the restraints improved the simulated structure in some regions while introducing larger differences in others, as might be expected from imperfect force fields. For the DOPC-melittin system, the experimental transbilayer distribution of melittin was used as a restraint. The addition of the peptide caused perturbations of the simulated bilayer structure, but which were larger than observed experimentally. The melittin distribution of the simulation could be fit accurately to a Gaussian with parameters close to the observed ones, indicating that the restraints can be used to produce an ensemble of membrane-bound peptide conformations that are consistent with experiments. Such ensembles pave the way for understanding peptide-bilayer interactions at the atomic level. PMID:16950837

  9. Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui; Ji, Qiucheng; Hu, Kangkang; Gao, Bo; Li, Wei; Mu, Gang; Xie, Xiaoming

    2017-07-01

    The anisotropy of iron-based superconductors is much smaller than that of the cuprates and that predicted by theoretical calculations. A credible understanding for this experimental fact is still lacking up to now. Here we experimentally study the magnetic-field-angle dependence of electronic resistivity in the superconducting phase of an iron-based superconductor CaFe{}0.882Co{}0.118AsF, and find the strongest anisotropy effect of the upper critical field among the iron-based superconductors based on the framework of Ginzburg-Landau theory. The evidence of the energy band structure and charge density distribution from electronic structure calculations demonstrates that the observed strong anisotropic effect mainly comes from the strong ionic bonding in between the ions of Ca2+ and F-, which weakens the interlayer coupling between the layers of FeAs and CaF. This finding provides a significant insight into the nature of the experimentally-observed strong anisotropic effect of electronic resistivity, and also paves the way for designing exotic two-dimensional artificial unconventional superconductors in the future.

  10. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    NASA Astrophysics Data System (ADS)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  11. From the Transits of Venus to the Birth of Experimental Psychology

    NASA Astrophysics Data System (ADS)

    Sheehan, William

    2013-06-01

    I trace the attempts to determine the Earth-Sun distance, which is based on measurements of the solar parallax, from the naked-eye observations of Aristarchus of Samos in antiquity to observations of the transits of Venus in the 18th century, noting the nature of the observational errors involved in them. I then turn to measurements of stellar positions with meridian or transit telescopes in the 17th to 19th centuries using the eye and ear method of observation. I show how an analysis of the observational discrepancies in this method led to the discovery of an observer's "personal equation," and ultimately to the birth of experimental psychology.

  12. [The Effect of a Movie-Based Nursing Intervention Program on Rehabilitation Motivation and Depression in Stroke Patients].

    PubMed

    Kwon, Hye Kyung; Lee, Sook Ja

    2017-06-01

    The aim of this study was to develop and measure the effect of a movie-based-nursing intervention program designed to enhance motivation for rehabilitation and reduce depression levels in stroke patients. The study used a quasi-experimental, nonequivalent control group and a pretest-posttest design. The 60 research subjects were assigned to the experimental (n=30) or control group (n=30). The moviebased nursing intervention program was provided for the experimental group during 60-minute sessions held once per week for 10 weeks. The program consisted of patient education to strengthen motivation for rehabilitation and reduce depression, watching movies to identify role models, and group discussion to facilitate therapeutic interaction. After 10 weeks of participation in the movie-based nursing intervention program, the experimental group's rehabilitation motivation score was significantly higher, F=1161.54 (within groups df=49, between groups df=1), p<.001, relative to that observed in the control group. In addition, the experimental group's depression score was significantly lower relative to that observed in the control group, F=258.97 (within groups df=49, between groups df=1), p<.001. The movie-based nursing intervention program could be used for stroke patients experiencing psychological difficulties including reduced motivation for rehabilitation and increased depression during the rehabilitation process. © 2017 Korean Society of Nursing Science

  13. Three-observer Bell inequality violation on a two-qubit entangled state

    NASA Astrophysics Data System (ADS)

    Schiavon, Matteo; Calderaro, Luca; Pittaluga, Mirko; Vallone, Giuseppe; Villoresi, Paolo

    2017-03-01

    Bipartite Bell inequalities can simultaneously be violated by two different pairs of observers when weak measurements and signalling is employed. Here, we experimentally demonstrate the violation of two simultaneous CHSH inequalities by exploiting a two-photon polarisation maximally entangled state. Our results demonstrate that large double violation is experimentally achievable. Our demonstration may have impact for Quantum Key Distribution or certification of Quantum Random Number generators based on weak measurements.

  14. Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Marchese, J. E.; Cirillo, M.; Grønbech-Jensen, N.

    2007-08-01

    We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modeling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.

  15. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    PubMed

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  16. Revealing Hidden Einstein-Podolsky-Rosen Nonlocality

    NASA Astrophysics Data System (ADS)

    Walborn, S. P.; Salles, A.; Gomes, R. M.; Toscano, F.; Souto Ribeiro, P. H.

    2011-04-01

    Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid’s EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.

  17. Study of combustion experiments in space

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Huggett, C.; Kaufman, F.; Markstein, G. H.; Palmer, H. B.; Yang, C. H.

    1974-01-01

    The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding.

  18. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolen, James; Harris, Philip; Marzani, Simone

    Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.

  20. Storming a Citadel: Mathematical Theory and Experimental Practice

    NASA Astrophysics Data System (ADS)

    Sichau, Christian

    2006-09-01

    Based upon a comparison of the viscosity experiments of James Clerk Maxwell (1831 1879) and Oskar Emil Meyer (1834 1909) in the 1860s, I argue that mathematical theory plays a significant role in both aspects of experimental practice, the design and construction of an experimental apparatus and the transformation of the observed experimental data into the value of a physical quantity. I argue further that Maxwell’s and Meyer’s evaluation of each other’s theoretical and experimental work depended significantly on the mathematical tools they employed in their theories.

  1. Vector solitons in femtosecond fibre lasers

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Xu, W. C.; Song, F.; Shen, M. C.; Han, D. A.; Chen, L. B.

    2008-07-01

    Experimental observation of spectral sideband suppression of mode-locked pulses is obtained in an erbium-doped fibre ring laser with nonlinear polarization rotation techniques. This effect may indicate the formation of a vector soliton in accordance with the theoretical work of reference [Phys. Rev. E 74, 046605 (2006)]. The 3 dB spectral bandwidth, the central wavelength and the repetition rate of the vector solitons are 24.41 nm, 1565.14 nm and 12.15 MHz, respectively. Based on the experimental observations, we propose an experimental criterion for the production of vector solitons, with spectral sideband suppression as a sign of the generation of vector solitons.

  2. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Carey, Sean K.; McNamara, James P.; Laudon, Hjalmar; Soulsby, Chris

    2017-04-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies, predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs.

  3. Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions

    DOE PAGES

    Jia, Jiangyong

    2014-12-01

    I review recent measurements of a large set of flow observables associated with event-shape fluctuations and collective expansion in heavy ion collisions. First, these flow observables are classified and experiment methods are introduced. The experimental results for each type of observables are then presented and compared to theoretical calculations. A coherent picture of initial condition and collective flow based on linear and non-linear hydrodynamic responses is derived, which qualitatively describe most experimental results. I discuss new types of fluctuation measurements that can further our understanding of the event-shape fluctuations and collective expansion dynamics.

  4. Systematic Experimental Designs For Mixed-species Plantings

    Treesearch

    Jeffery C. Goelz

    2001-01-01

    Systematic experimental designs provide splendid demonstration areas for scientists and land managers to observe the effects of a gradient of species composition. Systematic designs are based on large plots where species composition varies gradually. Systematic designs save considerable space and require many fewer seedlings than conventional mixture designs. One basic...

  5. Catalyst and Fuel Interactions to Optimize Endothermic Cooling

    DTIC Science & Technology

    2016-08-30

    research , special, group study, etc. 3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997...information from the experimental measurements. In close collaboration with experimental group of Anderson, we completed theoretical studies on the effect...observed shifts. 3. Methane Activation by Controlling s- and d-states in Iron-based Single Site Catalysts In a recent experimental finding Guo et

  6. Response to perturbations for granular flow in a hopper

    NASA Astrophysics Data System (ADS)

    Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.

    2007-11-01

    We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.

  7. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  8. Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices

    NASA Astrophysics Data System (ADS)

    Wimmer, Yannick; El-Sayed, Al-Moatasem; Gös, Wolfgang; Grasser, Tibor; Shluger, Alexander L.

    2016-06-01

    Charge capture and emission by point defects in gate oxides of metal-oxide-semiconductor field-effect transistors (MOSFETs) strongly affect reliability and performance of electronic devices. Recent advances in experimental techniques used for probing defect properties have led to new insights into their characteristics. In particular, these experimental data show a repeated dis- and reappearance (the so-called volatility) of the defect-related signals. We use multiscale modelling to explain the charge capture and emission as well as defect volatility in amorphous SiO2 gate dielectrics. We first briefly discuss the recent experimental results and use a multiphonon charge capture model to describe the charge-trapping behaviour of defects in silicon-based MOSFETs. We then link this model to ab initio calculations that investigate the three most promising defect candidates. Statistical distributions of defect characteristics obtained from ab initio calculations in amorphous SiO2 are compared with the experimentally measured statistical properties of charge traps. This allows us to suggest an atomistic mechanism to explain the experimentally observed volatile behaviour of defects. We conclude that the hydroxyl-E' centre is a promising candidate to explain all the observed features, including defect volatility.

  9. Revealing hidden Einstein-Podolsky-Rosen nonlocality.

    PubMed

    Walborn, S P; Salles, A; Gomes, R M; Toscano, F; Souto Ribeiro, P H

    2011-04-01

    Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states. © 2011 American Physical Society

  10. Gypsum crystals observed in experimental and natural sea ice

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  11. Global Snow from Space: Development of a Satellite-based, Terrestrial Snow Mission Planning Tool

    NASA Astrophysics Data System (ADS)

    Forman, B. A.; Kumar, S.; LeMoigne, J.; Nag, S.

    2017-12-01

    A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASA's Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT-C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical permutation. One objective of the proposed observing system simulation experiment (OSSE) is to assess the complementary - or perhaps contradictory - information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include: What observational records are needed (in space and time) to maximize terrestrial snow experimental utility? How might observations be coordinated (in space and time) to maximize this utility? What is the additional utility associated with an additional observation? How can future mission costs be minimized while ensuring Science requirements are fulfilled?

  12. Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja

    2017-01-01

    A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASAs Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical orbital configuration.One objective the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include:1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?2. How might observations be coordinated (in space and time) to maximize utility? 3. What is the additional utility associated with an additional observation?4. How can future mission costs being minimized while ensuring Science requirements are fulfilled?

  13. Towards the Development of a Global, Satellite-Based, Terrestrial Snow Mission Planning Tool

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja

    2017-01-01

    A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASA's Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT-C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical permutation. One objective of the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include: What observational records are needed (in space and time) to maximize terrestrial snow experimental utility? How might observations be coordinated (in space and time) to maximize this utility? What is the additional utility associated with an additional observation? How can future mission costs be minimized while ensuring Science requirements are fulfilled?

  14. In silico prediction of pharmaceutical degradation pathways: a benchmarking study.

    PubMed

    Kleinman, Mark H; Baertschi, Steven W; Alsante, Karen M; Reid, Darren L; Mowery, Mark D; Shimanovich, Roman; Foti, Chris; Smith, William K; Reynolds, Dan W; Nefliu, Marcela; Ott, Martin A

    2014-11-03

    Zeneth is a new software application capable of predicting degradation products derived from small molecule active pharmaceutical ingredients. This study was aimed at understanding the current status of Zeneth's predictive capabilities and assessing gaps in predictivity. Using data from 27 small molecule drug substances from five pharmaceutical companies, the evolution of Zeneth predictions through knowledge base development since 2009 was evaluated. The experimentally observed degradation products from forced degradation, accelerated, and long-term stability studies were compared to Zeneth predictions. Steady progress in predictive performance was observed as the knowledge bases grew and were refined. Over the course of the development covered within this evaluation, the ability of Zeneth to predict experimentally observed degradants increased from 31% to 54%. In particular, gaps in predictivity were noted in the areas of epimerizations, N-dealkylation of N-alkylheteroaromatic compounds, photochemical decarboxylations, and electrocyclic reactions. The results of this study show that knowledge base development efforts have increased the ability of Zeneth to predict relevant degradation products and aid pharmaceutical research. This study has also provided valuable information to help guide further improvements to Zeneth and its knowledge base.

  15. Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames

    NASA Astrophysics Data System (ADS)

    Watkins, Ryan

    Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.

  16. A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.

    2009-01-01

    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.

  17. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    NASA Astrophysics Data System (ADS)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  18. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors

    PubMed Central

    Feng, Guohu; Wu, Wenqi; Wang, Jinling

    2012-01-01

    A matrix Kalman filter (MKF) has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a) at least one degree of rotational freedom is excited, and (b) at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions. PMID:23012523

  19. Educational Intervention on Undergraduate Cancer Awareness and Self-Directed Learning.

    PubMed

    Hwang, Lih-Lian

    2018-06-01

    Traditional lecture-based learning (LBL) can increase cancer awareness in undergraduates. However, because of the rapidly changing knowledge base in medicine, undergraduates must develop skills required for lifelong self-directed learning (SDL). Problem-based learning (PBL) has been suggested as an SDL approach. This study used a nonequivalent control group with a pretest-posttest design for comparing PBL and LBL for their effectiveness in increasing cancer awareness and SDL among nonmedicine or nonnursing major undergraduates in a health-related general education course. Experimental groups 1 and 2 were instructed using PBL while the control group was instructed using LBL. Cancer educational programs were offered to experimental group 1 and the control group but not to experimental group 2. Among the 325 undergraduates who completed a questionnaire regarding cancer awareness and SDL in the pretest, 223 completed the 12-week follow-up survey of the posttest. Cancer awareness significantly improved between the pretest and posttest in the control group (P < 0.001). No significant difference in cancer awareness improvement was observed between experimental group 1 and the control group (P = 0.934). Cancer awareness improvement in experimental group 2 was significantly less than in the control group (P = 0.010). No statistically significant change in SDL was observed in the control group during the study (P = 0.897). However, the SDL of experimental groups 1 and 2 improved more significantly than that of the control group (P = 0.049 and 0.023, respectively). Therefore, PBL is an effective method of increasing cancer awareness and SDL in undergraduates.

  20. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  1. Properties of a vector soliton laser passively mode-locked by a fiber-based semiconductor saturable absorber operating in transmission

    NASA Astrophysics Data System (ADS)

    Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian

    2011-01-01

    We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.

  2. Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs.

    PubMed

    Hriberšek, M; Zajdela, B; Hribernik, A; Zadravec, M

    2011-02-01

    The paper studies the properties and sedimentation characteristics of sludge flocs, as they appear in biological wastewater treatment (BWT) plants. The flocs are described as porous and permeable bodies, with their properties defined based on conducted experimental study. The derivation is based on established geometrical properties, high-speed camera data on settling velocities and non-linear numerical model, linking settling velocity with physical properties of porous flocs. The numerical model for derivation is based on generalized Stokes model, with permeability of the floc described by the Brinkman model. As a result, correlation for flocs porosity is obtained as a function of floc diameter. This data is used in establishing a CFD numerical model of sedimentation of flocs in test conditions, as recorded during experimental investigation. The CFD model is based on Euler-Lagrange formulation, where the Lagrange formulation is chosen for computation of flocs trajectories during sedimentation. The results of numerical simulations are compared with experimental results and very good agreement is observed. © 2010 Elsevier Ltd. All rights reserved.

  3. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons.

    PubMed

    Nguyen, H S; Gerace, D; Carusotto, I; Sanvitto, D; Galopin, E; Lemaître, A; Sagnes, I; Bloch, J; Amo, A

    2015-01-23

    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics; in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and supersonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.

  4. Vascular flora and macroscopic fauna on the Fernow Experimental Forest

    Treesearch

    Darlene M. Madarish; Jane L. Rodrigue; Mary Beth Adams

    2002-01-01

    This report is the first comprehensive inventory of the vascular flora and macroscopic fauna known to occur within the Fernow Experimental Forest in north-central West Virignia. The compendium is based on information obtained from previous surveys, current research, and the personal observations of USDA Forest Service personnel and independent scientists. More than 750...

  5. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongming; Oskay, Caglar

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less

  6. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of experimental and historical science topics

    NASA Astrophysics Data System (ADS)

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.

  7. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure

    DOE PAGES

    Dolen, James; Harris, Philip; Marzani, Simone; ...

    2016-05-26

    Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.

  8. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  9. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  10. Role of codeposited impurities during growth. I. Explaining distinctive experimental morphology on Cu(0 0 1)

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi Bh.; Sathiyanarayanan, Rajesh; Pimpinelli, Alberto; Einstein, T. L.

    2011-01-01

    A unified explanation of the physics underlying all the distinctive features of the growth instabilities observed on Cu vicinals has long eluded theorists. Recently, kinetic Monte Carlo studies showed that codeposition of impurities during growth could account for the key distinctive experimental observations [Hamouda , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.77.245430 77, 245430 (2008)]. To identify the responsible impurity atom, we compute the nearest-neighbor binding energies (ENN) and terrace diffusion barriers (Ed) for several candidate impurity atoms on Cu(0 0 1) using DFT-based VASP. Our calculations show that codeposition (with Cu) of midtransition elements, such as Fe, Mn, and W, could—in conjunction with substantial Ehrlich-Schwoebel barriers—cause the observed instabilities; when the experimental setup is considered, W emerges to be the most likely candidate. We discuss the role of impurities in nanostructuring of surfaces.

  11. An Approach to the Evaluation of Hypermedia.

    ERIC Educational Resources Information Center

    Knussen, Christina; And Others

    1991-01-01

    Discusses methods that may be applied to the evaluation of hypermedia, based on six models described by Lawton. Techniques described include observation, self-report measures, interviews, automated measures, psychometric tests, checklists and criterion-based techniques, process models, Experimentally Measuring Usability (EMU), and a naturalistic…

  12. The behavior of a macroscopic granular material in vortex flow

    NASA Astrophysics Data System (ADS)

    Nishikawa, Asami

    A granular material is defined as a collection of discrete particles such as powder and grain. Granular materials display a large number of complex behaviors. In this project, the behavior of macroscopic granular materials under tornado-like vortex airflow, with varying airflow velocity, was observed and studied. The experimental system was composed of a 9.20-cm inner diameter acrylic pipe with a metal mesh bottom holding the particles, a PVC duct, and an airflow source controlled by a variable auto-transformer, and a power-meter. A fixed fan blade was attached to the duct's inner wall to create a tornado-like vortex airflow from straight flow. As the airflow velocity was increased gradually, the behavior of a set of same-diameter granular materials was observed. The observed behaviors were classified into six phases based on the macroscopic mechanical dynamics. Through this project, we gained insights on the significant parameters for a computer simulation of a similar system by Heath Rice [5]. Comparing computationally and experimentally observed phase diagrams, we can see similar structure. The experimental observations showed the effect of initial arrangement of particles on the phase transitions.

  13. Experimental study on synchronization of three coupled mechanical metronomes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan

    2013-03-01

    In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.

  14. Calibration of hyperspectral data aviation mode according with accompanying ground-based measurements of standard surfaces of observed scenes

    NASA Astrophysics Data System (ADS)

    Ostrikov, V. N.; Plakhotnikov, O. V.

    2014-12-01

    Using considerable experimental material, we examine whether it is possible to recalculate the initial data of hyperspectral aircraft survey into spectral radiance factors (SRF). The errors of external calibration for various observation conditions and different instruments for data receiving are estimated.

  15. Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys.

    PubMed

    Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E

    2017-10-15

    Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

  16. An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, S.; Taylor, P.; Burns, M.

    2007-12-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  17. Study on an Interactive Truck Crane Simulation Platform Based on Virtual Reality Technology

    ERIC Educational Resources Information Center

    Sang, Yong; Zhu, Yu; Zhao, Honghua; Tang, Mingyan

    2016-01-01

    The modern web-based distance education overcomes space-time restriction of the traditional teaching forms. However, being short of specifically observable and operable experimental equipment makes the web-based education lack advantages in the knowledge learning progress, which needs strong stereoscopic effect and operability. Truck crane is the…

  18. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  19. Do young toddlers act on their social preferences?

    PubMed

    Dahl, Audun; Schuck, Rachel K; Campos, Joseph J

    2013-10-01

    From preschool age to adulthood, most humans prefer to help someone who has treated others well over helping someone who has treated others badly. Researchers have recently made opposing predictions about whether such observation-based preferential helping is present when children begin to help in the second year of life. In the present study, 84 toddlers (16-27 months) observed 1 experimenter (antisocial) take a ball from, and 1 experimenter (prosocial) return a ball to, a neutral experimenter. In subsequent tests, children could help either the antisocial or the prosocial experimenter. Only the oldest children showed a significant preference for helping the prosocial agent first. Most children in all age groups were willing to help both experimenters when given multiple opportunities to help. Across age groups, children who looked longer at the continuation of the antisocial interaction were more likely to help the prosocial agent. These findings suggest that social evaluations do affect toddlers' helping behavior but that interactions between human agents may be difficult to evaluate for very young children.

  20. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    NASA Technical Reports Server (NTRS)

    Platt, C. M.; Young, S. A.; Carswell, A. I.; Pal, S. R.; Mccormick, M. P.; Winker, D. M.; Delguasta, M.; Stefanutti, L.; Eberhard, W. L.; Hardesty, M.

    1994-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods being selected within the two time intervals. Data are being archived at NASA Langley Research Center and, once there, are readily available to the international scientific community. This article describes the scale of the study in terms of its international involvement and in the range of data being recorded. Lidar observations of cloud height and backscatter coefficient have been taken from a number of ground-based stations spread around the globe. Solar shortwave and infrared longwave fluxes and infrared beam radiance have been measured at the surface wherever possible. The observations have been tailored to occur around the overpass times of the NOAA weather satellites. This article describes in some detail the various retrieval methods used to obtain results on cloud-base height, extinction coefficient, and infrared emittance, paying particular attention to the uncertainties involved.

  1. The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.

    PubMed Central

    Olson, W K

    1975-01-01

    Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529

  2. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  3. Influence of Problem Based Learning on Critical Thinking Skills and Competence Class VIII SMPN 1 Gunuang Omeh, 2016/2017

    NASA Astrophysics Data System (ADS)

    Aswan, D. M.; Lufri, L.; Sumarmin, R.

    2018-04-01

    This research intends to determine the effect of Problem Based Learning models on students' critical thinking skills and competences. This study was a quasi-experimental research. The population of the study was the students of class VIII SMPN 1 Subdistrict Gunuang Omeh. Random sample selection is done by randomizing the class. Sample class that was chosen VIII3 as an experimental class given that treatment study based on problems and class VIII1 as control class that treatment usually given study. Instrument that used to consist of critical thinking test, cognitive tests, observation sheet of affective and psychomotor. Independent t-test and Mann Whitney U test was used for the analysis. Results showed that there was significant difference (sig <0.05) between control and experimental group. The conclusion of this study was Problem Based Learning models affected the students’ critical thinking skills and competences.

  4. Robust independent modal space control of a coupled nano-positioning piezo-stage

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2018-06-01

    In order to accurately control a coupled 3-DOF nano-positioning piezo-stage, this paper designs a hybrid controller. In this controller, a hysteresis observer based on a Bouc-Wen model is established to compensate the hysteresis nonlinearity of the piezoelectric actuator first. Compared to hysteresis compensations using Preisach model and Prandt-Ishlinskii model, the compensation method using the hysteresis observer is computationally lighter. Then, based on the proposed dynamics model, by constructing the modal filter, a robust H∞ independent modal space controller is designed and utilized to decouple the piezo-stage and deal with the unmodeled dynamics, disturbance, and hysteresis compensation error. The effectiveness of the proposed controller is demonstrated experimentally. The experimental results show that the proposed controller can significantly achieve the high-precision positioning.

  5. Experimental study of the energy dependence of the total cross section for the 6He + natSi and 9Li + natSi reactions

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Aznabaev, D.; Zemlyanaya, E. V.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Knyazev, A. G.; Kugler, A.; Lashmanov, N. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Mendibayev, K.; Skobelev, N. K.; Slepnev, R. S.; Smirnov, V. V.; Testov, D.

    2017-11-01

    New experimental measurements of the total reaction cross sections for the 6He + natSi and 9Li + natSi processes in the energy range of 5 to 40 A MeV are presented. A modified transmission method based on high-efficiency detection of prompt n-γ radiation has been used in the experiment. A bump is observed for the first time in the energy dependence σR( E) at E ˜ 10-30 A MeV for the 9Li + natSi reaction, and existence of the bump in σR( E) at E ˜ 10-20 A MeV first observed in the standard transmission experiments is experimentally confirmed for the 6He + natSi reaction. Theoretical analysis of the measured 6He + natSi and 9Li + natSi reaction cross sections is performed within the microscopic double folding model. Disagreement is observed between the experimental and theoretical cross sections in the region of the bump at the energies of 10 to 20 A MeV, which requires further study.

  6. Weak nanoscale chaos and anomalous relaxation in DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  7. Weak nanoscale chaos and anomalous relaxation in DNA.

    PubMed

    Mazur, Alexey K

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  8. New LMI based gain-scheduling control for recovering contact-free operation of a magnetically levitated rotor

    NASA Astrophysics Data System (ADS)

    Wang, M.; Cole, M. O. T.; Keogh, P. S.

    2017-11-01

    A new approach for the recovery of contact-free levitation of a rotor supported by active magnetic bearings (AMB) is assessed through control strategy design, system modelling and experimental verification. The rotor is considered to make contact with a touchdown bearing (TDB), which may lead to entrapment in a bi-stable nonlinear response. A linear matrix inequality (LMI) based gain-scheduling H∞ control technique is introduced to recover the rotor to a contact-free state. The controller formulation involves a time-varying effective stiffness parameter, which can be evaluated in terms of forces transmitted through the TDB. Rather than measuring these forces directly, an observer is introduced with a model of the base structure to transform base acceleration signals using polytopic coordinates for controller adjustment. Force transmission to the supporting base structure will occur either through an AMB alone without contact, or through the AMB and TDB with contact and this must be accounted for in the observer design. The controller is verified experimentally in terms of (a) non-contact robust stability and vibration suppression performance; (b) control action for contact-free recovery at typical running speeds with various unbalance and TDB misalignment conditions; and (c) coast-down experimental tests. The results demonstrate the effectiveness of the AMB control action whenever it operates within its dynamic load capacity.

  9. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  10. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids

    NASA Astrophysics Data System (ADS)

    Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.

    2017-09-01

    Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.

  11. Investigation of effective strategies for developing creative science thinking

    NASA Astrophysics Data System (ADS)

    Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang

    2016-09-01

    The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.

  12. A strain-mediated corrosion model for bioabsorbable metallic stents.

    PubMed

    Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C

    2017-06-01

    This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Web-Based Learning in a Geometry Course

    ERIC Educational Resources Information Center

    Chan, Hsungrow; Tsai, Pengheng; Huang, Tien-Yu

    2006-01-01

    This study concerns applying Web-based learning with learner controlled instructional materials in a geometry course. The experimental group learned in a Web-based learning environment, and the control group learned in a classroom. We observed that the learning method accounted for a total variation in learning effect of 19.1% in the 3rd grade and…

  14. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  15. Rethinking a Negative Event: The Affective Impact of Ruminative versus Imagery-Based Processing of Aversive Autobiographical Memories.

    PubMed

    Slofstra, Christien; Eisma, Maarten C; Holmes, Emily A; Bockting, Claudi L H; Nauta, Maaike H

    2017-01-01

    Ruminative (abstract verbal) processing during recall of aversive autobiographical memories may serve to dampen their short-term affective impact. Experimental studies indeed demonstrate that verbal processing of non-autobiographical material and positive autobiographical memories evokes weaker affective responses than imagery-based processing. In the current study, we hypothesized that abstract verbal or concrete verbal processing of an aversive autobiographical memory would result in weaker affective responses than imagery-based processing. The affective impact of abstract verbal versus concrete verbal versus imagery-based processing during recall of an aversive autobiographical memory was investigated in a non-clinical sample ( n  = 99) using both an observational and an experimental design. Observationally, it was examined whether spontaneous use of processing modes (both state and trait measures) was associated with impact of aversive autobiographical memory recall on negative and positive affect. Experimentally, the causal relation between processing modes and affective impact was investigated by manipulating the processing mode during retrieval of the same aversive autobiographical memory. Main findings were that higher levels of trait (but not state) measures of both ruminative and imagery-based processing and depressive symptomatology were positively correlated with higher levels of negative affective impact in the observational part of the study. In the experimental part, no main effect of processing modes on affective impact of autobiographical memories was found. However, a significant moderating effect of depressive symptomatology was found. Only for individuals with low levels of depressive symptomatology, concrete verbal (but not abstract verbal) processing of the aversive autobiographical memory did result in weaker affective responses, compared to imagery-based processing. These results cast doubt on the hypothesis that ruminative processing of aversive autobiographical memories serves to avoid the negative emotions evoked by such memories. Furthermore, findings suggest that depressive symptomatology is associated with the spontaneous use and the affective impact of processing modes during recall of aversive autobiographical memories. Clinical studies are needed that examine the role of processing modes during aversive autobiographical memory recall in depression, including the potential effectiveness of targeting processing modes in therapy.

  16. Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system

    NASA Astrophysics Data System (ADS)

    Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.

    2018-05-01

    The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.

  17. Efficient spot size converter for higher-order mode fiber-chip coupling.

    PubMed

    Lai, Yaxiao; Yu, Yu; Fu, Songnian; Xu, Jing; Shum, Perry Ping; Zhang, Xinliang

    2017-09-15

    We propose and demonstrate a silicon-based spot size converter (SSC), composed of two identical tapered channel waveguides and a Y-junction. The SSC is designed for first-order mode fiber-to-chip coupling on the basis of mode petal separation and the recombination method. Compared with a traditional on-chip SSC, this method is superior with reduced coupling loss when dealing with a higher-order mode. To the best of our knowledge, we present the first experimental observations of a higher-order SSC which is fully compatible with a standard fabrication process. Average coupling losses of 3 and 5.5 dB are predicted by simulation and demonstrated experimentally. A fully covered 3 dB bandwidth over a 1515-1585 nm wavelength range is experimentally observed.

  18. Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics

    PubMed Central

    Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu

    2013-01-01

    A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717

  19. Numerical simulation of dendrite growth in nickel-based superalloy and validated by in-situ observation using high temperature confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Xu, Qingyan; Liu, Baicheng

    2017-12-01

    Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.

  20. Ab initio molecular dynamics of H2O adsorbed on solid MgO

    NASA Astrophysics Data System (ADS)

    Langel, Walter; Parrinello, Michele

    1995-08-01

    The Car-Parrinello method has been applied to study the adsorption of water on solid magnesium oxide with surface defects. A step consisting of an (100) and an (010) surface on an (011) base plane allows us to model the experimentally observed microfaceting. In and on this step dissociation of water into a hydroxyl group and a H-atom took place following a complicated pathway only accessible by the simulation of thermal motion. Under comparable conditions physisorption only was observed on a regular (001) plane. This solves an experimental controversy and it is in agreement with the observation, that disordered surfaces are more active in initiating the dissociation of the water molecules. Our work allows us to identify an important active center. We can also account for the experimentally observed broadening and shifting to the red of the stretching mode of hydrogen bonded hydroxyl groups, and we provide a detailed explanation of the origin of this effect. This allows us to verify earlier theories of hydrogen bonding such as that of the adiabatic separation of the proton dynamics.

  1. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  2. Findings from the UK and Canadian Space Situational Awareness (SSA) Experimentation during the Relocation of SKYNET 5A Satellite

    NASA Astrophysics Data System (ADS)

    Ash, A.; Scott, L.; Feline, W.

    2016-09-01

    This paper describes the planning, execution, analysis and lessons identified from a collaborative Space Situational Awareness (SSA) experiment to observe the SKYNET 5A satellite during a series of orbital maneuvers that occurred in the summer of 2015. In March 2015 Airbus Defence and Space (Airbus DS) announced its intention to relocate the SKYNET 5A satellite from the Atlantic to the Asia Pacific region to increase its global coverage; this provided an opportunity to observe this high value asset to explore the challenges and technical solutions related to deep space SSA. Within the UK the Defence Science and Technology Laboratory (Dstl, part of the UK Ministry of Defence) were established as the lead agency to plan the observation campaign utilising operational and emerging experimental SSA capabilities. The campaign was then expanded to involve Canada, the United States and Australia under the auspices of the Combined Space Operations (CSpO) Memorandum of Understanding (MOU) to further explore the coordination of observations between operational systems and potential fusion of data collected using experimental SSA assets. The focus for this paper is the collaborative work between Dstl and Defence Research and Development Canada (DRDC) that featured a period of experimentation to explore methods that enable cross cueing between ground-based and space-based SSA sensors, namely the UK Starbrook facility (located on the island of Cyprus), and NEOSSat/ Sapphire space surveillance satellites located in low-Earth orbit. A number of conclusions and lessons are identified in this paper that seek to inform the wider SSA community on the challenges, potential solutions and benefits of operating a distributed SSA architecture such as the one utilized during this experiment.

  3. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    PubMed

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  4. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography.

    PubMed

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-04-01

    Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model's template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, [Formula: see text], was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using [Formula: see text] from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO.

  5. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography

    PubMed Central

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-01-01

    Abstract. Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model’s template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, Az, was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using Az from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO. PMID:27284547

  6. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.

  7. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  8. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  9. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    PubMed

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  10. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  11. Progresses on the Intensive Observation Period of Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Liu, Qiang; Xiao, Qing; Chen, Erxue; Che, Tao; Hu, Zeyong

    2010-05-01

    The Watershed Allied Telemetry Experimental Research (WATER) is an intensively simultaneous airborne, satellite-borne and ground based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at catchment scale. It was taken place in the Heihe River Basin, the second largest inland river basin in the arid regions of northwest China. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment. It was divided into 4 phases, namely, the experiment planning period, pre-observation period, intensive observation period (IOP) and persistent observation period. The field campaigns have been completed, with the IOP lasting from March 7 to April 12, May 15 to July 22, and August 23 to September 5, 2008, in total, 120 days, more than 280 individuals of scientists, engineers, students, and aircrews from 28 different institutes and universities were involved in. A total of 26 airborne missions, about 110 hours were flown. Airborne sensors including microwave radiometers at L, K and Ka bands, imaging spectrometer, thermal imager, CCD and LIDAR were used. Ground measurements were carried out concurrently with the airborne and space-borne remote sensing at four scales, i.e., key experimental area, foci experimental area, experiment site and elementary sampling plot. A network of hydro meteorological and flux observations was established in the upper and middle reaches of the Heihe River Basin. The network was composed of 12 super Automatic Meteorological Stations (AMS), 6 Eddy Covariance (EC) systems, 2 Large Aperture Scintillometers (LAS), and plenty of China Meteorological Administration (CMA) operational meteorological and hydrological stations. Additionally, we also used ground-based remote sensing instruments, such as Doppler Radar, ground based microwave radiometer and truck-mounted scatterometer and lots of auto measurements instruments. Various and abundant satellite data were collected, consisting of visible/near infrared, thermal infrared, active microwave, LIDAR and other data. In the presentation, we introduced the preliminary results obtained from the observations of hydrological variables, particularly on snow, frozen soil, precipitation, soil moisture and evapotranspiration. The retrievals of the forest structure, biogeophysical and biogeochemical parameters from remote sensing were also introduced. The developments of scaling methods and catchment-scale hydrological data assimilation system were briefly described. With the accomplishment of the IOP, WATER has achieved a preliminary goal of establishing a public experimental field and developing a multi-scale, multi-resolution and high quality integrated dataset. The analysis of the data, developing and validation for models and algorithms, and building of the information system of WATER will continue in the next stage and limited revisits to the field are anticipated.

  12. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  13. Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.

    2018-01-01

    In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.

  14. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  15. "Slow-scanning" in Ground-based Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  16. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Volume 2.

    DTIC Science & Technology

    1986-10-01

    contaminatioa. Details of the data base received daily over a lifetime. For non - feeding studies on experimental used in these projections for each of...might be generated experimentally for a evaluation of the health effects of the highest no-observed-adverse-effect-level non -carcinogenic end-point of...8217 HARDFILL: Disposal sites receiving construction debris, wood, miscellaneous spoil material. HARM: Hazard Assessment Rating Methodology HAZARDOUS

  17. An Empirical Model-based MOE for Friction Reduction by Slot-Ejected Polymer Solutions in an Aqueous Environment

    DTIC Science & Technology

    2007-12-21

    of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in

  18. Bed-Load Dispersion: A Literature Review

    DTIC Science & Technology

    2016-12-01

    buried. The observed mean and variance of particle dis- placements from experimental measurements at specific time snap-shots can be used to determine...dispersion coefficient equation: . ( 8 ) For the range of experimental conditions tested within the Chang and Yen (2002) study, their equation... surveys , 51 exhibited thin-tail distri- butions and 8 more could have been considered thin-tail based on the definition of the ‘tail’. Liebault et al

  19. Simulated maximum likelihood method for estimating kinetic rates in gene expression.

    PubMed

    Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin

    2007-01-01

    Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.

  20. Mermin inequalities for GHZ contradictions in many-qutrit systems

    NASA Astrophysics Data System (ADS)

    Lawrence, Walter

    In view of recent experimental interest in multi-qutrit entanglement properties, we provide here new Mermin inequalities for use in experimental tests of many-qutrit GHZ contradictions, first predicted only recently (2013). Mermin inequalities refer here to Bell-like inequalities in which the quantum predictions are not probabilistic, thus elevating hidden variables to the status of EPR elements of reality. Earlier Bell inequalities for qutrits predate the discovery of GHZ contradictions, are based on non-concurrent observable sets, and hence cannot establish GHZ contradictions. The current Mermin inequalities are derived from those concurrent observable sets which produce GHZ contradictions, with the following results: (i) There is an operator M defined for every N >= 4 , built on two measurement bases, whose quantum eigenvalue grows as 2N, maximum classical value more slowly (1 .879N), with quantum to classical ratio being never less than 1.39, and (ii) For N = 3 , there is an M3, built on three local measurement bases, whose quantum to classical ratio is 3/2.

  1. Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle.

    PubMed

    Freitas, D; Manthilake, G; Schiavi, F; Chantel, J; Bolfan-Casanova, N; Bouhifd, M A; Andrault, D

    2017-12-19

    The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (-4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H 2 O (~16.5 wt.%) and its density is determined to be 3.56-3.74 g cm -3 . The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations.

  2. Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.

    2015-03-01

    Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.

  3. Experimental observation of the 1/3 magnetization plateau in the diamond-chain compound Cu3(CO3)2(OH)2.

    PubMed

    Kikuchi, H; Fujii, Y; Chiba, M; Mitsudo, S; Idehara, T; Tonegawa, T; Okamoto, K; Sakai, T; Kuwai, T; Ohta, H

    2005-06-10

    The magnetic susceptibility, high field magnetization, and specific heat measurements of Cu3(CO3)2(OH)2, which is a model substance for the frustrating diamond spin chain model, have been performed using single crystals. Two broad peaks are observed at around 20 and 5 K in both magnetic susceptibility and specific heat results. The magnetization curve has a clear plateau at one third of the saturation magnetization. The experimental results are examined in terms of theoretical expectations based on exact diagonalization and density matrix renormalization group methods. An origin of magnetic anisotropy is also discussed.

  4. Shaping the photoluminescence from gold nanoshells by cavity plasmons in dielectric-metal core-shell resonators

    NASA Astrophysics Data System (ADS)

    Sun, Ren; Wan, Mingjie; Wu, Wenyang; Gu, Ping; Chen, Zhuo; Wang, Zhenlin

    2016-08-01

    We report experimental investigation of the photoluminescence (PL) generated from the gold nanoshells of the dielectric-metal core-shell resonators (DMCSR) that support multipolar electric and magnetic based cavity plasmon resonances. Significantly enhanced and modulated PL spectrum is observed. By comparing the experimental results with analytical Mie calculations, we are able to demonstrate that the observed reshaping effects are due to the excitations of those narrow-band cavity plasmon resonances. We also present that the variation on the dielectric core size allows for tuning the cavity plasmon resonance wavelengths and thus the peak positions of the PL spectrum.

  5. Experimental observation of spatially localized dynamo magnetic fields.

    PubMed

    Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F

    2012-04-06

    We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society

  6. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  7. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  8. Density functional theory and an experimentally-designed energy functional of electron density.

    PubMed

    Miranda, David A; Bueno, Paulo R

    2016-09-21

    We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.

  9. Exploring the Argumentation Pattern in Modeling-Based Learning about Apparent Motion of Mars

    ERIC Educational Resources Information Center

    Park, Su-Kyeong

    2016-01-01

    This study proposed an analytic framework for coding students' dialogic argumentation and investigated the characteristics of the small-group argumentation pattern observed in modeling-based learning. The participants were 122 second grade high school students in South Korea divided into an experimental and a comparison group. Modeling-based…

  10. Inquiry-Based Laboratory Practices in a Science Teacher Training Program

    ERIC Educational Resources Information Center

    Yakar, Zeha; Baykara, Hatice

    2014-01-01

    In this study, the effects of inquiry-based learning practices on the scientific process skills, creative thinking, and attitudes towards science experiments of preservice science teachers have been analyzed. A non-experimental quantitative analysis method, the single-group pre test posttest design, has been used. In order to observe the…

  11. Premixed flame propagation in combustible particle cloud mixtures

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Yang, B.

    1993-01-01

    The structures of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixtures is analyzed. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi(u) is substantially larger than unity. A model is developed to explain these experimental observations. In the model it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. It is shown that the interplay of vaporization kinetics and oxidation process, can result in steady flame propagation in combustible mixtures where the value of phi(u) is substantially larger than unity. This prediction is in agreement with experimental observations.

  12. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Carey, S. K.; McNamara, J. P.; Laudon, H.; Soulsby, C.

    2017-12-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are pre-requisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies; predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs. We present a number of compelling examples illustrating how hydrologic process understanding has been generated through comparing hypotheses to data, and how this understanding has been essential for managing water supplies, floods, and ecosystem services today.

  13. Simulation and analysis of a model dinoflagellate predator-prey system

    NASA Astrophysics Data System (ADS)

    Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.

    2015-12-01

    This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.

  14. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan

    2017-09-01

    An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.

  15. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinschberger, Y.; Hervieux, P.-A.

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trendsmore » and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.« less

  16. Experimental and Calculational Studies of the Interactions of BF3 with Fluoroethers

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Morales, Wilfredo; Ball, David W.

    1998-01-01

    BF3 was co-condensed with (C2H5)2O, (CF3CH2)2O and (C2F5)2O in excess argon at 15 K. Infrared spectra of the matrices showed a definite Lewis acid-base interaction between BF3 and diethyl ether; a weak but definite interaction with bis(2,2,2,-trifluorodiethyl)ether, and no observable interaction with perfluorodiethyl ether. Molecular orbital (MO) calculations complemented the experimental observations by revealing that fluorine atoms on the ethers decreased electron localization about the oxygen atom. Thus, the experimental data and MO calculations indicated a clear trend between strength of interaction with BF3 and the degree of ether F substitution. The implications of the results for commercial perfluoro ether lubricant/metal oxide surface interactions are discussed.

  17. A new device-independent dimension witness and its experimental implementation

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Bancal, Jean-Daniel; Romero, Jacquiline; Scarani, Valerio

    2016-07-01

    A dimension witness is a criterion that sets a lower bound on the dimension needed to reproduce the observed data. Three types of dimension witnesses can be found in the literature: device-dependent ones, in which the bound is obtained assuming some knowledge on the state and the measurements; device-independent prepare-and-measure ones, that can be applied to any system including classical ones; and device-independent Bell-based ones, that certify the minimal dimension of some entangled systems. Here we consider the Collins-Gisin-Linden-Massar-Popescu Bell-type inequality for four outcomes. We show that a sufficiently high violation of this inequality witnesses d≥slant 4 and present a proof-of-principle experimental observation of such a violation. This presents a first experimental violation of the third type of dimension witness beyond qutrits.

  18. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  19. Observables for longitudinal flow correlations in heavy-ion collisions

    DOE PAGES

    Jia, Jiangyong; Huo, Peng; Ma, Guoliang; ...

    2017-06-06

    In this paper, we propose several new observables/correlators, based on correlations between two or more subevents separated in pseudorapidity η, to study the longitudinal flow fluctuations. We show that these observables are sensitive to the event-by-event fluctuations, as a function of η, of the initial condition as well as the nonlinear mode-mixing effects. Finally, experimental measurement of these observables shall provide important new constraints on the boost-variant event-by-event initial conditions required by all 3+1-dimensional viscous hydrodynamics models.

  20. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    NASA Astrophysics Data System (ADS)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  1. Waveguide resonance mode response of stacked structures of metallic sub-wavelength slit arrays

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Takano, Keisuke; Sakaguchi, Koichiro; Kato, Kosaku; Nakajima, Makoto; Akiyama, Koichi

    2018-05-01

    Detailed measurements of the optical properties of two-tier systems composed of metallic plates perforated with periodic sub-wavelength slit patterns were carried out using terahertz time-domain spectroscopy. We demonstrate that the transmission properties observed experimentally for various configurations can be reproduced successfully by simulations based on the finite-differential time-domain method. Fabry-Perot-like waveguide resonance mode behaviors specific to this quasi-dielectric system were then investigated. For structures with no lateral displacement between the slit-array plates, mode disappearance phenomena, which are caused by destructive interference between the odd-order mode and the blue- or red-shifted even-order modes, were observed experimentally. The uncommon behavior of the even-order modes was examined precisely to explain the slit-width dependence. For structures with half-pitched displacement between the plates, extraordinarily strong transmission was observed experimentally, even when the optical paths were shut off. This result was interpreted in terms of the propagation of surface plasmon polaritons through very thin and labyrinthine spacings that inevitably exist between the metallic plates. Furthermore, the optical mode disappearance phenomena are revealed to be characterized by anticrossing of the two mixing modes formed by even- and odd-order modes. These experimental observations that are supported theoretically are indispensable to the practical use of this type of artificial dielectric and are expected to encourage interest in optical mode behaviors that are not typically observed in conventional dielectric systems.

  2. A novel method for multifactorial bio-chemical experiments design based on combinational design theory.

    PubMed

    Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan

    2017-01-01

    Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.

  3. High pressure structural behavior of YGa2: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Sekar, M.; Shekar, N. V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A. K.; Upadhyay, Anuj; Singh, M. N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.

    2015-03-01

    High pressure structural stability studies were carried out on YGa2 (AlB2 type structure at NTP, space group P6/mmm) up to a pressure of 35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at 6 GPa and above 17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B0 for the parent and high pressure phases were estimated using Birch-Murnaghan and modified Birch-Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the 'Ga' networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of 'Ga' atoms interconnected by strong covalent bonds.

  4. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  5. Evidence of Antiblockade in an Ultracold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  6. A model for generating Surface EMG signal of m. Tibialis Anterior.

    PubMed

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  7. Praxis-based research networks: An emerging paradigm for research that is rigorous, relevant, and inclusive.

    PubMed

    Werner, James J; Stange, Kurt C

    2014-01-01

    Practice-based research networks (PBRNs) have developed a grounded approach to conducting practice-relevant and translational research in community practice settings. Seismic shifts in the health care landscape are shaping PBRNs that work across organizational and institutional margins to address complex problems. Praxis-based research networks combine PBRN knowledge generation with multistakeholder learning, experimentation, and application of practical knowledge. The catalytic processes in praxis-based research networks are cycles of action and reflection based on experience, observation, conceptualization, and experimentation by network members and partners. To facilitate co-learning and solution-building, these networks have a flexible architecture that allows pragmatic inclusion of stakeholders based on the demands of the problem and the needs of the network. Praxis-based research networks represent an evolving trend that combines the core values of PBRNs with new opportunities for relevance, rigor, and broad participation. © Copyright 2014 by the American Board of Family Medicine.

  8. A comprehensive evaluation of the toxicology of monogram inks added to experimental cigarettes.

    PubMed

    Smith, Donna C; Wiecinski, Paige N; Coggins, Christopher R E; Banty, Tamara H; Oldham, Michael J

    2013-01-01

    Cigarettes often have a small identifying mark (monogram) printed either on the cigarette paper toward the filter end of the cigarette or on the tipping paper. A battery of tests was used to compare the toxicology of mainstream smoke from experimental cigarettes manufactured with different monogram inks. Cigarettes with different concentrations of different pigments were compared with cigarettes without ink, and with a control ink. Smoke from each of the experimental cigarettes was evaluated using analytical chemistry and in vitro bacterial mutagenicity (Salmonella, five strains, ± S9) and cytotoxicity (neutral red uptake) assays. No differences were observed between experimental cigarettes printed with three different pigment loads of iron oxide-based Black pigment and non-printed cigarettes. In general, no dose response was observed. However, increases in certain smoke constituents were found to correlate with Pigment Yellow 14 (also known as benzidine yellow) and Pigment Blue 15 (copper phthalocyanine). Increases in bacterial mutagenicity were observed for high-level print of Pigment Yellow 14 in TA98 and TA1537 and the high-level print of Pigment Blue 15 in TA98. In vitro cytotoxicity of mainstream smoke was unaffected by the presence of monogram ink on cigarettes. Statistically significant dose-responsive constituent changes and an increase in mutagenicity were observed with inclusion of Pigment Yellow 14 and Pigment Blue 15. Other pigments showed minimal toxicological activity.

  9. An artificial-intelligence technique for qualitatively deriving enzyme kinetic mechanisms from initial-velocity measurements and its application to hexokinase.

    PubMed Central

    Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A

    1989-01-01

    We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819

  10. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  11. Perceptions of a mobile technology on learning strategies in the anatomy laboratory.

    PubMed

    Mayfield, Chandler H; Ohara, Peter T; O'Sullivan, Patricia S

    2013-01-01

    Mobile technologies offer new opportunities to improve dissection learning. This study examined the effect of using an iPad-based multimedia dissection manual during anatomy laboratory instruction on learner's perception of anatomy dissection activities and use of time. Three experimental dissection tables used iPads and three tables served as a control for two identical sessions. Trained, non-medical school anatomy faculty observers recorded use of resources at two-minute intervals for 20 observations per table. Students completed pre- and post-perception questionnaires. We used descriptive and inferential analyses. Twenty-one control and 22 experimental students participated. Compared with controls, experimental students reported significantly (P < 0.05) less reliance on paper and instructor resources, greater ability to achieve anatomy laboratory objectives, and clarity of the role of dissection in learning anatomy. Experimental students indicated that the iPad helped them in dissection. We observed experimental students more on task (93% vs. 83% of the time) and less likely to be seeking an instructor (2% vs. 32%). The groups received similar attention from instructors (33% vs. 37%). Fifty-nine percent of the time at least one student was looking at the iPad. Groups clustered around the iPad a third of their time. We conclude that the iPad-manual aided learner engagement, achieved instructional objectives, and enhanced the effectiveness and efficiency of dissection education. Copyright © 2012 American Association of Anatomists.

  12. Analysis of thermohydraulic explosion energetics

    NASA Astrophysics Data System (ADS)

    Büttner, Ralf; Zimanowski, Bernd; Mohrholz, Chris-Oliver; Kümmel, Reiner

    2005-08-01

    Thermohydraulic explosion, caused by direct contact of hot liquids with cold water, represent a major danger of volcanism and in technical processes. Based on experimental observations and nonequilibrium thermodynamics we propose a model of heat transfer from the hot liquid to the water during the thermohydraulic fragmentation process. The model was validated using the experimentally observed thermal energy release. From a database of more than 1000 experimental runs, conducted during the last 20 years, a standardized entrapment experiment was defined, where a conversion of 1 MJ/kg of thermal energy to kinetic energy within 700μs is observed. The results of the model calculations are in good agreement with this value. Furthermore, the model was found to be robust with respect to the material properties of the hot melt, which also is observed in experiments using different melt compositions. As the model parameters can be easily obtained from size and shape properties of the products of thermohydraulic explosions and from material properties of the hot melt, we believe that this method will not only allow a better analysis of volcanic eruptions or technical accidents, but also significantly improve the quality of hazard assessment and mitigation.

  13. Modulation of a protein free-energy landscape by circular permutation.

    PubMed

    Radou, Gaël; Enciso, Marta; Krivov, Sergei; Paci, Emanuele

    2013-11-07

    Circular permutations usually retain the native structure and function of a protein while inevitably perturbing its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories, we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, although subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, in which one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed.

  14. Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech

    PubMed Central

    Alcalá-Quintana, Rocío

    2015-01-01

    Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361

  15. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  16. An Effective Method for Modeling Two-dimensional Sky Background of LAMOST

    NASA Astrophysics Data System (ADS)

    Haerken, Hasitieer; Duan, Fuqing; Zhang, Jiannan; Guo, Ping

    2017-06-01

    Each CCD of LAMOST accommodates 250 spectra, while about 40 are used to observe sky background during real observations. How to estimate the unknown sky background information hidden in the observed 210 celestial spectra by using the known 40 sky spectra is the problem we solve. In order to model the sky background, usually a pre-observation is performed with all fibers observing sky background. We use the observed 250 skylight spectra as training data, where those observed by the 40 fibers are considered as a base vector set. The Locality-constrained Linear Coding (LLC) technique is utilized to represent the skylight spectra observed by the 210 fibers with the base vector set. We also segment each spectrum into small parts, and establish the local sky background model for each part. Experimental results validate the proposed method, and show the local model is better than the global model.

  17. A Problem-Based Approach to Elastic Wave Propagation: The Role of Constraints

    ERIC Educational Resources Information Center

    Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni

    2009-01-01

    A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen…

  18. New-Generation BeiDou (BDS-3) Experimental Satellite Precise Orbit Determination with an Improved Cycle-Slip Detection and Repair Algorithm

    PubMed Central

    Hu, Chao; Wang, Qianxin; Wang, Zhongyuan; Hernández Moraleda, Alberto

    2018-01-01

    Currently, five new-generation BeiDou (BDS-3) experimental satellites are working in orbit and broadcast B1I, B3I, and other new signals. Precise satellite orbit determination of the BDS-3 is essential for the future global services of the BeiDou system. However, BDS-3 experimental satellites are mainly tracked by the international GNSS Monitoring and Assessment Service (iGMAS) network. Under the current constraints of the limited data sources and poor data quality of iGMAS, this study proposes an improved cycle-slip detection and repair algorithm, which is based on a polynomial prediction of ionospheric delays. The improved algorithm takes the correlation of ionospheric delays into consideration to accurately estimate and repair cycle slips in the iGMAS data. Moreover, two methods of BDS-3 experimental satellite orbit determination, namely, normal equation stacking (NES) and step-by-step (SS), are designed to strengthen orbit estimations and to make full use of the BeiDou observations in different tracking networks. In addition, a method to improve computational efficiency based on a matrix eigenvalue decomposition algorithm is derived in the NES. Then, one-year of BDS-3 experimental satellite precise orbit determinations were conducted based on iGMAS and Multi-GNSS Experiment (MGEX) networks. Furthermore, the orbit accuracies were analyzed from the discrepancy of overlapping arcs and satellite laser range (SLR) residuals. The results showed that the average three-dimensional root-mean-square error (3D RMS) of one-day overlapping arcs for BDS-3 experimental satellites (C31, C32, C33, and C34) acquired by NES and SS are 31.0, 36.0, 40.3, and 50.1 cm, and 34.6, 39.4, 43.4, and 55.5 cm, respectively; the RMS of SLR residuals are 55.1, 49.6, 61.5, and 70.9 cm and 60.5, 53.6, 65.8, and 73.9 cm, respectively. Finally, one month of observations were used in four schemes of BDS-3 experimental satellite orbit determination to further investigate the reliability and advantages of the improved methods. It was suggested that the scheme with improved cycle-slip detection and repair algorithm based on NES was optimal, which improved the accuracy of BDS-3 experimental satellite orbits by 34.07%, 41.05%, 72.29%, and 74.33%, respectively, compared with the widely-used strategy. Therefore, improved methods for the BDS-3 experimental satellites proposed in this study are very beneficial for the determination of new-generation BeiDou satellite precise orbits. PMID:29724062

  19. Nanoscale observation of organic thin film by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mochizuki, Shota; Uruma, Takeshi; Satoh, Nobuo; Saravanan, Shanmugam; Soga, Tetsuo

    2017-08-01

    Organic photovoltaics (OPVs) fabricated using organic semiconductors and hybrid solar cells (HSCs) based on organic semiconductors/quantum dots (QDs) have been attracting significant attention owing to their potential use in low-cost solar energy-harvesting applications and flexible, light-weight, colorful, large-area devices. In this study, we observed and evaluated the surface of a photoelectric conversion layer (active layer) of the OPVs and HSCs based on phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and zinc oxide (ZnO) nanoparticles. The experiment was performed using atomic force microscopy (AFM) combined with a frequency modulation detector (FM detector) and a contact potential difference (CPD) detection circuit. We experimentally confirmed the changes in film thickness and surface potential, as affected by the ZnO nanoparticle concentration. From the experimental results, we confirmed that ZnO nanoparticles possibly affect the structures of PCBM and P3HT. Also, we prepared an energy band diagram on the basis of the observation results, and analyzed the energy distribution inside the active layer.

  20. Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface

    PubMed Central

    Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus

    2017-01-01

    While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution. PMID:28338011

  1. Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface

    NASA Astrophysics Data System (ADS)

    Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus

    2017-03-01

    While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.

  2. Rectification of light refraction in curved waveguide arrays.

    PubMed

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  3. The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks.

    PubMed

    Ruths, Derek; Muller, Melissa; Tseng, Jen-Te; Nakhleh, Luay; Ram, Prahlad T

    2008-02-29

    Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks, and provide insights into the trends of molecules' activity-levels in response to an external stimulus, based solely on the network's connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental observations.

  4. The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks

    PubMed Central

    Ruths, Derek; Muller, Melissa; Tseng, Jen-Te; Nakhleh, Luay; Ram, Prahlad T.

    2008-01-01

    Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks, and provide insights into the trends of molecules' activity-levels in response to an external stimulus, based solely on the network's connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental observations. PMID:18463702

  5. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  6. Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure.

    PubMed

    Chai, Quan; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Chen, Yujin; Yuan, Libo; Peng, Gang-Ding

    2015-05-04

    We give a comprehensive theoretical analysis and simulation of a FBG in single-multi-single mode fiber structure (FBG-in-SMS), based on the coupled mode analysis and the mode interference analysis. This enables us to explain the experimental observations, its asymmetric transmission and reflection spectra with the similar temperature responses near the spectral range of Bragg wavelengths. The transmission spectrum shift during FBG written-in process is observed and discussed. The analysis results are useful in the design of the SMS structure based sensors and filters.

  7. Modeling of the self-Q-switching behavior of lasers based on chromium doped active material

    NASA Astrophysics Data System (ADS)

    Fromager, M.; Ameur, K. Aı̈t

    2001-05-01

    The aim of this paper is to study the influence of the direct coupling of the average lattice strains to the active ions on the behavior of a gain switching laser based on chromium doped active material. It is found that the resulting nonlinear time-dependent lensing effect combined with an internal aperture behaves as a saturable absorber. A resulting self-Q-switching effect is observed from the calculated output laser pulses. The results of our modeling are in agreement with experimental observations already reported in literature.

  8. Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.

    2015-07-20

    We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.

  9. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  10. [Realization of design regarding experimental research in the clinical real-world research].

    PubMed

    He, Q; Shi, J P

    2018-04-10

    Real world study (RWS), a further verification and supplement for explanatory randomized controlled trial to evaluate the effectiveness of intervention measures in real clinical environment, has increasingly become the focus in the field of research on medical and health care services. However, some people mistakenly equate real world study with observational research, and argue that intervention and randomization cannot be carried out in real world study. In fact, both observational and experimental design are the basic designs in real world study, while the latter usually refers to pragmatic randomized controlled trial and registry-based randomized controlled trial. Other nonrandomized controlled and adaptive designs can also be adopted in the RWS.

  11. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  12. Searching for ultra high energy neutrinos from space

    NASA Astrophysics Data System (ADS)

    Santangelo, A.

    2006-07-01

    Observations of neutrinos at Ultra High Energies (UHE), from a few 1018 eV to beyond the decade of 1020 eV, are an extraordinary opportunity to explore this still largely unknown Universe and present us a tremendous experimental challenge. It is indeed expected that observations of UHEνs (and cosmic rays) will provide entirely new information on the sources and on the physical mechanisms able to accelerate these extreme messengers to macroscopic energies. However, as extensively debated in the last few years, UHE particles might, also, carry evidence of unknown physics or of exotic particles, relics of the early Universe. To reach these goals, high statistics, high quality observations are required. This implies innovative experiments with larger acceptances and good understanding of systematic uncertainties. The ground-based Pierre Auger Observatory, whose southern site is expected to be completed in Malargue, Argentina by the end of 2006, will surely provide, in the near future, a more solid observational scenario for UHE Cosmic Rays (UHECR). However, only space-based observatories can reach the effective area necessary to systematically explore the UHE universe. Space-based observatories are likely to be essential for neutrino observations at UHE. In fact only a few UHE neutrinos will be detected by the current planned observatories and only if the most promising estimates for fluxes applies. In the present paper, after summarizing the science rationale behind UHEν studies, we review the status of current experimental efforts, with the main emphasis on the actual generation of space-based observatories. We also briefly discuss the scientific goals, the requirements and the R&D of a “next-generation” space-based mission for UHE observations. The opening of the ESA “Cosmic Vision 2015 2025” long term plan provides, in the very near future, an unique opportunity to develop such a challenging and innovative observatory for UHE.

  13. Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.

    2018-03-01

    The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.

  14. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  15. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    PubMed

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  16. Ways of learning: Observational studies versus experiments

    USGS Publications Warehouse

    Shaffer, T.L.; Johnson, D.H.

    2008-01-01

    Manipulative experimentation that features random assignment of treatments, replication, and controls is an effective way to determine causal relationships. Wildlife ecologists, however, often must take a more passive approach to investigating causality. Their observational studies lack one or more of the 3 cornerstones of experimentation: controls, randomization, and replication. Although an observational study can be analyzed similarly to an experiment, one is less certain that the presumed treatment actually caused the observed response. Because the investigator does not actively manipulate the system, the chance that something other than the treatment caused the observed results is increased. We reviewed observational studies and contrasted them with experiments and, to a lesser extent, sample surveys. We identified features that distinguish each method of learning and illustrate or discuss some complications that may arise when analyzing results of observational studies. Findings from observational studies are prone to bias. Investigators can reduce the chance of reaching erroneous conclusions by formulating a priori hypotheses that can be pursued multiple ways and by evaluating the sensitivity of study conclusions to biases of various magnitudes. In the end, however, professional judgment that considers all available evidence is necessary to render a decision regarding causality based on observational studies.

  17. Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Jaramillo-Villegas, Jose A.; Xuan, Yi; Leaird, Daniel E.; Qi, Minghao; Weiner, Andrew M.

    2016-10-01

    We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings. The evolution of the power spectrum is not symmetric with respect to the spectrum center. Numerical simulations based on the generalized Lugiato-Lefever equation are in good agreement with the experimental results and unveil the role of stimulated Raman scattering in the symmetry breaking of the power spectrum evolution. Our results show that optical microresonators can be exploited as a powerful platform for the exploration of soliton dynamics.

  18. Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pitois, Stéphane

    2005-09-01

    We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.

  19. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  20. Bright-dark soliton pairs in a self-mode locking fiber laser

    NASA Astrophysics Data System (ADS)

    Meng, Yichang; Zhang, Shumin; Li, Hongfei; Du, Juan; Hao, Yanping; Li, Xingliang

    2012-06-01

    We have experimentally observed bright-dark soliton pairs in an erbium-doped fiber ring laser for the first time. This approach is different from the vector dark domain wall solitons which separate the two orthogonal linear polarization eigenstates of the laser emission. In our laser, the bright-dark soliton pairs can co-exist in any one polarization state. Numerical simulations based on the coupled complex Ginzburg-Landau equations have confirmed the experimental results.

  1. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  2. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  3. Modelling of hydrogen conditioning, retention and release in Tore Supra

    NASA Astrophysics Data System (ADS)

    Grisolia, C.; Horton, L. D.; Ehrenberg, J. K.

    1995-04-01

    A model based on a local mixing model has been previously developed at JET to explain the recovery of tritium after the first PTE experiment. This model is extended by a 0D plasma particle balance model and is applied to data from Tore Supra wall saturation experiments. With only two free parameters, representing the diffusion of hydrogen atoms and the volume recombination process between hydrogen atoms into molecules, the model can reproduce experimental data. The time evolution of the after-shot outgassing and the integral amount of particles recovered after the shot (assuming 13 m 2 of interacting surfaces between plasma and walls) are in good agreement with the experimental observations. The same set of parameters allows the model to simulate after-shot outgassing of five consecutive discharges. However, the model fails to predict the observed saturation of the walls by the plasma. Results from helium glow discharge (HeGD) can only be partially described. Good agreement with the experimental hydrogen release and its time evolution during HeGD is observed, but the model fails to describe the stability of a saturated graphite wall.

  4. Experimental investigation of convective heat transfer agumentation using Al2O3/water nanofluid in circular pipe

    NASA Astrophysics Data System (ADS)

    Chavan, Durgeshkumar; Pise, Ashok T.

    2015-09-01

    In the present paper, experimental study is performed to investigate convective heat transfer and flow characteristics of nanofluids through a circular tube. The heat transfer coefficient and friction factor of the γ-Al2O3-water nanofluid flowing through a pipe of 10 mm inner ID and 1 m in length, with constant wall temperature under turbulent flow conditions are investigated. Experiments are conducted with 30 nm size γ-Al2O3 nanoparticle with a volume fraction between 0.1 and to 1.0 and Reynolds number between 8,000 and 14,000. Experimental results emphasize the heat transfer enhancement with the increase in a Reynolds number or nanoparticle volume fraction. The maximum enhancement of 36 % in the heat transfer coefficient for a Reynolds number of 8,550, by using nanofluid with 1.0 vol% was observed compared with base fluid. Experimental measurement also shows the considerable increase in the pressure drop with small addition of nanoparticles in base fluid. Experimental results of nanofluids were compared with existing convective heat transfer correlations in the turbulent regime. Comparison shows that Maiga's correlation has close agreement with experimental results in comparison with Dittus Boelter correlation.

  5. Direct and indirect reputation formation in nonhuman great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus) and human children (Homo sapiens).

    PubMed

    Herrmann, Esther; Keupp, Stefanie; Hare, Brian; Vaish, Amrisha; Tomasello, Michael

    2013-02-01

    Humans make decisions about when and with whom to cooperate based on their reputations. People either learn about others by direct interaction or by observing third-party interactions or gossip. An important question is whether other animal species, especially our closest living relatives, the nonhuman great apes, also form reputations of others. In Study 1, chimpanzees, bonobos, orangutans, and 2.5-year-old human children experienced a nice experimenter who tried to give food/toys to the subject and a mean experimenter who interrupted the food/toy giving. In studies 2 and 3, nonhuman great apes and human children could only passively observe a similar interaction, in which a nice experimenter and a mean experimenter interacted with a third party. Orangutans and 2.5-year-old human children preferred to approach the nice experimenter rather than the mean one after having directly experienced their respective behaviors. Orangutans, chimpanzees, and 2.5-year-old human children also took into account experimenter actions toward third parties in forming reputations. These studies show that the human ability to form direct and indirect reputation judgment is already present in young children and shared with at least some of the other great apes. PsycINFO Database Record (c) 2013 APA, all rights reserved

  6. Design optimization of a brush turbine with a cleaner/water based solution

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1995-01-01

    Recently, a turbine-brush was analyzed based on the energy conservation and the force momentum equation with an empirical relationship of the drag coefficient. An equation was derived to predict the rotational speed of the turbine-brush in terms of the blade angle, number of blades, rest of geometries of the turbine-brush and the incoming velocity. Using the observed flow conditions, drag coefficients were determined. Based on the experimental values as boundary conditions, the turbine-brush flows were numerically simulated to understand first the nature of the flows, and to extend the observed drag coefficient to a flow without holding the turbine-brush.

  7. Experimental saltwater intrusion in coastal aquifers using automated image analysis: Applications to homogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Robinson, G.; Ahmed, Ashraf A.; Hamill, G. A.

    2016-07-01

    This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimising manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.

  8. On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections

    NASA Astrophysics Data System (ADS)

    Lenzen, Armin; Vollmering, Max

    2018-05-01

    In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.

  9. V&V framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, Richard G.; Maniaci, David Charles; Naughton, Jonathan W.

    2015-09-01

    A Verification and Validation (V&V) framework is presented for the development and execution of coordinated modeling and experimental program s to assess the predictive capability of computational models of complex systems through focused, well structured, and formal processes.The elements of the framework are based on established V&V methodology developed by various organizations including the Department of Energy, National Aeronautics and Space Administration, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. Four main topics are addressed: 1) Program planning based on expert elicitation of the modeling physics requirements, 2) experimental design for model assessment, 3)more » uncertainty quantification for experimental observations and computational model simulations, and 4) assessment of the model predictive capability. The audience for this document includes program planners, modelers, experimentalist, V &V specialist, and customers of the modeling results.« less

  10. ESTIMATION OF CHEMICAL SPECIFIC PARAMETERS WITHIN PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC MODELS

    EPA Science Inventory

    While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...

  11. Implosive Therapy as a Treatment for Insomnia.

    ERIC Educational Resources Information Center

    Carrera, Richard N.; Elenewski, Jeffrey J.

    1980-01-01

    The death implosion produced a decrease in insomnia beyond the strong expectancy effects that resulted from all experimental treatments. The failure to observe changes in reported fear of death was attributed to subjects' anxiety-based reluctance to acknowledge openly such fear. (Author)

  12. [Improving the teaching quality by multiple tools and technology in oral histopathology experimental course].

    PubMed

    Tian, Zhen; Wang, Li-Zhen; Hu, Yu-Hua; Zhang, Chun-Ye; Li, Jiang

    2017-04-01

    Oral histopathology is a course which needs to be combined with theory and practice closely. Experimental course plays an important role in teaching oral histopathology. Here, we aim to explore a series of effective measures to improve the teaching quality of experimental course and tried to train observation, thinking, analysis and problem solving skills of dental students. We re-edited and updated the experimental textbook "guidelines of experimental course of oral histopathology", and published the reference book for experimental course--"color pocket atlas of oral histopathology: experiment and diadactic teaching". The number of clinicopathological cases for presentation and class discussion was increased, and high-quality teaching slides were added and replaced the poor-quality or worn out slides. We established a variety of teaching methods based on the internet, which provided an environment of self-directed learning for dental students. Instead of simple slice-reading examination, a new evaluation system based on computer was established. The questionnaire survey showed that the students spoke positively on the teaching reform for experimental course. They thought that the reform played a significant role in enriching the teaching content, motivating learning interest and promoting self-study. Compared with traditional examination, computer-based examination showed a great advantage on mastering professional knowledge systematically and comprehensively. The measures adopted in our teaching reform not only effectively improve the teaching quality of experimental course of oral histopathology, but also help the students to have a clear, logical thinking when facing complicated diseases and have the ability to apply theoretical knowledge into clinical practice.

  13. Model-based analysis of multi-shell diffusion MR data for tractography: How to get over fitting problems

    PubMed Central

    Jbabdi, Saad; Sotiropoulos, Stamatios N; Savio, Alexander M; Graña, Manuel; Behrens, Timothy EJ

    2012-01-01

    In this article, we highlight an issue that arises when using multiple b-values in a model-based analysis of diffusion MR data for tractography. The non-mono-exponential decay, commonly observed in experimental data, is shown to induce over-fitting in the distribution of fibre orientations when not considered in the model. Extra fibre orientations perpendicular to the main orientation arise to compensate for the slower apparent signal decay at higher b-values. We propose a simple extension to the ball and stick model based on a continuous Gamma distribution of diffusivities, which significantly improves the fitting and reduces the over-fitting. Using in-vivo experimental data, we show that this model outperforms a simpler, noise floor model, especially at the interfaces between brain tissues, suggesting that partial volume effects are a major cause of the observed non-mono-exponential decay. This model may be helpful for future data acquisition strategies that may attempt to combine multiple shells to improve estimates of fibre orientations in white matter and near the cortex. PMID:22334356

  14. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    PubMed

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  15. Mechanisms for Non-Linear Optical Behaviour in Molecular Fluids

    NASA Astrophysics Data System (ADS)

    McEwan, Kenneth J.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes a study of the non-linear optical mechanisms that allow high power laser radiation to interact and change the optical properties of fluid based media. Attention is focused on understanding the finite time-scale of the microscopic response and its influence on the experimental observation. Two classes of material are studied: liquid crystalline fluids in their isotropic phase and suspensions of particles capable of absorbing the laser radiation. In the former case a quantitative description of the optical transients seen in two experiments, degenerate four wave mixing and "z-scan" (self-focusing), is obtained. This description is based upon an analysis of refractive index changes associated with laser-induced molecular reorientation and with thermal effects, for molecules that absorb the laser radiation. Material parameters for a large range of nematogens are obtained by applying this description to experimental data. In the absorbing colloidal suspensions a novel mechanism for degenerate four wave mixing is identified and studied. The experimental results are suggestive of a mechanism in which vapour bubbles nucleate explosively around the colloidal particles and drive a coherent sound -wave excitation of the fluid. Theoretical studies confirm that rapid bubble nucleation is possible by a process of spinodal decomposition under the experimental conditions and it is shown that this mechanism can be expected to give rise to transient behaviour of the type observed. Finally laser-induced refractive index changes in a colloidal suspension in a solid matrix are studied. The dynamics of the formation of refractive index gratings is examined and correlated with microscopically observed structural changes in the matrix. ftn*Funded by DRA, Electronics Division (formerly RSRE).

  16. Spherical subjective refraction with a novel 3D virtual reality based system.

    PubMed

    Pujol, Jaume; Ondategui-Parra, Juan Carlos; Badiella, Llorenç; Otero, Carles; Vilaseca, Meritxell; Aldaba, Mikel

    To conduct a clinical validation of a virtual reality-based experimental system that is able to assess the spherical subjective refraction simplifying the methodology of ocular refraction. For the agreement assessment, spherical refraction measurements were obtained from 104 eyes of 52 subjects using three different methods: subjectively with the experimental prototype (Subj.E) and the classical subjective refraction (Subj.C); and objectively with the WAM-5500 autorefractor (WAM). To evaluate precision (intra- and inter-observer variability) of each refractive tool independently, 26 eyes were measured in four occasions. With regard to agreement, the mean difference (±SD) for the spherical equivalent (M) between the new experimental subjective method (Subj.E) and the classical subjective refraction (Subj.C) was -0.034D (±0.454D). The corresponding 95% Limits of Agreement (LoA) were (-0.856D, 0.924D). In relation to precision, intra-observer mean difference for the M component was 0.034±0.195D for the Subj.C, 0.015±0.177D for the WAM and 0.072±0.197D for the Subj.E. Inter-observer variability showed worse precision values, although still clinically valid (below 0.25D) in all instruments. The spherical equivalent obtained with the new experimental system was precise and in good agreement with the classical subjective routine. The algorithm implemented in this new system and its optical configuration has been shown to be a first valid step for spherical error correction in a semiautomated way. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  17. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography 2301

    USDA-ARS?s Scientific Manuscript database

    Headcut and channel extension in response to an abrupt base level change in 2004 of approximately 1m was studied in a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona, USA. Field observations and time-lapse photography were coupled with hy...

  18. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    ERIC Educational Resources Information Center

    Akpinar, Ercan

    2014-01-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…

  19. The effect of conceptual metaphors through guided inquiry on student's conceptual change

    NASA Astrophysics Data System (ADS)

    Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana

    2017-05-01

    The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.

  20. Reaction time effects in lab- versus Web-based research: Experimental evidence.

    PubMed

    Hilbig, Benjamin E

    2016-12-01

    Although Web-based research is now commonplace, it continues to spur skepticism from reviewers and editors, especially whenever reaction times are of primary interest. Such persistent preconceptions are based on arguments referring to increased variation, the limits of certain software and technologies, and a noteworthy lack of comparisons (between Web and lab) in fully randomized experiments. To provide a critical test, participants were randomly assigned to complete a lexical decision task either (a) in the lab using standard experimental software (E-Prime), (b) in the lab using a browser-based version (written in HTML and JavaScript), or (c) via the Web using the same browser-based version. The classical word frequency effect was typical in size and corresponded to a very large effect in all three conditions. There was no indication that the Web- or browser-based data collection was in any way inferior. In fact, if anything, a larger effect was obtained in the browser-based conditions than in the condition relying on standard experimental software. No differences between Web and lab (within the browser-based conditions) could be observed, thus disconfirming any substantial influence of increased technical or situational variation. In summary, the present experiment contradicts the still common preconception that reaction time effects of only a few hundred milliseconds cannot be detected in Web experiments.

  1. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    PubMed

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Effective temperature dynamics of shear bands in metallic glasses

    NASA Astrophysics Data System (ADS)

    Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  3. NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS

    EPA Science Inventory

    The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...

  4. NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS (PRESENTATION)

    EPA Science Inventory

    The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...

  5. Conversations, Individuals and Knowables: Toward a Theory of Learning

    ERIC Educational Resources Information Center

    Daniel, John S.

    1975-01-01

    Presents a learning theory in the language of cybernetics based on the tenet that the minimal experimental situation for making psychological observations is a conversation. The account is directed at generating interest in the original work by G. Pask, et al. (GS)

  6. Are Radishes Really Allelopathic to Lettuce?

    ERIC Educational Resources Information Center

    Santaniello, Catherine M.; Koning, Ross E.

    1996-01-01

    Presents an experiment that challenges the claim that sprouting radish seedlings release chemicals into the environment that inhibit germination of lettuce seeds. Reports that although no simple allelopathic demonstration was observed, the experiment provides fertile ground for further experimentation in inquiry-based laboratory experiences. (JRH)

  7. Stress granule formation via ATP depletion-triggered phase separation

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-04-01

    Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.

  8. Tests of alternative quantum theories with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.

    2014-12-04

    According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.

  9. The Use of Microgravity To Emulate Three-Dimensional Tissue Interactions in Colorectal Cancer Metastasis

    NASA Technical Reports Server (NTRS)

    Jessup, J. Milburn

    1997-01-01

    The hypothesis of this ground-based project was that simulated microgravity may be used to recreate with high fidelity the in vivo environment in tissue culture. The objectives were to determine whether: (1) simulated microgravity induces differentiation within poorly differentiated human colon carcinoma cells that are similar to that observed in experimental metastases in vivo in nude mice; and (2) the use of simulated microgravity helps define the experimental metastatic potential of human colorectal carcinoma.

  10. Physical concepts in the development of constitutive equations

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1985-01-01

    Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.

  11. Vibration analysis of a hydro generator for different operating regimes

    NASA Astrophysics Data System (ADS)

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  12. Plant community responses to experimental warming across the tundra biome

    PubMed Central

    Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.

    2006-01-01

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292

  13. Active identification and control of aerodynamic instabilities in axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Krichene, Assad

    In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained using a pressure sensor located (in the casing) over the blade row is developed and used in the axial compressor rig for stall and surge avoidance and recovery. (Abstract shortened by UMI.)

  14. Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information

    PubMed Central

    Nielsen, John; Nielsen, Christopher

    2016-01-01

    Currently there is almost ubiquitous availability of wireless signaling for data communications within commercial building complexes resulting in receiver signal strength (RSS) observables that are typically sufficient for generating viable location estimates of mobile wireless devices. However, while RSS observables are generally plentiful, achieving an accurate estimation of location is difficult due to several factors affecting the electromagnetic coupling between the mobile antenna and the building access points that are not modeled and hence contribute to the overall estimation uncertainty. Such uncertainty is typically mitigated with a moderate redundancy of RSS sensor observations in combination with other constraints imposed on the mobile trajectory. In this paper, the Fisher Information (FI) of a set of RSS sensor observations in the context of variables related to the mobile location is developed. This provides a practical method of determining the potential location accuracy for the given set of wireless signals available. Furthermore, the information value of individual RSS measurements can be quantified and the RSS observables weighted accordingly in estimation combining algorithms. The practical utility of using FI in this context was demonstrated experimentally with an extensive set of RSS measurements recorded in an office complex. The resulting deviation of the mobile location estimation based on application of weighted likelihood processing to the experimental RSS data was shown to agree closely with the Cramer Rao bound determined from the FI analysis. PMID:27669262

  15. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  16. Observation of Weyl points

    Science.gov Websites

    copolymers, liquid crystals. Experimental observation of Weyl points First public annoucement on 11 Feburary Vishwanath from University of California, Berkeley. "Experimental Observation of Weyl Semimetals" ; Published by Science on 16 July, 2015. "Experimental observation of Weyl points" Featured on the

  17. Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.

    2018-04-01

    This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.

  18. Observation of discrete time-crystalline order in a disordered dipolar many-body system

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail

    2017-04-01

    The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time crystalline'' phases, which spontaneously break the discrete time translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time crystalline order in a driven, disordered ensemble of dipolar spin impurities in diamond at room temperature. We observe long lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many body systems. NSF, CUA, NSSEFF, ARO MURI, Moore Foundation.

  19. Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical. PMID:22163689

  20. Analysis of artificial opals by scanning near field optical microscopy

    NASA Astrophysics Data System (ADS)

    Barrio, J.; Lozano, G.; Lamela, J.; Lifante, G.; Dorado, L. A.; Depine, R. A.; Jaque, F.; Míguez, H.

    2011-04-01

    Herein we present a detailed analysis of the optical response of artificial opal films realized employing a near-field scanning optical microscope in collection and transmission modes. Near-field patterns measured at the rear surface when a plane wave impinges on the front face are presented with the finding that optical intensity maps present a clear correlation with the periodic arrangement of the outer surface. Calculations based on the vector Korringa-Kohn-Rostoker method reproduce the different profiles experimentally observed as well as the response to the polarization of the incident field. These observations constitute the first experimental confirmation of the collective lattice resonances that give rise to the optical response of these three dimensional periodic structures in the high-energy range.

  1. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.

    PubMed

    Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan

    2014-09-20

    Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.

  2. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong

    2011-08-01

    We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  3. Bayesian experimental design for models with intractable likelihoods.

    PubMed

    Drovandi, Christopher C; Pettitt, Anthony N

    2013-12-01

    In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.

  4. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes

    NASA Astrophysics Data System (ADS)

    Endy, Drew; You, Lingchong; Yin, John; Molineux, Ian J.

    2000-05-01

    We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively "nonessential" genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

  5. Experimental task-based optimization of a four-camera variable-pinhole small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Hesterman, Jacob Y.; Kupinski, Matthew A.; Furenlid, Lars R.; Wilson, Donald W.

    2005-04-01

    We have previously utilized lumpy object models and simulated imaging systems in conjunction with the ideal observer to compute figures of merit for hardware optimization. In this paper, we describe the development of methods and phantoms necessary to validate or experimentally carry out these optimizations. Our study was conducted on a four-camera small-animal SPECT system that employs interchangeable pinhole plates to operate under a variety of pinhole configurations and magnifications (representing optimizable system parameters). We developed a small-animal phantom capable of producing random backgrounds for each image sequence. The task chosen for the study was the detection of a 2mm diameter sphere within the phantom-generated random background. A total of 138 projection images were used, half of which included the signal. As our observer, we employed the channelized Hotelling observer (CHO) with Laguerre-Gauss channels. The signal-to-noise (SNR) of this observer was used to compare different system configurations. Results indicate agreement between experimental and simulated data with higher detectability rates found for multiple-camera, multiple-pinhole, and high-magnification systems, although it was found that mixtures of magnifications often outperform systems employing a single magnification. This work will serve as a basis for future studies pertaining to system hardware optimization.

  6. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  7. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study

    NASA Astrophysics Data System (ADS)

    Shaikh, S.; Lafdi, K.; Ponnappan, R.

    2007-03-01

    The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.

  8. Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos

    2007-09-01

    Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.

  9. Highly sensitive in-line microfluidic sensor based on microfiber-assisted Mach-Zehnder interferometer for glucose sensing

    NASA Astrophysics Data System (ADS)

    Xie, Nanjie; Zhang, Hao; Liu, Bo; Wu, Jixuan; Song, Binbin; Han, Tingting

    2017-11-01

    A highly sensitive microfluidic sensor based on a microfiber-assisted Mach-Zehnder interferometer (MAMZI) is proposed and experimentally demonstrated for the detection of low-concentration glucose solution. A segment of microfiber tapered from standard single-mode fiber (SMF) is spliced between two SMFs with pre-designed lateral offset to constitute the miniaturized MAMZI probe. The transmission spectral response to environmental refractive index variation has been experimentally investigated for glucose concentration ranges of 300 mg dL-1 to 3000 mg dL-1 and 0 to 270 mg dL-1 and the glucose concentration detection limit is 3 mg dL-1, and the experimentally observed transmission spectral responses are in accordance with our theoretical simulation results. Owing to its high sensitivity, non-enzymatic operation method, ease of fabrication and compact size, our proposed MAMZI for glucose sensing is anticipated to be employed in biomedical applications.

  10. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  11. Structural insights into human microsomal epoxide hydrolase by combined homology modeling, molecular dynamics simulations, and molecular docking calculations.

    PubMed

    Saenz-Méndez, Patricia; Katz, Aline; Pérez-Kempner, María Lucía; Ventura, Oscar N; Vázquez, Marta

    2017-04-01

    A new homology model of human microsomal epoxide hydrolase was derived based on multiple templates. The model obtained was fully evaluated, including MD simulations and ensemble-based docking, showing that the quality of the structure is better than that of only previously known model. Particularly, a catalytic triad was clearly identified, in agreement with the experimental information available. Analysis of intermediates in the enzymatic mechanism led to the identification of key residues for substrate binding, stereoselectivity, and intermediate stabilization during the reaction. In particular, we have confirmed the role of the oxyanion hole and the conserved motif (HGXP) in epoxide hydrolases, in excellent agreement with known experimental and computational data on similar systems. The model obtained is the first one that fully agrees with all the experimental observations on the system. Proteins 2017; 85:720-730. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Observational Versus Experimental Studies: What’s the Evidence for a Hierarchy?

    PubMed Central

    Concato, John

    2004-01-01

    Summary: The tenets of evidence-based medicine include an emphasis on hierarchies of research design (i.e., study architecture). Often, a single randomized, controlled trial is considered to provide “truth,” whereas results from any observational study are viewed with suspicion. This paper describes information that contradicts and discourages such a rigid approach to evaluating the quality of research design. Unless a more balanced strategy evolves, new claims of methodological authority may be just as problematic as the traditional claims of medical authority that have been criticized by proponents of evidence-based medicine. PMID:15717036

  13. Effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy casting with abruptly varying cross-sections

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao

    2017-05-01

    The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.

  14. A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics

    NASA Astrophysics Data System (ADS)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.

  15. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulationsmore » of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.« less

  16. Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation

    NASA Astrophysics Data System (ADS)

    Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan

    2015-02-01

    A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.

  17. Period adding cascades: experiment and modeling in air bubbling.

    PubMed

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  18. Examining Neuronal Connectivity and Its Role in Learning and Memory

    NASA Astrophysics Data System (ADS)

    Gala, Rohan

    Learning and long-term memory formation are accompanied with changes in the patterns and weights of synaptic connections in the underlying neuronal network. However, the fundamental rules that drive connectivity changes, and the precise structure-function relationships within neuronal networks remain elusive. Technological improvements over the last few decades have enabled the observation of large but specific subsets of neurons and their connections in unprecedented detail. Devising robust and automated computational methods is critical to distill information from ever-increasing volumes of raw experimental data. Moreover, statistical models and theoretical frameworks are required to interpret the data and assemble evidence into understanding of brain function. In this thesis, I first describe computational methods to reconstruct connectivity based on light microscopy imaging experiments. Next, I use these methods to quantify structural changes in connectivity based on in vivo time-lapse imaging experiments. Finally, I present a theoretical model of associative learning that can explain many stereotypical features of experimentally observed connectivity.

  19. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  20. The Application of Observational Practice and Educational Networking in Simulation-Based and Distributed Medical Education Contexts.

    PubMed

    Welsher, Arthur; Rojas, David; Khan, Zain; VanderBeek, Laura; Kapralos, Bill; Grierson, Lawrence E M

    2018-02-01

    Research has revealed that individuals can improve technical skill performance by viewing demonstrations modeled by either expert or novice performers. These findings support the development of video-based observational practice communities that augment simulation-based skill education and connect geographically distributed learners. This study explores the experimental replicability of the observational learning effect when demonstrations are sampled from a community of distributed learners and serves as a context for understanding learner experiences within this type of training protocol. Participants from 3 distributed medical campuses engaged in a simulation-based learning study of the elliptical excision in which they completed a video-recorded performance before being assigned to 1 of 3 groups for a 2-week observational practice intervention. One group observed expert demonstrations, another observed novice demonstrations, and the third observed a combination of both. Participants returned for posttesting immediately and 1 month after the intervention. Participants also engaged in interviews regarding their perceptions of the usability and relevance of video-based observational practice to clinical education. Checklist (P < 0.0001) and global rating (P < 0.0001) measures indicate that participants, regardless of group assignment, improved after the intervention and after a 1-month retention period. Analyses revealed no significant differences between groups. Qualitative analyses indicate that participants perceived the observational practice platform to be usable, relevant, and potentially improved with enhanced feedback delivery. Video-based observational practice involving expert and/or novice demonstrations enhances simulation-based skill learning in a group of geographically distributed trainees. These findings support the use of Internet-mediated observational learning communities in distributed and simulation-based medical education contexts.

  1. An adaptive observer for on-line tool wear estimation in turning, Part I: Theory

    NASA Astrophysics Data System (ADS)

    Danai, Kourosh; Ulsoy, A. Galip

    1987-04-01

    On-line sensing of tool wear has been a long-standing goal of the manufacturing engineering community. In the absence of any reliable on-line tool wear sensors, a new model-based approach for tool wear estimation has been proposed. This approach is an adaptive observer, based on force measurement, which uses both parameter and state estimation techniques. The design of the adaptive observer is based upon a dynamic state model of tool wear in turning. This paper (Part I) presents the model, and explains its use as the basis for the adaptive observer design. This model uses flank wear and crater wear as state variables, feed as the input, and the cutting force as the output. The suitability of the model as the basis for adaptive observation is also verified. The implementation of the adaptive observer requires the design of a state observer and a parameter estimator. To obtain the model parameters for tuning the adaptive observer procedures for linearisation of the non-linear model are specified. The implementation of the adaptive observer in turning and experimental results are presented in a companion paper (Part II).

  2. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Hsiang-Yu; Chen, Yen-Chun; Su, Po-Ching

    2011-04-15

    We report the experimental demonstration of electromagnetically-induced-transparency-based cross-phase-modulation at attojoule or, equivalently, few-hundred-photon levels. A phase shift of 0.005 rad of a probe pulse modulated by a signal pulse with an energy of {approx}100 aJ, equivalent to {approx}400 photons, was observed in a four-level system of cold {sup 87}Rb atoms.

  3. The Effect of Project Based Learning in Teaching EFL Vocabulary to Young Learners of English: The Case of Pre-School Children

    ERIC Educational Resources Information Center

    Kimsesiz, Fatma; Dolgunso¨z, Emrah; Konca, M. Yavuz

    2017-01-01

    English language teaching has newly been introduced to pre-school curriculum in Turkey. The purpose of this study was to investigate the effectiveness of teaching EFL vocabulary to pre-school children through Project Based Learning (PBL). For this purpose, an experimental design, consisted of observation checklists, exam scores and a short survey,…

  4. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  5. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case.

    PubMed

    Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C

    2011-08-22

    We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).

  6. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case

    PubMed Central

    2011-01-01

    Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449

  7. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke.

    PubMed

    Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee

    2013-01-01

    This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.

  8. Observing system simulation experiments with multiple methods

    NASA Astrophysics Data System (ADS)

    Ishibashi, Toshiyuki

    2014-11-01

    An observing System Simulation Experiment (OSSE) is a method to evaluate impacts of hypothetical observing systems on analysis and forecast accuracy in numerical weather prediction (NWP) systems. Since OSSE requires simulations of hypothetical observations, uncertainty of OSSE results is generally larger than that of observing system experiments (OSEs). To reduce such uncertainty, OSSEs for existing observing systems are often carried out as calibration of the OSSE system. The purpose of this study is to achieve reliable OSSE results based on results of OSSEs with multiple methods. There are three types of OSSE methods. The first one is the sensitivity observing system experiment (SOSE) based OSSE (SOSEOSSE). The second one is the ensemble of data assimilation cycles (ENDA) based OSSE (ENDA-OSSE). The third one is the nature-run (NR) based OSSE (NR-OSSE). These three OSSE methods have very different properties. The NROSSE evaluates hypothetical observations in a virtual (hypothetical) world, NR. The ENDA-OSSE is very simple method but has a sampling error problem due to a small size ensemble. The SOSE-OSSE requires a very highly accurate analysis field as a pseudo truth of the real atmosphere. We construct these three types of OSSE methods in the Japan meteorological Agency (JMA) global 4D-Var experimental system. In the conference, we will present initial results of these OSSE systems and their comparisons.

  9. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm-1. This well-determined energy difference should facilitate observations of singlet-triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin-orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  10. The influence of two imidazolium-based ionic liquids on the structure and activity of glucose oxidase: Experimental and theoretical studies.

    PubMed

    Janati-Fard, Fatemeh; Housaindokht, Mohammad Reza; Monhemi, Hassan; Esmaeili, Abbas Ali; Nakhaei Pour, Ali

    2018-07-15

    The search for ionic liquids (ILs) with biochemical and biomedical applications has recently gained great attention. IL containing solvents can change the structure, stability and function of proteins. The study of protein conformation in ILs is important to understand enzymatic activity. In this work, conformational stability and activity of the enzyme in two imidazolium-based ILs (1-butyl 3-methyl-imidozolium and 1-hexyl 3-methyl-imidozoliumbromides) were investigated. We treated glucose oxidase as dimer-active enzyme in different IL concentration and seen that GOx activity was inhibited in the presence of ILs. Our experimental data showed that inhibition of activity and reduction of enzyme tertiary structure are more for hexyl than butyl derivative. These experimental results are in agreement with foregoing observations. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different IL concentration. The structure parameters obtained from MD simulation showed that conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inhibition at the presence of ILs. Root mean square deviation and fluctuation calculations indicated that the enzyme has stable conformation at higher IL concentration, in agreement with experimental observation. But hexyl derivative has a much stronger stabilization effect on the protein structure. In summary, the present study could improve our understanding of the molecular mechanism about the ionic liquid effects on the structure and activity of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom

    PubMed Central

    Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.

    2014-01-01

    Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301

  12. Watershed Allied Telemetry Experimental Research

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Xiao, Qing; Liu, Qiang; Che, Tao; Chen, Erxue; Yan, Guangjian; Hu, Zeyong; Zhang, Lixin; Chu, Rongzhong; Su, Peixi; Liu, Qinhuo; Liu, Shaomin; Wang, Jindi; Niu, Zheng; Chen, Yan; Jin, Rui; Wang, Weizhen; Ran, Youhua; Xin, Xiaozhou; Ren, Huazhong

    2009-11-01

    The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne, and ground-based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty-five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground-based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment-scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.

  13. Experimental and modeling studies showing the effect of lipid type and level on flavor release from milk-based liquid emulsions.

    PubMed

    Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte

    2003-01-01

    The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.

  14. Transport Mechanisms and Quality Changes During Frying of Chicken Nuggets--Hybrid Mixture Theory Based Modeling and Experimental Verification.

    PubMed

    Bansal, Harkirat S; Takhar, Pawan S; Alvarado, Christine Z; Thompson, Leslie D

    2015-12-01

    Hybrid mixture theory (HMT) based 2-scale fluid transport relations of Takhar coupled with a multiphase heat transfer equation were solved to model water, oil and gas movement during frying of chicken nuggets. A chicken nugget was treated as a heterogeneous material consisting of meat core with wheat-based coating. The coupled heat and fluid transfer equations were solved using the finite element method. Numerical simulations resulted in data on spatial and temporal profiles for moisture, rate of evaporation, temperature, oil, pore pressure, pressure in various phases, and coefficient of elasticity. Results showed that most of the oil stayed in the outer 1.5 mm of the coating region. Temperature values greater than 100 °C were observed in the coating after 30 s of frying. Negative gage-pore pressure (p(w) < p(g)) magnitudes were observed in simulations, which is in agreement with experimental observations of Sandhu and others. It is hypothesized that high water-phase capillary pressure (p(c) > p(g)) in the hydrophilic matrix causes p(w) < p(g), which further results in negative pore pressure. The coefficient of elasticity was the highest at the surface (2.5 × 10(5) Pa) for coating and the interface of coating and core (6 × 10(5) Pa). Kinetics equation for color change obtained from experiments was coupled with the HMT based model to predict the color (L, a, and b) as a function of frying time. © 2015 Institute of Food Technologists®

  15. Toward Microsatellite Based Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments. The placement of a space based space surveillance sensor in low Earth orbit introduces tasking and image processing complexities such as cosmic ray rejection, scattered light from Earth's limb and unique scheduling limitations due to the observer's rapid positional change and we describe first-look microsatellite space surveillance lessons from this unique orbital vantage point..

  16. Experimental Determination of One-Atmosphere Phase Relations of Rhyodacite Pumice Erupted from Chaos Crags, Lassen Volcanic Center, California

    NASA Astrophysics Data System (ADS)

    Quinn, E. T.; Schwab, B. E.

    2012-12-01

    A series of one-atmosphere high-temperature anhydrous phase equilibrium melting experiments was performed on a natural rhyodacite pumice from the 1103±13 years BP pyroclastic flow from the Chaos Crags, Lassen Volcanic Center, California. The pumice (CCP) is the most silicic product known of the 1103 eruption of Chaos Crags. All experimental runs were performed in a Deltech VT-31 one-atmosphere gas-mixing furnace at the Experimental Petrology Lab, Humboldt State University, Arcata, California. Six ~90-99 hour runs were conducted at 35-55°C intervals, with target temperatures from 1000°C to 1200°C at the Ni-NiO buffer. The nominally anhydrous liquidus of the rhyodacite pumice is >1196°C and solidus is <998°C, outside the investigated temperature range. All experimental run products contain glass, plagioclase, quartz, and Fe-Ti oxides. Amphibole with breakdown textures is observed at temperatures ≤1159°C, and appears more stable in lower temperature runs. At 998°C, amphibole appears most stable, with only minor breakdown texture. Biotite, a major phase in starting material, is not observed in any run products. Based on comparison between experimental and natural phase assemblages and glass, plagioclase, and amphibole compositions, the Chaos Crags rhyodacite pumice erupted at a temperature <998°C, the lowest experimental run temperature investigated. Additional experimental runs at temperatures <998°C are currently being conducted.

  17. Model updating in flexible-link multibody systems

    NASA Astrophysics Data System (ADS)

    Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.

    2016-09-01

    The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.

  18. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

    NASA Astrophysics Data System (ADS)

    Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu

    2018-01-01

    Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

  19. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  20. Experimental confirmation of multiple community states in a marine ecosystem.

    PubMed

    Petraitis, Peter S; Methratta, Elizabeth T; Rhile, Erika C; Vidargas, Nicholas A; Dudgeon, Steve R

    2009-08-01

    Small changes in environmental conditions can unexpectedly tip an ecosystem from one community type to another, and these often irreversible shifts have been observed in semi-arid grasslands, freshwater lakes and ponds, coral reefs, and kelp forests. A commonly accepted explanation is that these ecosystems contain multiple stable points, but experimental tests confirming multiple stable states have proven elusive. Here we present a novel approach and show that mussel beds and rockweed stands are multiple stable states on intertidal shores in the Gulf of Maine, USA. Using broad-scale observational data and long-term data from experimental clearings, we show that the removal of rockweed by winter ice scour can tip persistent rockweed stands to mussel beds. The observational data were analyzed with Anderson's discriminant analysis of principal coordinates, which provided an objective function to separate mussel beds from rockweed stands. The function was then applied to 55 experimental plots, which had been established in rockweed stands in 1996. Based on 2005 data, all uncleared controls and all but one of the small clearings were classified as rockweed stands; 37% of the large clearings were classified as mussel beds. Our results address the establishment of mussels versus rockweeds and complement rather than refute the current paradigm that mussel beds and rockweed stands, once established, are maintained by site-specific differences in strong consumer control.

  1. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li

    2016-03-01

    In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

  2. Episodic future thinking reduces delay discounting and cigarette demand: an investigation of the good-subject effect.

    PubMed

    Stein, Jeffrey S; Tegge, Allison N; Turner, Jamie K; Bickel, Warren K

    2018-04-01

    Episodic future thinking (EFT), an intervention involving mental simulation of future events, has been shown to reduce both delay discounting and cigarette self-administration. In the present study, we extended these findings by showing that EFT in a web-based sample of smokers reduces delay discounting and intensity of demand for cigarettes (ad libitum consumption) in a hypothetical purchase task. No effect was observed on elasticity of demand (sensitivity to price) or cigarette craving. We also explored whether demand characteristics (specifically, the "good-subject" effect) might be responsible for observed effects. EFT participants were significantly better able than control participants to discern the experimental hypothesis. However, EFT participants were not better than controls at identifying whether they had been assigned to the experimental group and, likewise, showed no differences in attitudes about the experiment and experimenter. Importantly, effects of EFT on delay discounting and demand remained significant even when controlling for measures of demand characteristics, indicating that EFT's effects are independent of participants' perceptions about the experiment.

  3. Interdisciplinary Aspects of Learning: Physics and Psychology

    ERIC Educational Resources Information Center

    Oleg, Yavoruk

    2015-01-01

    The article deals with interdisciplinary aspects of learning in the case of physics and psychology. It describes the lab-based academic course focused on: observation and experimentation; discovery of new scientific facts; measurement; identification of errors; the study of psychological characteristics of people (time perception, the reaction…

  4. Sensory Integration and the Perceptual Experience of Persons with Autism

    ERIC Educational Resources Information Center

    Iarocci, Grace; McDonald, John

    2006-01-01

    Research studies on sensory issues in autism, including those based on questionnaires, autobiographical accounts, retrospective video observations and early experimental approaches are reviewed in terms of their strengths and limitations. We present a cognitive neuroscience theoretical perspective on multisensory integration and propose that this…

  5. 75 FR 9189 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... mandated standardized test scores); follow-up surveys for students; teacher and parent rating/observation on various student aspects (e.g., student social skills); baseline and follow-up surveys for teachers... Character (LIC) program. This study is based on an experimental design that utilizes the random assignment...

  6. An Experiment in Teaching Human Ethology

    ERIC Educational Resources Information Center

    Barnett, S. A.

    1977-01-01

    Students of ethology are often confused about the validity of arguments based on comparisons of animal and human behavior. The problem can be dealt with purely theoretically or through observational or experimental studies of human behavior. Some results of using these two methods are described and discussed. (Author/MA)

  7. Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells

    NASA Astrophysics Data System (ADS)

    Saemi, J.; Sedighi, M.; Shariati, M.

    2015-09-01

    The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.

  8. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

    NASA Astrophysics Data System (ADS)

    Matsubara, Masahiko; Bellotti, Enrico

    2017-05-01

    Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.

  9. Modeling of Powder Bed Manufacturing Defects

    NASA Astrophysics Data System (ADS)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  10. Steps Toward Identifying PAHs: A Child's Garden of Recent Results

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.

    2005-01-01

    Based on over two decades of experimental, observational and theoretical studies by scientists around the world. It is now widely accepted that the composite emission of mixtures of vibrationally-excited PAHs and PAH ions can accommodate the general pattern of band positions, intensities, and profiles observed in the discreet IR emission features of carbon-rich interstellar dust, as well as the variations in those characteristics. These variations provide insight into the detailed nature of the emitting PAH population and reflect conditions within the emitting regions giving the population enormous potential as probes of astrophysical environments. Moreover, the ubiquity and abundance of this material has impacts that extend well beyond the IR. In this presentation we will examine recent, combined experimental, theoretical, and observational studies that indicate that nitrogen-substituted PAHs represent an important component of the interstellar dust population, and we will go on to explore some of the ramifications of this result. We will also explore the results of recent experimental studies of the strong, low-lying electronic transitions of ionized PAH ions in the Near-IR (0.7 - 2.5 microns) and explore the role that these transitions might play in pumping the PAH IR emission in regions of low-excitation.

  11. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  12. Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

    NASA Astrophysics Data System (ADS)

    Ramesh, Gaddam; Reddy, Byru Venkatram

    2018-05-01

    In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible (UV-Vis) spectra of the compounds are also recorded in the region 200-400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules.

  13. An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, Susan; Taylor, Peter

    2007-06-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  14. Contractor's STTR Phase I Final Report- Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less

  15. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  16. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.

  17. Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less

  18. Micromechanical model for protein materials: From macromolecules to macroscopic fibers

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; De Tommasi, D.; Pantano, M. F.; Pugno, N. M.; Saccomandi, G.

    2017-10-01

    We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects that are fundamental in many functions of life. We also show the capability of our approach to describe the main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.

  19. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  20. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  1. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-07-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  2. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-02-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  3. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

    PubMed

    Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger

    2000-02-03

    Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

  4. Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation

    NASA Astrophysics Data System (ADS)

    Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten

    2017-04-01

    Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.

  5. Kinetics of the B1-B2 phase transition in KCl under rapid compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.

    2016-01-28

    Kinetics of the B1-B2 phase transition in KCl has been investigated under various compression rates (0.03–13.5 GPa/s) in a dynamic diamond anvil cell using time-resolved x-ray diffraction and fast imaging. Our experimental data show that the volume fraction across the transition generally gives sigmoidal curves as a function of pressure during rapid compression. Based upon classical nucleation and growth theories (Johnson-Mehl-Avrami-Kolmogorov theories), we propose a model that is applicable for studying kinetics for the compression rates studied. The fit of the experimental volume fraction as a function of pressure provides information on effective activation energy and average activation volume at amore » given compression rate. The resulting parameters are successfully used for interpreting several experimental observables that are compression-rate dependent, such as the transition time, grain size, and over-pressurization. The effective activation energy (Q{sub eff}) is found to decrease linearly with the logarithm of compression rate. When Q{sub eff} is applied to the Arrhenius equation, this relationship can be used to interpret the experimentally observed linear relationship between the logarithm of the transition time and logarithm of the compression rates. The decrease of Q{sub eff} with increasing compression rate results in the decrease of the nucleation rate, which is qualitatively in agreement with the observed change of the grain size with compression rate. The observed over-pressurization is also well explained by the model when an exponential relationship between the average activation volume and the compression rate is assumed.« less

  6. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.

    PubMed

    Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi

    2007-02-15

    We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.

  7. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  8. Problem Based Learning in Constructed Textile Design

    ERIC Educational Resources Information Center

    Sayer, Kate; Wilson, Jacquie; Challis, Simon

    2006-01-01

    Staff observing undergraduate students enrolled on the BSc Hons Textile Design and Design Management programme in The School of Materials, The University of Manchester, identified difficulties with knowledge retention in the area of constructed textile design. Consequently an experimental pilot was carried out in seamless knitwear design using a…

  9. Response to a Community-Based Information and Communication System.

    ERIC Educational Resources Information Center

    Trachtman, Leon E.; And Others

    A study investigated the introduction of an experimental school-centered and neighborhood-oriented communication system in a small midwestern town. It was anticipated that normal parent-teacher-school communication would be enhanced by the electronic messaging potential of the system. Researchers observed the entire adoption process from the…

  10. LTAR linkages with other research networks: Capitalizing on network interconnections

    USDA-ARS?s Scientific Manuscript database

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...

  11. Using Virtual Reality with and without Gaming Attributes for Academic Achievement

    ERIC Educational Resources Information Center

    Vogel, Jennifer J.; Greenwood-Ericksen, Adams; Cannon-Bowers, Jan; Bowers, Clint A.

    2006-01-01

    A subcategory of computer-assisted instruction (CAI), games have additional attributes such as motivation, reward, interactivity, score, and challenge. This study used a quasi-experimental design to determine if previous findings generalize to non simulation-based game designs. Researchers observed significant improvement in the overall population…

  12. A model for ionic polymer metal composites as sensors

    NASA Astrophysics Data System (ADS)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2006-06-01

    This paper introduces a comprehensive model of sensors based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the sensing properties of IPMC-based sensors are taken into account and the dynamics of the sensors are modelled. A large amount of experimental evidence is given for the excellent agreement between estimations obtained using the proposed model and the observed signals. Furthermore, the effect of sensor scaling is investigated, giving interesting support to the activities involved in the design of sensing devices based on these novel materials. We observed that the need for a wet environment is not a key issue for IPMC-based sensors to work well. This fact allows us to put IPMC-based sensors in a totally different light to the corresponding actuators, showing that sensors do not suffer from the same drawbacks.

  13. Control effects of stimulus paradigms on characteristic firings of parkinsonism

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Wang, Qingyun; Chen, Guanrong

    2014-09-01

    Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.

  14. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  15. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  16. Experimental validation of a phenomenological model of the plasma contacting process

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.; Monheiser, Jeff M.

    1988-01-01

    A preliminary model of the plasma coupling process is presented which describes the phenomena observed in ground-based experiments using a hollow cathode plasma contactor to collect electrons from a dilute ambient plasma under conditions where magnetic field effects can be neglected. The locations of the double-sheath region boundaries are estimated and correlated with experimental results. Ion production mechanisms in the plasma plume caused by discharge electrons from the contactor cathode and by electrons streaming into the plasma plume through the double-sheath from the ambient plasma are also discussed.

  17. Using inquiry-based instructional strategies in third-grade science

    NASA Astrophysics Data System (ADS)

    Harris, Fanicia D.

    The purpose of the study was to determine if the use of inquiry-based instructional strategies as compared to traditional instructional strategies would increase third-grade students' achievement in science, based on the pretest/posttest of the school system and the Georgia Criterion-Referenced Competency Test (CRCT). Inquiry-based instruction, presented students with a question, an observation, a data set, or a hypothesis for problem solving such as scientists use when working in real-world situations. This descriptive research employed a quantitative strategy using a pretest/posttest control group design. The research compared the science academic achievement levels of one Grade 3 class [N=14] exposed to a teacher's inquiry-based instructional strategies as compared to one Grade 3 class [ N=18] exposed to a teacher's traditional instructional strategies. The study compared the science academic performance levels of third-grade students as measured by pretest/posttest mean scores from the school system-based assessment and the Georgia CRCT. Four research hypotheses were examined. Based on the overall findings from this study, both the experimental group and the control group significantly increased their mean scores from the pretests to the posttests. The amount of gain from the pretest to the posttest was significantly greater for the experimental group than the control group for pretest/posttest 1 [t(12) = 8.79, p < .01] and pretest/posttest 2 [t(12) = 9.40, p < .01]. The experimental group significantly outperformed the control group with regard to their mean number of items answered correctly on the life sciences test [t(27) = -1.95, p = .06]. Finally, the control group did not outperform the experimental group on any of the comparisons made throughout this study. The results of this study provide empirical support for the effectiveness of the use of inquiry-based learning strategies, given that the experimental group outperformed the control group on all four posttests, on the science CRCT and on the individual Science portions on the test including earth, life and physical sciences. In fact, this study was able to detect significant differences between the experimental group and the control group with regard to the degree to which the students improved from the pretests to the posttests.

  18. Peltier cooling in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  19. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Wu, Chun; Wang, Zhi-Xiang; Zhou, Yaoqi; Duan, Yong

    2008-06-01

    Reaching the native states of small proteins, a necessary step towards a comprehensive understanding of the folding mechanisms, has remained a tremendous challenge to ab initio protein folding simulations despite the extensive effort. In this work, the folding process of the B domain of protein A (BdpA) has been simulated by both conventional and replica exchange molecular dynamics using AMBER FF03 all-atom force field. Started from an extended chain, a total of 40 conventional (each to 1.0 μs) and two sets of replica exchange (each to 200.0 ns per replica) molecular dynamics simulations were performed with different generalized-Born solvation models and temperature control schemes. The improvements in both the force field and solvent model allowed successful simulations of the folding process to the native state as demonstrated by the 0.80 A˚ Cα root mean square deviation (RMSD) of the best folded structure. The most populated conformation was the native folded structure with a high population. This was a significant improvement over the 2.8 A˚ Cα RMSD of the best nativelike structures from previous ab initio folding studies on BdpA. To the best of our knowledge, our results demonstrate, for the first time, that ab initio simulations can reach the native state of BdpA. Consistent with experimental observations, including Φ-value analyses, formation of helix II/III hairpin was a crucial step that provides a template upon which helix I could form and the folding process could complete. Early formation of helix III was observed which is consistent with the experimental results of higher residual helical content of isolated helix III among the three helices. The calculated temperature-dependent profile and the melting temperature were in close agreement with the experimental results. The simulations further revealed that phenylalanine 31 may play critical to achieve the correct packing of the three helices which is consistent with the experimental observation. In addition to the mechanistic studies, an ab initio structure prediction was also conducted based on both the physical energy and a statistical potential. Based on the lowest physical energy, the predicted structure was 2.0 A˚ Cα RMSD away from the experimentally determined structure.

  20. Strength and deformation characteristics of pavements

    NASA Astrophysics Data System (ADS)

    Shook, J. F.; Kallas, B. F.; McCullough, B. F.; Taute, A.; Rada, G.; Witczak, M. W.; Heisey, J. S.; Stokoe, K. H.; Meyer, A. H.; Huffman, M. S.

    The Colorado experimental base project was a full-scale field experment constructed with various thicknesses of two full depth hot mix sand asphalt beans, one full depth asphalt concrete base, and one thickness of a standard design with untreated base and subbase layers. Relative thicknesses of one asphalt concrete base, two hot mix sand asphalt bases, and one standard design with untreated base and subbase required to give an equal level of pavement performance were determined. Certain measured properties of the pavement and the pavement components were related to observed levels of performance by using both empirical and theoretical models for pavement behavior.

  1. Effectiveness of Mindfulness-Based Group Therapy Compared to the Usual Opioid Dependence Treatment.

    PubMed

    Imani, Saeed; Atef Vahid, Mohammad Kazem; Gharraee, Banafsheh; Noroozi, Alireza; Habibi, Mojtaba; Bowen, Sarah

    2015-06-01

    This study investigated the effectiveness of mindfulness-based group therapy (MBGT) compared to the usual opioid dependence treatment (TAU).Thirty outpatients meeting the DSM-IV-TR criteria for opioid dependence from Iranian National Center for Addiction Studies (INCAS) were randomly assigned into experimental (Mindfulness-Based Group Therapy) and control groups (the Usual Treatment).The experimental group undertook eight weeks of intervention, but the control group received the usual treatment according to the INCAS program. The Five Factor Mindfulness Questionnaire (FFMQ) and the Addiction Sevier Index (ASI) were administered at pre-treatment and post-treatment assessment periods. Thirteen patients from the experimental group and 15 from the control group completed post-test assessments. The results of MANCOVA revealed an increase in mean scores in observing, describing, acting with awareness, non-judging, non-reacting, and decrease in mean scores of alcohol and opium in MBGT patient group. The effectiveness of MBGT, compared to the usual treatment, was discussed in this paper as a selective protocol in the health care setting for substance use disorders.

  2. Effectiveness of Mindfulness-Based Group Therapy Compared to the Usual Opioid Dependence Treatment

    PubMed Central

    Imani, Saeed; Atef Vahid, Mohammad Kazem; Gharraee, Banafsheh; Noroozi, Alireza; Habibi, Mojtaba; Bowen, Sarah

    2015-01-01

    Objective: This study investigated the effectiveness of mindfulness-based group therapy (MBGT) compared to the usual opioid dependence treatment (TAU).Thirty outpatients meeting the DSM-IV-TR criteria for opioid dependence from Iranian National Center for Addiction Studies (INCAS) were randomly assigned into experimental (Mindfulness-Based Group Therapy) and control groups (the Usual Treatment).The experimental group undertook eight weeks of intervention, but the control group received the usual treatment according to the INCAS program. Methods: The Five Factor Mindfulness Questionnaire (FFMQ) and the Addiction Sevier Index (ASI) were administered at pre-treatment and post-treatment assessment periods. Thirteen patients from the experimental group and 15 from the control group completed post-test assessments. Results: The results of MANCOVA revealed an increase in mean scores in observing, describing, acting with awareness, non-judging, non-reacting, and decrease in mean scores of alcohol and opium in MBGT patient group. Conclusion: The effectiveness of MBGT, compared to the usual treatment, was discussed in this paper as a selective protocol in the health care setting for substance use disorders. PMID:26877751

  3. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  4. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  5. Morphology of the winter anomaly in NmF2 and Total Electron Content

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Ratovsky, Konstantin; Yasyukevich, Anna; Klimenko, Maksim; Klimenko, Vladimir; Chirik, Nikolay

    2017-04-01

    We analyzed the winter anomaly manifestation in the F2 peak electron density (NmF2) and Total Electron Content (TEC) based on the observation data and model calculation results. For the analysis we used 1998-2015 TEC Global Ionospheric Maps (GIM) and NmF2 ground-based ionosonde observation data from and COSMIC, CHAMP and GRACE radio occultation data. We used Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and International Reference Ionosphere model (IRI-2012). Based on the observation data and model calculation results we constructed the maps of the winter anomaly intensity in TEC and NmF2 for the different solar and geomagnetic activity levels. The winter anomaly intensity was found to be higher in NmF2 than in TEC according to both observation and modeling. In this report we show the similarity and difference in winter anomaly as revealed in experimental data and model results.

  6. The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna

    2008-05-01

    We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.

  7. A real-time n/γ digital pulse shape discriminator based on FPGA.

    PubMed

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie

    2013-02-01

    A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Analysis of polarized-light effects in glass-promoting solutions with applications to cryopreservation and organ banking.

    PubMed

    Solanki, Prem K; Rabin, Yoed

    2018-01-01

    This study presents experimental results and an analysis approach for polarized light effects associated with thermomechanical stress during cooling of glass promoting solutions, with applications to cryopreservation and tissue banking in a process known as vitrification. Polarized light means have been previously integrated into the cryomacroscope-a visualization device to detect physical effects associated with cryopreservation success, such as crystallization, fracture formation, and contamination. The experimental study concerns vitrification in a cuvette, which is a rectangular container. Polarized light modeling in the cuvette is based on subdividing the tridimensional (3D) domain into a series of planar (2D) problems, for which a mathematical solution is available in the literature. The current analysis is based on tracking the accumulated changes in light polarization and magnitude, as it passes through the sequence of planar problems. Results of this study show qualitative agreement in light intensity history and distribution between experimental data and simulated results. The simulated results help explaining differences between 2D and 3D effects in photoelasticity, most notably, the counterintuitive observation that high stress areas may correlate with low light intensity regions based on the particular experimental conditions. Finally, it is suggested that polarized-light analysis must always be accompanied by thermomechanical stress modeling in order to explain 3D effects.

  9. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  10. Analysis of polarized-light effects in glass-promoting solutions with applications to cryopreservation and organ banking

    PubMed Central

    2018-01-01

    This study presents experimental results and an analysis approach for polarized light effects associated with thermomechanical stress during cooling of glass promoting solutions, with applications to cryopreservation and tissue banking in a process known as vitrification. Polarized light means have been previously integrated into the cryomacroscope—a visualization device to detect physical effects associated with cryopreservation success, such as crystallization, fracture formation, and contamination. The experimental study concerns vitrification in a cuvette, which is a rectangular container. Polarized light modeling in the cuvette is based on subdividing the tridimensional (3D) domain into a series of planar (2D) problems, for which a mathematical solution is available in the literature. The current analysis is based on tracking the accumulated changes in light polarization and magnitude, as it passes through the sequence of planar problems. Results of this study show qualitative agreement in light intensity history and distribution between experimental data and simulated results. The simulated results help explaining differences between 2D and 3D effects in photoelasticity, most notably, the counterintuitive observation that high stress areas may correlate with low light intensity regions based on the particular experimental conditions. Finally, it is suggested that polarized-light analysis must always be accompanied by thermomechanical stress modeling in order to explain 3D effects. PMID:29912973

  11. High-speed detection of DNA translocation in nanopipettes.

    PubMed

    Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-04-14

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.

  12. An analysis of learning process based on scientific approach in physical chemsitry experiment

    NASA Astrophysics Data System (ADS)

    Arlianty, Widinda Normalia; Febriana, Beta Wulan; Diniaty, Artina

    2017-03-01

    This study aimed to analysis the quality of learning process based on scientific approach in physical chemistry experiment of Chemistry Education students, Islamic University of Indonesia. The research was descriptive qualitative. The samples of this research were 2nd semester student, class of 2015. Scientific data of learning process were collected by observation sheet and documentation of seven title experimental. The results showed that the achievement of scientific learning process on observing, questioning, experimenting and associating data were 73.98%; 81.79%; 80.74%; and 76.94% respectively, which categorized as medium. Furthermore, for aspect communicating had high category at 86.11% of level achievement.

  13. Experimental demonstration of spinor slow light

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  14. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  15. Experimental investigation on stability and dielectric break down strength of transformer oil based nanofluids

    NASA Astrophysics Data System (ADS)

    Ravi Babu, S.; Sambasiva Rao, G.

    2018-04-01

    The main objective of this study is to investigate the stability and dielectric breakdown strength of alumina-transformer oil nanofluids as stability issue is the major concern when it is used for practical applications. UV-Vis spectrophotometer and Oil tester were used to measure absorbance and breakdown voltage of nanofluids respectively. As per the experimental results, correlations were developed using regression analysis. Experimental results were compared with the predicted values of BDVE and absorbance and presented. The maximum errors obtained by comparing the experimental and predicted results for BDVE and absorbance are -2.913% and 4.89% respectively. It is also observed that there is a decrement in both BDVE and absorbance for nanofluids of aged 1 day compared to fresh ones. This decrement is due to the sedimentation of nanoparticles.

  16. Evidence for {100}<011> slip in ferropericlase in Earth's lower mantle from high-pressure/high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.-P.

    2018-05-01

    Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on {100} to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D″ in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > VSV) and bridgmanite (causing VSV > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.

  17. Experimental Research on the Dense CFB's Riser and the Simulation Based on the EMMS Model

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Wang, S. D.; Fan, B. G.; Liao, L. L.; Jiang, F.; Xu, X.; Wu, X. Z.; Xiao, Y. H.

    2010-03-01

    The flow structure in the CFB (circulating fluidized bed) riser has been investigated. Experimental studies were performed in a cold square section unit with 270 mm×270 mm×10 m. Since the drag force model based on homogeneous two-phase flow such as the Gidaspow drag model could not depict the heterogeneous structures of the gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) model based on the heterogenerity was applied in the paper and a revised drag force model based on the EMMS model was proposed. A 2D two-fluid model was used to simulate a bench-scale square cross-section riser of a cold CFB. The typical core-annulus structure and the back-mixing near the wall of the riser were observed and the assembly and fragmentation processes of clusters were captured. By comparing with the Gidaspow drag model, the results obtained by the revised drag model based on EMMS shows better consistency with the experimental data. The model can also depict the difference from the two exit configurations. This study once again proves the key role of drag force in CFD (Computational Fluid Dynamics) simulation and also shows the availability of the revised drag model to describe the gas-solid flow in CFB risers.

  18. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.

  19. From experimental zoology to big data: Observation and integration in the study of animal development.

    PubMed

    Bolker, Jessica; Brauckmann, Sabine

    2015-06-01

    The founding of the Journal of Experimental Zoology in 1904 was inspired by a widespread turn toward experimental biology in the 19th century. The founding editors sought to promote experimental, laboratory-based approaches, particularly in developmental biology. This agenda raised key practical and epistemological questions about how and where to study development: Does the environment matter? How do we know that a cell or embryo isolated to facilitate observation reveals normal developmental processes? How can we integrate descriptive and experimental data? R.G. Harrison, the journal's first editor, grappled with these questions in justifying his use of cell culture to study neural patterning. Others confronted them in different contexts: for example, F.B. Sumner insisted on the primacy of fieldwork in his studies on adaptation, but also performed breeding experiments using wild-collected animals. The work of Harrison, Sumner, and other early contributors exemplified both the power of new techniques, and the meticulous explanation of practice and epistemology that was marshaled to promote experimental approaches. A century later, experimentation is widely viewed as the standard way to study development; yet at the same time, cutting-edge "big data" projects are essentially descriptive, closer to natural history than to the approaches championed by Harrison et al. Thus, the original questions about how and where we can best learn about development are still with us. Examining their history can inform current efforts to incorporate data from experiment and description, lab and field, and a broad range of organisms and disciplines, into an integrated understanding of animal development. © 2015 Wiley Periodicals, Inc.

  20. Do females trade copulations for food? An experimental study on kittiwakes (Rissa tridactyla)

    USGS Publications Warehouse

    Kempenaers, Bart; Lanctot, Richard B.; Gill, V.A.; Hatch, Shyla A.; Valcu, M.

    2007-01-01

    Females of many species copulate more frequently than necessary to fertilize their eggs despite the potential costs. Several studies, particularly on socially monogamous birds, have suggested that females obtain immediate material benefits by trading copulations for nutrients or other resources. We experimentally tested this hypothesis by manipulating the food resources available to prelaying female black-legged kittiwakes (Rissa tridactyla). If female kittiwakes trade copulations for courtship feeding because they need the extra resources, well-fed females (experimental group) should be less willing to copulate compared with females that are more food limited (control group). Contrary to our predictions, we found that close to the start of laying experimental females copulated more frequently with their mate than control females. We also observed that males from the experimental group fed their mate at least as often as males from the control group. In experimental pairs, we still observed a positive correlation between the rate of copulation and the rate of courtship feeding. Our results thus refute the immediate material benefits hypothesis. Currently available data are consistent with the hypothesis that prelaying courtship feeding is a form of mating effort. We suggest that the rate of courtship feeding might be a sexually selected trait, on which females base decisions about timing and frequency of copulations, but this remains to be tested. ?? The Author 2006. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.

  1. Experimental and theoretical studies on tautomeric structures of a newly synthesized 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Cukurovali, Alaaddin; Subasi, Nuriye Tuna; Onaran, Abdurrahman; Ece, Abdulilah; Eker, Sıtkı; Kani, Ibrahim

    2018-02-01

    In the present study, a single crystal of a Schiff base, 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol, was synthesized. The structure of the synthesized crystal was confirmed by 1H and 13C NMR spectroscopic and X-ray diffraction analysis techniques. Experimental and theoretical studies were carried out on two tautomeric structures. It has been observed that the title compound studied can be in two different tautomeric forms, phenol-imine and keto-amine. Theoretical calculations have been performed to support experimental results. Accordingly, the geometric parameters of the compound were optimized by the density functional theory (DFT) method using the Gaussian 09 and Quantum Espresso (QE) packet program was used for periodic boundary conditions (PBC) studies. Furthermore, the compound was also tested for in vitro antifungal activity against Sclerotinia sclerotiorum, Alternaria solani, Fusarium oxysporum f. sp. lycopersici and Monilinia fructigena plant pathogens. Promising inhibition profiles were observed especially towards A. solani. Finally, molecular docking studies and post-docking procedure based on Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) were also carried out to get insight into the compound's binding interactions with the potential. Although theoretical calculations showed that the phenol-imine form was more stable, keto-amine form was predicted to have better binding affinity which was concluded to result from loss of rotational entropy in phenol-imine upon binding. The results obtained here from both experimental and computational methods might serve as a potential lead in the development of novel anti-fungal agents.

  2. Long-Term Network Experiments and Interdisciplinary Campaigns Conducted by the USDA-Agricultural Research Service

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.

    2014-12-01

    The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.

  3. Polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.

    2011-01-01

    We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.

  4. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  5. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  6. Statistical approaches to lifetime measurements with restricted observation times

    NASA Astrophysics Data System (ADS)

    Chen, X. C.; Zeng, Q.; Litvinov, Yu. A.; Tu, X. L.; Walker, P. M.; Wang, M.; Wang, Q.; Yue, K.; Zhang, Y. H.

    2017-09-01

    Two generic methods based on frequentism and Bayesianism are presented in this work aiming to adequately estimate decay lifetimes from measured data, while accounting for restricted observation times in the measurements. All the experimental scenarios that can possibly arise from the observation constraints are treated systematically and formulas are derived. The methods are then tested against the decay data of bare isomeric 44+94mRu, which were measured using isochronous mass spectrometry with a timing detector at the CSRe in Lanzhou, China. Applying both methods in three distinct scenarios yields six different but consistent lifetime estimates. The deduced values are all in good agreement with a prediction based on the neutral-atom value modified to take the absence of internal conversion into account. Potential applications of such methods are discussed.

  7. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    PubMed

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of protein fibers complex colloidal behavior are analyzed and discussed at length.

  8. The equivalence of a human observer and an ideal observer in binary diagnostic tasks

    NASA Astrophysics Data System (ADS)

    He, Xin; Samuelson, Frank; Gallas, Brandon D.; Sahiner, Berkman; Myers, Kyle

    2013-03-01

    The Ideal Observer (IO) is "ideal" for given data populations. In the image perception process, as the raw images are degraded by factors such as display and eye optics, there is an equivalent IO (EIO). The EIO uses the statistical information that exits the perception/cognitive degradations as the data. We assume a human observer who received sufficient training, e.g., radiologists, and hypothesize that such a human observer can be modeled as if he is an EIO. To measure the likelihood ratio (LR) distributions of an EIO, we formalize experimental design principles that encourage rationality based on von Neumann and Morgenstern's (vNM) axioms. We present examples to show that many observer study design refinements, although motivated by empirical principles explicitly, implicitly encourage rationality. Our hypothesis is supported by a recent review paper on ROC curve convexity by Pesce, Metz, and Berbaum. We also provide additional evidence based on a collection of observer studies in medical imaging. EIO theory shows that the "sub-optimal" performance of a human observer can be mathematically formalized in the form of an IO, and measured through rationality encouragement.

  9. Mechanical properties of an experimental soft lining material based on urethane oligomer.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2005-09-01

    The purpose of this study was to investigate the apparent viscosities and mechanical properties of two experimental light-curing soft lining materials (SLM-1 and SLM-2) based on soft-type urethane oligomers, as well as the shear bond strength and dye penetration between the denture base resin and the polymerized SLMs after storage in water. The apparent viscosities of SLM-1 and SLM-2 were 144.0-146.9 and 1.9 Pa x s respectively. After storage in water for two prescribed periods (one day and three months), the mechanical properties of the SLMs on the overall were 10.6-20.6 MPa for elastic modulus, 69.3-72.1 for hardness, and 3.8-4.0 MPa for adhesive strength. Tensile strength was observed to decrease after three months' storage in water, when compared to that after one-day storage (p < 0.01). Water sorption rates also differed significantly (p < 0.05)--namely 3.0 and 2.8 mg/cm2 for SLM-1 after one day and three months respectively, and 2.0 and 2.2 mg/cm2 for SLM-2. As for dye penetration, no infiltration was observed at the denture base resin-SLM interface after three months' storage. Based on the results of this study, it seemed like the SLMs possess many suitable properties for use with a new technique that we recently developed for preparing denture base resin and soft lining material.

  10. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    PubMed

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  11. A method to identify and analyze biological programs through automated reasoning

    PubMed Central

    Yordanov, Boyan; Dunn, Sara-Jane; Kugler, Hillel; Smith, Austin; Martello, Graziano; Emmott, Stephen

    2016-01-01

    Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function. PMID:27668090

  12. Exploring parameter space effects on structure-property relationships of surfactants at liquid-liquid interfaces.

    PubMed

    Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G

    2011-08-28

    The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics

  13. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  14. Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction

    NASA Astrophysics Data System (ADS)

    Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg

    2018-04-01

    We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.

  15. CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Peng, B. T.; Zhang, C.; Zhu, J. X.; Qi, X. B.

    2010-03-01

    A computational fluid dynamics (CFD) model based on Eulerian-Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas-solids flow in CFB risers more accurately. Simulation results were compared with the experimental data, and good agreement between the numerical results and experimental data was observed under different operating conditions, which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.

  16. Isotope Effects Reveal the Mechanism of Enamine Formation in l-Proline-Catalyzed α-Amination of Aldehydes.

    PubMed

    Ashley, Melissa A; Hirschi, Jennifer S; Izzo, Joseph A; Vetticatt, Mathew J

    2016-02-17

    The mechanism of l-proline-catalyzed α-amination of 3-phenylpropionaldehyde was studied using a combination of experimental kinetic isotope effects (KIEs) and theoretical calculations. Observation of a significant carbonyl (13)C KIE and a large primary α-deuterium KIE support rate-determining enamine formation. Theoretical predictions of KIEs exclude the widely accepted mechanism of enamine formation via intramolecular deprotonation of an iminium carboxylate intermediate. An E2 elimination mechanism catalyzed by a bifunctional base that directly forms an N-protonated enamine species from an oxazolidinone intermediate accounts for the experimental KIEs. These findings provide the first experimental picture of the transition-state geometry of enamine formation and clarify the role of oxazolidinones as nonparasitic intermediates in proline catalysis.

  17. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  18. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  19. Tuning direct current streaming dielectrophoresis of proteins

    PubMed Central

    Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra

    2012-01-01

    Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679

  20. Towards adaptive, streaming analysis of x-ray tomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less

  1. Negative refraction angular characterization in one-dimensional photonic crystals.

    PubMed

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  2. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    PubMed Central

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332

  3. Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa

    PubMed Central

    Huber, M. L.; Sykioti, E. A.; Assael, M. J.; Perkins, R. A.

    2016-01-01

    This paper contains new, representative reference equations for the thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the dilute-gas thermal conductivity, we incorporated recent theoretical calculations to extend the temperature range of the experimental data. Moreover, in the critical region, the experimentally observed enhancement of the thermal conductivity is well represented by theoretically based equations containing just one adjustable parameter. The correlations are applicable for the temperature range from the triple point to 1100 K and pressures up to 200 MPa. The overall uncertainty (at the 95% confidence level) of the proposed correlation varies depending on the state point from a low of 1% at very low pressures below 0.1 MPa between 300 K and 700 K, to 5% at the higher pressures of the range of validity. PMID:27064300

  4. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-Del-Notario, N; Arenzana-Rámila, I; Pizarro, C

    2014-12-15

    The aim of the present work was to evaluate the effect of the main factors conditioning accelerated ageing processes (oxygen dose, chip dose, wood origin, toasting degree and maceration time) on the phenolic and chromatic profiles of red wines by using a multivariate strategy based on experimental design methodology. The results obtained revealed that the concentrations of monomeric anthocyanins and flavan-3-ols could be modified through the application of particular experimental conditions. This fact was particularly remarkable since changes in phenolic profile were closely linked to changes observed in chromatic parameters. The main strength of this study lies in the possibility of using its conclusions as a basis to make wines with specific colour properties based on quality criteria. To our knowledge, the influence of such a large number of alternative ageing parameters on wine phenolic composition and chromatic attributes has not been studied previously using a comprehensive experimental design methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  6. Input-based structure-specific proficiency predicts the neural mechanism of adult L2 syntactic processing.

    PubMed

    Deng, Taiping; Zhou, Huixia; Bi, Hong-Yan; Chen, Baoguo

    2015-06-12

    This study used Event-Related Potentials (ERPs) to explore the role of input-based structure-specific proficiency in L2 syntactic processing, using English subject-verb agreement structures as the stimuli. A pre-test/trainings/post-test paradigm of experimental and control groups was employed, and Chinese speakers who learned English as a second language (L2) participated in the experiment. At pre-test, no ERP component related to the subject-verb agreement structures violations was observed in either group. At training session, the experimental group learned the subject-verb agreement structures, while the control group learned other syntactic structures. After two continuously intensive input trainings, at post-test, a significant P600 component related to the subject-verb agreement structures violations was elicited in the experimental group, but not in the control group. These findings suggest that input training improves structure-specific proficiency, which is reflected in the neural mechanism of L2 syntactic processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Project Based Learning Multi Life Skill for Collaborative Skills and Technological Skills of Senior High School Students

    NASA Astrophysics Data System (ADS)

    Susilawati; Ardhyani, S.; Masturi; Wijayanto; Khoiri, N.

    2017-04-01

    This work aims to determine the effect of Project Based Learning containing Multi Life-Skills on collaborative and technology skills of senior high school (SMA) students, especially on thestatic fluid subject. The research design was aquasi-experiment using Posttest-Only Control Design. This work was conducted in SMA Negeri 1 Bae Kudus, with the population is all students of class X, while the sample is students of class X MIA 2 as an experimental class and X MIA 3 as a control class. The data were obtained by observation, test, and documentation. The results showed this model significantly affects the collaborative and technology skills of students of SMA 1 Bae Kudus, where the average result of collaborative and technology skills for the experimental class is higher than that of the control class. This is also supported by the remark of the post-test experimental class is higher than that of the control class.

  8. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  9. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE PAGES

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  10. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    PubMed Central

    2015-01-01

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971

  11. Film: The Creative Eye.

    ERIC Educational Resources Information Center

    Sohn, David A.

    Short films are often experimental in nature. They can place aspects of the environment which are usually unnoticed in such a way as to sharpen our observations of the world, and "create a new awareness, a fuller sense of life and being." Based on the premise that visual literacy is becoming increasingly important, this book describes several…

  12. Students' Reading Comprehension Performance with Emotional Literacy-Based Strategy Intervention

    ERIC Educational Resources Information Center

    Yussof, Yusfarina Mohd; Jamian, Abdul Rasid; Hamzah, Zaitul Azma Zainon; Roslan, Samsilah

    2013-01-01

    An effective reading comprehension process demands a strategy to enhance the cognitive ability to digest text information in the effort to elicit meaning contextually. In addition, the role of emotions also influences the efficacy of this process, especially in narrative text comprehension. This quasi-experimental study aims to observe students'…

  13. Experimentation with a Socio-Constructivist Process for Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau, Diane; Gravel, Helene; Bourque, Wendy; Langis, Joanne

    2003-01-01

    A socio-constructivist and experiential process for climate change education was experimented within two coastal communities of Eastern Canada with 39 students 13 and 14 years of age. The pedagogical process, based on local observation of climate change, Duit's conceptual change theory (1999) and experiential learning, aimed for the improvement of…

  14. Pseudocontingencies: An Integrative Account of an Intriguing Cognitive Illusion

    ERIC Educational Resources Information Center

    Fiedler, Klaus; Freytag, Peter; Meiser, Thorsten

    2009-01-01

    The term "pseudocontingency" (PC) denotes the logically unwarranted inference of a contingency between 2 variables X and Y from information other than pairs of x[subscript i], y[subscript i] observations, namely, the variables' univariate base rates as assessed in 1 or more ecological contexts. The authors summarize recent experimental evidence…

  15. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  16. Using Interval-Based Systems to Measure Behavior in Early Childhood Special Education and Early Intervention

    ERIC Educational Resources Information Center

    Lane, Justin D.; Ledford, Jennifer R.

    2014-01-01

    The purpose of this article is to summarize the current literature on the accuracy and reliability of interval systems using data from previously published experimental studies that used either human observations of behavior or computer simulations. Although multiple comparison studies provided mathematical adjustments or modifications to interval…

  17. Active-learning versus teacher-centered instruction for learning acids and bases

    NASA Astrophysics Data System (ADS)

    Acar Sesen, Burcin; Tarhan, Leman

    2011-07-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p < 0.05). Additionally, in this study 54 misconceptions, 14 of them not reported in the literature before, were observed in the following terms: 'acid and base theories'; 'metal and non-metal oxides'; 'acid and base strengths'; 'neutralization'; 'pH and pOH'; 'hydrolysis'; 'acid-base equilibrium'; 'buffers'; 'indicators'; and 'titration'. Based on the achievement test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the concepts more meaningfully than students in control group. Conclusion The study revealed that active-learning implementation is more effective at improving students' learning achievement and preventing misconceptions.

  18. Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO 2

    DOE PAGES

    Siahrostami, Samira; Jiang, Kun; Karamad, Mohammadreza; ...

    2017-10-10

    Here, despite numerous experimental efforts that have been dedicated to studying carbon-based materials for electrochemical reduction of CO 2, a rationalization of the associated trends in the intrinsic activity of different active motifs has so far been elusive. In the present work, we employ density functional theory calculations to examine a variety of different active sites in N-doped graphene to give a comprehensive outline of the trends in activity. We find that adsorption energies of COOH* and CO* do not follow the linear scaling relationships observed for the pure transition metals, and this unique scaling is rationalized through differences inmore » electronic structure between transition metals and defected graphene. This finding rationalizes most of the experimental observations on the carbon-based materials which present promising catalysts for the two-electron reduction of CO 2 to CO. With this simple thermodynamic analysis, we identify several active sites that are expected to exhibit a comparable or even better activity to the state-of-the-art gold catalyst, and several configurations are suggested to be selective for CO 2RR over HER.« less

  19. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  20. Heisenberg's error-disturbance relations: A joint measurement-based experimental test

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Yuan; Kurzyński, Paweł; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-01

    The original Heisenberg error-disturbance relation was recently shown to be not universally valid and two different approaches to reformulate it were proposed. The first one focuses on how the error and disturbance of two observables A and B depend on a particular quantum state. The second one asks how a joint measurement of A and B affects their eigenstates. Previous experiments focused on the first approach. Here we focus on the second one. First, we propose and implement an extendible method of quantum-walk-based joint measurements of noisy Pauli operators to test the error-disturbance relation for qubits introduced in the work of Busch et al. [Phys. Rev. A 89, 012129 (2014), 10.1103/PhysRevA.89.012129], where the polarization of the single photon, corresponding to a walker's auxiliary degree of freedom that is commonly known as a coin, undergoes a position- and time-dependent evolution. Then we formulate and experimentally test a universally valid state-dependent relation for three mutually unbiased observables. We therefore establish a method of testing error-disturbance relations.

  1. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  2. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  3. Elastic Response of Crimped Collagen Fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils have a three-dimensional structure at the micrometer scale that we approximate as a helical spring. The symmetry of this waveform allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendineae

  4. Magnetoplasmonic nanostructures based on nickel inverse opal slabs

    NASA Astrophysics Data System (ADS)

    Grunin, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Fedyanin, A. A.

    2012-04-01

    Nanostructured nickel surfaces representing periodically arranged spherical voids in a nickel film are obtained by electrochemical deposition through a self-assembled opaline template. Excitation of surface plasmon-polaritons (SPPs) on the surface of the sample is experimentally observed as the Wood's anomaly in the reflectance spectra. Transversal magneto-optical Kerr effect (TMOKE) spectra are measured at the different angles of incidence and azimuthal angles. The two- to-threefold enhancement of TMOKE caused by the excitation of mixed plasmons in two selected azimuthal configurations is observed.

  5. Experimental investigation into generation of bursts of linearly-polarized, dissipative soliton pulses from a figure-eight fiber laser at 1.03 µm

    NASA Astrophysics Data System (ADS)

    Ko, Seunghwan; Lee, Junsu; Koo, Joonhoi; Lee, Ju Han

    2018-03-01

    We experimentally demonstrate a simple and stable all-polarization maintaining fiber (PMF) nonlinear amplifying loop mirror (NALM)-based burst pulse fiber laser with a pulse number tuning capability, which can readily generate bursts of linearly-polarized femtosecond pulses at 1030 nm. The laser was based on an NALM that was operated to produce burst-mode, dissipative soliton pulses at a wavelength of 1030 nm, and these were then compressed into 400 fs Gaussian pulses using a grating pair-based compressor. The laser was constructed with the figure-eight configuration incorporating ytterbium-doped fiber as gain medium. It was shown that the number of burst pulses was readily tunable through the adjustment of the pump power. Further, the output-pulse characteristics were quantitatively investigated and the laser stability was checked by observing the temporal characteristic variation of the output pulses for one hour.

  6. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser.

    PubMed

    Wysocki, Gerard; Weidmann, Damien

    2010-12-06

    A spectroscopic method of molecular detection based on dispersion measurements using a frequency-chirped laser source is presented. An infrared quantum cascade laser emitting around 1912 cm(-1) is used as a tunable spectroscopic source to measure dispersion that occurs in the vicinity of molecular ro-vibrational transitions. The sample under study is a mixture of nitric oxide in dry nitrogen. Two experimental configurations based on a coherent detection scheme are investigated and discussed. The theoretical models, which describe the observed spectral signals, are developed and verified experimentally. The method is particularly relevant to optical sensing based on mid-infrared quantum cascade lasers as the high chirp rates available with those sources can significantly enhance the magnitude of the measured dispersion signals. The method relies on heterodyne beatnote frequency measurements and shows high immunity to variations in the optical power received by the photodetector.

  7. Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Meyer, Robert B.; Hurd, Alan J.

    1984-04-01

    The effects of a short-range, arbitrary strength interfacial potential on the magnetic field, electric field, and optical field induced Freedericksz transition in a nematic liquid crystal cell are examined and the exact solution is obtained. By generalizing the criterion for the existence of a first-order optical field induced Freedericksz transition that was obtained previously [H. L. Ong, Phys. Rev. A 28, 2393 (1983)], the general criterion for the transition to be first order is obtained. Based on the existing experimental results, the possibility of surface induced first-order transitions is discussed and three simple empirical approaches are suggested for observing multistable orientation. The early results on the magnetic and electric fields induced Freedericksz transition and the inadequacy of the usual experimental observation methods (phase shift and capacitance measurements) are also discussed.

  8. Long-term memory color investigation: culture effect and experimental setting factors.

    PubMed

    Zhu, Yuteng; Luo, Ming Ronnier; Fischer, Sebastian; Bodrogi, Peter; Khanh, Tran Quoc

    2017-10-01

    Memory colors generated continuous interest in the color community. Previous studies focused on reflecting color chips and color samples in real scenes or on monitors. The cognitive effect of culture was rarely considered. In this paper, we performed a comprehensive investigation of the long-term memory colors of 26 familiar objects using the asymmetric color matching method among Chinese and German observers on a display. Three experiments were conducted to evaluate the variations introduced by culture, context-based gray image, and initial matching color. Memory colors of important objects were collected and representative memory colors were quantified in terms of CIELAB L * , a * , and b * values. The intra- and inter-observer variations were analyzed by mean-color-difference-from-mean values and chromatic ellipses. The effects of different cultural groups and experimental settings were also shown.

  9. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.

    PubMed

    Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue

    2012-10-08

    We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

  10. What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?

    NASA Astrophysics Data System (ADS)

    Yi, Ding; Luo, Da; Wang, Zhu-Jun; Dong, Jichen; Zhang, Xu; Willinger, Marc-Georg; Ruoff, Rodney S.; Ding, Feng

    2018-06-01

    Compressive strain relaxation of a chemical vapor deposition (CVD) grown graphene overlayer has been considered to be the main driving force behind metal surface step bunching (SB) in CVD graphene growth. Here, by combining theoretical studies with experimental observations, we prove that the SB can occur even in the absence of a compressive strain, is enabled by the rapid diffusion of metal adatoms beneath the graphene and is driven by the release of the bending energy of the graphene overlayer in the vicinity of steps. Based on this new understanding, we explain a number of experimental observations such as the temperature dependence of SB, and how SB depends on the thickness of the graphene film. This study also shows that SB is a general phenomenon that can occur in all substrates covered by films of two-dimensional (2D) materials.

  11. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  12. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  13. Near-limit flame structures at low Lewis number

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1990-01-01

    The characteristics of premixed gas flames in mixtures with low Lewis numbers near flammability limits were studied experimentally using a low-gravity environment to reduce buoyant convection. The behavior of such flames was found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. Experimental observations are found to be in qualitative agreement with elementary analytical models based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and volumetric heat losses due to gas and/or soot radiation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirojsirikul, Teerapong; Götz, Andreas W.; Weare, John

    Green Fluorescent Protein (GFP) is a widely used fluorescent biomarker for the study of biological systems. Our investigation is focused on providing a reliable theoretical description of the GFP chromophore, the photochemical properties of which can be influenced through both the surrounding protein environment and pH levels. In this work we are specifically addressing the effect of an aqueous solvation environment , where a number of experimental measurements have been performed. Our approach is based on a combined quantum mechanics molecular mechanics (QM/MM) methodology, which incorporates high level coupled cluster theory for the analysis of excited states. It also presentsmore » the first application of the newly developed NWChem/AMBER QM/MM interface. Using a systematic approach, which involves comparison of gas phase and aqueous results for different protonation states and conformations, we have resolved existing uncertainties regarding theoretical interpretation of the experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts, but the magnitude of the effect is sensitive to charge state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level coupled description is essential for proper description of excited states of GFP.« less

  15. Physico-chemical properties and performance of high oleic and palm-based shortenings.

    PubMed

    Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat

    2008-01-01

    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.

  16. On the transmission of terahertz radiation through silicon-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Anna, E-mail: anna.persano@le.imm.cnr.it; Francioso, Luca; Cola, Adriano

    2014-07-28

    We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO{sub 2} nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75–1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, findingmore » a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO{sub 2} nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range.« less

  17. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.

    PubMed

    Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A

    2008-07-01

    A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.

  18. Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta) populations.

    PubMed

    Westley, Peter A H; Stanley, Ryan; Fleming, Ian A

    2013-01-01

    The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.

  19. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Chaves, Arlex; Zahn, Markus; Rinaldi, Carlos

    2008-05-01

    We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK≪√3/2 , where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α ˜1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 10-8-10-12kgms-1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

  20. An Overview of Atmospheric Composition OSSE Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    daSilva, Arlinda

    2012-01-01

    A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.

  1. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation.

    PubMed

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.

  2. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229

  3. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  4. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast.

    PubMed

    Bednaršek, N; Feely, R A; Tolimieri, N; Hermann, A J; Siedlecki, S A; Waldbusser, G G; McElhany, P; Alin, S R; Klinger, T; Moore-Maley, B; Pörtner, H O

    2017-07-03

    The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ω ar   < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ω ar conditions in the natural environment. Combining field observations, high-CO 2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ω ar  < 1. Our results suggest that both exposure magnitude and duration affect pteropod responses in the natural environment. However, observed declines in calcification performance and survival probability under high CO 2 experimental conditions do not show acclimatization capacity or physiological tolerance related to history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ω ar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.

  5. Magnetic domain-wall tilting due to domain-wall speed asymmetry

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong

    2018-04-01

    Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.

  6. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  7. In Silico, Experimental, Mechanistic Model for Extended-Release Felodipine Disposition Exhibiting Complex Absorption and a Highly Variable Food Interaction

    PubMed Central

    Kim, Sean H. J.; Jackson, Andre J.; Hunt, C. Anthony

    2014-01-01

    The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog’s plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability. PMID:25268237

  8. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  9. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base dyad.

  10. Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Li, Zheng-Lu; Lu, Xuezeng; Gong, X. G.; Xiang, Hongjun; Whangbo, M.-H.; Wei, Su-Huai

    2013-03-01

    In this work, we try to understand the skyrmions recently observed experimentally in Cu2OSeO3 system, as well as its origin of ferroelectricity. Based on the spin Hamiltonian, we developed four-state-energy-mapping method to derive these spin interaction parameters. For this system, we found a very large ratio between the DM term and the symmetric exchange interaction. Besides, the spin arrangements in the ground state are found degenerate and the spin energy is independent of the propagation vector q. Taking these two factors into account, we explained the experimental observation of skyrmions to some extent. Then we built a model to describe the polarization of this system. By the symmetry analysis, the ferroelectricity is supposed to result from the spin single-site term, as is confirmed by direct calculations of our model. Using this model, we analyzed its ferroelectricity dependence of the spin arrangement and find the largest polarization happens when the spins are along <111> direction, in excellent agreement with the experimental results. NSFC, Special Funds for Major State Basic Research, Pujiang plan, FANEDD

  11. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less

  12. Observations of Ball-Lightning-Like Plasmoids Ejected from Silicon by Localized Microwaves.

    PubMed

    Meir, Yehuda; Jerby, Eli; Barkay, Zahava; Ashkenazi, Dana; Mitchell, James Brian; Narayanan, Theyencheri; Eliaz, Noam; LeGarrec, Jean-Luc; Sztucki, Michael; Meshcheryakov, Oleg

    2013-09-11

    This paper presents experimental characterization of plasmoids (fireballs) obtained by directing localized microwave power (<1 kW at 2.45 GHz) onto a silicon-based substrate in a microwave cavity. The plasmoid emerges up from the hotspot created in the solid substrate into the air within the microwave cavity. The experimental diagnostics employed for the fireball characterization in this study include measurements of microwave scattering, optical spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Various characteristics of these plasmoids as dusty plasma are drawn by a theoretical analysis of the experimental observations. Aggregations of dust particles within the plasmoid are detected at nanometer and micrometer scales by both in - situ SAXS and ex-situ SEM measurements. The resemblance of these plasmoids to the natural ball-lightning (BL) phenomenon is discussed with regard to silicon nano-particle clustering and formation of slowly-oxidized silicon micro-spheres within the BL. Potential applications and practical derivatives of this study (e.g., direct conversion of solids to powders, material identification by breakdown spectroscopy (MIBS), thermite ignition, and combustion) are discussed.

  13. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  14. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  15. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides.

    PubMed

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-19

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  16. Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev

    2016-06-01

    We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  17. Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.

    2002-01-01

    The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.

  18. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  19. Cell optoporation with a sub-15 fs and a 250-fs laser

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Batista, Ana; Uchugonova, Aisada; König, Karsten

    2016-06-01

    We employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user's practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation. The experimental setup consisted of a modified multiphoton laser-scanning microscope employing high-NA focusing optics. An automatic cell irradiation procedure was realized with custom-made software that identified cell positions and controlled relevant hardware components. The Ti:sapphire and ytterbium-based oscillators generated broadband sub-15-fs pulses around 800 nm and 250-fs pulses at 1044 nm, respectively. A higher optoporation rate and posttreatment viability were observed for the shorter fs pulses, confirming the importance of multiphoton effects for efficient optoporation.

  20. Effectiveness of Mindfulness-Based Cognitive Therapy (MBCT) in Reducing Aggression of Individuals at the Juvenile Correction and Rehabilitation Center.

    PubMed

    Milani, Atefeh; Nikmanesh, Zahra; Farnam, Ali

    2013-12-01

    In the present era, delinquency in children and adolescents is undoubtedly a difficult and upsetting issue attracting the attention of many experts such as psychologists, sociologists, and criminologists. These experts often try to answer why a number of children and adolescents engage in various crimes such as aggressive and anti-social crimes. They also try to find out how these crimes can be prevented. The present study investigates the effectiveness of mindfulness-based cognitive therapy training (MBCT) in reducing aggression in a juvenile correction and rehabilitation center of Zahedan province during years 1991 to 1992. This experimental study included an experimental and a control group with a pretest, posttest, and follow-up approach. The Buss and Perry aggression questionnaire (1992) was used for data collection. The sample group included 22 (10 experimental and 12 control groups) adolescent males in a juvenile correction and rehabilitation center of Zahedan province who were selected through a census method. Using a matching method based on the pre-test scores of the aggression questionnaire, they were then divided into two equivalent categories and were randomly assigned to the two groups. Mindfulness-based cognitive training took the group training in 8 sessions administered on experimental group. The follow-up test was conducted two weeks after the end of the posttest sessions. The results were analyzed using ANCOVA. The results of ANCOVA showed that mindfulness-based cognitive training could significantly reduce aggression during posttest and follow-up test phases in the experimental group, compared to the control group (P < 0.01). Moreover, the results indicated the effectiveness of this method in significantly reducing anger, physical aggression, and hostility during posttest and follow-up test phases (P < 0.05). However, no significant reduction was observed in the verbal aggression subscale. According to the results of the present study, mindfulness-based cognitive training seems to be effective for reducing aggressive behaviors.

  1. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  2. Femtosecond pulse self-shortening in Kerr media: role of modulational instability in the spectrum formation

    NASA Astrophysics Data System (ADS)

    Grudtsyn, Ya. V.; Koribut, A. V.; Mikheev, L. D.; Trofimov, V. A.

    2018-04-01

    The mechanism of femtosecond pulse self-shortening in thin optical materials with Kerr nonlinearity is investigated. The experimentally observed spectral-angular distribution of the radiation intensity on the exit surface of a 1-mm-thick fused silica sample is compared with the results of numerical simulation based on solving the nonlinear Schrödinger equation for an electromagnetic wave with a transverse perturbation on the axis. Qualitative agreement between the calculated and experimental results confirms the hypothesis about the transient regime of multiple filamentation as a mechanism of femtosecond pulse self-shortening.

  3. Predicting performance of power converters operating with switching frequencies in the vicinity of 100 kHZ

    NASA Technical Reports Server (NTRS)

    Bahler, D. D.; Owen, H. A., Jr.; Wilson, T. G.

    1978-01-01

    A model describing the turning-on period of a power switching transistor in an energy storage voltage step-up converter is presented. Comparisons between an experimental layout and the circuit model during the turning-on interval demonstrate the ability of the model to closely predict the effects of circuit topology on the performance of the converter. A phenomenon of particular importance that is observed in the experimental circuits and is predicted by the model is the deleterious feedback effect of the parasitic emitter lead inductance on the base current waveform during the turning-on interval.

  4. [Fractal research of neurite growth in immunofluorescent images].

    PubMed

    Tang, Min; Wang, Huinan

    2008-12-01

    Fractal dimension has been widely used in medical images processing and analysis. The neurite growth of cultured dorsal root ganglion (DRG) was detected by fluorescent immunocytochemistry treated with nerve regeneration factor (0.1, 0.5, 2.0 mg/L). A novel method based on triangular prism surface area (TPSA) was introduced and adopted to calculate the fractal dimension of the two-dimensional immunofluorescent images. Experimental results demonstrate that this method is easy to understand and convenient to operate, and the quantititve results are concordant with the observational findings under microscope. This method can be guidelines for analyzing and deciding experimental results.

  5. Mechanics of plant fruit hooks

    PubMed Central

    Chen, Qiang; Gorb, Stanislav N.; Gorb, Elena; Pugno, Nicola

    2013-01-01

    Hook-like surface structures, observed in some plant species, play an important role in the process of plant growth and seed dispersal. In this study, we developed an elastic model and further used it to investigate the mechanical behaviour of fruit hooks in four plant species, previously measured in an experimental study. Based on Euler–Bernoulli beam theory, the force–displacement relationship is derived, and its Young's modulus is obtained. The result agrees well with the experimental data. The model aids in understanding the mechanics of hooks, and could be used in the development of new bioinspired Velcro-like materials. PMID:23365190

  6. Stringent and efficient assessment of boson-sampling devices.

    PubMed

    Tichy, Malte C; Mayer, Klaus; Buchleitner, Andreas; Mølmer, Klaus

    2014-07-11

    Boson sampling holds the potential to experimentally falsify the extended Church-Turing thesis. The computational hardness of boson sampling, however, complicates the certification that an experimental device yields correct results in the regime in which it outmatches classical computers. To certify a boson sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that are proposed as witnesses of boson sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.

  7. SCDFT Study of High Tc Nitride Superconductors

    NASA Astrophysics Data System (ADS)

    Arita, R.

    Based on the density functional theory for superconductors (SCDFT), we study the pairing mechanism of the layered nitride superconductors, β-LixMNCl (M=Zr, Hf). Recently, it has been shown that SCDFT reproduces experimental superconducting transition temperatures (Tc) of conventional superconductors very accurately. Here we use SCDFT as a "litmus paper" to determine whether the system is a conventional or unconventional superconductor. We show that Tc estimated by SCDFT is less than half of the experimental Tc and its doping dependence is opposite to that observed in the experiments. The present result suggests that β- LixMNCl is not a Migdal-Eliashberg type superconductor.

  8. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  9. Bounding the Set of Classical Correlations of a Many-Body System

    NASA Astrophysics Data System (ADS)

    Fadel, Matteo; Tura, Jordi

    2017-12-01

    We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden variable model, yielding a convergent hierarchy of semidefinite programs (SDP's). Because the size of these SDP's is independent of the number of parties involved, this technique allows us to characterize correlations in many-body systems. As an example, we illustrate our method with the experimental data presented in Science 352, 441 (2016), 10.1126/science.aad8665.

  10. Using Non-experimental Data to Estimate Treatment Effects

    PubMed Central

    Stuart, Elizabeth A.; Marcus, Sue M.; Horvitz-Lennon, Marcela V.; Gibbons, Robert D.; Normand, Sharon-Lise T.

    2009-01-01

    While much psychiatric research is based on randomized controlled trials (RCTs), where patients are randomly assigned to treatments, sometimes RCTs are not feasible. This paper describes propensity score approaches, which are increasingly used for estimating treatment effects in non-experimental settings. The primary goal of propensity score methods is to create sets of treated and comparison subjects who look as similar as possible, in essence replicating a randomized experiment, at least with respect to observed patient characteristics. A study to estimate the metabolic effects of antipsychotic medication in a sample of Florida Medicaid beneficiaries with schizophrenia illustrates methods. PMID:20563313

  11. Experimental and theoretical sound transmission. [reduction of interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Durenberger, D. W.

    1978-01-01

    The capabilities of the Kansas University- Flight Research Center for investigating panel sound transmission as a step toward the reduction of interior noise in general aviation aircraft were discussed. Data obtained on panels with holes, on honeycomb panels, and on various panel treatments at normal incidence were documented. The design of equipment for panel transmission loss tests at nonnormal (slanted) sound incidence was described. A comprehensive theory-based prediction method was developed and shows good agreement with experimental observations of the stiffness controlled, the region, the resonance controlled region, and the mass-law region of panel vibration.

  12. Effects of Sheared Flow on Microinstabilities and Transport in Plasmas

    NASA Astrophysics Data System (ADS)

    H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong

    2005-02-01

    Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.

  13. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  14. Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition

    NASA Astrophysics Data System (ADS)

    Colone, L.; Hovgaard, M. K.; Glavind, L.; Brincker, R.

    2018-07-01

    A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.

  15. High-resolution in situ observations of electron precipitation-causing EMIC waves

    DOE PAGES

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; ...

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

  16. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data.

    PubMed

    Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın

    2012-01-01

    The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.

  17. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  18. Silicon-based all-optical memory elements for 1.54 μm photonics

    NASA Astrophysics Data System (ADS)

    Forcales, M.; Gregorkiewicz, T.; Zavada, J. M.

    2003-01-01

    We present experimental evidence of an optical memory effect in crystalline silicon doped with Er 3+ ions. It is observed at low temperature using two-color experiments in the visible and the mid-infrared (with a free-electron laser). Based on the physical mechanism governing the effect, possibilities for improvement of thermal stability and increase of archival time are discussed. An all-optical all-silicon memory element for use in photonic circuits is proposed.

  19. Experimental nonlocality-based randomness generation with nonprojective measurements

    NASA Astrophysics Data System (ADS)

    Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.

    2018-04-01

    We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.

  20. Mortality estimation from carcass searches using the R-package carcass: a tutorial

    USGS Publications Warehouse

    Korner-Nievergelt, Fränzi; Behr, Oliver; Brinkmann, Robert; Etterson, Matthew A.; Huso, Manuela M. P.; Dalthorp, Daniel; Korner-Nievergelt, Pius; Roth, Tobias; Niermann, Ivo

    2015-01-01

    This article is a tutorial for the R-package carcass. It starts with a short overview of common methods used to estimate mortality based on carcass searches. Then, it guides step by step through a simple example. First, the proportion of animals that fall into the search area is estimated. Second, carcass persistence time is estimated based on experimental data. Third, searcher efficiency is estimated. Fourth, these three estimated parameters are combined to obtain the probability that an animal killed is found by an observer. Finally, this probability is used together with the observed number of carcasses found to obtain an estimate for the total number of killed animals together with a credible interval.

  1. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  2. Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui

    2016-07-01

    Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.

  3. Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan

    2018-04-01

    Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.

  4. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy.

    PubMed

    Lee, Hwankyu; Venable, Richard M; Mackerell, Alexander D; Pastor, Richard W

    2008-08-01

    A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length lambda = 3.7 A, in quantitative agreement with experimentally obtained values of 3.7 A for PEO and 3.8 A for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent upsilon relating the radius of gyration and molecular weight (R(g) proportional, variantM(w)(upsilon)) of PEO from the simulations equals 0.515 +/- 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius R(h)obtained from diffusion measurements in solution. This explains the correspondence of R(h) and R(p), the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion.

  5. Bayesian analysis of experimental epidemics of foot-and-mouth disease.

    PubMed Central

    Streftaris, George; Gibson, Gavin J.

    2004-01-01

    We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homogeneously mixing populations of sheep have suggested a decline in viraemic level through serial passage of the virus, but these do not take into account possible variation in the length of the chain of viral transmission for each animal, which is implicit in the non-observed transmission process. We consider a susceptible-exposed-infectious-removed non-Markovian compartmental model for partially observed epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical inference, to address epidemiological issues under a Bayesian framework that accounts for all available information and associated uncertainty in a coherent approach. The analysis allows us to investigate the posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained. The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model also suggests that individual infectivity is related to the level of viraemia. PMID:15306359

  6. Action Observation Plus Sonification. A Novel Therapeutic Protocol for Parkinson’s Patient with Freezing of Gait

    PubMed Central

    Mezzarobba, Susanna; Grassi, Michele; Pellegrini, Lorella; Catalan, Mauro; Kruger, Bjorn; Furlanis, Giovanni; Manganotti, Paolo; Bernardis, Paolo

    2018-01-01

    Freezing of gait (FoG) is a disabling symptom associated with falls, with little or no responsiveness to pharmacological treatment. Current protocols used for rehabilitation are based on the use of external sensory cues. However, cued strategies might generate an important dependence on the environment. Teaching motor strategies without cues [i.e., action observation (AO) plus Sonification] could represent an alternative/innovative approach to rehabilitation that matters most on appropriate allocation of attention and lightening cognitive load. We aimed to test the effects of a novel experimental protocol to treat patients with Parkinson’s disease (PD) and FoG, using functional, and clinical scales. The experimental protocol was based on AO plus Sonification. 12 patients were treated with 8 motor gestures. They watched eight videos showing an actor performing the same eight gestures, and then tried to repeat each gesture. Each video was composed by images and sounds of the gestures. By means of the Sonification technique, the sounds of gestures were obtained by transforming kinematic data (velocity) recorded during gesture execution, into pitch variations. The same 8 motor gestures were also used in a second group of 10 patients; which were treated with a standard protocol based on a common sensory stimulation method. All patients were tested with functional and clinical scales before, after, at 1 month, and 3 months after the treatment. Data showed that the experimental protocol have positive effects on functional and clinical tests. In comparison with the baseline evaluations, significant performance improvements were seen in the NFOG questionnaire, and the UPDRS (parts II and III). Importantly, all these improvements were consistently observed at the end, 1 month, and 3 months after treatment. No improvement effects were found in the group of patients treated with the standard protocol. These data suggest that a multisensory approach based on AO plus Sonification, with the two stimuli semantically related, could help PD patients with FoG to relearn gait movements, to reduce freezing episodes, and that these effects could be prolonged over time. PMID:29354092

  7. The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    PubMed Central

    Komives, Elizabeth A.; Wolynes, Peter G.

    2008-01-01

    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions. PMID:18483553

  8. Predicting the morphologies of γ' precipitates in cobalt-based superalloys

    DOE PAGES

    Jokisaari, Andrea M.; Naghavi, S. S.; Wolverton, C.; ...

    2017-09-06

    Cobalt-based alloys with γ/γ' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-principles density functional theory and experimental data to predict the equilibrium shapes of Co-Al-W γ' precipitates. Three-dimensional simulations of single and multiple precipitates are performed to understand the effect of elastic and interfacial energy on coarsenedmore » and rafted microstructures; the elastic energy is dependent on the elastic stiffnesses, misfit strain, precipitate size, applied stress, and precipitate spatial distribution. We observe characteristic microstructures dependent on the type of applied stress that have the same γ' morphology and orientation seen in experiments, indicating that the elastic stresses arising from coherent γ/γ' interfaces are important for morphological evolution during creep. Here, the results also indicate that the narrow γ channels between γ' precipitates are energetically favored, and provide an explanation for the experimentally observed directional coarsening that occurs without any applied stress.« less

  9. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  10. An electrical resistivity-based method for investigation of subsurface structure

    NASA Astrophysics Data System (ADS)

    Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.

    2017-12-01

    Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.

  11. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  12. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  13. A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models.

    PubMed

    Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio

    2013-08-01

    The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.

  14. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    PubMed

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  15. IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works

    NASA Technical Reports Server (NTRS)

    Davis, Zach S.; Park, M. A.

    2017-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.

  16. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  17. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  18. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  19. Masked Visual Analysis: Minimizing Type I Error in Visually Guided Single-Case Design for Communication Disorders

    ERIC Educational Resources Information Center

    Byun, Tara McAllister; Hitchcock, Elaine R.; Ferron, John

    2017-01-01

    Purpose: Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of…

  20. Why dissect a frog when you can simulate a lion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.K.

    1996-12-31

    We are concerned with creating computer-based learning environments which provide students with opportunities to develop causal explanations of complex phenomena through experimentation and observation. We combine video and simulation to facilitate such exploration in high school biology classrooms. Specifically, we focus on issues in behavioral ecology and the predation behaviors of the Serengeti lion.

  1. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, A. A., E-mail: akonsta@civil.auth.gr; Zhang, X., E-mail: zhangxu26@126.com; Aifantis, E. C., E-mail: mom@mom.gen.auth.gr

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  2. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    NASA Technical Reports Server (NTRS)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  3. An Analytical Chemistry Experiment in Simultaneous Spectrophotometric Determination of Fe(III) and Cu(II) with Hexacyanoruthenate(II) Reagent.

    ERIC Educational Resources Information Center

    Mehra, M. C.; Rioux, J.

    1982-01-01

    Experimental procedures, typical observations, and results for the simultaneous analysis of Fe(III) and Cu(II) in a solution are discussed. The method is based on selective interaction between the two ions and potassium hexacyanoruthenate(II) in acid solution involving no preliminary sample preparations. (Author/JN)

  4. Fractional Distillation of Air and Other Demonstrations with Condensed Gases

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Switzer, William L., III; Eierman, Robert

    2005-01-01

    The learning objectives of the fractional distillation of air and other demonstrations includes observing N2, O2, CO2 and H2O in air, studying the fractional separation of components based on boiling point differences and so on. The materials, reagent and equipment preparation, experimental procedures, hazards of the demonstration are also…

  5. Experimental verification of arm-locking for LISA using electronic phase delay [rapid communication

    NASA Astrophysics Data System (ADS)

    Thorpe, J. I.; Mueller, G.

    2005-07-01

    We present results of an electronic model of arm-locking, a proposed technique for reducing the laser phase noise in the laser interferometer space antenna (LISA). The model is based on a delay of 500 ms, achieved using the electronic phase delay (EPD) method. The observed behavior is consistent with predictions.

  6. A Step-by-Step Guide to Propensity Score Matching in R

    ERIC Educational Resources Information Center

    Randolph, Justus J.; Falbe, Kristina; Manuel, Austin Kureethara; Balloun, Joseph L.

    2014-01-01

    Propensity score matching is a statistical technique in which a treatment case is matched with one or more control cases based on each case's propensity score. This matching can help strengthen causal arguments in quasi-experimental and observational studies by reducing selection bias. In this article we concentrate on how to conduct propensity…

  7. On the Short Horizon of Spontaneous Iterative Reasoning in Logical Puzzles and Games

    ERIC Educational Resources Information Center

    Mazzocco, Ketti; Cherubini, Anna Maria; Cherubini, Paolo

    2013-01-01

    A reasoning strategy is iterative when the initial conclusion suggested by a set of premises is integrated into that set of premises in order to yield additional conclusions. Previous experimental studies on game theory-based strategic games (such as the beauty contest game) observed difficulty in reasoning iteratively, which has been partly…

  8. Effects of Experimental Anterior Knee Pain on Muscle Activation During Landing and Jumping Performed at Various Intensities.

    PubMed

    Park, Jihong; Denning, W Matt; Pitt, Jordan D; Francom, Devin; Hopkins, J Ty; Seeley, Matthew K

    2017-01-01

    Although knee pain is common, some facets of this pain are unclear. The independent effects (ie, independent from other knee injury or pathology) of knee pain on neural activation of lower-extremity muscles during landing and jumping have not been observed. To investigate the independent effects of knee pain on lower-extremity muscle (gastrocnemius, vastus medialis, medial hamstrings, gluteus medius, and gluteus maximus) activation amplitude during landing and jumping, performed at 2 different intensities. Laboratory-based, pretest, posttest, repeated-measures design, where all subjects performed both data-collection sessions. Thirteen able-bodied subjects performed 2 different land and jump tasks (forward and lateral) under 2 different conditions (control and pain), at 2 different intensities (high and low). For the pain condition, experimental knee pain was induced via a hypertonic saline injection into the right infrapatellar fat pad. Functional linear models were used to evaluate the influence of experimental knee pain on muscle-activation amplitude throughout the 2 land and jump tasks. Experimental knee pain independently altered activation for all of the observed muscles during various parts of the 2 different land and jump tasks. These activation alterations were not consistently influenced by task intensity. Experimental knee pain alters activation amplitude of various lower-extremity muscles during landing and jumping. The nature of the alteration varies between muscles, intensities, and phases of the movement (ie, landing and jumping). Generally, experimental knee pain inhibits the gastrocnemius, medial hamstring, and gluteus medius during landing while independently increasing activation of the same muscles during jumping.

  9. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  10. A robust observer based on H∞ filtering with parameter uncertainties combined with Neural Networks for estimation of vehicle roll angle

    NASA Astrophysics Data System (ADS)

    Boada, Beatriz L.; Boada, Maria Jesus L.; Vargas-Melendez, Leandro; Diaz, Vicente

    2018-01-01

    Nowadays, one of the main objectives in road transport is to decrease the number of accident victims. Rollover accidents caused nearly 33% of all deaths from passenger vehicle crashes. Roll Stability Control (RSC) systems prevent vehicles from untripped rollover accidents. The lateral load transfer is the main parameter which is taken into account in the RSC systems. This parameter is related to the roll angle, which can be directly measured from a dual-antenna GPS. Nevertheless, this is a costly technique. For this reason, roll angle has to be estimated. In this paper, a novel observer based on H∞ filtering in combination with a neural network (NN) for the vehicle roll angle estimation is proposed. The design of this observer is based on four main criteria: to use a simplified vehicle model, to use signals of sensors which are installed onboard in current vehicles, to consider the inaccuracy in the system model and to attenuate the effect of the external disturbances. Experimental results show the effectiveness of the proposed observer.

  11. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  12. Application of the Refined Integral Method in the mathematical modeling of drug delivery from one-layer torus-shaped devices.

    PubMed

    Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A

    2012-02-28

    A mathematical modeling of controlled release of drug from one-layer torus-shaped devices is presented. Analytical solutions based on Refined Integral Method (RIM) are derived. The validity and utility of the model are ascertained by comparison of the simulation results with matrix-type vaginal rings experimental release data reported in the literature. For the comparisons, the pair-wise procedure is used to measure quantitatively the fit of the theoretical predictions to the experimental data. A good agreement between the model prediction and the experimental data is observed. A comparison with a previously reported model is also presented. More accurate results are achieved for small A/C(s) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Linear free-energy relationships and the density functional theory: an analog of the hammett equation.

    PubMed

    Simón-Manso, Yamil

    2005-03-10

    Density functional theory has been applied to describe electronic substituent effects, especially in the pursuit of linear relationships similar to those observed from physical organic chemistry experiments. In particular, analogues for the Hammett equation parameters (sigma, rho) have been developed. Theoretical calculations were performed on several series of organic molecules in order to validate our model and for comparison with experimental results. The trends obtained by Hammett-like relations predicted by the model were found to be in qualitative agreement with the experimental data. The results obtained in this study suggest the applicability of similar correlation analysis based on theoretical methodologies that do not make use of empirical fits to experimental data can be useful in the study of substituent effects in organic chemistry.

  14. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

    2018-02-01

    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  15. Drilling Students’ Communication Skill through Science, Environment, Technology, and Society (SETS)-Based Learning

    NASA Astrophysics Data System (ADS)

    Al-Farisi, B. L.; Tjandrakirana; Agustini, R.

    2018-01-01

    Student’s communication skill paid less attention in learning activity at school, even though communication skill is needed by students in the 21st century based on the demands of new curriculum in Indonesia (K13). This study focuses on drilling students’ communication skill through science, environment, technology, and society (SETS)-based learning. The research is a pre-experimental design with a one-shot case study model involving 10 students of ninth-grader of SMPN 2 Manyar, Gresik. The research data were collected through observation method using communication observation sheet. The data were analyzed using the descriptive qualitative method. The result showed that students’ communication skill reached the completeness of skills decided both individually and classically in the curriculum. The fundamental result of this research that SETS-based learning can be used to drill students’ communication skill in K13 context.

  16. Experimental and Numerical Investigation of Guest Molecule Exchange Kinetics based on the 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.

    2015-12-01

    In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.

  17. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  18. Deformation and evolution of an experimental drainage network subjected to oblique deformation: Insight from chi-maps

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien

    2017-04-01

    The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.

  19. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    PubMed

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less

  1. Isotope and multiband effects in layered superconductors.

    PubMed

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  2. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  3. [Materno-fetal acid-base equilibrium evaluation in parturients submitted to ketamine anesthesia (author's transl)].

    PubMed

    Mauad Filho, F; Meirelles, R S

    1975-01-01

    In the present work ketamine was used as anesthetic during the labor in order to evaluate the effect of this anesthetic on the binominal fetus-mother. Two groups of parturients and their fetuses, were studied: 1) The experimental group, with 22 parturients and their fetuses submitted to ketamine anesthesia during the labord, and 2) The control group, with 20 parturients and their fetuses without any analgesic treatment during the labor. In 20 cases of the experimental group the anesthetic was injected during the delivery labor and the other two just before it. It were evaluated in the mother's blood the biochemical parameters of the acid-base balance and others collateral effects of the anesthesia; on the fetus's side the same parameters also and the cardiac frequency. The newborn were evaluated by Apgar Score during the first and fifth minutes of life. The incidence of the spontaneous delivery in the experimental group, was 78%; in 22% of these patients the forceps of relief was used. In 22 cases in which Ketamine was applied it were observed, the following events: elevation of the blood pressure (50%), perineum rigidness (18%), dreams and or hallucinations (18%), increase of the cardiac frequency (9%), apneia (4%) and nausea (4%). It was also observed an increase of uterine tonus an abolishment of abdominal press during the delivery labor, studied through the uterine electromyography register. It was noted after the Ketamine application a fall in the pH of the maternal peripherical venous blood, fetal skull blood and the pH of the blood of the umbilical vein. 22% of the newborns, from the experimental group, presented a depression in the first minute of life (Apgar less than or equals to 6). The pCO2 values in the blood of the umbilical artery were higher in the experimental group than in the control one.

  4. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1973-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.

  5. A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies.

    PubMed

    Banerjee, Arnab; Sahana, Animesh; Das, Sudipta; Lohar, Sisir; Guha, Subarna; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Mukherjee, Asok K; Das, Debasis

    2012-05-07

    2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).

  6. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  7. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  8. Experimental observations of Lagrangian sand grain kinematics under bedload transport: statistical description of the step and rest regimes

    NASA Astrophysics Data System (ADS)

    Guala, M.; Liu, M.

    2017-12-01

    The kinematics of sediment particles is investigated by non-intrusive imaging methods to provide a statistical description of bedload transport in conditions near the threshold of motion. In particular, we focus on the cyclic transition between motion and rest regimes to quantify the waiting time statistics inferred to be responsible for anomalous diffusion, and so far elusive. Despite obvious limitations in the spatio-temporal domain of the observations, we are able to identify the probability distributions of the particle step time and length, velocity, acceleration, waiting time, and thus distinguish which quantities exhibit well converged mean values, based on the thickness of their respective tails. The experimental results shown here for four different transport conditions highlight the importance of the waiting time distribution and represent a benchmark dataset for the stochastic modeling of bedload transport.

  9. Observation of Superconductivity in the LaNiO3/La0.7Sr0.3MnO3 Superlattice.

    PubMed

    Zhou, Guowei; Jiang, Fengxian; Zang, Julu; Quan, Zhiyong; Xu, Xiaohong

    2018-01-17

    In the pursuit of high-temperature superconductivity like that in cuprates, artificial heterostructures or interfaces have attracted tremendous interest. It has been a long-sought goal to find similar unconventional superconductivity in nickelates. However, as far as we know, this has not yet been experimentally realized. To approach this objective, we synthesized a prototypical superlattice that consists of ultrathin LaNiO 3 and La 0.7 Sr 0.3 MnO 3 layers. Both zero resistance and the Meissner effect are observed using resistive and magnetic measurements of the superlattice. These are experimental indicators for superconductivity in new superconductors. X-ray linear dichroism causes the NiO 2 planes to develop electron-occupied x 2 -y 2 orbital order similar to that of cuprate-based superconductors. Our findings demonstrate that artificial interface engineering is suitable for investigating novel physical phenomena, such as superconductivity.

  10. Simulation of anisotropic fracture behaviour of polycrystalline round blank tungsten using cohesive zone model

    NASA Astrophysics Data System (ADS)

    Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir

    2018-04-01

    The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.

  11. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  12. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  13. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    PubMed

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  14. Experimental demonstration of two-dimensional hybrid waveguide-integrated plasmonic crystals on silicon-on-insulator platform

    NASA Astrophysics Data System (ADS)

    Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan

    2017-07-01

    Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.

  15. An Application of Evolutionary Game Theory to Social Dilemmas: The Traveler's Dilemma and the Minimum Effort Coordination Game

    PubMed Central

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851

  16. An application of evolutionary game theory to social dilemmas: the traveler's dilemma and the minimum effort coordination game.

    PubMed

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.

  17. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less

  18. High-speed detection of DNA translocation in nanopipettes

    NASA Astrophysics Data System (ADS)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended model for the length dependence of τ. See DOI: 10.1039/c5nr08634e

  19. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  20. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  1. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  2. Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented two-dimensionally on nanotube and nanoplatelet based polymer nanocomposites. Given the experimentally measured frequency domain response of the bulk polymer, the viscoelastic behavior of the nanocomposites in both frequency and temperature domains can be calculated. The predicted pattern of influence of the interphase on the overall performance of the nanocomposites is consistent with the experimental observation. 3D parametric studies utilizing this modeling technique reveal that the nanotube morphology "modifies" the effect of interphase and hence profoundly influences the overall viscoelastic behavior. The findings help explain some experimental observations and furthermore, draw attention to the importance of morphology control through appropriate synthesis and processing techniques to further tune the thermomechanical behavior of the nanocomposites.

  3. A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory

    NASA Astrophysics Data System (ADS)

    Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.

    2008-02-01

    The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.

  4. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  5. Organic magnetoresistance based on hopping theory

    NASA Astrophysics Data System (ADS)

    Yang, Fu-Jiang; Xie, Shi-Jie

    2014-09-01

    For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.

  6. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2015-08-01

    Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  7. Plant Disease Severity Assessment-How Rater Bias, Assessment Method, and Experimental Design Affect Hypothesis Testing and Resource Use Efficiency.

    PubMed

    Chiang, Kuo-Szu; Bock, Clive H; Lee, I-Hsuan; El Jarroudi, Moussa; Delfosse, Philippe

    2016-12-01

    The effect of rater bias and assessment method on hypothesis testing was studied for representative experimental designs for plant disease assessment using balanced and unbalanced data sets. Data sets with the same number of replicate estimates for each of two treatments are termed "balanced" and those with unequal numbers of replicate estimates are termed "unbalanced". The three assessment methods considered were nearest percent estimates (NPEs), an amended 10% incremental scale, and the Horsfall-Barratt (H-B) scale. Estimates of severity of Septoria leaf blotch on leaves of winter wheat were used to develop distributions for a simulation model. The experimental designs are presented here in the context of simulation experiments which consider the optimal design for the number of specimens (individual units sampled) and the number of replicate estimates per specimen for a fixed total number of observations (total sample size for the treatments being compared). The criterion used to gauge each method was the power of the hypothesis test. As expected, at a given fixed number of observations, the balanced experimental designs invariably resulted in a higher power compared with the unbalanced designs at different disease severity means, mean differences, and variances. Based on these results, with unbiased estimates using NPE, the recommended number of replicate estimates taken per specimen is 2 (from a sample of specimens of at least 30), because this conserves resources. Furthermore, for biased estimates, an apparent difference in the power of the hypothesis test was observed between assessment methods and between experimental designs. Results indicated that, regardless of experimental design or rater bias, an amended 10% incremental scale has slightly less power compared with NPEs, and that the H-B scale is more likely than the others to cause a type II error. These results suggest that choice of assessment method, optimizing sample number and number of replicate estimates, and using a balanced experimental design are important criteria to consider to maximize the power of hypothesis tests for comparing treatments using disease severity estimates.

  8. Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert

    NASA Astrophysics Data System (ADS)

    Arunachalam, U.; Edwin, M.

    2018-03-01

    This paper presents experimental studies on the convective heat transfer and friction factor characteristics of flows in a straight circular tube with and without V-cut twisted tapeinserts using Al2O3-Cu/water hybrid nanofluid as working fluid and also comparative studies between Alumina nanofluid and (Cu-Alumina) hybrid nanofluid is conducted. This work is restricted to one type of hybrid nanofluid only. It also does not include the effect of twisted tape dimensions on heat transfer coefficient and pressure drop.Itis observed that the experimental convective heat transfer coefficient increases slightly with an increase in particle volume concentration from 0.1 and 0.4%. The experimental data is in good agreement with the previous models and correlations.The experimental results showed a good enhancement in Nusselt number for Peclet number from 2580 to 11,780 compared to Nusselt number of water, when the copper nanofluid is 0.01% volume concentration and mixed with 0.4% concentration of Alumina nanofluid.Itis also noticed that 0.01% Al2O3-Cu/water hybrid nanofluidhas a higher friction factor than the Al2O3/water nanofluid and base fluid. Since the magnitude of thermal enhancement factor (η) has been observed to be only marginally higher than unity (1.01 to 1.05), the net benefit of inserting V - cut twisted tapes in nanofluids is also nevertheless marginal.

  9. RGB-D SLAM Combining Visual Odometry and Extended Information Filter

    PubMed Central

    Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue

    2015-01-01

    In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990

  10. In situ accurate determination of the zero time delay between two independent ultrashort laser pulses by observing the oscillation of an atomic excited wave packet.

    PubMed

    Zhang, Qun; Hepburn, John W

    2008-08-15

    We propose a novel method that uses the oscillation of an atomic excited wave packet observed through a pump-probe technique to accurately determine the zero time delay between a pair of ultrashort laser pulses. This physically based approach provides an easy fix for the intractable problem of synchronizing two different femtosecond laser pulses in a practical experimental environment, especially where an in situ time zero measurement with high accuracy is required.

  11. Experimental Verification of Ocean Bounced GPS Signals and Analysis of their Application to Ionospheric Corrections for Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Axelrad, P.; Cox, A. E.; Crumpton, K. S.

    1997-01-01

    An algorithm is presented which uses observations of Global Positioning System (GPS) signals reflected from the ocean surface and acquired by a GPS receiver onboard an altimetric satellite to compute the ionospheric delay present in the altimeter measurement. This eliminates the requirement for a dual frequency altimeter for many Earth observing missions. A ground-based experiment is described which confirms the presence of these ocean-bounced signals and demonstrates the potential for altimeter ionospheric correction at the centimeter level.

  12. Elastic model for crimped collagen fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

  13. Synthesis of MAX Phases in the Hf-Al-C System.

    PubMed

    Lapauw, Thomas; Tunca, Bensu; Cabioc'h, Thierry; Lu, Jun; Persson, Per O Å; Lambrinou, Konstantina; Vleugels, Jozef

    2016-11-07

    For the first time, MAX phases in the Hf-Al-C system were experimentally synthesized using reactive hot pressing. HfC was observed as the main competing phase. The lattice parameters of Hf 2 AlC and Hf 3 AlC 2 were determined by Rietveld refinement based on the X-ray diffraction data. The atomic stacking sequence was revealed by high-resolution scanning transmission electron microscopy. Mixtures of 211 and 312 stacking were observed within the same grain, including 523 layers. This transition in atomic structure is discussed.

  14. TeV radiation from the Crab nebula and other matters

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1990-01-01

    The detection of the Crab Nebula via the Cherenkov imaging technique places TeV astronomy on a secure observational footing. The motivation for TeV observations, a discussion of the atmospheric Cherenkov technique, the experimental details of the Crab Nebula detection, and its scientific implications are presented. The present dilemma of VHE/UHE astronomy is that the Crab appears to be the only source whose showers match theoretical expectations. The situation will be clarified as improved ground-based detectors come on-line with sensitivities matching those of the GRO (Gamma Ray Observatory) instruments.

  15. Formation of two-dimensional CuSe on Cu(111) at very low selenium coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo

    2016-05-09

    Here, using scanning tunneling microscopy (STM), we observe that adsorption of Se on Cu(111) produces islands with (√3 x √3)R30° structure, at Se coverages far below the structure's ideal coverage of 1/3 ML. Based on density functional theory (DFT), these islands cannot form due to attractive interactions between chemisorbed Se atoms. DFT shows that incorporating Cu atoms into the √3-Se lattice stabilizes the structure, which provides a plausible explanation for the experimental observations.

  16. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  17. Progression of Ebola Therapeutics During the 2014-2015 Outbreak.

    PubMed

    Mendoza, Emelissa J; Qiu, Xiangguo; Kobinger, Gary P

    2016-02-01

    The recent Ebola virus (EBOV) outbreak in West Africa was the deadliest EBOV epidemic in history, highlighting the need for a safe and efficacious treatment against EBOV disease (EVD). In the absence of an approved treatment, experimental drugs were utilized under compassionate grounds hoping to diminish EVD-associated morbidity and mortality. As more data were collected from safety studies, Phase II/III clinical trials were introduced in Guinea, Sierra Leone, and Liberia to test promising candidates, including small-molecule drugs, RNA-based treatments, and antibody-based therapies. In this review, we summarize the use of, and preliminary observations from, current clinical trials with EVD therapeutics, shedding light on experimental drug selection, emergency clinical evaluation, and the impact these factors may have on future infectious disease outbreaks. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Commentary: How can family-based quasi-experimental designs and national registers be used to address confounding in risk factor studies of psychopathology? A reflection on Obel et al. (2016).

    PubMed

    Larsson, Henrik

    2016-04-01

    Standard observational studies have reported a robust correlation between maternal smoking during pregnancy and risk of ADHD in offspring. In the accompanying article, Obel et al. used sibling-comparisons to explore the extent to which unmeasured familial confounding explains this association. This commentary highlights three important implications of the study. At a general level, Obel et al. illustrates how (1) family-based quasi-experimental designs and (2) national registers can be used to address confounding in risk factor studies of psychopathology. At a more specific level, the study suggests that maternal smoking during pregnancy is probably not a causal risk factor for ADHD. © 2016 Association for Child and Adolescent Mental Health.

  19. Improved inhalation technology for setting safe exposure levels for workplace chemicals

    NASA Technical Reports Server (NTRS)

    Stuart, Bruce O.

    1993-01-01

    Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.

  20. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    NASA Astrophysics Data System (ADS)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

Top