Sample records for experimental performance analysis

  1. Performance Indicators in Math: Implications for Brief Experimental Analysis of Academic Performance

    ERIC Educational Resources Information Center

    VanDerheyden, Amanda M.; Burns, Matthew K.

    2009-01-01

    Brief experimental analysis (BEA) can be used to specify intervention characteristics that produce positive learning gains for individual students. A key challenge to the use of BEA for intervention planning is the identification of performance indicators (including topography of the skill, measurement characteristics, and decision criteria) that…

  2. Brief Experimental Analyses of Academic Performance: Introduction to the Special Series

    ERIC Educational Resources Information Center

    McComas, Jennifer J.; Burns, Matthew K.

    2009-01-01

    Academic skills are frequent concerns in K-12 schools that could benefit from the application of applied behavior analysis (ABA). Brief experimental analysis (BEA) of academic performance is perhaps the most promising approach to apply ABA to student learning. Although research has consistently demonstrated the effectiveness of academic…

  3. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  4. Analysis of experimental results of the inlet for the NASA hypersonic research engine aerothermodynamic integration model. [wind tunnel tests of ramjet engine hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic.

  5. Nonlinear Stochastic PDEs: Analysis and Approximations

    DTIC Science & Technology

    2016-05-23

    numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to numerical analysis of...Stokes and Euler SPDEs, quasi -geostrophic SPDE, Ginzburg-Landau SPDE and Duffing oscillator REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...compare their numerical performance. Main theoretical and experimental advances include: 1.Introduction of a number of effective approaches to

  6. Defensive Operations in a Decisive Action Training Environment

    DTIC Science & Technology

    2017-07-01

    the alpha reduced the likelihood of mistaking a false result for a true finding/effect. Control Versus Experimental Group Comparisons Chi...was made between control and experimental groups. The experimental group received a Guide for DO with the intent of improving performance on...Planning, Execution, and Overall performance. There were no significant differences between control and experimental groups. Further analysis revealed

  7. Experimental Analysis of Dampened Breathing Mode Oscillation on Hall Thruster Performance

    DTIC Science & Technology

    2013-03-01

    38 4.5 Analysis of Discharge RMS Effect on Breathing Mode Amplitude...20 xii EXPERIMENTAL ANALYSIS OF DAMPENED BREATHING MODE OSCILLATION ON HALL EFFECT THRUSTER...the large error in the data presented above prevents many conclusions from being drawn. 4.5 Analysis of Discharge RMS Effect on Breathing Mode

  8. Experimental Analysis of Small-Group Performance Effectiveness: Behavioral and Biological Interactions.

    DTIC Science & Technology

    1982-04-01

    processes requiring systematic experimental analysis. Accordingly, group performance effectiveness studies were initiated to 61 assess the effects on...the experiment. 67 active processes associated with Joining the respective established groups, but the absence of baseline levels precludes such an...novitiate in comparison to such values observed during baseline days suggested an active process associated with the joining of the group and emphasized the

  9. Performance of solar refrigerant ejector refrigerating machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Khalidy, N.A.H.

    1997-12-31

    In this work a detailed analysis for the ideal, theoretical, and experimental performance of a solar refrigerant ejector refrigerating machine is presented. A comparison of five refrigerants to select a desirable one for the system is made. The theoretical analysis showed that refrigerant R-113 is more suitable for use in the system. The influence of the boiler, condenser, and evaporator temperatures on system performance is investigated experimentally in a refrigerant ejector refrigerating machine using R-113 as a working refrigerant.

  10. Experimental and numerical study of control of flow separation of a symmetric airfoil with trapped vortex cavity

    NASA Astrophysics Data System (ADS)

    Shahid, Abdullah Bin; Mashud, Mohammad

    2017-06-01

    This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.

  11. Development of a versatile user-friendly IBA experimental chamber

    NASA Astrophysics Data System (ADS)

    Kakuee, Omidreza; Fathollahi, Vahid; Lamehi-Rachti, Mohammad

    2016-03-01

    Reliable performance of the Ion Beam Analysis (IBA) techniques is based on the accurate geometry of the experimental setup, employment of the reliable nuclear data and implementation of dedicated analysis software for each of the IBA techniques. It has already been shown that geometrical imperfections lead to significant uncertainties in quantifications of IBA measurements. To minimize these uncertainties, a user-friendly experimental chamber with a heuristic sample positioning system for IBA analysis was recently developed in the Van de Graaff laboratory in Tehran. This system enhances IBA capabilities and in particular Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA) techniques. The newly developed sample manipulator provides the possibility of both controlling the tilt angle of the sample and analyzing samples with different thicknesses. Moreover, a reasonable number of samples can be loaded in the sample wheel. A comparison of the measured cross section data of the 16O(d,p1)17O reaction with the data reported in the literature confirms the performance and capability of the newly developed experimental chamber.

  12. FE-DEM Analysis of the Effect of Tread Pattern on the Tractive Performance of Tires Operating on Sand

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi; Takatsu, Yuzuru; Shinone, Hisanori; Matsukawa, Hisao; Kasetani, Takahiro

    Soil-tire system interaction is a fundamental and important research topic in terramechanics. We applied a 2D finite element, discrete element method (FE-DEM), using FEM for the tire and the bottom soil layer and DEM for the surface soil layer. Satisfactory performance analysis was achieved. In this study, to clarify the capabilities and limitations of the method for soil-tire interaction analysis, the tractive performance of real automobile tires with two different tread patterns—smooth and grooved—was analyzed by FE-DEM, and the numerical results compared with the experimental results obtained using an indoor traction measurement system. The analysis of tractive performance could be performed with sufficient accuracy by the proposed 2D dynamic FE-DEM. FE-DEM obtained larger drawbar pull for a tire with a grooved tread pattern, which was verified by the experimental results. Moreover, the result for the grooved tire showed almost the same gross tractive effort and similar running resistance as in experiments. However, for a tire with smooth tread pattern, the analyzed gross tractive effort and running resistance behaved differently than the experimental results, largely due to the difference in tire sinkage in FE-DEM.

  13. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    PubMed

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raebiger, K.; Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales; Maksoud, T.M.A.

    In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly intomore » the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)« less

  15. An acoustic experimental and theoretical investigation of single disc propellers

    NASA Technical Reports Server (NTRS)

    Bumann, Elizabeth A.; Korkan, Kenneth D.

    1989-01-01

    An experimental study of the acoustic field associated with two, three, and four blade propeller configurations with a blade root angle of 50 deg was performed in the Texas A&M University 5 ft. x 6 ft. acoustically-insulated subsonic wind tunnel. A waveform analysis package was utilized to obtain experimental acoustic time histories, frequency spectra, and overall sound pressure level (OASPL) and served as a basis for comparison to the theoretical acoustic compact source theory of Succi (1979). Valid for subsonic tip speeds, the acoustic analysis replaced each blade by an array of spiraling point sources which exhibited a unique force vector and volume. The computer analysis of Succi was modified to include a propeller performance strip analysis which used a NACA 4-digit series airfoil data bank to calculate lift and drag for each blade segment given the geometry and motion of the propeller. Theoretical OASPL predictions were found to moderately overpredict experimental values for all operating conditions and propeller configurations studied.

  16. An Evaluation of Material Properties Using EMA and FEM

    NASA Astrophysics Data System (ADS)

    Ďuriš, Rastislav; Labašová, Eva

    2016-12-01

    The main goal of the paper is the determination of material properties from experimentally measured natural frequencies. A combination of two approaches to structural dynamics testing was applied: the experimental measurements of natural frequencies were performed by Experimental Modal Analysis (EMA) and the numerical simulations, were carried out by Finite Element Analysis (FEA). The optimization methods were used to determine the values of density and elasticity modulus of a specimen based on the experimental results.

  17. An experimental analysis of a doped lithium fluoride direct absorption solar receiver

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Pollak, Tom; Lacy, Dovie

    1988-01-01

    An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.

  18. A model for sequential decoding overflow due to a noisy carrier reference. [communication performance prediction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.

  19. Performance of Oil Pumping Rings: An Analytical and Experimental Study

    NASA Technical Reports Server (NTRS)

    Eusepi, M. W.; Walowit, J. A.; Pinkus, O.; Holmes, P.

    1986-01-01

    A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry.

  20. An Application of Brief Experimental Analysis with Early Writing

    ERIC Educational Resources Information Center

    Parker, David C.; Dickey, Bradley N.; Burns, Matthew K.; McMaster, Kristen L.

    2012-01-01

    Students' poor performance on national assessments of writing suggests that educators need effective approaches to assess and intervene with writing problems. Brief experimental analysis (BEA) has supporting evidence for identifying interventions in reading, but little research has investigated BEA with writing. Early writing is an especially…

  1. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    PubMed

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  2. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  3. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.

  4. Experimental and numerical analysis of convergent nozzlex

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Rakham, Bhupal

    2017-05-01

    In this paper the main focus was given to convergent nozzle where both the experimental and numerical calculations were carried out with the support of standardized literature. In the recent years the field of air breathing and non-air breathing engine developments significantly increase its performance. To enhance the performance of both the type of engines the nozzle is the one of the component which will play a vital role, especially selecting the type of nozzle depends upon the vehicle speed requirement and aerodynamic behavior at most important in the field of propulsion. The convergent nozzle flow experimental analysis done using scaled apparatus and the similar setup was arranged artificially in the ANSYS software for doing the flow analysis across the convergent nozzle. The consistent calculation analysis are done based on the public literature survey to validate the experimental and numerical simulation results of convergent nozzle. Using these two experimental and numerical simulation approaches the best fit results will bring up to meet the design requirements. However the comparison also made to meet the reliability of the work on design criteria of convergent nozzle which can entrench in the field of propulsion applications.

  5. Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines

    NASA Technical Reports Server (NTRS)

    Simonyi, P. S.; Boyle, R. J.

    1991-01-01

    An experimental aerodynamic evaluation of three compact radial turbine builds was performed. Two rotors which were 40-50 percent shorter in axial length than conventional state-of-the-art radial rotors were tested. A single nozzle design was used. One rotor was tested with the nozzle at two stagger angle settings. A second rotor was tested with the nozzle in only the closed down setting. Experimental results were compared to predicted results from a quasi-3D inviscid and boundary layer analysis, called MTSB (Meridl/Tsonic/Blayer). This analysis was used to predict turbine performance. It has previously been calibrated only for axial, not radial, turbomachinery. The predicted and measured efficiencies were compared at the design point for the three turbines. At the design points the analysis overpredicted the efficiency by less than 1.7 points. Comparisons were also made at off-design operating points. The results of these comparisons showed the importance of an accurate clearance model for efficiency predictions and also that there are deficiencies in the incidence loss model used.

  6. Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines

    NASA Technical Reports Server (NTRS)

    Simonyi, P. S.; Boyle, R. J.

    1991-01-01

    An experimental aerodynamic evaluation of three compact radial turbine builds was performed. Two rotors which were 40 to 50 percent shorter in axial length than conventional state of the art radial rotors were tested. A single nozzle design was used. One rotor was tested with the nozzle at two stagger angle settings. A second rotor was tested with the nozzle in only the closed down setting. Experimental results were compared to predict results from a quasi-3D inviscid and boundary layer analysis, called Meridl/Tsonic/Blayer (MTSB). This analysis was used to predict turbine performance. It has previously been calibrated only for axial, not radial, turbomachinery. The predicted and measured efficiencies were compared at the design point for the three turbines. At the design points the analysis overpredicted the efficiency by less than 1.7 points. Comparisons were also made at off-design operating points. The results of these comparisons showed the importance of an accurate clearance model for efficiency predictions and also that there are deficiencies in the incidence loss model used.

  7. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation.

    PubMed

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A

    2017-06-28

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.

  8. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation

    PubMed Central

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A.

    2017-01-01

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results. PMID:28773081

  9. Selecting Intervention Strategies: Using Brief Experimental Analysis for Mathematics Problems

    ERIC Educational Resources Information Center

    Codding, Robin S.; Baglici, Stephanie; Gottesman, Dana; Johnson, Mitchelle; Kert, Allison Schaffer; Lebeouf, Patricia

    2009-01-01

    Although brief experimental analysis (BEA) procedures have been effective for aiding instructional decision making in the area of reading, there is a paucity of research extending this technology to mathematics. This study extends the literature on mathematics BEA by using an abridged data series that compares skill- and performance-based…

  10. Teaching Science Problem Solving: An Overview of Experimental Work.

    ERIC Educational Resources Information Center

    Taconis, R.; Ferguson-Hessler, M. G. M.; Broekkamp, H.

    2001-01-01

    Performs analysis on a number of articles published between 1985 and 1995 describing experimental research into the effectiveness of a wide variety of teaching strategies for science problem solving. Identifies 22 articles describing 40 experiments that met standards for meta-analysis. Indicates that few of the independent variables were found to…

  11. The Impact of Computer and Mathematics Software Usage on Performance of School Leavers in the Western Cape Province of South Africa: A Comparative Analysis

    ERIC Educational Resources Information Center

    Smith, Garth Spencer; Hardman, Joanne

    2014-01-01

    In this study the impact of computer immersion on performance of school leavers Senior Certificate mathematics scores was investigated across 31 schools in the EMDC East education district of Cape Town, South Africa by comparing performance between two groups: a control and an experimental group. The experimental group (14 high schools) had access…

  12. Analysis of cerebral vessels dynamics using experimental data with missed segments

    NASA Astrophysics Data System (ADS)

    Pavlova, O. N.; Abdurashitov, A. S.; Ulanova, M. V.; Shihalov, G. M.; Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.

    2018-04-01

    Physiological signals often contain various bad segments that occur due to artifacts, failures of the recording equipment or varying experimental conditions. The related experimental data need to be preprocessed to avoid such parts of recordings. In the case of few bad segments, they can simply be removed from the signal and its analysis is further performed. However, when there are many extracted segments, the internal structure of the analyzed physiological process may be destroyed, and it is unclear whether such signal can be used in diagnostic-related studies. In this paper we address this problem for the case of cerebral vessels dynamics. We perform analysis of simulated data in order to reveal general features of quantifying scaling features of complex signals with distinct correlation properties and show that the effects of data loss are significantly different for experimental data with long-range correlations and anti-correlations. We conclude that the cerebral vessels dynamics is significantly less sensitive to missed data fragments as compared with signals with anti-correlated statistics.

  13. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    NASA Astrophysics Data System (ADS)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  14. Small Engine Technology. Task 4: Advanced Small Turboshaft Compressor (ASTC) Performance and Range Investigation

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.; Delaney, Robert A.

    1997-01-01

    This contact had two main objectives involving both numerical and experimental investigations of a small highly loaded two-stage axial compressor designated Advanced Small Turboshaft Compressor (ASTC) winch had a design pressure ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct 3-D Navier Stokes multistage analyses of the ASTC using several different flow modelling schemes. The second main objective was to complete a numerical/experimental investigation into stall range enhancement of the ASTC. This compressor was designed wider a cooperative Space Act Agreement and all testing was completed at NASA Lewis Research Center. For the multistage analyses, four different flow model schemes were used, namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3) steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The results of all the predictions were compared to the experimental data. The steady-state ADPAC and APNASA codes predicted similar overall performance and produced good agreement with data, however the blade row performance and flowfield details were quite different. In general, it can be concluded that the APNASA average-passage code does a better job of predicting the performance and flowfield details of the highly loaded ASTC compressor.

  15. CANEapp: a user-friendly application for automated next generation transcriptomic data analysis.

    PubMed

    Velmeshev, Dmitry; Lally, Patrick; Magistri, Marco; Faghihi, Mohammad Ali

    2016-01-13

    Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers. To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp's performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app . We believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.

  16. Hybrid, experimental and computational, investigation of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1996-07-01

    Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.

  17. Correlation Analysis of Experimental Remote-Sensing Data and Models of Microwave Rough Sea-Surface Emission

    NASA Astrophysics Data System (ADS)

    Sazonov, D. S.

    2017-12-01

    A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.

  18. Experiments and analysis of a compact electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Asmussen, Jes; Whitehair, Stan

    1988-01-01

    The description and experimental performance of a compact microwave electrothermal thruster (MET) are presented. This thruster uses a coaxial applicator to couple microwave power into a high pressure discharge. Unlike earlier experiments, it uses no fused quartz in the discharge chamber or the nozzle. This allows high temperatures in the discharge chamber without quartz erosion and melting, thereby improving thruster performance and lifetime. The thruster design is compact, enhancing its potential as a space engine. Experimental tests using nitrogen and helium propellants with input powers levels of 200 W to 1.5 kW are presented. Experimental results, which produce energy efficiencies of 20 to 60 percent and specific impulse of 250 to 450 sec, compare favorably to previous experimental MET performance.

  19. Comparison of the Experimental Performance of Ferroelectric CPW Circuits with Method of Moment Simulations and Conformal Mapping

    NASA Technical Reports Server (NTRS)

    VanKeuls, Fred W.; Chevalier, Chris T.; Miranda, Felix A.; Carlson, C. M.; Rivkin, T. V.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.

    2001-01-01

    Experimental measurements of coplanar waveguide (CPW) circuits atop thin films of ferroelectric Ba(x)Sr(1-x)TiO3 (BST) were made as a function bias from 0 to 200 V and frequency from 0.045 to 20 GHz. The resulting phase shifts are compared with method of moments electromagnetic simulations and a conformal mapping analysis to determine the dielectric constant of the BST films. Based on the correlation between the experimental and the modeled data, an analysis of the extent to which the electromagnetic simulators provide reliable values for the dielectric constant of the ferroelectric in these structures has been performed. In addition, to determine how well the modeled data compare with experimental data, the dielectric constant values were also compared to low frequency measurements of interdigitated capacitor circuits on the same films. Results of these comparisons will be presented.

  20. Range Finding with a Plenoptic Camera

    DTIC Science & Technology

    2014-03-27

    92 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Simulated Camera Analysis...Varying Lens Diameter . . . . . . . . . . . . . . . . 95 Simulated Camera Analysis: Varying Detector Size . . . . . . . . . . . . . . . . . 98 Simulated ...Matching Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 37 Simulated Camera Performance with SIFT

  1. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  2. Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).

    PubMed

    Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P

    2016-01-01

    Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.

  3. An analytical and experimental evaluation of shadow shields and their support members

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Boyle, R. J.

    1972-01-01

    Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.

  4. Experimental analysis of performance and emission on DI diesel engine fueled with diesel-palm kernel methyl ester-triacetin blends: a Taguchi fuzzy-based optimization.

    PubMed

    Panda, Jibitesh Kumar; Sastry, Gadepalli Ravi Kiran; Rai, Ram Naresh

    2018-05-25

    The energy situation and the concerns about global warming nowadays have ignited research interest in non-conventional and alternative fuel resources to decrease the emission and the continuous dependency on fossil fuels, particularly for various sectors like power generation, transportation, and agriculture. In the present work, the research is focused on evaluating the performance, emission characteristics, and combustion of biodiesel such as palm kernel methyl ester with the addition of diesel additive "triacetin" in it. A timed manifold injection (TMI) system was taken up to examine the influence of durations of several blends induced on the emission and performance characteristics as compared to normal diesel operation. This experimental study shows better performance and releases less emission as compared with mineral diesel and in turn, indicates that high performance and low emission is promising in PKME-triacetin fuel operation. This analysis also attempts to describe the application of the fuzzy logic-based Taguchi analysis to optimize the emission and performance parameters.

  5. Identifying optimum performance trade-offs using a cognitively bounded rational analysis model of discretionary task interleaving.

    PubMed

    Janssen, Christian P; Brumby, Duncan P; Dowell, John; Chater, Nick; Howes, Andrew

    2011-01-01

    We report the results of a dual-task study in which participants performed a tracking and typing task under various experimental conditions. An objective payoff function was used to provide explicit feedback on how participants should trade off performance between the tasks. Results show that participants' dual-task interleaving strategy was sensitive to changes in the difficulty of the tracking task and resulted in differences in overall task performance. To test the hypothesis that people select strategies that maximize payoff, a Cognitively Bounded Rational Analysis model was developed. This analysis evaluated a variety of dual-task interleaving strategies to identify the optimal strategy for maximizing payoff in each condition. The model predicts that the region of optimum performance is different between experimental conditions. The correspondence between human data and the prediction of the optimal strategy is found to be remarkably high across a number of performance measures. This suggests that participants were honing their behavior to maximize payoff. Limitations are discussed. Copyright © 2011 Cognitive Science Society, Inc.

  6. Labyrinth Seal Analysis. Volume 3. Analytical and Experimental Development of a Design Model for Labyrinth Seals

    DTIC Science & Technology

    1986-01-01

    the information that has been determined experimentally. The Labyrinth Seal Analysis program was, therefore, directed to the develop - ment of an...labyrinth seal performance, the program included the development of an improved empirical design model to pro- j. .,’ vide the calculation of the flow... program . * Phase I was directed to the analytical development of both an *analysis* model and an improvwd empirical *design" model. Supporting rig tests

  7. Aeroacoustic and Performance Simulations of a Test Scale Open Rotor

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2013-01-01

    This paper explores a comparison between experimental data and numerical simulations of the historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA Glenn Research Center s Aeroacoustic facility and include performance and noise information for a variety of flow speeds (matching take-off and cruise). The numerical simulations provide both performance and aeroacoustic results using the NUMECA s Fine-Turbo analysis code. A non-linear harmonic method is used to capture the rotor/rotor interaction.

  8. Optimization Method of a Low Cost, High Performance Ceramic Proppant by Orthogonal Experimental Design

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tian, Y. M.; Wang, K. Y.; Li, G.; Zou, X. W.; Chai, Y. S.

    2017-09-01

    This study focused on optimization method of a ceramic proppant material with both low cost and high performance that met the requirements of Chinese Petroleum and Gas Industry Standard (SY/T 5108-2006). The orthogonal experimental design of L9(34) was employed to study the significance sequence of three factors, including weight ratio of white clay to bauxite, dolomite content and sintering temperature. For the crush resistance, both the range analysis and variance analysis reflected the optimally experimental condition was weight ratio of white clay to bauxite=3/7, dolomite content=3 wt.%, temperature=1350°C. For the bulk density, the most important factor was the sintering temperature, followed by the dolomite content, and then the ratio of white clay to bauxite.

  9. Slow-Learner, Average, and Gifted Third Graders: Strategy Analysis and Training for Learning

    ERIC Educational Resources Information Center

    Friedrich, Douglas

    1974-01-01

    Experimentally induced rehearsal and clustering strategies facilitated the performance of slow-learner, average, and gifted third graders on a visual short-term memory task. Self-pacing was superior to experimenter pacing of successive object presentation. (Author)

  10. Skylab mission report, second visit. [postflight analysis of engineering, experimentation, and medical aspects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation is presented of the operational and engineering aspects of the second Skylab flight. Other areas described include: the performance of experimental hardware; the crew's evaluation of the flight; medical aspects; and hardware anomalies.

  11. Highly Efficient Design-of-Experiments Methods for Combining CFD Analysis and Experimental Data

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Haller, Harold S.

    2009-01-01

    It is the purpose of this study to examine the impact of "highly efficient" Design-of-Experiments (DOE) methods for combining sets of CFD generated analysis data with smaller sets of Experimental test data in order to accurately predict performance results where experimental test data were not obtained. The study examines the impact of micro-ramp flow control on the shock wave boundary layer (SWBL) interaction where a complete paired set of data exist from both CFD analysis and Experimental measurements By combining the complete set of CFD analysis data composed of fifteen (15) cases with a smaller subset of experimental test data containing four/five (4/5) cases, compound data sets (CFD/EXP) were generated which allows the prediction of the complete set of Experimental results No statistical difference were found to exist between the combined (CFD/EXP) generated data sets and the complete Experimental data set composed of fifteen (15) cases. The same optimal micro-ramp configuration was obtained using the (CFD/EXP) generated data as obtained with the complete set of Experimental data, and the DOE response surfaces generated by the two data sets were also not statistically different.

  12. Data acquisition and processing history for the Explorer 33 (AIMP-D) satellite

    NASA Technical Reports Server (NTRS)

    Karras, T. J.

    1972-01-01

    The quality control monitoring system, using accounting and quality control data bases, made it possible to perform an in-depth analysis. Results show that the percentage of useable data files for experimenter analysis was 97.7%; only 0.4% of the data sequences supplied to the experimenter exhibited missing data. The 50 percentile probability delay values (referenced to station record data) indicate that the analog tapes arrived within 11 days, the data were digitized within 4.2 weeks, and the experimenter tapes were delivered in 8.95 weeks or less.

  13. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    NASA Astrophysics Data System (ADS)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  14. Optical Performance Of The Gemini Carbon Dioxide Laser Fusion System

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Hayden, J. J.; Liberman, I.

    1980-11-01

    The performance of the Gemini two beam carbon dioxide laser fusion system was recently upgraded by installation of optical components with improved quality in the final amplifier. A theoretical analysis was conducted in conlunction with measurements of the new performance. The analysis and experimental procedures, and results obtained are reported and compared. Good agreement was found which was within the uncertainties of the analysis and the inaccuracies of the experiments. The focal spot Strehl ratio was between 0.24 and 0.3 for both beams.

  15. Distributed memory parallel Markov random fields using graph partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, C.; Perciano, T.; Ushizima, D.

    Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less

  16. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  17. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  18. Experimental and numerical analysis of penetration/removal response of endodontic instrument made of single crystal Cu-based SMA: comparison with NiTi SMA instruments

    NASA Astrophysics Data System (ADS)

    Vincent, M.; Xolin, P.; Gevrey, A.-M.; Thiebaud, F.; Engels-Deutsch, M.; Ben Zineb, T.

    2017-04-01

    This paper presents an experimental and numerical study showing that single crystal shape memory alloy (SMA) Cu-based endodontic instruments can lead to equivalent mechanical performances compared to NiTi-based instruments besides their interesting biological properties. Following a previous finite element analysis (FEA) of single crystal CuAlBe endodontic instruments (Vincent et al 2015 J. Mater. Eng. Perform. 24 4128-39), prototypes with the determined geometrical parameters were machined and experimentally characterized in continuous rotation during a penetration/removal (P/R) protocol in artificial canals. The obtained mechanical responses were compared to responses of NiTi endodontic files in the same conditions. In addition, FEA was conducted and compared with the experimental results to validate the adopted modeling and to evaluate the local quantities inside the instrument as the stress state and the distribution of volume fraction of martensite. The obtained results highlight that single crystal CuAlBe SMA prototypes show equivalent mechanical responses to its NiTi homologous prototypes in the same P/R experimental conditions.

  19. Unbalance Response Analysis and Experimental Validation of an Ultra High Speed Motor-Generator for Microturbine Generators Considering Balancing

    PubMed Central

    Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo

    2014-01-01

    The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804

  20. Modeling and Experiments with Carbon Nanotubes for Applications in High Performance Circuits

    DTIC Science & Technology

    2017-04-06

    purchased and installed for experimental characterization of atomic layer deposited graphene on different substrates for radiation-hardened studies...72 3.6 Experimental Research in Graphene for Radiation Hardened Devices……………..73 4 Recommendations...physics for analysis and design of integrated circuits. The developed model is verified from published experimental data. Basic logic gates in

  1. Operational Consequences of Literacy Gap.

    DTIC Science & Technology

    1980-05-01

    Comprehension Scores on the Safety and Sanitation Content 37 11. Statistics on Experimental Groups’ Performance by Sex and Content 37 12. Analysis of...Variance of Experimental Groups by Sex and Content 38 13. Mean Comprehension Scores Broken Down by Content, Subject RGL and Reading Time 39 14. Analysis...ratings along a scale of difficulty which parallels the school grade scale. Burkett (1975) and Klare (1963; 1974-1975) provide summaries of the extensive

  2. Off-design performance loss model for radial turbines with pivoting, variable-area stators

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model was developed for variable stator (pivoted vane), radial turbines through analytical modeling and experimental data analysis. Stator loss is determined by a viscous loss model; stator vane end-clearance leakage effects are determined by a clearance flow model. Rotor loss coefficient were obtained by analyzing the experimental data from a turbine rotor previously tested with six stators having throat areas from 20 to 144 percent of design area and were correlated with stator-to-rotor throat area ratio. An incidence loss model was selected to obtain best agreement with experimental results. Predicted turbine performance is compared with experimental results for the design rotor as well as with results for extended and cutback versions of the rotor. Sample calculations were made to show the effects of stator vane end-clearance leakage.

  3. Meta-T: TetrisⓇ as an experimental paradigm for cognitive skills research.

    PubMed

    Lindstedt, John K; Gray, Wayne D

    2015-12-01

    Studies of human performance in complex tasks using video games are an attractive prospect, but many existing games lack a comprehensive way to modify the game and track performance beyond basic levels of analysis. Meta-T provides experimenters a tool to study behavior in a dynamic task environment with time-stressed decision-making and strong perceptual-motor elements, offering a host of experimental manipulations with a robust and detailed logging system for all user events, system events, and screen objects. Its experimenter-friendly interface provides control over detailed parameters of the task environment without need for programming expertise. Support for eye-tracking and computational cognitive modeling extend the paradigm's scope.

  4. A study of high-temperature heat pipes with multiple heat sources and sinks. I - Experimental methodology and frozen startup profiles. II - Analysis of continuum transient and steady-state experimental data with numerical predictions

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Cao, Y.; Buchko, M.

    1991-01-01

    Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.

  5. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  6. New infrastructure for studies of transmutation and fast systems concepts

    NASA Astrophysics Data System (ADS)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-09-01

    In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  7. A low power ADS for transmutation studies in fast systems

    NASA Astrophysics Data System (ADS)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-12-01

    In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  8. HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.

    PubMed

    Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo

    2014-10-01

    To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.

    PubMed

    Schwämmle, Veit; León, Ileana Rodríguez; Jensen, Ole Nørregaard

    2013-09-06

    Large-scale quantitative analyses of biological systems are often performed with few replicate experiments, leading to multiple nonidentical data sets due to missing values. For example, mass spectrometry driven proteomics experiments are frequently performed with few biological or technical replicates due to sample-scarcity or due to duty-cycle or sensitivity constraints, or limited capacity of the available instrumentation, leading to incomplete results where detection of significant feature changes becomes a challenge. This problem is further exacerbated for the detection of significant changes on the peptide level, for example, in phospho-proteomics experiments. In order to assess the extent of this problem and the implications for large-scale proteome analysis, we investigated and optimized the performance of three statistical approaches by using simulated and experimental data sets with varying numbers of missing values. We applied three tools, including standard t test, moderated t test, also known as limma, and rank products for the detection of significantly changing features in simulated and experimental proteomics data sets with missing values. The rank product method was improved to work with data sets containing missing values. Extensive analysis of simulated and experimental data sets revealed that the performance of the statistical analysis tools depended on simple properties of the data sets. High-confidence results were obtained by using the limma and rank products methods for analyses of triplicate data sets that exhibited more than 1000 features and more than 50% missing values. The maximum number of differentially represented features was identified by using limma and rank products methods in a complementary manner. We therefore recommend combined usage of these methods as a novel and optimal way to detect significantly changing features in these data sets. This approach is suitable for large quantitative data sets from stable isotope labeling and mass spectrometry experiments and should be applicable to large data sets of any type. An R script that implements the improved rank products algorithm and the combined analysis is available.

  10. Experimental and analytical assessment of the thermal behavior of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Kicher, Thomas P.

    1995-01-01

    An experimental and analytical study of spiral bevel gears operating in an aerospace environment has been performed. Tests were conducted within a closed loop test stand at NASA Lewis Research Center. Tests were conducted to 537 kW (720 hp) at 14,400 rpm. The effects of various operating conditions on spiral bevel gear steady state and transient temperature are presented. Also, a three-dimensional analysis of the thermal behavior was conducted using a nonlinear finite element analysis computer code. The analysis was compared to the experimental results attained in this study. The results agreed well with each other for the cases compared and were no more than 10 percent different in magnitude.

  11. Effects of a blended learning module on self-reported learning performances in baccalaureate nursing students.

    PubMed

    Hsu, Li-Ling; Hsieh, Suh-Ing

    2011-11-01

    This article is a report of a quasi-experimental study of the effects of blended modules on nursing students' learning of ethics course content. There is yet to be an empirically supported mix of strategies on which a working blended learning model can be built for nursing education. This was a two-group pretest and post-test quasi-experimental study in 2008 involving a total of 233 students. Two of the five clusters were designated the experimental group to experience a blended learning model, and the rest were designated the control group to be given classroom lectures only. The Case Analysis Attitude Scale, Case Analysis Self-Evaluation Scale, Blended Learning Satisfaction Scale, and Metacognition Scale were used in pretests and post-tests for the students to rate their own performance. In this study, the experimental group did not register significantly higher mean scores on the Case Analysis Attitude Scale at post-test and higher mean ranks on the Case Analysis Self-Evaluation Scale, the Blended Learning Satisfaction Scale, and the Metacognition Scale at post-test than the control group. Moreover, the experimental group registered significant progress in the mean ranks on the Case Analysis Self-Evaluation Scale and the Metacognition Scale from pretest to post-test. No between-subjects effects of four scales at post-test were found. Newly developed course modules, be it blended learning or a combination of traditional and innovative components, should be tested repeatedly for effectiveness and popularity for the purpose of facilitating the ultimate creation of a most effective course module for nursing education. © 2011 Blackwell Publishing Ltd.

  12. Effects of feed form and feed particle size with dietary L- threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens.

    PubMed

    Rezaeipour, Vahid; Gazani, Sepideh

    2014-01-01

    An experiment was conducted to evaluate the effect of form and particle size of feed supplemented with L- threonine on growth performance, carcass characteristic and blood biochemical parameters of broiler chickens. The experimental design was a 2 × 2 × 2 factorial arrangement of treatments evaluating two feed forms (pellet or mash), two feed particle sizes (fine or course), and two inclusion rates of dietary L-threonine (with or without) which adopted from 7 to 42 days of age. In this experiment, 360 a day old chicks in two sexes were assigned in each treatment and each experimental unit was included 15 chicks. Feed consumption and weight gain were measured weekly. At 35 days of age, blood samples were taken to analysis blood biochemical parameters. At the end of the experimental period, two birds were slaughtered in each treatment and carcass analysis was carried out. The results showed that the effect of feed form on body weight gain and feed intake in whole of experimental period was significant (P < 0.05). Broilers fed pelleted diets had more weight gain than the mash group. Growth performance parameters were not affected by feed particle size and dietary L-threonine supplementation in whole of experimental period (P > 0.05). The results of carcass analysis showed that liver and gizzard relative weights were influenced by feed form (P < 0.05). However, pancreas and liver relative weights were affected by feed particle size and dietary L-threonine supplementation, respectively (P < 0.05). Triglyceride and VLDL levels were affected by feed form and dietary L-threonine supplementation (P < 0.05). The effect of feed particle size on blood biochemical parameters was not significant (P > 0.05). In conclusion, the experimental results indicated that feed form increased feed consumption and weight gain in whole of experimental period (1 to 42 days of age) while feed particle size and dietary L-threonine had no effect on broiler performance.

  13. Statistical Analysis for Collision-free Boson Sampling.

    PubMed

    Huang, He-Liang; Zhong, Han-Sen; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-11-10

    Boson sampling is strongly believed to be intractable for classical computers but solvable with photons in linear optics, which raises widespread concern as a rapid way to demonstrate the quantum supremacy. However, due to its solution is mathematically unverifiable, how to certify the experimental results becomes a major difficulty in the boson sampling experiment. Here, we develop a statistical analysis scheme to experimentally certify the collision-free boson sampling. Numerical simulations are performed to show the feasibility and practicability of our scheme, and the effects of realistic experimental conditions are also considered, demonstrating that our proposed scheme is experimentally friendly. Moreover, our broad approach is expected to be generally applied to investigate multi-particle coherent dynamics beyond the boson sampling.

  14. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  15. Impact of Positive Emotions Enhancement on Physiological Processes and Psychological Functioning in Military Pilots

    DTIC Science & Technology

    2009-10-01

    8 weeks. The experimental procedure consisted in collecting (i) psychological data (resilience, well-being, anxiety ), (ii) 12h-night urines to assess...was performed during 6 to 8 weeks. The experimental procedure consisted in collecting (i) psychological data (resilience, well-being, anxiety ), (ii...cardio- vascular regulation, the spectral analysis of heart rate variability ( HRV ) analysis is usually proposed as a method to assess vagal tone [7,2,8

  16. Experimental and Numerical Analysis of Injection Molding of Ti-6Al-4V Powders for High-Performance Titanium Parts

    NASA Astrophysics Data System (ADS)

    Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam

    2018-02-01

    Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.

  17. The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Ulbricht, T. E.; Hemminger, J. A.

    1986-01-01

    The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented.

  18. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  19. Effects of online games on student performance in undergraduate physics

    NASA Astrophysics Data System (ADS)

    Sadiq, Irfan

    The present state of physics teaching and learning is a reflection of the difficulty of the subject matter which has resulted in students' low motivation toward physics as well as lack of meaningful and deeper learning experiences. In light of an overall decline in interest in physics, an investigation of alternate teaching and learning methods and tools was appropriate. The research posed the following question: To what extent do online games about kinematics and two-dimensional motion impact student performance in undergraduate general physics as measured by a unit posttest? Two intact classes of 20 students each were randomly assigned to either the experimental group or the control group. Only the experimental group received the treatment of using online games. The duration of topics covered in the game content was identical to the lecture on kinematics and two-dimensional motion. Instructors for the experimental group incorporated online games in their regular classroom teaching, whereas those in the control group continued with their previously used curriculum without games. This study was conducted in three weekly sessions. Although students were not selected using random sampling, existing classes were randomly assigned to either the experimental group or the control group. There were 20 students in the experimental group and 20 students in the control group. The independent samples t test was conducted to compare the means of two independently sampled experimental and control groups. Analysis of covariance (ANCOVA) was used to determine if the two groups were significantly different with regard to their general physics performance on the posttest while controlling for the pretest scores. Analysis of posttest and pretest scores revealed that game-based learning did not significantly impact student performance.

  20. Experimental evaluations of wearable ECG monitor.

    PubMed

    Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo

    2008-01-01

    Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.

  1. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-06-30

    PERFORMING ORGANIZATION Texas A&M Eng ineering Experiment Station (TEES) REPORT NUMBER 1470 William D. Fitch Parkway M1601473/ 505170-00001/2...0.7% strain when the dilatational energy density reaches the experimentally determined critical value (0.2 MPa). 3 To validate whether the critical...implementation against experimental results in terms of the crack path shape. We perform convergence studies in terms of the non local region size for

  2. Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-area stators

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model for a radial turbine with pivoting, variable-area stators is developed through a combination of analytical modeling and experimental data analysis. A viscous loss model is used for the variation in stator loss with setting angle, and stator vane end-clearance leakage effects are predicted by a clearance flow model. The variation of rotor loss coefficient with stator setting angle is obtained by means of an analytical matching of experimental data for a rotor that was tested with six stators, having throat areas from 20 to 144% of the design area. An incidence loss model is selected to obtain best agreement with experimental data. The stator vane end-clearance leakage model predicts increasing mass flow and decreasing efficiency as a result of end-clearances, with changes becoming significantly larger with decreasing stator area.

  3. Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material

    NASA Astrophysics Data System (ADS)

    Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz

    2018-02-01

    The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.

  4. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    PubMed

    Houpt, Joseph W; Bittner, Jennifer L

    2018-07-01

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Interconnection network architectures based on integrated orbital angular momentum emitters

    NASA Astrophysics Data System (ADS)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  6. Detailed Results from the Flame Extinguishment Experiment (FLEX) March 2009 to December 2011

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ferkul, Paul V.; Bryg, Victoria M.; Nayagam, M. Vedha; Hicks, Michael C.; Williams, Forman A.; Dryer, Frederick L.; Shaw, Benjamin D.; Choi, Mun Y.; Avedisian, C. Thomas

    2015-01-01

    The Flame Extinguishment Experiment (FLEX) program is a continuing set of experiments on droplet combustion, performed employing the Multi-User Droplet Combustion Apparatus (MDCA), inside the chamber of the Combustion Integrated Rack (CIR), which is located in the Destiny module of the International Space Station (ISS). This report describes the experimental hardware, the diagnostic equipment, the experimental procedures, and the methods of data analysis for FLEX. It also presents the results of the first 284 tests performed. The intent is not to interpret the experimental results but rather to make them available to the entire scientific community for possible future interpretations.

  7. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  8. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective design should stimulate its application within the field of (13)C-based metabolic flux analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Experimental Analysis of Algorithms.

    DTIC Science & Technology

    1987-12-01

    solution ratio in the Bin Packing study) were suggested by theoretical analysis. Gnanadesikan and Gustafson [16] note that significantly different sizes...34’ [16] M. Gnanadesikan and H. W. Gustafson. * Properties of Performance Measures. 1985. Summary of poster presentation. Gnanadesikan is at Farleigh

  10. Computational study of single-expansion-ramp nozzles with external burning

    NASA Astrophysics Data System (ADS)

    Yungster, Shaye; Trefny, Charles J.

    1992-04-01

    A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.

  11. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells.

    PubMed

    Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J

    2013-04-21

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  12. Computational study of single-expansion-ramp nozzles with external burning

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Trefny, Charles J.

    1992-01-01

    A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Xue, X.

    A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design,more » the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.« less

  14. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 3: Sinusoidal and random vibration data reduction and evaluation, and random vibration probability analysis

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1973-01-01

    The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.

  15. Analysis and Design of Rotors at Ultra-Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Kunz, Peter J.; Strawn, Roger C.

    2003-01-01

    Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.

  16. A Full Navier-Stokes Analysis of Subsonic Diffuser of a Bifurcated 70/30 Supersonic Inlet for High Speed Civil Transport Application

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A full Navier-Stokes analysis was performed to evaluate the performance of the subsonic diffuser of a NASA Lewis Research Center 70/30 mixed-compression bifurcated supersonic inlet for high speed civil transport application. The PARC3D code was used in the present study. The computations were also performed when approximately 2.5 percent of the engine mass flow was allowed to bypass through the engine bypass doors. The computational results were compared with the available experimental data which consisted of detailed Mach number and total pressure distribution along the entire length of the subsonic diffuser. The total pressure recovery, flow distortion, and crossflow velocity at the engine face were also calculated. The computed surface ramp and cowl pressure distributions were compared with experiments. Overall, the computational results compared well with experimental data. The present CFD analysis demonstrated that the bypass flow improves the total pressure recovery and lessens flow distortions at the engine face.

  17. Experimental Design and Data Analysis Issues Contribute to Inconsistent Results of C-Bouton Changes in Amyotrophic Lateral Sclerosis.

    PubMed

    Dukkipati, S Shekar; Chihi, Aouatef; Wang, Yiwen; Elbasiouny, Sherif M

    2017-01-01

    The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic ( G93A ) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.

  18. Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-area stators

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model is developed for variable-area (pivoted vane) radial turbines. The variation in stator loss with stator area is determined by a viscous loss model while the variation in rotor loss due to stator area variation (for no stator end-clearance gap) is determined through analytical matching of experimental data. An incidence loss model is also based on matching of the experimental data. A stator vane end-clearance leakage model is developed and sample calculations are made to show the predicted effects of stator vane end-clearance leakage on performance.

  19. Design and Performance Calculations of a Propeller for Very High Altitude Flight. Degree awarded by Case Western Univ.

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1998-01-01

    Reported here is a design study of a propeller for a vehicle capable of subsonic flight in Earth's stratosphere. All propellers presented were required to absorb 63.4 kW (85 hp) at 25.9 km (85,000 ft) while aircraft cruise velocity was maintained at Mach 0.40. To produce the final design, classic momentum and blade-element theories were combined with two and three-dimensional results from the Advanced Ducted Propfan Analysis Code (ADPAC), a numerical Navier-Stokes analysis code. The Eppler 387 airfoil was used for each of the constant section propeller designs compared. Experimental data from the Langley Low-Turbulence Pressure Tunnel was used in the strip theory design and analysis programs written. The experimental data was also used to validate ADPAC at a Reynolds numbers of 60,000 and a Mach number of 0.20. Experimental and calculated surface pressure coefficients are compared for a range of angles of attack. Since low Reynolds number transonic experimental data was unavailable, ADPAC was used to generate two-dimensional section performance predictions for Reynolds numbers of 60,000 and 100,000 and Mach numbers ranging from 0.45 to 0.75. Surface pressure coefficients are presented for selected angles of attack. in addition to the variation of lift and drag coefficients at each flow condition. A three-dimensional model of the final design was made which ADPAC used to calculated propeller performance. ADPAC performance predictions were compared with strip-theory calculations at design point. Propeller efficiency predicted by ADPAC was within 1.5% of that calculated by strip theory methods, although ADPAC predictions of thrust, power, and torque coefficients were approximately 5% lower than the strip theory results. Simplifying assumptions made in the strip theory account for the differences seen.

  20. Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahnam, Mehrdad; Gel, Aytekin; Subramaniyan, Arun K.

    Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has themore » most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows that the predicted syngas composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in experiments as well) but also by variation in the coal flow rate and particle diameter (which was not observed in experiments). The carbon monoxide mole fraction is underpredicted at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is observed for the carbon dioxide mole fraction. These discrepancies are attributed to either excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the selection of reaction models, where different reaction models and kinetics can lead to different syngas compositions throughout the gasifier. To improve quality of numerical models used, the effect that uncertainties in reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature were investigated. The global sensitivity analysis showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gases and solid that leads to stronger heterogeneous reactions. This report is a compilation of three manuscripts published in peer-reviewed journals for the series of studies mentioned above.« less

  1. Compressive buckling analysis of hat-stiffened panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Buckling analysis was performed on a hat-stiffened panel subjected to uniaxial compression. Both local buckling and global buckling were analyzed. It was found that the global buckling load was several times higher than the buckling load. The predicted local buckling loads compared favorably with both experimental data and finite-element analysis.

  2. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.

  3. Metallic Induction Reaction Engine.

    DTIC Science & Technology

    1984-12-28

    FODA CLAIJ TY Figure 2: Experimental Setup 2 A EML Research Metallic Induction Reaction Engine page 3 Figure 3: Aluminum Reaction Mass Ring in Flight...reaction mass materials. Furthur analysis performed with the *] numerical model indicates that there exists a back EMF saturation effect which inhibits the...instrumentation difficulties, a detailed analysis of it’s performance has not been established. r Outer Coil Projectile- Coil Inner Coil Figure 4

  4. Replicating Experimental Impact Estimates Using a Regression Discontinuity Approach. NCEE 2012-4025

    ERIC Educational Resources Information Center

    Gleason, Philip M.; Resch, Alexandra M.; Berk, Jillian A.

    2012-01-01

    This NCEE Technical Methods Paper compares the estimated impacts of an educational intervention using experimental and regression discontinuity (RD) study designs. The analysis used data from two large-scale randomized controlled trials--the Education Technology Evaluation and the Teach for America Study--to provide evidence on the performance of…

  5. Sharing Data between Mobile Devices, Connected Vehicles and Infrastructure Task 8 : D2X Hub Proof-of-Concept Test Evaluation Report.

    DOT National Transportation Integrated Search

    2017-10-25

    The Task 8 D2X Hub Proof-of-Concept Test Evaluation Report provides results of the experimental data analysis performed in accordance with the experimental plan for the proof-of-concept version of the prototype system. The data set analyzed includes ...

  6. Robust decentralized controller for minimizing coupling effect in single inductor multiple output DC-DC converter operating in continuous conduction mode.

    PubMed

    Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das

    2018-02-01

    This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. The BCD of response time analysis in experimental economics.

    PubMed

    Spiliopoulos, Leonidas; Ortmann, Andreas

    2018-01-01

    For decisions in the wild, time is of the essence. Available decision time is often cut short through natural or artificial constraints, or is impinged upon by the opportunity cost of time. Experimental economists have only recently begun to conduct experiments with time constraints and to analyze response time (RT) data, in contrast to experimental psychologists. RT analysis has proven valuable for the identification of individual and strategic decision processes including identification of social preferences in the latter case, model comparison/selection, and the investigation of heuristics that combine speed and performance by exploiting environmental regularities. Here we focus on the benefits, challenges, and desiderata of RT analysis in strategic decision making. We argue that unlocking the potential of RT analysis requires the adoption of process-based models instead of outcome-based models, and discuss how RT in the wild can be captured by time-constrained experiments in the lab. We conclude that RT analysis holds considerable potential for experimental economics, deserves greater attention as a methodological tool, and promises important insights on strategic decision making in naturally occurring environments.

  8. Knox's Cube Imitation Test: A Historical Review and an Experimental Analysis

    ERIC Educational Resources Information Center

    Richardson, John T. E.

    2005-01-01

    The cube imitation test was developed by Knox (1913) as a nonverbal test of intelligence. Many variants show satisfactory reliability, but performance is correlated both with Verbal IQ and with Performance IQ. Performance is impaired by cerebral lesions but unrelated to the side of lesion. Examinees describe both verbal and visuospatial…

  9. Comparison of two methods for detection of strain localization in sheet forming

    NASA Astrophysics Data System (ADS)

    Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy

    2018-05-01

    This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.

  10. Experimental Analysis of Team Performance Effectiveness: Incentive and Training Factors.

    DTIC Science & Technology

    1984-06-30

    E 1.0 ~ .3 Mir 5 (,,CPY RESOLUTirN TEST CHART J.3- FILE C"OP? THE -- JOHNS HOPKINS UNIVERSITY 1 DTIC SI ELECTE I EXPERIMENTAL ANALYSIS OF TEAM...34 is bound bv arrow’s on the ordinate, and the ordinate w’as extended downward to sho," sle ., periods that persisted across the boundary between...talopoin monkeys. Hormones and 4I 123 Behavior, 1980, 14, 247-266. Elias, M. Serum cortisol, testosterone, and testosterone-binding globulin responese

  11. THERMAL AND THERMO-MECHANICAL CHARACTERISTICS OF CRYOGENIC MICROCOOLER FOR OPTIMUM PERFORMANCE AND RELIABILITY

    DTIC Science & Technology

    2017-10-19

    consequently, important to obtain relevant experimental data for such short, pin fin channels before finalizing the design of the LN2 microcooler. In the next...must be taken in designing the LD micro pin-fin cooler to reflect these experimental trends. Figure 8: Base Heat Transfer Coefficient vs... Experimental Hybrid Approach Based on Spectral Power Distribution for Quantitative Degradation Analysis of Phosphor Converted LED," Ieee Transactions on

  12. Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment

    NASA Technical Reports Server (NTRS)

    Gotsky, Edward R.; Cusick, James P.; Bogart, Donald

    1959-01-01

    Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.

  13. Experimental analysis of the flow in a two stage axial compressor at off-design conditions

    NASA Astrophysics Data System (ADS)

    Massardo, Aristide; Satta, Antonio

    1987-05-01

    The experimental analysis of the flow that develops in a two-stage axial flow compressor at off-design conditions is presented. The measurements are performed upstream, between, and downstream of the four blade rows of the compressor. The analysis shows the off-design effects on the local conditions of the flow field. Low-energy flow zones are identified, and the development of annulus-boundary-layer, secondary, and tip-clearance flows is shown. The tip-clearance flows are also present in the stator rows with various outlying conditions (stationary or rotating hub).

  14. Microwave photonic link with improved phase noise using a balanced detection scheme

    NASA Astrophysics Data System (ADS)

    Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan

    2016-07-01

    A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.

  15. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  16. Performance Improvement of Power Analysis Attacks on AES with Encryption-Related Signals

    NASA Astrophysics Data System (ADS)

    Lee, You-Seok; Lee, Young-Jun; Han, Dong-Guk; Kim, Ho-Won; Kim, Hyoung-Nam

    A power analysis attack is a well-known side-channel attack but the efficiency of the attack is frequently degraded by the existence of power components, irrelative to the encryption included in signals used for the attack. To enhance the performance of the power analysis attack, we propose a preprocessing method based on extracting encryption-related parts from the measured power signals. Experimental results show that the attacks with the preprocessed signals detect correct keys with much fewer signals, compared to the conventional power analysis attacks.

  17. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    NASA Technical Reports Server (NTRS)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  18. Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation

    NASA Astrophysics Data System (ADS)

    Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten

    2017-04-01

    Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.

  19. Exploratory studies of the cruise performance of upper surface blown configurations: Program analysis and conclusions

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Hackett, J. E.; Lyman, V.

    1979-01-01

    The experimental data encompassing surface pressure measurements, and wake surveys at static and wind-on conditions are analyzed. Cruise performance trends reflecting nacelle geometric variations, and nozzle operating conditions are presented. Details of the modeling process are included.

  20. Control and communication co-design: analysis and practice on performance improvement in distributed measurement and control system based on fieldbus and Ethernet.

    PubMed

    Liang, Geng

    2015-01-01

    In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications

    PubMed Central

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.

    2017-01-01

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270

  2. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    NASA Astrophysics Data System (ADS)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  3. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    PubMed

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  4. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  5. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE PAGES

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  6. Experimental Determination of Spinel/Melt, Olivine/Melt, and Pyroxene/Melt Partition Coefficients for Re, Ru, Pd, Au, and Pt

    NASA Technical Reports Server (NTRS)

    Righter, K.; Campbell, A. J.; Humayun, M.

    2003-01-01

    Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.

  7. Boiling water jet outflow from a thin nozzle: spatial modeling

    NASA Astrophysics Data System (ADS)

    Bolotnova, R. Kh.; Korobchinskaya, V. A.

    2017-09-01

    This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.

  8. Microstructural and ultrastructural assessment of inferior alveolar nerve damage following nerve lateralization and implant placement: an experimental study in rabbits.

    PubMed

    Yoshimoto, Marcelo; Watanabe, Il-sei; Martins, Marília T; Salles, Marcos B; Ten Eyck, Gary R; Coelho, Paulo G

    2009-01-01

    The present study assessed damage to the inferior alveolar nerve (IAN) following nerve lateralization and implant placement surgery through optical and transmission electron microscopy (TEM). IAN lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, one implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. The implant was placed in the right mandible, and the left side was used as a control (no surgical procedure). After 8 weeks, the animals were sacrificed and samples were prepared for optical and TEM analysis of IAN structural damage. Histomorphometric analysis was performed to determine the number and cross-sectional dimensions of nerve fascicles and myelin sheath thickness between experimental and control groups. The different parameters were compared by one-way analysis of variance at the 95% significance level. Alterations in the perineural and endoneural regions of the IAN, with higher degrees of vascularization, were observed in the experimental group. TEM showed that the majority of the myelinated nerve fibers were not affected in the experimental samples. No significant variation in the number of fascicles was observed, significantly larger fascicle height and width were observed in the control group, and significantly thicker myelin sheaths were observed in the experimental samples. IAN lateralization resulted in substantial degrees of tissue disorganization at the microstructural level because of the presence of edema. However, at the ultrastructural level, small amounts of fiber degeneration were observed.

  9. Automatic Between-Pulse Analysis of DIII-D Experimental Data Performed Remotely on a Supercomputer at Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostuk, M.; Uram, T. D.; Evans, T.

    For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less

  10. Automatic Between-Pulse Analysis of DIII-D Experimental Data Performed Remotely on a Supercomputer at Argonne Leadership Computing Facility

    DOE PAGES

    Kostuk, M.; Uram, T. D.; Evans, T.; ...

    2018-02-01

    For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less

  11. A combined experimental and DFT study of a novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine

    NASA Astrophysics Data System (ADS)

    Vijaya, P.; Sankaran, K. R.

    2015-03-01

    A novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine (UA) was prepared and characterized by IR, 1H and 13C NMR spectral studies. A 2D - potential energy scan (PES) of p-isobutylacetophenone (IBAP) was the portal to the conformational analysis of UA by density functional theory (DFT) methods using 6-31G(d,p) basis set by Gaussian 03 program. The theoretical IR frequencies were found to be in good agreement with the experimental values. The IR frequencies of UA were analyzed by means of Potential energy Distribution (PED %) calculation using Vibrational Energy Distribution Analysis (VEDA 4) program. The experimental NMR chemical shift values of UA were compared with the theoretical values obtained by DFT method. Nonlinear optical behavior of the unsymmetrical azine is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). Stability of the UA molecule has been analyzed using NBO analysis. The electrochemistry of UA studied experimentally by cyclic voltammetry is complemented by the computational analysis of the anionic form of the molecule UA. The determination of various global and local reactivity descriptors in the context of chemical reactivity is also performed and the electrophilicity at the vital atomic sites in UA is revealed. Bader's Atoms in molecules (AIM) theory of UA indicated the presence of intramolecular hydrogen bonding in the molecule. The molecular electrostatic potential (MEP) and HOMO-LUMO orbital analysis are also performed for the molecule UA.

  12. A combined experimental and DFT study of a novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine.

    PubMed

    Vijaya, P; Sankaran, K R

    2015-03-05

    A novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene) hydrazine (UA) was prepared and characterized by IR, (1)H and (13)C NMR spectral studies. A 2D - potential energy scan (PES) of p-isobutylacetophenone (IBAP) was the portal to the conformational analysis of UA by density functional theory (DFT) methods using 6-31G(d,p) basis set by Gaussian 03 program. The theoretical IR frequencies were found to be in good agreement with the experimental values. The IR frequencies of UA were analyzed by means of Potential energy Distribution (PED %) calculation using Vibrational Energy Distribution Analysis (VEDA 4) program. The experimental NMR chemical shift values of UA were compared with the theoretical values obtained by DFT method. Nonlinear optical behavior of the unsymmetrical azine is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). Stability of the UA molecule has been analyzed using NBO analysis. The electrochemistry of UA studied experimentally by cyclic voltammetry is complemented by the computational analysis of the anionic form of the molecule UA. The determination of various global and local reactivity descriptors in the context of chemical reactivity is also performed and the electrophilicity at the vital atomic sites in UA is revealed. Bader's Atoms in molecules (AIM) theory of UA indicated the presence of intramolecular hydrogen bonding in the molecule. The molecular electrostatic potential (MEP) and HOMO-LUMO orbital analysis are also performed for the molecule UA. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system

    NASA Astrophysics Data System (ADS)

    Li, Tianliang; Tan, Yuegang; Cai, Lin

    2015-10-01

    This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.

  14. Mathematics Instruction for Students with Learning Disabilities or Difficulty Learning Mathematics: A Synthesis of the Intervention Research

    ERIC Educational Resources Information Center

    Gersten, Russell; Chard, David J.; Jayanthi, Madhavi; Baker, Scott K.; Morphy, Paul; Flojo, Jonathan

    2008-01-01

    This meta-analysis synthesizes experimental and quasi-experimental research on instruction that enhances the mathematics performance of K-12 students with learning disabilities. It reports the findings from this synthesis, discusses the implications for practice, and suggests next steps for research and professional development efforts in this…

  15. Flow induction by pressure forces

    NASA Technical Reports Server (NTRS)

    Garris, C. A.; Toh, K. H.; Amin, S.

    1992-01-01

    A dual experimental/computational approach to the fluid mechanics of complex interactions that take place in a rotary-jet ejector is presented. The long-range goal is to perform both detailed flow mapping and finite element computational analysis. The described work represents an initial finding on the experimental mapping program. Test results on the hubless rotary-jet are discussed.

  16. In-Store Experimental Approach to Pricing and Consumer Behavior

    ERIC Educational Resources Information Center

    Sigurdsson, Valdimar; Foxall, Gordon; Saevarsson, Hugi

    2010-01-01

    This study assessed how, and to what extent, it is possible to use behavioral experimentation and relative sales analysis to study the effects of price on consumers' brand choices in the store environment. An in-store experiment was performed in four stores to investigate the effects of different prices of a target brand on consumers' relative…

  17. An Analysis of State Assessment Policies Addressing the Accommodation of English Language Learners

    ERIC Educational Resources Information Center

    Rivera, Carlene; Collum, Eric

    2004-01-01

    This paper reviews 15 research studies that: (1) examined effects of particular accommodations or groups of accommodations on performance: and (2) employed experimental and quasi-experimental research designs that allowed examination of the effect of the accommodation(s) on English Language Learners (ELLs) and non-ELLs. Studies looked at one or…

  18. A Cross-Sectional Analysis of Publication Types in Quality Improvement Journals.

    PubMed

    Wong, Christopher J; White, Andrew A; Merel, Susan E; Brock, Douglas M; Staiger, Thomas O

    2016-07-01

    Despite widespread engagement in quality improvement activities, little is known about the designs of studies currently published in quality improvement journals. This study's goal is to establish the prevalence of the types of research conducted in articles published in journals dedicated to quality improvement. A cross-sectional analysis was performed of 145 research articles published in 11 quality improvement journals in 2011. The majority of study designs were considered pre-experimental (95%), with a small percentage of quasi-experimental and experimental designs. Of the studies that reported the results of an intervention (n = 60), the most common research designs were pre-post studies (33%) and case studies (25%). There were few randomized controlled trials or quasi-experimental study designs (12% of intervention studies). These results suggest that there are opportunities for increased use of quasi-experimental study designs. © The Author(s) 2015.

  19. Tic-reducing effects of music in patients with Tourette's syndrome: Self-reported and objective analysis.

    PubMed

    Bodeck, Sabine; Lappe, Claudia; Evers, Stefan

    2015-05-15

    Self-reports by musicians affected with Tourette's syndrome and other sources of anecdotal evidence suggest that tics stop when subjects are involved in musical activity. For the first time, we studied this effect systematically using a questionnaire design to investigate the subjectively assessed impact of musical activity on tic frequency (study 1) and an experimental design to confirm these results (study 2). A questionnaire was sent to 29 patients assessing whether listening to music and musical performance would lead to a tic frequency reduction or increase. Then, a within-subject repeated measures design was conducted with eight patients. Five experimental conditions were tested: baseline, musical performance, short time period after musical performance, listening to music and music imagery. Tics were counted based on videotapes. Analysis of the self-reports (study 1) yielded in a significant tic reduction both by listening to music and musical performance. In study 2, musical performance, listening to music and mental imagery of musical performance reduced tic frequency significantly. We found the largest reduction in the condition of musical performance, when tics almost completely stopped. Furthermore, we could find a short-term tic decreasing effect after musical performance. Self-report assessment revealed that active and passive participation in musical activity can significantly reduce tic frequency. Experimental testing confirmed patients' perception. Active and passive participation in musical activity reduces tic frequency including a short-term lasting tic decreasing effect. Fine motor control, focused attention and goal directed behavior are believed to be relevant factors for this observation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Aerothermodynamics of expert ballistic vehicle at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. M.; Adamov, N. P.; Chirkashenko, V. F.; Mazhul, I. I.; Shpak, S. I.; Shiplyuk, A. N.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2012-01-01

    The European EXPErimental Re-entry Test bed (EXPERT) vehicle is intended for studying various basic phenomena, such as the boundary-layer transition on blunted bodies, real gas effects during shock wave/boundary layer interaction, and effect of surface catalycity. Another task is to develop methods for recalculating the results of windtunnel experiments to flight conditions. The EXPERT program implies large-scale preflight research, in particular, various calculations with the use of advanced numerical methods, experimental studies of the models in various wind tunnels, and comparative analysis of data obtained for possible extrapolation of data to in-flight conditions. The experimental studies are performed in various aerodynamic centers of Europe and Russia under contracts with ESA-ESTEC. In particular, extensive experiments are performed at the Von Karman Institute for Fluid Dynamics (VKI, Belgium) and also at the DLR aerospace center in Germany. At ITAM SB RAS, the experimental studies of the EXPERT model characteristic were performed under ISTC Projects 2109, 3151, and 3550, in the T-313 supersonic wind tunnel and AT-303 hypersonic wind tunnel.

  1. Performance analysis of hybrid vibrational energy harvesters with experimental verification

    NASA Astrophysics Data System (ADS)

    Sriramdas, Rammohan; Pratap, Rudra

    2018-07-01

    In the present work, performance indices for a hybrid energy harvester (HEH) that is composed of piezoelectric and electrodynamic or electromagnetic mechanisms of energy conversion are analyzed. Performance of a HEH is defined in terms of Q-normalized power factor and efficiency of conversion. They are observed to acutely depend on coupling strength or figures of merit in both piezoelectric and electrodynamic domains. The influence of figures of merit on the Q-normalized power factor, and the limits of conversion efficiency are explored. Based on the studies, a suitable range for figures of merit that would maximize both Q-normalized power factor and conversion efficiency in hybrid harvesters is proposed. The proposed idea is verified experimentally for the appropriate values of figures of merit and efficiencies by fabricating and testing four experimental models of the HEHs.

  2. Remedial self-fulfilling prophecy: two field experiments to prevent Golem effects among disadvantaged women.

    PubMed

    Davidson, O B; Eden, D

    2000-06-01

    The Pygmalion effect is a self-fulfilling prophecy (SFP) in which raising leader expectations boosts subordinate performance. Although attempts to produce Pygmalion effects have been successful repeatedly among men, attempts to produce Pygmalion effects with female leaders have yielded null results. Also, only 1 experiment has demonstrated the Golem effect (i.e., negative SFP in which low leader expectations impair subordinate performance). In 2 field experiments testing the SFP hypothesis among women leading disadvantaged women, experimental leaders were led to believe that their trainees had higher than usual potential. In reality, the trainees had been assigned randomly. Manipulation checks confirmed that the treatment raised leader expectations toward experimental trainees. Analysis of variance of performance detected the predicted SFP effects in both experiments. These were the first-ever experimental confirmations of SFP among women as leaders.

  3. Technical, analytical and computer support

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a rigorous mathematical model for the design and performance analysis of cylindrical silicon-germanium thermoelectric generators is reported that consists of two parts, a steady-state (static) and a transient (dynamic) part. The material study task involves the definition and implementation of a material study that aims to experimentally characterize the long term behavior of the thermoelectric properties of silicon-germanium alloys as a function of temperature. Analytical and experimental efforts are aimed at the determination of the sublimation characteristics of silicon germanium alloys and the study of sublimation effects on RTG performance. Studies are also performed on a variety of specific topics on thermoelectric energy conversion.

  4. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    NASA Astrophysics Data System (ADS)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  5. Experimental verification of Pyragas-Schöll-Fiedler control.

    PubMed

    von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram

    2010-09-01

    We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.

  6. The Performance of Methods to Test Upper-Level Mediation in the Presence of Nonnormal Data

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Stapleton, Laura M.

    2008-01-01

    A Monte Carlo study compared the statistical performance of standard and robust multilevel mediation analysis methods to test indirect effects for a cluster randomized experimental design under various departures from normality. The performance of these methods was examined for an upper-level mediation process, where the indirect effect is a fixed…

  7. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less

  8. Analysis of Vertebral Bone Strength, Fracture Pattern, and Fracture Location: A Validation Study Using a Computed Tomography-Based Nonlinear Finite Element Analysis

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476

  9. Using deep neural networks to augment NIF post-shot analysis

    NASA Astrophysics Data System (ADS)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    NASA Astrophysics Data System (ADS)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  11. Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems

    NASA Astrophysics Data System (ADS)

    Abeynayake, Canicious; Tran, Minh D.

    2015-05-01

    Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.

  12. Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence.

    PubMed

    Grieb, Tim; Krause, Florian F; Schowalter, Marco; Zillmann, Dennis; Sellin, Roman; Müller-Caspary, Knut; Mahr, Christoph; Mehrtens, Thorsten; Bimberg, Dieter; Rosenauer, Andreas

    2018-07-01

    Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Flexible statistical modelling detects clinical functional magnetic resonance imaging activation in partially compliant subjects.

    PubMed

    Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D

    2007-02-01

    Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.

  14. Experimental and Numerical Analysis of Fracture in 41Cr4 Steel - Issues of the Stationary Cracks

    NASA Astrophysics Data System (ADS)

    Graba, M.

    2018-02-01

    This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author's previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.

  15. Self-similarity of waiting times in fracture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niccolini, G.; Bosia, F.; Carpinteri, A.

    2009-08-15

    Experimental and numerical results are presented for a fracture experiment carried out on a fiber-reinforced element under flexural loading, and a statistical analysis is performed for acoustic emission waiting-time distributions. By an optimization procedure, a recently proposed scaling law describing these distributions for different event magnitude scales is confirmed by both experimental and numerical data, thus reinforcing the idea that fracture of heterogeneous materials has scaling properties similar to those found for earthquakes. Analysis of the different scaling parameters obtained for experimental and numerical data leads us to formulate the hypothesis that the type of scaling function obtained depends onmore » the level of correlation among fracture events in the system.« less

  16. Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations

    NASA Astrophysics Data System (ADS)

    Guy, N.; Seyedi, D. M.; Hild, F.

    2018-06-01

    The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.

  17. Experimental studies of the Eppler 61 airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Burns, T. F.; Mueller, T. J.

    1982-01-01

    The results of an experimental study to document the effects of separation and transition on the performance of an airfoil designed for low Reynolds number operation are presented. Lift, drag and flow visualization data were obtained for the Eppler 61 airfoil section for chord Reynolds numbers from about 30,000 to over 200,000. Smoke flow visualization was employed to document the boundary layer behavior and was correlated with the Eppler airfoil design and analysis computer program. Laminar separation, transition and turbulent reattachment had significant effects on the performance of this airfoil.

  18. Effects of an integrated physical education/music program in changing early childhood perceptual-motor performance.

    PubMed

    Brown, J; Sherrill, C; Gench, B

    1981-08-01

    Two approaches to facilitating perceptual-motor development in children, ages 4 to 6 yr., were investigated. The experimental group (n = 15) received 24 sessions of integrated physical education/music instruction based upon concepts of Kodaly and Dalcroze. The control group (n = 15) received 24 sessions of movement exploration and self-testing instruction. Analysis of covariance indicated that significant improvement occurred only in the experimental group, with discharges changes in the motor, auditory, and language aspects of perceptual-motor performance as well as total score.

  19. Testing Sleep Consolidation in Skill Learning: A Field Study Using an Online Game.

    PubMed

    Stafford, Tom; Haasnoot, Erwin

    2017-04-01

    Using an observational sample of players of a simple online game (n > 1.2 million), we are able to trace the development of skill in that game. Information on playing time, and player location, allows us to estimate time of day during which practice took place. We compare those whose breaks in practice probably contained a night's sleep and those whose breaks in practice probably did not contain a night's sleep. Our analysis confirms experimental evidence showing a benefit of spacing for skill learning, but it fails to find any additional benefit of sleeping during a break from practice. We discuss reasons why the well-established phenomenon of sleep consolidation might not manifest in an observational study of skill development. We put the spacing effect into the context of the other known influences on skill learning: improvement with practice, and individual differences in initial performance. Analysis of performance data from games allows experimental results to be demonstrated outside of the lab and for experimental phenomenon to be put in the context of the performance of the whole task. Copyright © 2016 Cognitive Science Society, Inc.

  20. Lithium target performance evaluation for low-energy accelerator-based in vivo measurements using gamma spectroscopy.

    PubMed

    Aslam; Prestwich, W V; McNeill, F E

    2003-03-01

    The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.

  1. A far-field radio-frequency experimental exposure system with unrestrained mice.

    PubMed

    Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L

    2015-01-01

    Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies.

  2. Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.

    2017-04-01

    The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.

  3. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  4. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.

    PubMed

    Low, K H; Chong, C W

    2010-12-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  5. Air Defense: A Computer Game for Research in Human Performance.

    DTIC Science & Technology

    1981-07-01

    warfare (ANW) threat analysis. M’ajor elements of the threat analysis problem \\\\,erc eoibedded in an interactive air detoense game controlled by a...The game requires sustained attention to a complex and interactive "hostile" environment, provides proper experimental control of relevant variables...AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL

  6. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  7. Study on Conversion of Municipal Plastic Wastes into Liquid Fuel Compounds, Analysis of Crdi Engine Performance and Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Divakar Shetty, A. S.; Kumar, R. Ravi; Kumarappa, S.; Antony, A. J.

    2016-09-01

    The rate of economic evolution is untenable unless we save or stops misusing the fossil fuels like coal, crude oil or fossil fuels. So we are in need of start count on the alternate or renewable energy sources. In this experimental analysis an attempt has been made to investigate the conversion of municipal plastic wastes like milk covers and water bottles are selected as feed stocks to get oil using pyrolysis method, the performance analysis on CRDI diesel engine and to assess emission characteristics like HC, CO, NOX and smoke by using blends of Diesel-Plastic liquid fuels. The plastic fuel is done with the pH test using pH meter after the purification process and brought to the normal by adding KOH and NaOH. Blends of 0 to 100% plastic liquid fuel-diesel mixture have been tested for performance and emission aspect as well. The experimental results shows the efficiently convert weight of municipal waste plastics into 65% of useful liquid hydrocarbon fuels without emitting much pollutants.

  8. Parametric analysis of a shape memory alloy actuated arm

    NASA Astrophysics Data System (ADS)

    Wright, Cody; Bilgen, Onur

    2016-04-01

    Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.

  9. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  10. Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Scarpa, F.; Farrow, I. R.; Liu, Y. J.; Leng, J. S.

    2013-04-01

    This paper describes the manufacturing, characterization and parametric modeling of a novel fiber-reinforced composite flexible skin with in-plane negative Poisson’s ratio (auxetic) behavior. The elastic mechanical performance of the auxetic skin is evaluated using a three-dimensional analytical model based on the classical laminate theory (CLT) and Sun’s thick laminate theory. Good agreement is observed between in-plane Poisson’s ratios and Young’s moduli of the composite skin obtained by the theoretical model and the experimental results. A parametric analysis carried out with the validated model shows that significant changes in the in-plane negative Poisson’s ratio can be achieved through different combinations of matrix and fiber materials and stacking sequences. It is also possible to identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but different orthotropic stiffness performance, or the same orthotropic stiffness performance but different in-plane auxeticity. The analysis presented in this work provides useful guidelines to develop and manufacture flexible skins with negative Poisson’s ratio for applications focused on morphing aircraft wing designs.

  11. Experimental validation of prototype high voltage bushing

    NASA Astrophysics Data System (ADS)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  12. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.

    PubMed

    You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing

    2013-01-01

    Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.

  13. Performance analysis of a coherent free space optical communication system based on experiment.

    PubMed

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2017-06-26

    Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.

  14. On-line evaluation of multiloop digital controller performance

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.

    1993-01-01

    The purpose of this presentation is to inform the Guidance and Control community of capabilities which were developed by the Aeroservoelasticity Branch to evaluate the performance of multivariable control laws, on-line, during wind-tunnel testing. The capabilities are generic enough to be useful for all kinds of on-line analyses involving multivariable control in experimental testing. Consequently, it was decided to present this material at this workshop even though it has been presented elsewhere. Topics covered include: essential on-line analysis requirements; on-line analysis capabilities; on-line analysis software; frequency domain procedures; controller performance evaluation frequency-domain flutter suppression; and plant determination.

  15. Portraits of self-organization in fish schools interacting with robots

    NASA Astrophysics Data System (ADS)

    Aureli, M.; Fiorilli, F.; Porfiri, M.

    2012-05-01

    In this paper, we propose an enabling computational and theoretical framework for the analysis of experimental instances of collective behavior in response to external stimuli. In particular, this work addresses the characterization of aggregation and interaction phenomena in robot-animal groups through the exemplary analysis of fish schooling in the vicinity of a biomimetic robot. We adapt global observables from statistical mechanics to capture the main features of the shoal collective motion and its response to the robot from experimental observations. We investigate the shoal behavior by using a diffusion mapping analysis performed on these global observables that also informs the definition of relevant portraits of self-organization.

  16. Numerical analysis and experimental research of the rubber boot of the joint drive vehicle

    NASA Astrophysics Data System (ADS)

    Ziobro, Jan

    2016-04-01

    The article presents many numerical studies and experimental research of the drive rubber boot of the joint drive vehicle. Performance requirements have been discussed and the required coefficients of the mathematical model for numerical simulation have been determined. The behavior of living in MSC.MARC environment was examined. In the analysis the following have been used: hyperplastic two-parameter model of the Mooney-Rivlin material, large displacements procedure, safe contact condition, friction on the sides of the boots. 3D numerical model of the joint bootwas analyzed under influence of the forces: tensile, compressive, centrifugal and angular. Numerous results of studies have been presented. An appropriate test stand was built and comparison of the results of the numerical analysis and the results of experimental studies was made. Numerous requests and recommendations for utilitarian character have been presented.

  17. Experimental research of phase transitions in a melt of high-purity aluminum

    NASA Astrophysics Data System (ADS)

    Vorontsov, V. B.; Pershin, V. K.

    2017-12-01

    This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. In this paper Fourier analysis of acoustic emission (AE) signals accompanying heating of high purity aluminum from the melting point up to 860 °C was performed. The experimental data allowed to follow the dynamics of disorder zones in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.

  18. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1982-01-01

    The performance of a HIP MERL 76 disk installed in an experimental engine and exposed to realistic operating conditions in a 150 hour, 1500 cycle endurance test is examined. Post test analysis, based on visual, fluorescence penetrant and dimensional inspection, indicates that the disk performs satisfactorily.

  19. Laser-Assisted Bending of Sharp Angles With Small Fillet Radius on Stainless Steel Sheets: Analysis of Experimental Set-Up and Processing Parameters

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-06-01

    Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.

  20. The effect of time synchronization of wireless sensors on the modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.; Fowler, K.; Sazonov, E.

    2008-10-01

    Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.

  1. Experimental measurement of the aerodynamic charateristics of two-dimensional airfoils for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Velazquez, Luis; Nožička, Jiří; Vavřín, Jan

    2012-04-01

    This paper is part of the development of an airfoil for an unmanned aerial vehicle (UAV) with internal propulsion system; the investigation involves the analysis of the aerodynamic performance for the gliding condition of two-dimensional airfoil models which have been tested. This development is based on the modification of a selected airfoil from the NACA four digits family. The modification of this base airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface since the UAV will have an internal propulsion system. This analysis involved obtaining the lift, drag and pitching moment coefficients experimentally for the situation where there is not flow through the blowing outlet, called the no blowing condition by means of wind tunnel tests. The methodology to obtain the forces experimentally was through an aerodynamic wire balance. Obtained results were compared with numerical results by means of computational fluid dynamics (CFD) from references and found in very good agreement. Finally, a selection of the airfoil with the best aerodynamic performance is done and proposed for further analysis including the blowing condition.

  2. Comparative Analysis of the Clinical Significance of Oscillatory Components in the Rhythmic Structure of Pulse Signal in the Diagnostics of Psychosomatic Disorders in School Age Children.

    PubMed

    Desova, A A; Dorofeyuk, A A; Anokhin, A M

    2017-01-01

    We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.

  3. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  4. Data analysis techniques used at the Oak Ridge Y-12 plant flywheel evaluation laboratory

    NASA Astrophysics Data System (ADS)

    Steels, R. S., Jr.; Babelay, E. F., Jr.

    1980-07-01

    Some of the more advanced data analysis techniques applied to the problem of experimentally evaluating the performance of high performance composite flywheels are presented. Real time applications include polar plots of runout with interruptions relating to balance and relative motions between parts, radial growth measurements, and temperature of the spinning part. The technique used to measure torque applied to a containment housing during flywheel failure is also presented. The discussion of pre and post test analysis techniques includes resonant frequency determination with modal analysis, waterfall charts, and runout signals at failure.

  5. Performance analysis of medical video streaming over mobile WiMAX.

    PubMed

    Alinejad, Ali; Philip, N; Istepanian, R H

    2010-01-01

    Wireless medical ultrasound streaming is considered one of the emerging application within the broadband mobile healthcare domain. These applications are considered as bandwidth demanding services that required high data rates with acceptable diagnostic quality of the transmitted medical images. In this paper, we present the performance analysis of a medical ultrasound video streaming acquired via special robotic ultrasonography system over emulated WiMAX wireless network. The experimental set-up of this application is described together with the performance of the relevant medical quality of service (m-QoS) metrics.

  6. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Zhen, T.; Kadir, A. K.

    2013-06-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  7. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout.

    PubMed

    Caselli, Federica; Bisegna, Paolo

    2017-10-01

    The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Electrodeposition of actinide compounds from an aqueous ammonium acetate matrix. Experimental development and optimization

    DOE PAGES

    Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.

    2015-03-27

    Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less

  9. Heat Transfer Characteristics of Fan Coil Unit (FCU) Under The Effect of Chilled Water Volume Flowrate

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.

    2018-01-01

    In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.

  10. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  11. Comparison of predicted and measured low-speed performance of two 51 centimeter-diameter inlets at incidence angle

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.

  12. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  13. Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivković, M.; Konjević, N.

    2017-05-01

    In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.

  14. A two-dimensional cascade solution using minimized surface singularity density distributions - with application to film cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Mcfarland, E.; Tabakoff, W.; Hamed, A.

    1977-01-01

    An investigation of the effects of coolant injection on the aerodynamic performance of cooled turbine blades is presented. The coolant injection is modeled in the inviscid irrotational adiabatic flow analysis through the cascade using the distributed singularities approach. The resulting integral equations are solved using a minimized surface singularity density criteria. The aerodynamic performance was evaluated using this solution in conjunction with an existing mixing theory analysis. The results of the present analysis are compared with experimental measurements in cold flow tests.

  15. Applying the transtheoretical model to promote functional fitness of community older adults participating in elastic band exercises.

    PubMed

    Yang, Hui-Ju; Chen, Kuei-Min; Chen, Ming-De; Wu, Hui-Chuan; Chang, Wen-Jane; Wang, Yueh-Chin; Huang, Hsin-Ting

    2015-10-01

    The transtheoretical model was applied to promote behavioural change and test the effects of a group senior elastic band exercise programme on the functional fitness of community older adults in the contemplation and preparation stages of behavioural change. Forming regular exercise habits is challenging for older adults. The transtheoretical model emphasizes using different strategies in various stages to facilitate behavioural changes. Quasi-experimental design with pre-test and post-tests on two groups. Six senior activity centres were randomly assigned to either the experimental or control group. The data were collected during 2011. A total of 199 participants were recruited and 169 participants completed the study (experimental group n = 84, control group n = 85). The elastic band exercises were performed for 40 minutes, three times per week for 6 months. The functional fitness of the participants was evaluated at baseline and at the third and sixth month of the intervention. Statistical analyses included a two-way mixed design analysis of variance, one-way repeated measures analysis of variance and an analysis of covariance. All of the functional fitness indicators had significant changes at post-tests from pre-test in the experimental group. The experimental group had better performances than the control group in all of the functional fitness indicators after three months and 6 months of the senior elastic band exercises. The exercise programme provided older adults with appropriate strategies for maintaining functional fitness, which improved significantly after the participants exercising regularly for 6 months. © 2015 John Wiley & Sons Ltd.

  16. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  17. Neural network modeling of drying of rice in BAU-STR dryer

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ashraful; Saha, Chayan Kumer; Alam, Md. Monjurul; Ashraf, Md. Ali; Bala, Bilash Kanti; Harvey, Jagger

    2018-05-01

    The experimental performance and artificial neural network modeling of rice drying in BAU-STR dryer is presented in this paper. The dryer consists of a biomass stove as a heat source, a perforated inner bin and a perforated outer bin with annular space for grains, and a blower (1 hp) to supply heated air. The dryer capacity was 500 kg of freshly harvested rice. Twenty experimental runs were conducted to investigate the experimental performance of the dryer for drying of rice. An independent multilayer neural network approach was used to predict the performance of the BAU-STR dryer for drying of rice. Ten sets of experimental data were used for training using back propagation algorithm and another ten sets of data were used for testing the artificial neural network model. The prediction of the performance of the dryer was found to be excellent after it was adequately trained. The statistical analysis showed that the errors (MSE and RMSE) were within and acceptable range of ±5% with a coefficient of determination (R2) of 99%. The model can be used to predict the potential of the dryer for different locations, and can also be used in a predictive optimal control algorithm.

  18. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.

    2012-01-01

    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  19. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  20. Experimental study of teaching critical thinking in civic education in Taiwanese junior high school.

    PubMed

    Yang, Shu Ching; Chung, Tung-Yu

    2009-03-01

    To effectively respond to the need for greater CT (critical thinking) in the classroom, this study examines the effects of cultivating CT skills within civic education to maximize its potential. Despite realizing the importance of CT in education, schools do not tend to apply it. Furthermore, since students frequently do not raise questions or otherwise think critically, CT modules are incorporated into civic learning to encourage students to question facts, interpret and analyse evidence, make reasoned inferences regarding events, and independently develop informed opinions. These skills are fundamental to cultivating an informed and humane citizenry. This investigation examines how teaching critical thinking in civic education affects the CT skills and disposition of junior high school students. The participants were two classes of eighth grade students in southern Taiwan, and were distributed into experimental and control groups. Each group comprised 34 students, with the experimental group containing 16 boys and 18 girls and the control group containing 18 boys and 16 girls. The teaching experiment in this study was initiated and performed using equivalent pre-test and post-test group design. During the 10-week experiment, the experimental group was taught using CT instruction in civic education, while the control group was not taught with any CT programme. The data analysis included: quantitative statistics of the two main sets of instruments for measuring the CT ability and disposition of experimental treatment, qualitative analysis of learning sheets, and surveys of student perceptions of instruction in CT. Statistical analysis showed that the experimental group significantly outperformed the control group on the scales of CT skill and disposition, but did not perform well on certain subscales (e.g. recognition of assumptions and deductions, truth-seeking, analyticity, and inquisitiveness). Notably however, when triangulating with qualitative analysis of learner transcripts and surveys, learners attempted to perform various dimensions of CT skill and disposition to various degrees. Student surveys indicated that the CT programme fostered their active listening and respect for different ideas, and moreover they learned to tolerate divergent views and examine their ideas for possible bias. The programme boosted student learning interest and sense of accomplishment, and nurtured their teamwork/communicative skills. Furthermore, a few students experienced improvements in their speaking skills and courage as their confidence and ability to express themselves improved. Finally, limitations of this investigation and implications for further research are discussed.

  1. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  2. Experimental and theoretical characterization of an AC electroosmotic micromixer.

    PubMed

    Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo

    2010-01-01

    We have reported on a novel microfluidic mixer based on AC electroosmosis. To elucidate the mixer characteristics, we performed detailed measurements of mixing under various experimental conditions including applied voltage, frequency and solution viscosity. The results are discussed through comparison with results obtained from a theoretical model of AC electroosmosis. As predicted from the theoretical model, we found that a larger voltage (approximately 20 V(p-p)) led to more rapid mixing, while the dependence of the mixing on frequency (1-5 kHz) was insignificant under the present experimental conditions. Furthermore, the dependence of the mixing on viscosity was successfully explained by the theoretical model, and the applicability of the mixer in viscous solution (2.83 mPa s) was confirmed experimentally. By using these results, it is possible to estimate the mixing performance under given conditions. These estimations can provide guidelines for using the mixer in microfluidic chemical analysis.

  3. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    NASA Astrophysics Data System (ADS)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  4. Analytical and experimental investigation of flow fields of annular jets with and without swirling flow

    NASA Technical Reports Server (NTRS)

    Simonson, M. R.; Smith, E. G.; Uhl, W. R.

    1974-01-01

    Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.

  5. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  6. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  7. On-line damage detection in rotating machinery

    NASA Astrophysics Data System (ADS)

    Alkhalifa, Tareq Jawad

    This work is concerned with a set of techniques to detect internal defects in uniform circular discs (rotors). An internal defect is intentionally manufactured in stereolithographic discs by a rapid prototyping process using cured resin SL 5170 material. The analysis and results presented here are limited to a uniform circular disc, with internal defects, mounted on a uniform flexible circular shaft. The setup is comprised of a Bently Nevada rotor kit connected to a data acquisition system. The rotor consists of a disc and shaft that is supported by journal bearings and is coupled to a motor by a rubber joint. Damage produces localized changes in the strain energy, which is quantified to characterize the damage. Based on previous research, the Strain Energy Damage Index (SEDI) is utilized to localize the damage due to strain energy differences between damaged and undamaged modes. To accomplish the objective, this work covers three types of analysis: finite element analysis, vibration analysis, and experimental modal analysis. Finite element analysis (using SDRC Ideas software) is performed to develop a multi-degree-of-freedom (MDOF) rotor system with internal damage, and its dynamic characteristics are investigated. The analysis is performed for two different types damage cases: radial damage and circular damage. Parametric study for radial damage and random noise to undamaged disc have been investigated to predict the effect of noise in the damage detection. The developed on-line damage detection technique for rotating equipment incorporates and couples both vibration analysis and experimental modal analysis. The dynamic investigation of the rotating discs (with and without defect) is conducted by vibration signal analysis (using proximity sensors, data acquisition and LabView). The vibration analysis provides a unique vibration signature for the damaged disc, which indicates the existence of the damage. The vibration data are acquired at different running speeds (1000, 2500, 5000 rpm). Then the dynamic investigation of non-rotating discs (with and without defect) is conducted by experimental modal analysis (using STAR software). While the vibration analysis detects and indicates the existence of damage while the disc is rotating, experimental modal analysis (using STAR and MATLAB software) provides the localization of damage through the modal parameters for a non-rotating disc. Both of the experimental diagnostic algorithms are based on measurement of the dynamic behavior of the damaged disc. The results are compared with the reference, or baseline, one, obtained initially for an undamaged disc. (Abstract shortened by UMI.)

  8. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  9. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  10. [A new teaching mode improves the effect of comprehensive experimental teaching of genetics].

    PubMed

    Fenghua, He; Jieqiang, Li; Biyan, Zhu; Feng, Gao

    2015-04-01

    To improve the research atmosphere in genetics experimental teaching and develop students' creativity in research, we carried out a reform in comprehensive experimental teaching which is one of important modules for genetics practice. In our new student-centered teaching mode, they chose research topics, performed experiments and took innovative approaches independently. With the open laboratory and technical platform in our experimental teaching center, students finished their experiments and were required to write a mini-research article. Comprehensive experimental teaching is a scientific research practice before they complete their thesis. Through this teaching practice, students' research skills in experimental design and operation, data analysis and results presentation, as well as their collaboration spirit and innovation consciousness are strengthened.

  11. Effect of compressive force on PEM fuel cell performance

    NASA Astrophysics Data System (ADS)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.

  12. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  13. Sulfur extended asphalt pavement evaluation in the State of Washington: SR 270 highway pavement performance report

    NASA Astrophysics Data System (ADS)

    Mahoney, J. P.; Terrel, R. L.; Cook, J. C.

    1982-11-01

    The placement and performance of sulfur extended asphalt (SEA) paving mixtures at a highway test site (SR 270) near Pullman, Washington is summarized. The mixture and structural designs and construction details are included. This is followed by a discussion of the data collection and analysis accomplished over a three year evaluation period (1979-1982). A major experimental feature of the study was the use of 0.100 (conventional asphalt concrete), 30/70 and 40/60 SEA binder ratios (sulfur/asphalt ratios are expressed as weight percents in the experimental paving mixtures.

  14. Strengthening three-leaf masonry with basalt fibre: Experimental and numerical data

    NASA Astrophysics Data System (ADS)

    Monni, Francesco; Quagliarini, Enrico; Lenci, Stefano; Maracchini, Gianluca

    2017-07-01

    This paper presents the first results of a study aimed at evaluate the effectiveness of a strengthening technique able to connect masonry elements, stitching them, based on the use of basalt fibre ropes. To assess the effectiveness of proposed technique, experimental and FEM analysis has been performed. The reproduced masonry is the "three-leaf wall", where an inner core of rubble material is included between two outer brick shell, a masonry typology often found in Italian historical building heritage. The results indicate the efficacy of this dry retrofitting system, increasing the performance of masonry wall specimens.

  15. Prediction of customer behaviour analysis using classification algorithms

    NASA Astrophysics Data System (ADS)

    Raju, Siva Subramanian; Dhandayudam, Prabha

    2018-04-01

    Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.

  16. Slug to churn transition analysis using wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    H. F. Velasco, P.; Ortiz-Vidal, L. E.; Rocha, D. M.; Rodriguez, O. M. H.

    2016-06-01

    A comparison between some theoretical slug to churn flow-pattern transition models and experimental data is performed. The flow-pattern database considers vertical upward air-water flow at standard temperature and pressure for 50 mm and 32 mm ID pipes. A briefly description of the models and its phenomenology is presented. In general, the performance of the transition models is poor. We found that new experimental studies describing objectively both stable and unstable slug flow-pattern are required. In this sense, the Wire Mesh Sensor (WMS) can assist to that aim. The potential of the WMS is outlined.

  17. Large size crystalline vs. co-sintered ceramic Yb(3+):YAG disk performance in diode pumped amplifiers.

    PubMed

    Albach, Daniel; Chanteloup, Jean-Christophe

    2015-01-12

    A comprehensive experimental benchmarking of Yb(3+):YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.

  18. Investigation of a rotor system incorporating a constant lift tip

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Rosenstein, H.; Bartie, K.; Mchugh, F. J.

    1981-01-01

    A wind tunnel test of a 16.8 ft. model of a rotor having passively controlled pivotable tips is described. Performance and vibratory hub load data are presented which compare the performance of the rotor with the tips free and fixed. A brief analysis of the experimental findings is included.

  19. Combustor Operability and Performance Verification for HIFiRE Flight 2

    NASA Technical Reports Server (NTRS)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  20. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    NASA Astrophysics Data System (ADS)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  1. An innovative seismic bracing system based on a superelastic shape memory alloy ring

    NASA Astrophysics Data System (ADS)

    Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald

    2016-05-01

    Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.

  2. A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.

    PubMed

    Lubin, Joseph H; Pacella, Michael S; Gray, Jeffrey J

    2018-05-08

    Although structures have been determined for many soluble proteins and an increasing number of membrane proteins, experimental structure determination methods are limited for complexes of proteins and solid surfaces. An economical alternative or complement to experimental structure determination is molecular simulation. Rosetta is one software suite that models protein-surface interactions, but Rosetta is normally benchmarked on soluble proteins. For surface interactions, the validity of the energy function is uncertain because it is a combination of independent parameters from energy functions developed separately for solution proteins and mineral surfaces. Here, we assess the performance of the RosettaSurface algorithm and test the accuracy of its energy function by modeling the adsorption of leucine/lysine (LK)-repeat peptides on methyl- and carboxy-terminated self-assembled monolayers (SAMs). We investigated how RosettaSurface predictions for this system compare with the experimental results, which showed that on both surfaces, LK-α peptides folded into helices and LK-β peptides held extended structures. Utilizing this model system, we performed a parametric analysis of Rosetta's Talaris energy function and determined that adjusting solvation parameters offered improved predictive accuracy. Simultaneously increasing lysine carbon hydrophilicity and the hydrophobicity of the surface methyl head groups yielded computational predictions most closely matching the experimental results. De novo models still should be interpreted skeptically unless bolstered in an integrative approach with experimental data.

  3. Medication-related osteonecrosis of the jaw. Introduction of a new modified experimental model.

    PubMed

    Curra, Cláudia; Cardoso, Camila Lopes; Ferreira, Osny; Curi, Marcos Martins; Matsumoto, Mariza Akemi; Cavenago, Bruno Cavalini; Santos, Pâmela Letícia Dos; Santiago, Joel Ferreira

    2016-05-01

    To evaluate a modified experimental model for medication-related osteonecrosis of the jaw (MRONJ) through the upper right central incisor extraction followed by intravenous bisphosphonate administration. Forty five rats underwent the upper right central incisor tooth extraction were divided in 2 groups: Group I - experimental group, 30 rats received an intravenous administration protocol of zoledronic acid 35μg/kg into the tail vein every two weeks, totalizing four administrations, during eight weeks of administration, previously the extraction, and Group II - control group, 15 rats didn't received any medication before extraction. The groups were subdivided in postoperative periods: 14/28/42 days. Clinical analysis and microtomography were performed to verify the presence of osteonecrosis. In addition, descritive histological analysis of hematoxylin-eosin stained sections was performed to evaluate the presence of osteonecrosis or necrotic foci. Twelve (40%) rats, from experimental group, showed clinical signs of MRONJ (p=0.005), however, all samples showed imaginologic findings like osteolysis and loss of integrity of the cellular walls (p≤0.001). Microscopic evaluation revealed osteonecrosis areas with microbial colonies and inflammatory infiltrate (p≤0.001). In the control group, all animals presented the chronology of a normal wound healing. The presence of medication-related osteonecrosis of the jaw after maxillary central incisor extraction in rats. This new experimental model may be considered an option for the study of MRONJ.

  4. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Jing; Herman, M.; Ge, Zhigang

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  5. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE PAGES

    Qian, Jing; Herman, M.; Ge, Zhigang; ...

    2017-09-13

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  6. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    PubMed

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

  7. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  8. Intermittent gravity-driven flow of grains through narrow pipes

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; de Moraes Franklin, Erick

    2017-01-01

    Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.

  9. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. How to decrease pedestrian injuries: conceptual evolutions starting from 137 crash tests.

    PubMed

    Thollon, Lionel; Jammes, Christian; Behr, Michel; Arnoux, Pierre-Jean; Cavallero, Claude; Brunet, Christian

    2007-02-01

    The improvement of vulnerable users' protection has become an essential objective for our society. Injury assessments observed in clinical traumatology have led researchers and manufacturers to understand the mechanisms involved and to design safe vehicles (to reduce the severity of pedestrian injuries). In all, 137 crash tests between 1979 and 2004 with postmortal human subjects (PMHS) were performed at the Laboratory of Applied Biomechanics to access pedestrian protection. A retrospective analysis of these experimental tests, pedestrian/car impacts (full scale or subsystems), performed at the laboratory is thus proposed. This document focuses on injury mechanisms investigation on the evolution of the experimental approach, as well as on the vehicles' technological improvements performed by car manufacturers. The analysis of experimental results (injury assessment, kinematics, vehicle deformations, etc.) shows the complexity and variety of injury mechanisms. The injury assessment shows the need to improve lower-limb joints protection, as well as head and spine segments, because of the difficulties of surgical repair of these injuries. Experimental tests contribute to evaluate the automobile safety evolution in the field of pedestrian protection. The main induced car improvements concern considerable efforts on vehicle material behavior and their capacity to dissipate energy during shocks (replacement of the convex rigid bumpers by deformable structures, modification of the windscreen structure). They also concern the suppression of all aggressive structures for the pedestrian (spare wheel initially placed on the front part of the vehicle, protection of the heels of windscreen wiper, etc.).

  11. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model

    NASA Astrophysics Data System (ADS)

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-01

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model

    PubMed Central

    Erzar, Benjamin; Buzaud, Eric

    2017-01-01

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956509

  13. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model.

    PubMed

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-28

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  14. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  15. Failure of wooden sandwich beam reinforced with glass/epoxy faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papakaliatakis, G. E.; Zacharopoulos, D. A.

    2015-12-31

    The mechanical properties and the failure of wooden beam strengthened with two faces from glass/epoxy composite and a wooden beam without strengthening was studied. Stresses and deflections on both beams, which are imposed in three point bending loading. On the idealized geometry of the specimens with detailed nonlinear orthotropic analysis was performed with a finite elements program. The failure study of the wooden beams was performed, applying the criterion of Tsai-Hill. The shear strength of the adhesive was taken into account. All the specimens were tested with three point bending loading and the experimental results were compared to those ofmore » the theoretical approach with the finite elements analysis. Comparing the results, the advantage of strengthened wooden beam against the simple wooden beam becomes obvious. Theoretical predictions were in good agreement with experimental results.« less

  16. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  17. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Sharma, A.; Kuş, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  18. Constitutive formulations for the mechanical investigation of colonic tissues.

    PubMed

    Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N

    2014-05-01

    A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.

  19. Effects of structured written feedback by cards on medical students' performance at Mini Clinical Evaluation Exercise (Mini-CEX) in an outpatient clinic.

    PubMed

    Haghani, Fariba; Hatef Khorami, Mohammad; Fakhari, Mohammad

    2016-07-01

    Feedback cards are recommended as a feasible tool for structured written feedback delivery in clinical education while effectiveness of this tool on the medical students' performance is still questionable.  The purpose of this study was to compare the effects of structured written feedback by cards as well as verbal feedback versus verbal feedback alone on the clinical performance of medical students at the Mini Clinical Evaluation Exercise (Mini-CEX) test in an outpatient clinic. This is a quasi-experimental study with pre- and post-test comprising four groups in two terms of medical students' externship. The students' performance was assessed through the Mini-Clinical Evaluation Exercise (Mini-CEX) as a clinical performance evaluation tool. Structured written feedbacks were given to two experimental groups by designed feedback cards as well as verbal feedback, while in the two control groups feedback was delivered verbally as a routine approach in clinical education. By consecutive sampling method, 62 externship students were enrolled in this study and seven students were excluded from the final analysis due to their absence for three days. According to the ANOVA analysis and Post Hoc Tukey test,  no statistically significant difference was observed among the four groups at the pre-test, whereas a statistically significant difference was observed between the experimental and control groups at the post-test  (F = 4.023, p =0.012). The effect size of the structured written feedbacks on clinical performance was 0.19. Structured written feedback by cards could improve the performance of medical students in a statistical sense. Further studies must be conducted in other clinical courses with longer durations.

  20. Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Sims, Joseph D.; Coleman, Hugh W.

    1998-01-01

    The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty.

  1. Optimization of multi response in end milling process of ASSAB XW-42 tool steel with liquid nitrogen cooling using Taguchi-grey relational analysis

    NASA Astrophysics Data System (ADS)

    Norcahyo, Rachmadi; Soepangkat, Bobby O. P.

    2017-06-01

    A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.

  2. An Analysis of Mathematics Course Sequences for Low Achieving Students at a Comprehensive Technical High School

    ERIC Educational Resources Information Center

    Edge, D. Michael

    2011-01-01

    This non-experimental study attempted to determine how the different prescribed mathematic tracks offered at a comprehensive technical high school influenced the mathematics performance of low-achieving students on standardized assessments of mathematics achievement. The goal was to provide an analysis of any statistically significant differences…

  3. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.

    PubMed

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2009-01-06

    In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.

  4. [Analysis and experimental verification of sensitivity and SNR of laser warning receiver].

    PubMed

    Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue

    2009-01-01

    In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.

  5. Experimental Study on Permeability of Concrete

    NASA Astrophysics Data System (ADS)

    Yang, Honglu; Liu, Rentai; Zheng, Zhuo; Liu, Haojie; Gao, Yan; Liu, Yankai

    2018-01-01

    To study the influencing factors on permeability of pervious concrete, by adding inorganic organic composite materials obtained experimental results show that different aggregate size, aggregate cement ratio of different, different water cement ratio on the permeability performance. The permeability of the concrete was tested by using the self - made permeable device. The experimental results showed that the permeation coefficient of the experiment was obtained and the factors influencing the permeability of the concrete were compared and analyzed. At the same time, the porosity of pervious concrete was measured, the influence of various variables on porosity was studied, and the influence of various factors on the permeability of voids was found. Finally, through comprehensive analysis of a variety of factors, the optimal water cement ratio is 0.28. At this time, the pervious performance of concrete is optimal.

  6. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.

    PubMed

    Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo

    2017-03-01

    In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.

  7. NPAC-Nozzle Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.

  8. Dynamic competitive probabilistic principal components analysis.

    PubMed

    López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel

    2009-04-01

    We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.

  9. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  10. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  11. Apparent volume dependence of 1/f noise in thin film structures: role of contacts.

    PubMed

    Barone, C; Pagano, S; Méchin, L; Routoure, J-M; Orgiani, P; Maritato, L

    2008-05-01

    The experimental investigation of low-frequency noise properties in new materials is very useful for the understanding of the involved physical transport mechanisms. In this paper it is shown that, when contact noise is present, the experimental values of the normalized Hooge parameter show a fictitious linear dependence on the volume of the analyzed samples. Experimental data on noise measurements of La0.7Sr0.3MnO3 thin films are reported to demonstrate the validity of the analysis performed.

  12. Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bibel, George D.

    1999-01-01

    An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.

  13. Video analysis of projectile motion using tablet computers as experimental tools

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-01-01

    Tablet computers were used as experimental tools to record and analyse the motion of a ball thrown vertically from a moving skateboard. Special applications plotted the measurement data component by component, allowing a simple determination of initial conditions and g in order to explore the underlying laws of motion. This experiment can easily be performed by students themselves, providing more autonomy in their problem-solving processes than traditional learning approaches. We believe that this autonomy and the authenticity of the experimental tool both foster their motivation.

  14. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  15. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    NASA Astrophysics Data System (ADS)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  16. Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression

    NASA Astrophysics Data System (ADS)

    Różyło, P.; Wysmulski, P.; Falkowicz, K.

    2017-05-01

    Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.

  17. Exercise training to reduce sympathetic nerve activity in heart failure patients. A systematic review and meta-analysis.

    PubMed

    Saavedra, María Javiera; Romero, Fernando; Roa, Jorge; Rodríguez-Núñez, Iván

    To determine the effects of exercise training on sympathetic nerve activity in heart failure patients. A systematic review was performed. An electronic search of MEDLINE, ProQuest, SciELO, SPORTDiscus, Rehabilitation and Sport Medicine Source, Cumulative Index to Nursing and Allied Health Literature, Tripdatabase, Science Direct and PEDrO was performed from their inception to February 2017. Clinical trials and quasi-experimental studies were considered for primary article selection. The studies should include patients diagnosed with chronic heart failure that performed exercise training for at least 4 weeks. Sympathetic nerve activity should be measured by microneurography before and after the intervention. The Cochrane Collaboration's Risk of Bias Tool was used to evaluate risk of bias, and the quality of evidence was rated following the GRADE approach. Standardized mean differences (SMD) were calculated for control and experimental groups. Meta-analysis was performed using the random effects model. Five trials were included. Overall, the trials had moderate risk of bias. The experimental group indicated a significant decrease in the number of bursts per minute (SMD -2.48; 95% CI -3.55 to -1.41) when compared to the control group. Meanwhile, a significant decrease was also observed in the prevalence of bursts per 100 beats in the experimental group when compared to the control group (SMD -2.66; 95% CI -3.64 to -1.69). Exercise training could be effective in reducing sympathetic nerve activity in patients with heart failure. The quality of evidence across the studies was moderate. Future studies are necessary to confirm these results. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  18. Modal Analysis of Space-rocket Equipment Components

    NASA Astrophysics Data System (ADS)

    Igolkin, A. A.; Safin, A. I.; Prokofiev, A. B.

    2018-01-01

    In order to prevent vibration damage an analysis of natural frequencies and mode shapes of elements of rocket and space technology should be developed. This paper discusses technique of modal analysis on the example of the carrier platform. Modal analysis was performed by using mathematical modeling and laser vibrometer. Experimental data was clarified by using Test.Lab software. As a result of modal analysis amplitude-frequency response of carrier platform was obtained and the parameters of the elasticity was clarified.

  19. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  20. Universality and diversity of folding mechanics for three-helix bundle proteins.

    PubMed

    Yang, Jae Shick; Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-22

    In this study we evaluate, at full atomic detail, the folding processes of two small helical proteins, the B domain of protein A and the Villin headpiece. Folding kinetics are studied by performing a large number of ab initio Monte Carlo folding simulations using a single transferable all-atom potential. Using these trajectories, we examine the relaxation behavior, secondary structure formation, and transition-state ensembles (TSEs) of the two proteins and compare our results with experimental data and previous computational studies. To obtain a detailed structural information on the folding dynamics viewed as an ensemble process, we perform a clustering analysis procedure based on graph theory. Moreover, rigorous p(fold) analysis is used to obtain representative samples of the TSEs and a good quantitative agreement between experimental and simulated Phi values is obtained for protein A. Phi values for Villin also are obtained and left as predictions to be tested by future experiments. Our analysis shows that the two-helix hairpin is a common partially stable structural motif that gets formed before entering the TSE in the studied proteins. These results together with our earlier study of Engrailed Homeodomain and recent experimental studies provide a comprehensive, atomic-level picture of folding mechanics of three-helix bundle proteins.

  1. Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 1: Volute-manifold and stator performance

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1981-01-01

    The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.

  2. Towards Principled Experimental Study of Autonomous Mobile Robots

    NASA Technical Reports Server (NTRS)

    Gat, Erann

    1995-01-01

    We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.

  3. The practical operational-amplifier gyrator circuit for inductorless filter synthesis

    NASA Technical Reports Server (NTRS)

    Sutherland, W. C.

    1976-01-01

    A literature is reported for gyrator circuits utilizing operational amplifiers as the active device. A gyrator is a two port nonreciprocal device with the property that the input impedance is proportional to the reciprocal of the load impedance. Following an experimental study, the gyrator circuit with optimum properties was selected for additional testing. A theoretical analysis was performed and compared to the experimental results for excellent agreement.

  4. In-Flight Performance Evaluation of Experimental Information Displays

    DTIC Science & Technology

    1979-05-01

    Chemical Systems Laboratory Experimentation Command Aberden Proving Ground ,MD Technical Library 21010 (1) Box 22 Fort Ord, CA 93941 (1) 21 US Amy Materiel...US Army Missile R&D Command Library, Bldg 3071 Redstone Arsenal, AL 35809 (1) ATTN: ATSL-DOSL Aberdeen Proving Ground , MD US Army Yuma Proving Ground ...Systems Chief Analysis Agency Benet Weapons Laboratory ATTN: Reports Distribution LCWSL, USA ARRADCOH Aberdeen Proving Ground , MD ATTN: DRDAR-LCB-TL

  5. Secondary light-ion transport from intermediate-energy hadron experiments

    NASA Astrophysics Data System (ADS)

    Srikrishna, Ashwin P.; Castellanos, Luis A.; McGirl, Natalie A.; Heilbronn, Lawrence H.; Tessas, Chiara La; Rusek, Adam; Sivertz, Michael; Blattnig, Steve; Clowdsley, Martha; Slaba, Tony; Zeitlin, Cary

    2017-09-01

    The aim of this research is to produce double differential thick target yields, angular distributions and integrated yields for the inclusive production of neutrons, protons, deuterons, tritons, 3He, and 4He from intermediate heavy-ion interactions on thick targets of aluminium, polyethylene and other targets of interest to the radiation shielding program as specified by the National Aeronautics and Space Administration (NASA). In tandem with the experimental research, transport model calculations of these thick target yields were also performed. The first such experimental run was conducted in May 2015, with the expectation of improved experimental results at a following March 2016 run at the NASA Space Radiation Laboratory (NSRL) on the campus of Brookhaven National Laboratory (BNL). The May 2015 commissioning run served to test the electronics of the experimental setup, as well as the various detectors and other equipment under the conditions in which the following measurements will be run. The series of future accelerator-based experiments will rely on the inclusion of two separate upstream and downstream targets. Analysis of the data from both sets of detectors - liquid scintillator and sodium iodide - using both pulse height and time-of-flight methods will allow NASA to perform uncertainty quantification and sensitivity analysis on their transport codes and future shielding studies.

  6. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    NASA Astrophysics Data System (ADS)

    Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.

  7. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

    PubMed

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

  8. Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2008-12-01

    In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.

  9. Experimental BCAS Performance Results

    DOT National Transportation Integrated Search

    1978-07-01

    The results of the (Litchford) Beacon-based Collision Avoidance System concept feasibility evaluation are reported. Included are a description of the concept, analysis and flight test results. The system concept is based on the range and bearing meas...

  10. Comparison of Experimental Data and Computations Fluid Dynamics Analysis for a Three Dimensional Linear Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Hagemann, G.; Immich, H.

    2003-01-01

    A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.

  11. Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.

  12. Perceived Self-Efficacy and Its Role in Education-Related Cognitive Performance in Latino American Elderly

    ERIC Educational Resources Information Center

    Alders, Amanda

    2011-01-01

    This article describes the methodology, data analysis, and results for a pilot study investigating perceived self-efficacy of cognitive performance among Latino American elderly. The sample included 24 Latino American elderly. A 12-week quasi-experimental design was utilized. Participants were provided with weekly 2-hr art education sessions…

  13. Performance Analysis and Experimental Validation of the Direct Strain Imaging Method

    Treesearch

    Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson

    2013-01-01

    Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the method’s performance with respect to its operating parameter space is presented along with a preliminary...

  14. Using goal setting and feedback to increase weekly running distance.

    PubMed

    Wack, Stephanie R; Crosland, Kimberly A; Miltenberger, Raymond G

    2014-01-01

    We evaluated goal setting with performance feedback to increase running distance among 5 healthy adults. Participants set a short-term goal each week and a long-term goal to achieve on completion of the study. Results demonstrated that goal setting and performance feedback increased running distance for all participants. © Society for the Experimental Analysis of Behavior.

  15. Analysis of a virtual memory model for maintaining database views

    NASA Technical Reports Server (NTRS)

    Kinsley, Kathryn C.; Hughes, Charles E.

    1992-01-01

    This paper presents an analytical model for predicting the performance of a new support strategy for database views. This strategy, called the virtual method, is compared with traditional methods for supporting views. The analytical model's predictions of improved performance by the virtual method are then validated by comparing these results with those achieved in an experimental implementation.

  16. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  17. Videotaped Feedback Method to Enhance Learning in Preclinical Operative Dentistry: An Experimental Study.

    PubMed

    Shah, Dipali Yogesh; Dadpe, Ashwini Manish; Kalra, Dheeraj Deepak; Garcha, Vikram P

    2015-12-01

    The aim of this study was to investigate if a videotaped feedback method enhanced teaching and learning outcomes in a preclinical operative laboratory setting for novice learners. In 2013, 60 dental students at a dental school in India were randomly assigned to two groups: control (n=30) and experimental (n=30). The control group prepared a Class II tooth preparation for amalgam after receiving a video demonstration of the exercise. The experimental group received the same video demonstration as the control group, but they also participated in a discussion and analysis of the control groups' videotaped performance and then performed the same exercise. The self-evaluation scores (SS) and examiner evaluation scores (ES) of the two groups were compared using the unpaired t-test. The experimental group also used a five-point Likert scale to rate each item on the feedback form. The means of SS (13.65±2.43) and ES (14.75±1.97) of the experimental group were statistically higher than the means of SS (11.55±2.09) and ES (11.60±1.82) of the control group. Most students in the experimental group perceived that this technique enhanced their learning experience. Within the limits of this study, the videotaped feedback using both ideal and non-ideal examples enhanced the students' performance.

  18. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel

    2015-01-01

    We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations. PMID:28239253

  19. A model of human event detection in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1978-01-01

    It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.

  20. A research program in empirical computer science

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  1. Static aeroelastic analysis and tailoring of a single-element racing car wing

    NASA Astrophysics Data System (ADS)

    Sadd, Christopher James

    This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.

  2. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors.

    PubMed

    Soto, Marcelo A; Thévenaz, Luc

    2013-12-16

    A thorough analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors is presented. An analytical expression is derived to estimate the error on the determination of the Brillouin peak gain frequency, based for the first time on real experimental conditions. This expression is experimentally validated, and describes how this frequency uncertainty depends on measurement parameters, such as Brillouin gain linewidth, frequency scanning step and signal-to-noise ratio. Based on the model leading to this expression and considering the limitations imposed by nonlinear effects and pump depletion, a figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems. This figure-of-merit offers to the research community and to potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.

  3. Development of an algorithm to model an aircraft equipped with a generic CDTI display

    NASA Technical Reports Server (NTRS)

    Driscoll, W. C.; Houck, J. A.

    1986-01-01

    A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.

  4. Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/sq m (350 psia)

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.

    1987-01-01

    The Joint Army, Navy, NASA, Air Force (JANNAF) rocket-engine performance-prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure that has been incorporated into the December 1984 version of the TDK program for the high-area-ratio rocket-engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis. A detailed description of the test conditions and TDK input parameters is given. The reuslts indicate that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values.

  5. Influence of the spectral distribution of light on the characteristics of photovoltaic panel. Comparison between simulation and experimental

    NASA Astrophysics Data System (ADS)

    Chadel, Meriem; Bouzaki, Mohammed Moustafa; Chadel, Asma; Petit, Pierre; Sawicki, Jean-Paul; Aillerie, Michel; Benyoucef, Boumediene

    2017-02-01

    We present and analyze experimental results obtained with a laboratory setup based on a hardware and smart instrumentation for the complete study of performance of PV panels using for illumination an artificial radiation source (Halogen lamps). Associated to an accurate analysis, this global experimental procedure allows the determination of effective performance under standard conditions thanks to a simulation process originally developed under Matlab software environment. The uniformity of the irradiated surface was checked by simulation of the light field. We studied the response of standard commercial photovoltaic panels under enlightenment measured by a spectrometer with different spectra for two sources, halogen lamps and sunlight. Then, we bring a special attention to the influence of the spectral distribution of light on the characteristics of photovoltaic panel, that we have performed as a function of temperature and for different illuminations with dedicated measurements and studies of the open circuit voltage and short-circuit current.

  6. Numerical and Experimental Investigations on the Hydrodynamic Performance of a Tidal Current Turbine

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Zhang, Jiantao; Zhao, Yong; Zhang, Huiying; Zhao, Guang; Cao, Yao

    2017-12-01

    In this paper, numerical and experimental investigations are presented on the hydrodynamic performance of a horizontal tidal current turbine (TCT) designed and made by our Dalian University of Technology (DUT) research group. Thus it is given the acronym: DUTTCT. An open source CFD solver, called PimpleDyMFoam, is employed to perform numerical simulations for design analysis, while experimental tests are conducted in a DUT towing tank. The important factors, including self-starting velocity, tip speed ratio (TSR) and yaw angle, which play important roles in the turbine output power, are studied in the investigations. Results obtained show that the maximum power efficiency of the newly developed turbine (DUTTCT) could reach up to 47.6% and all its power efficiency is over 40% in the TSR range from 3.5 to 6; the self-starting velocity of DUTTCT is about 0.745m/s; the yaw angle has negligible influence on its efficiency as it is less than 10°.

  7. Analytical and experimental investigation of stator endwall contouring in a small axial-flow turbine. 1: Stator performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.

    1982-01-01

    Three stator configurations were studied to determine the effect of stator outer endwall contouring on stator performance. One configuration was a cylindrical stator design. One contoured stator configuration had an S-shaped outer endwall, the other had a conical-convergent outer endwall. The experimental investigation consisted of annular surveys of stator exit total pressure and flow angle for each stator configuration over a range of stator pressure ratio. Radial variations in stator loss and aftermixed flow conditions were obtained when these data were compared with the analytical results to assess the validity of the analysis, good agreement was found.

  8. Comparative Analysis of English Language Student's School Paths at a Mexico University

    ERIC Educational Resources Information Center

    Robelo, Octaviano García; Marquez, Jorge Hernández; Pérez, Ileana Casasola

    2017-01-01

    Seven factors related to academic paths of students of the Bachelor of English Language of a public university in Mexico are investigated. With a non-experimental descriptive design, a Likert scale was applied to evaluate the college students' perception of these factors. A comparative analysis between three types of school paths was performed. It…

  9. A theoretical analysis of the current-voltage characteristics of solar cells

    NASA Technical Reports Server (NTRS)

    Fang, R. C. Y.; Hauser, J. R.

    1977-01-01

    The correlation of theoretical and experimental data is discussed along with the development of a complete solar cell analysis. The dark current-voltage characteristics, and the parameters for solar cells are analyzed. The series resistance, and impurity gradient effects on solar cells were studied, the effects of nonuniformities on solar cell performance were analyzed.

  10. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

    PubMed

    Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C

    2014-08-01

    The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  12. Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2016-01-01

    In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.

  13. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  14. Experimental investigation and performance analysis of six low flow coefficient centrifugal compressor stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paroubek, J.; Cyrus, V.; Kyncl, J.

    1995-10-01

    Some results of a research and development program for centrifugal compressors are presented. Six-stage configurations with low flow coefficient were tested. The stages had channel width parameter b{sub 2}/D{sub 2} = 0.01 and 0.03. For each value of the width parameter, three different impellers with inlet hub to outlet diameter ratio d{sub 0}/D{sub 2} = 0.3, 0.4, and 0.5 were designed. Test rig, instrumentation, and data analysis are described. Special attention was devoted to probe calibrations and to evaluation of the leakage, bearing, and disk friction losses. Aerodynamic performance of all tested stages is presented. Slip factors of impellers obtainedmore » experimentally and theoretically are compared. Losses in both vaneless diffuser and return channel with deswirl vanes are discussed. Rotating stall was also investigated. Criteria for stall limit were tested.« less

  15. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  16. Improvement of the mechanical reliability of monolithic refractory linings for coal gasification process vessels. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, R.A.

    1981-09-01

    Eighteen heat-up tests were run on nine standard and experimental dual component monolithic refractory concrete linings. These tests were run with a five foot diameter by 14-ft high Pressure Vessel/Test Furnace designed to accommodate a 12-inch thick by 5-ft high refractory lining, heat the hot face to 2000/sup 0/F and expose the lining to air or steam pressures up to 150 psig. Results obtained from standard type linings in the test facility indicated that lining degradation duplicated that observed in field installations. The lining performance was significantly improved due to information gained from a systematic study of the cracking thatmore » occurred in the linings; the analysis of the lining strains, shell stresses and acoustic emission results; and the stress analyses performed on the standard and experimental lining designs with the finite element analysis computer programs, REFSAM and RESGAP.« less

  17. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  18. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  19. An experimental and theoretical investigation on torrefaction of a large wet wood particle.

    PubMed

    Basu, Prabir; Sadhukhan, Anup Kumar; Gupta, Parthapratim; Rao, Shailendra; Dhungana, Alok; Acharya, Bishnu

    2014-05-01

    A competitive kinetic scheme representing primary and secondary reactions is proposed for torrefaction of large wet wood particles. Drying and diffusive, convective and radiative mode of heat transfer is considered including particle shrinking during torrefaction. The model prediction compares well with the experimental results of both mass fraction residue and temperature profiles for biomass particles. The effect of temperature, residence time and particle size on torrefaction of cylindrical wood particles is investigated through model simulations. For large biomass particles heat transfer is identified as one of the controlling factor for torrefaction. The optimum torrefaction temperature, residence time and particle size are identified. The model may thus be integrated with CFD analysis to estimate the performance of an existing torrefier for a given feedstock. The performance analysis may also provide useful insight for design and development of an efficient torrefier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Correlation Equations for Condensing Heat Exchangers Based on an Algorithmic Performance-Data Classification

    NASA Astrophysics Data System (ADS)

    Pacheco-Vega, Arturo

    2016-09-01

    In this work a new set of correlation equations is developed and introduced to accurately describe the thermal performance of compact heat exchangers with possible condensation. The feasible operating conditions for the thermal system correspond to dry- surface, dropwise condensation, and film condensation. Using a prescribed form for each condition, a global regression analysis for the best-fit correlation to experimental data is carried out with a simulated annealing optimization technique. The experimental data were taken from the literature and algorithmically classified into three groups -related to the possible operating conditions- with a previously-introduced Gaussian-mixture-based methodology. Prior to their use in the analysis, the correct data classification was assessed and confirmed via artificial neural networks. Predictions from the correlations obtained for the different conditions are within the uncertainty of the experiments and substantially more accurate than those commonly used.

  1. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    NASA Astrophysics Data System (ADS)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  2. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  3. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  4. LOX/LH2 vane pump for auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  5. Design and performance of an analysis-by-synthesis class of predictive speech coders

    NASA Technical Reports Server (NTRS)

    Rose, Richard C.; Barnwell, Thomas P., III

    1990-01-01

    The performance of a broad class of analysis-by-synthesis linear predictive speech coders is quantified experimentally. The class of coders includes a number of well-known techniques as well as a very large number of speech coders which have not been named or studied. A general formulation for deriving the parametric representation used in all of the coders in the class is presented. A new coder, named the self-excited vocoder, is discussed because of its good performance with low complexity, and because of the insight this coder gives to analysis-by-synthesis coders in general. The results of a study comparing the performances of different members of this class are presented. The study takes the form of a series of formal subjective and objective speech quality tests performed on selected coders. The results of this study lead to some interesting and important observations concerning the controlling parameters for analysis-by-synthesis speech coders.

  6. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2016-02-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.

  7. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620

  8. Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Samuels, T.K.; Cooper, C.H.

    A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.

  9. Computational Analysis of a Prototype Martian Rotorcraft Experiment

    NASA Technical Reports Server (NTRS)

    Corfeld, Kelly J.; Strawn, Roger C.; Long, Lyle N.

    2002-01-01

    This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.

  10. Rolling friction and energy dissipation in a spinning disc

    PubMed Central

    Ma, Daolin; Liu, Caishan; Zhao, Zhen; Zhang, Hongjian

    2014-01-01

    This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary factor responsible for the dissipation of the energy. Furthermore, a mathematical model, in which the rolling friction is characterized by a resistance torque proportional to the square of precession rate, is also proposed. By employing the model, we perform qualitative analysis and numerical simulations. Both of them provide results that precisely agree with our experimental findings. PMID:25197246

  11. Analysis of the structural behaviour of colonic segments by inflation tests: Experimental activity and physio-mechanical model.

    PubMed

    Carniel, Emanuele L; Mencattelli, Margherita; Bonsignori, Gabriella; Fontanella, Chiara G; Frigo, Alessandro; Rubini, Alessandro; Stefanini, Cesare; Natali, Arturo N

    2015-11-01

    A coupled experimental and computational approach is provided for the identification of the structural behaviour of gastrointestinal regions, accounting for both elastic and visco-elastic properties. The developed procedure is applied to characterize the mechanics of gastrointestinal samples from pig colons. Experimental data about the structural behaviour of colonic segments are provided by inflation tests. Different inflation processes are performed according to progressively increasing top pressure conditions. Each inflation test consists of an air in-flow, according to an almost constant increasing pressure rate, such as 3.5 mmHg/s, up to a prescribed top pressure, which is held constant for about 300 s to allow the development of creep phenomena. Different tests are interspersed by 600 s of rest to allow the recovery of the tissues' mechanical condition. Data from structural tests are post-processed by a physio-mechanical model in order to identify the mechanical parameters that interpret both the non-linear elastic behaviour of the sample, as the instantaneous pressure-stretch trend, and the time-dependent response, as the stretch increase during the creep processes. The parameters are identified by minimizing the discrepancy between experimental and model results. Different sets of parameters are evaluated for different specimens from different pigs. A statistical analysis is performed to evaluate the distribution of the parameters and to assess the reliability of the experimental and computational activities. © IMechE 2015.

  12. Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskinazi, D.; Gilbert, G.B.

    1982-06-01

    In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less

  13. Determination of Uncertainties for the New SSME Model

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Hawk, Clark W.

    1996-01-01

    This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.

  14. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  15. Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demtsu, S.; Albin, D.; Sites, J.

    2006-05-01

    The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.

  16. Experimental investigation of the combustion products in an aluminised solid propellant

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei

    2017-04-01

    Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.

  17. Experimental demonstration of non-iterative interpolation-based partial ICI compensation in100G RGI-DP-CO-OFDM transport systems.

    PubMed

    Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V

    2012-07-02

    We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.

  18. Numerical and Experimental Investigation of the Electromechanical Behavior of REBCO Tapes

    NASA Astrophysics Data System (ADS)

    Allen, N. C.; Chiesa, L.; Takayasu, M.

    2015-12-01

    To fully characterize the electromechanical behavior of a Twisted Stacked-Tape Cable (TSTC) it is important to understand the performance of the individual REBCO tapes under various loading conditions. Numerical modeling and experimentation have been used to investigate the electromechanical characteristics of two commercially available REBCO tapes (SuperPower and SuNAM). Tension and combined tension-torsion experiments on single tapes have been continued, from prior preliminary studies, to characterize their critical current behavior and mechanical strength. Additionally, structural finite element analysis was performed on single tapes under tension and combined tension-torsion to investigate the strain dependence of the critical current. The numerical results were compared to the experimental findings for validation. The SuNAM experimental data matched the numerical model very well while the SuperPower tape experienced degradation at lower stress and strain than predicted in the model. The Superpower tape also displayed greater variability in critical current between different samples as compared with the SuNAM tape.

  19. A meta-analysis of factors affecting trust in human-robot interaction.

    PubMed

    Hancock, Peter A; Billings, Deborah R; Schaefer, Kristin E; Chen, Jessie Y C; de Visser, Ewart J; Parasuraman, Raja

    2011-10-01

    We evaluate and quantify the effects of human, robot, and environmental factors on perceived trust in human-robot interaction (HRI). To date, reviews of trust in HRI have been qualitative or descriptive. Our quantitative review provides a fundamental empirical foundation to advance both theory and practice. Meta-analytic methods were applied to the available literature on trust and HRI. A total of 29 empirical studies were collected, of which 10 met the selection criteria for correlational analysis and 11 for experimental analysis. These studies provided 69 correlational and 47 experimental effect sizes. The overall correlational effect size for trust was r = +0.26,with an experimental effect size of d = +0.71. The effects of human, robot, and environmental characteristics were examined with an especial evaluation of the robot dimensions of performance and attribute-based factors. The robot performance and attributes were the largest contributors to the development of trust in HRI. Environmental factors played only a moderate role. Factors related to the robot itself, specifically, its performance, had the greatest current association with trust, and environmental factors were moderately associated. There was little evidence for effects of human-related factors. The findings provide quantitative estimates of human, robot, and environmental factors influencing HRI trust. Specifically, the current summary provides effect size estimates that are useful in establishing design and training guidelines with reference to robot-related factors of HRI trust. Furthermore, results indicate that improper trust calibration may be mitigated by the manipulation of robot design. However, many future research needs are identified.

  20. Behavior of Industrial Steel Rack Connections

    NASA Astrophysics Data System (ADS)

    Shah, S. N. R.; Ramli Sulong, N. H.; Khan, R.; Jumaat, M. Z.; Shariati, M.

    2016-03-01

    Beam-to-column connections (BCCs) used in steel pallet racks (SPRs) play a significant role to maintain the stability of rack structures in the down-aisle direction. The variety in the geometry of commercially available beam end connectors hampers the development of a generalized analytic design approach for SPR BCCs. The experimental prediction of flexibility in SPR BCCs is prohibitively expensive and difficult for all types of commercially available beam end connectors. A suitable solution to derive a particular uniform M-θ relationship for each connection type in terms of geometric parameters may be achieved through finite element (FE) modeling. This study first presents a comprehensive description of the experimental investigations that were performed and used as the calibration bases for the numerical study that constituted its main contribution. A three dimensioned (3D) non-linear finite element (FE) model was developed and calibrated against the experimental results. The FE model took into account material nonlinearities, geometrical properties and large displacements. Comparisons between numerical and experimental data for observed failure modes and M-θ relationship showed close agreement. The validated FE model was further extended to perform parametric analysis to identify the effects of various parameters which may affect the overall performance of the connection.

  1. Experimental study of a fuel cell power train for road transport application

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.

  2. Numerical analysis of the photo-injection time-of-flight curves in molecularly doped polymers

    NASA Astrophysics Data System (ADS)

    Tyutnev, A. P.; Ikhsanov, R. Sh.; Saenko, V. S.; Nikerov, D. V.

    2018-03-01

    We have performed numerical analysis of the charge carrier transport in a specific molecularly doped polymer using the multiple trapping model. The computations covered a wide range of applied electric fields, temperatures and most importantly, of the initial energies of photo injected one-sign carriers (in our case, holes). Special attention has been given to comparison of time of flight curves measured by the photo-injection and radiation-induced techniques which has led to a problematic situation concerning an interpretation of the experimental data. Computational results have been compared with both analytical and experimental results available in literature.

  3. Independent component analysis based channel equalization for 6 × 6 MIMO-OFDM transmission over few-mode fiber.

    PubMed

    He, Zhixue; Li, Xiang; Luo, Ming; Hu, Rong; Li, Cai; Qiu, Ying; Fu, Songnian; Yang, Qi; Yu, Shaohua

    2016-05-02

    We propose and experimentally demonstrate two independent component analysis (ICA) based channel equalizers (CEs) for 6 × 6 MIMO-OFDM transmission over few-mode fiber. Compared with the conventional channel equalizer based on training symbols (TSs-CE), the proposed two ICA-based channel equalizers (ICA-CE-I and ICA-CE-II) can achieve comparable performances, while requiring much less training symbols. Consequently, the overheads for channel equalization can be substantially reduced from 13.7% to 0.4% and 2.6%, respectively. Meanwhile, we also experimentally investigate the convergence speed of the proposed ICA-based CEs.

  4. Identifying Academic Skill and Performance Deficits: The Experimental Analysis of Brief Assessments of Academic Skills. General Articles

    ERIC Educational Resources Information Center

    Duhon, Gary J.; Noell, George H.; Witt, Joseph C.; Freeland, Jennifer T.; Dufrene, Brad A.; Gilbertson, Donna N.

    2004-01-01

    This study examined an approach for assessing and intervening with academic concerns that is conceptually derived from the distinction between skill deficits and performance deficits. A class-wide assessment was used to describe the students' functioning in the context of their peers and to help select a target concern for intervention. An…

  5. Solid oxide fuel cell short stack performance testing - Part A: Experimental analysis and μ-combined heat and power unit comparison

    NASA Astrophysics Data System (ADS)

    Mastropasqua, L.; Campanari, S.; Brouwer, J.

    2017-12-01

    The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.

  6. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data

    PubMed Central

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. PMID:21253357

  7. Square wave voltammetry at the dropping mercury electrode: Experimental

    USGS Publications Warehouse

    Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.

    1977-01-01

    Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.

  8. Longitudinal analysis of student performance in a dental hygiene distance education program.

    PubMed

    Olmsted, Jodi L

    2002-09-01

    The purpose of the study was to determine if learners who receive face-to-face instruction in an educational program performed statistically better on established benchmark assessments (GPA, course averages, and NBDHE) than learners at a distance from the didactic course instructor. A comparative, quasi-experimental, ex-post facto study was conducted. The treatment variable was program type: face-to-face vs. distance. The performance of five consecutive classes was analyzed, from 1997 to 2001. These five classes consisted of 221 learners, 105 of them at the host site and 115 using distance learning. The experimental groups were divided based upon location--host or cooperating college (distance) site learners. Study results identified no significant difference between host and distance learner performance for the entire educational program. The use of interactive television (ITV) for delivery of an educational program using distance education technology provided acceptable results in learner didactic performance. Learners at both the host and cooperating college (distance) sites performed equally well. The results were used to document program outcomes.

  9. Experimental Modal Analysis and Dynaic Strain Fiber Bragg Gratings for Structural Health Monitoring of Composite Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.

    2012-07-01

    The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.

  10. The effect of mirror therapy integrating functional electrical stimulation on the gait of stroke patients.

    PubMed

    Ji, Sang-Goo; Cha, Hyun-Gyu; Kim, Myoung-Kwon; Lee, Chang-Ryeol

    2014-04-01

    [Purpose] The aim of the present study was to examine whether mirror therapy in conjunction with FES in stroke patients can improve gait ability. [Subjects] This study was conducted with 30 subjects who were diagnosed with hemiparesis due to stroke. [Methods] Experimental group I contained 10 subjects who received mirror therapy in conjunction with functional electrical stimulation, experimental group II contained 10 subjects who received mirror therapy, and the control group contained 10 subjects who received a sham therapy. A gait analysis was performed using a three-dimensional motion capture system, which was a real-time tracking device that delivers data in an infrared mode via reflective markers using six cameras. [Results] The results showed a significant difference in gait velocity between groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and the control group and between experimental group II and the control group, respectively. There were also significant differences in step length and stride length between the groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and control group. [Conclusion] The present study showed that mirror therapy in conjunction with FES is more effective for improving gait ability than mirror therapy alone.

  11. Hybrid computational and experimental approach for the study and optimization of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-05-01

    Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.

  12. Potential of Spark Ignition and Diesel Engines, Engine Catalog and Performance Analysis

    DOT National Transportation Integrated Search

    1980-03-01

    Detailed specifications and EPA certification data for 134 automotive production engines (60 domestic and 74 imported) which are used in the United States and several preproduction engines are provided. When available, experimentally derived performa...

  13. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  14. Characterization of bonded stationary phase performance as a function of qualitative and quantitative chromatographic factors in chaotropic chromatography with risperidone and its impurities as model substances.

    PubMed

    Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija

    2018-05-17

    Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase extra densely bonded and double end-capped with trimethylsilyl group than the stationary phase with the combination of end-capping and bidentate silane bonding for chromatographic analysis of basic solutes in RP-HPLC systems with chaotropic agents. Graphical abstract ᅟ.

  15. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    NASA Astrophysics Data System (ADS)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  16. Automatic emotional expression analysis from eye area

    NASA Astrophysics Data System (ADS)

    Akkoç, Betül; Arslan, Ahmet

    2015-02-01

    Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.

  17. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.

    2017-12-01

    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  18. Diffusive deposition of aerosols in Phebus containment during FPT-2 test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontautas, A.; Urbonavicius, E.

    2012-07-01

    At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less

  19. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  20. Damage classification and estimation in experimental structures using time series analysis and pattern recognition

    NASA Astrophysics Data System (ADS)

    de Lautour, Oliver R.; Omenzetter, Piotr

    2010-07-01

    Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.

  1. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  2. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  3. Experimental Research and Method for Calculation of 'Upsetting-with-Buckling' Load at the Impression-Free (Dieless) Preforming of Workpiece

    NASA Astrophysics Data System (ADS)

    Kukhar, Volodymir; Artiukh, Victor; Prysiazhnyi, Andrii; Pustovgar, Andrey

    2018-03-01

    This paper presents the results of experimental studies of load characteristic changes during the upsetting of high billets with the upsetting ratio (height to diameter ratio) from 3.0 to 6.0, which is followed by buckling. Such pass is an effective way of preforming the workpiece for production of forgings with a bended axis or dual forming, and belongs to impression-free (dieless) operation of bulk forming. Based on the experimental data analysis, an engineering method for calculation of workpiece pre-forming load as a maximum buckling force has been developed. The analysis of the obtained data confirmed the possibility of performing of this pre-forming operation on the main forging equipment, since the load of shaping by buckling does not exceed the load of the dieforging.

  4. Structural, spectral, NLO and MEP analysis of the [MgO2Ti2(OPri)6], [MgO2Ti2(OPri)2(acac)4] and [MgO2Ti2(OPri)2(bzac)4] by DFT method

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2015-06-01

    Quantum chemical calculations are performed on [MgO2Ti2(OPri)6] and [MgO2Ti2(OPri)2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, 1H and 13C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.

  5. Jones matrix formulation of a Porro prism laser resonator with waveplates: theoretical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.

    2007-11-01

    This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.

  6. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide

    NASA Astrophysics Data System (ADS)

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-01

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.

  7. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: gliclazide.

    PubMed

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-25

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.

    PubMed

    Miniaci, Marco; Marzani, Alessandro; Testoni, Nicola; De Marchi, Luca

    2015-02-01

    In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. An approximate theoretical method for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    1995-01-01

    An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.

  10. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  11. NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis.

    PubMed

    Zhang, Bo; Dai, Ji; Zhang, Tao

    2017-11-13

    In a typical electrophysiological experiment, especially one that includes studying animal behavior, the data collected normally contain spikes, local field potentials, behavioral responses and other associated data. In order to obtain informative results, the data must be analyzed simultaneously with the experimental settings. However, most open-source toolboxes currently available for data analysis were developed to handle only a portion of the data and did not take into account the sorting of experimental conditions. Additionally, these toolboxes require that the input data be in a specific format, which can be inconvenient to users. Therefore, the development of a highly integrated toolbox that can process multiple types of data regardless of input data format and perform basic analysis for general electrophysiological experiments is incredibly useful. Here, we report the development of a Python based open-source toolbox, referred to as NeoAnalysis, to be used for quick electrophysiological data processing and analysis. The toolbox can import data from different data acquisition systems regardless of their formats and automatically combine different types of data into a single file with a standardized format. In cases where additional spike sorting is needed, NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, and local field potentials analysis, behavioral response (e.g. saccade) detection and extraction, with several options available for data plotting and statistics. Particularly, it can automatically generate sorted results without requiring users to manually sort data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis supports analysis at the population level. With the multitude of general-purpose functions provided by NeoAnalysis, users can easily obtain publication-quality figures without writing complex codes. NeoAnalysis is a powerful and valuable toolbox for users doing electrophysiological experiments.

  12. An Assessment of the State-of-the-Art in Multidisciplinary Aeromechanical Analyses

    DTIC Science & Technology

    2008-01-01

    monolithic formulations. In summary, for aerospace structures, partitioned formulations provide fundamental advantages over fully coupled ones, in addition...important frequencies of local analysis directly to global analysis using detailed modeling. Performed ju- diciously, based on a fundamental understanding of...in 2000 has com- prehensively described the problem, and reviewed the status of fundamental understanding, experimental data, and analytical

  13. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  14. An Intelligent Automation Platform for Rapid Bioprocess Design.

    PubMed

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  15. An Intelligent Automation Platform for Rapid Bioprocess Design

    PubMed Central

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  16. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  17. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Cognitive and Motivation Intervention Program in Youth Female Volleyball Players.

    PubMed

    Claver, Fernando; Jiménez, Ruth; Gil-Arias, Alexander; Moreno, Alberto; Moreno, M Perla

    2017-10-01

    This study, grounded in Self-Determination Theory (Deci and Ryan, 1985, 2002) was aimed to determine the influence of a cognitive-motivational intervention program, to improve the basic psychological need satisfaction of autonomy and competence, autonomous motivation, procedural knowledge, perceived performance and sport commitment, in youth volleyball players. Participants included 34 Under-19 female volleyball players. A quasi-experimental design was carried out with an experimental group (n = 16; M = 17.45; SD = .45) and a control group (n = 18; M = 16.64; SD = .70). The experimental group followed a multidimensional intervention program comprised of 24 sessions held over three months (two training sessions per week). It was based on two strategies: giving athletes the possibility of choice in specific training tasks (proposing training situations with several action alternatives) and questioning (cognitively involving players through tactical questions). A repeated-measures MANOVA 2 (group: experimental and control) x 2 (time: pre-test and post-test) was used to analyse the effect of Group x Time interaction. The results of the inter-group analysis showed significant differences in the post-test measurement between the experimental group and the control group (in favour of the experimental group) in the variables: basic psychological need satisfaction of autonomy and competence, autonomous motivation, procedural knowledge, perceived performance and sport commitment. Given the relevance of the cognitive-motivational processes, not only for performance but also for sport commitment, this intervention has important implications for sport coaching.

  19. The influence of essential oils on human attention. I: alertness.

    PubMed

    Ilmberger, J; Heuberger, E; Mahrhofer, C; Dessovic, H; Kowarik, D; Buchbauer, G

    2001-03-01

    Scientific research on the effects of essential oils on human behavior lags behind the promises made by popular aromatherapy. Nearly all aspects of human behavior are closely linked to processes of attention, the basic level being that of alertness, which ranges from sleep to wakefulness. In our study we measured the influence of essential oils and components of essential oils [peppermint, jasmine, ylang-ylang, 1,8-cineole (in two different dosages) and menthol] on this core attentional function, which can be experimentally defined as speed of information processing. Substances were administered by inhalation; levels of alertness were assessed by measuring motor and reaction times in a reaction time paradigm. The performances of the six experimental groups receiving substances (n = 20 in four groups, n = 30 in two groups) were compared with those of corresponding control groups receiving water. Between-group analysis, i.e. comparisons between experimental groups and their respective control groups, mainly did not reach statistical significance. However, within-group analysis showed complex correlations between subjective evaluations of substances and objective performance, indicating that effects of essentials oils or their components on basic forms of attentional behavior are mainly psychological.

  20. Physico-chemical studies of the experimental and theoretical properties of organic nonlinear optical material 4-chloro-4'methoxy benzylideneaniline

    NASA Astrophysics Data System (ADS)

    George, Merin; John, Nimmy L.; Saravana Kumar, M.; Subashini, A.; Sajan, D.

    2017-01-01

    The FT-IR, FT-Raman and UV-visible spectral analysis of 4-chloro 4'-methoxy benzylidene aniline were done experimentally and interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) at the B3LYP/6-311++G (d, p) level of theory. Natural Bond orbital analysis was performed to understand the charge transfer interactions and reactive sites within the system. HOMO-LUMO analysis and first static and dynamic hyperpolarizability calculations were carried out in order to confirm the NLO activity of CMOBA. Photophysical characterization was done to understand the fluorescence emission and lifetime of CMOBA leading to application in blue OLEDs. The Molecular Electrostatic Potential Map was simulated to identify the active sites for electrophilic and nucleophilic attack or the active sites of the molecule which can bind to proteins. Molecular docking analysis revealed its potential as an inhibitor for different proteins which are responsible for cancer and many inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, Crohn's disease and psoriasis. Experimental studies of invitro antiproliferative effect by MTT assay verified the anticancer properties of CMOBA.

  1. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  2. Modeling place field activity with hierarchical slow feature analysis

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2015-01-01

    What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279

  3. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Computation of wind tunnel model deflections. [for transport type solid wing

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Gloss, B. B.

    1981-01-01

    The experimental deflections for a transport type solid wing model were measured for several single point load conditions. These deflections were compared with those obtained by structural modeling of the wing by using plate and solid elements of Structural Performance Analysis and Redesign (SPAR) program. The solid element representation of the wing showed better agreement with the experimental deflections than the plate representation. The difference between the measured and calculated deflections is about 5 percent.

  5. Dynamics and Statics of Nonaxisymmetric Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Resnick, Andrew H.; Slobozhanin, L. A.

    1996-01-01

    Theoretical and experimental investigation of the stability of nonaxisymmetric and nonaxisymmetric bridges contained between equal and unequal radii disks as a function of Bond and Weber number with emphasis on the transition from unstable axisymmetric to stable nonaxisymmetric shapes, are conducted. Numerical analysis of the stability of nonaxisymmetric bridges between unequal disks for various orientations of the gravity vector is performed. Experimental and theoretical investigation of large (nonaxisymmetric) oscillations and breaking of liquid bridges are also conducted.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A.

    1978-01-01

    The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.

  7. Analysis of the vibration environment induced on spacecraft components by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Pavarin, Daniele

    2009-06-01

    This paper reports the result achieved within the study ``Spacecraft Disturbances from Hypervelocity Impact'', performed by CISAS and Thales-Alenia Space Italia under European Space Agency contract. The research project investigated the perturbations produced on spacecraft internal components as a consequence of hypervelocity impacts of micrometeoroids and orbital debris on the external walls of the vehicle. Objective of the study was: (i) to set-up a general numerical /experimental procedure to investigate the vibration induced by hypervelocity impact, (ii) to analyze the GOCE mission in order to asses whether the vibration environment induce by the impact of orbital debris and micrometeoroids could jeopardize the mission. The research project was conducted both experimentally and numerically, performing a large number of impact tests on GOCE-like structural configurations and extrapolating the experimental results via numerical simulations based on hydrocode calculations, finite element and statistical energy analysis. As a result, a database was established which correlates the impact conditions in the experimental range (0.6 to 2.3 mm projectiles at 2.5 to 5 km/s) with the shock spectra on selected locations on various types of structural models.The main out coming of the study are: (i) a wide database reporting acceleration values on a wide range of impact condition, (ii) a general numerical methodology to investigate disturbances induced by space debris and micrometeoroids on general satellite structures.

  8. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.

    PubMed

    Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G

    2012-05-01

    This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.

  9. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  10. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  11. Spacelab cryogenic propellant management experiment

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1976-01-01

    The conceptual design of a Spacelab cryogen management experiment was performed to demonstrate toe desirability and feasibility of subcritical cryogenic fluid orbital storage and supply. A description of the experimental apparatus, definition of supporting requirements, procedures, data analysis, and a cost estimate are included.

  12. Analytical and experimental evaluation of an aluminum bridge deck panel. Part 2, failure analysis.

    DOT National Transportation Integrated Search

    1999-01-01

    Aluminum bridge decks may prove to be an alternative to concrete decks for improving the performance of structural bridge systems. Combining excellent corrosion resistance with extremely low density, aluminum decks can prolong surface life, facilitat...

  13. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Ultrasound-enhanced bioscouring process factors for greige cotton fabric are examined using custom experimental design utilizing statistical principles. An equation is presented which predicts bioscouring performance based upon percent reflectance values obtained from UV-Vis measurements of rutheniu...

  14. A combined experimental and in silico characterization to highlight additional structural features and properties of a potentially new drug

    NASA Astrophysics Data System (ADS)

    Bastos, Isadora T. S.; Costa, Fanny N.; Silva, Tiago F.; Barreiro, Eliezer J.; Lima, Lídia M.; Braz, Delson; Lombardo, Giuseppe M.; Punzo, Francesco; Ferreira, Fabio F.; Barroso, Regina C.

    2017-10-01

    LASSBio-1755 is a new cycloalkyl-N-acylhydrazone parent compound designed for the development of derivatives with antinociceptive and anti-inflammatory activities. Although single crystal X-ray diffraction has been considered as the golden standard in structure determination, we successfully used X-ray powder diffraction data in the structural determination of new synthesized compounds, in order to overcome the bottle-neck due to the difficulties experienced in harvesting good quality single crystals of the compounds. We therefore unequivocally assigned the relative configuration (E) to the imine double bond and a s-cis conformation of the amide function of the N-acylhydrazone compound. These features are confirmed by a computational analysis performed on the basis of molecular dynamics calculations, which are extended not only to the structural characteristics but also to the analysis of the anisotropic atomic displacement parameters, a further information - missed in a typical powder diffraction analysis. The so inferred data were used to perform additional cycles of refinement and eventually generate a new cif file with additional physical information. Furthermore, crystal morphology prediction was performed, which is in agreement with the experimental images acquired by scanning electron microscopy, thus providing useful information on possible alternative paths for better crystallization strategies.

  15. Brightness-preserving fuzzy contrast enhancement scheme for the detection and classification of diabetic retinopathy disease.

    PubMed

    Datta, Niladri Sekhar; Dutta, Himadri Sekhar; Majumder, Koushik

    2016-01-01

    The contrast enhancement of retinal image plays a vital role for the detection of microaneurysms (MAs), which are an early sign of diabetic retinopathy disease. A retinal image contrast enhancement method has been presented to improve the MA detection technique. The success rate on low-contrast noisy retinal image analysis shows the importance of the proposed method. Overall, 587 retinal input images are tested for performance analysis. The average sensitivity and specificity are obtained as 95.94% and 99.21%, respectively. The area under curve is found as 0.932 for the receiver operating characteristics analysis. The classifications of diabetic retinopathy disease are also performed here. The experimental results show that the overall MA detection method performs better than the current state-of-the-art MA detection algorithms.

  16. The Effectiveness of Teamwork Training on Teamwork Behaviors and Team Performance: A Systematic Review and Meta-Analysis of Controlled Interventions

    PubMed Central

    McEwan, Desmond; Ruissen, Geralyn R.; Eys, Mark A.; Zumbo, Bruno D.; Beauchamp, Mark R.

    2017-01-01

    The objective of this study was to conduct a systematic review and meta-analysis of teamwork interventions that were carried out with the purpose of improving teamwork and team performance, using controlled experimental designs. A literature search returned 16,849 unique articles. The meta-analysis was ultimately conducted on 51 articles, comprising 72 (k) unique interventions, 194 effect sizes, and 8439 participants, using a random effects model. Positive and significant medium-sized effects were found for teamwork interventions on both teamwork and team performance. Moderator analyses were also conducted, which generally revealed positive and significant effects with respect to several sample, intervention, and measurement characteristics. Implications for effective teamwork interventions as well as considerations for future research are discussed. PMID:28085922

  17. Unsteady Velocity Measurements in the NASA Research Low Speed Axial Compressor: Smooth Wall Configuration

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2007-01-01

    The report is a collection of experimental unsteady data acquired in the first stage of the NASA Low Speed Axial Compressor in configuration with smooth (solid) wall treatment over the first rotor. The aim of the report is to present a reliable experimental data base that can be used for analysis of the compressor flow behavior, and hopefully help with further improvements of compressor CFD codes. All data analysis is strictly restricted to verification of reliability of the experimental data reported. The report is divided into six main sections. First two sections cover the low speed axial compressor, the basic instrumentation, and the in-house developed methodology of unsteady velocity measurements using a thermo-anemometric split-fiber probe. The next two sections contain experimental data presented as averaged radial distributions for three compressor operation conditions, including the distribution of the total temperature rise over the first rotor, and ensemble averages of unsteady flow data based on a rotor blade passage period. Ensemble averages based on the rotor revolution period, and spectral analysis of unsteady flow parameters are presented in the last two sections. The report is completed with two appendices where performance and dynamic response of thermo-anemometric probes is discussed.

  18. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  19. Using a collaborative Mobile Augmented Reality learning application (CoMARLA) to improve Improve Student Learning

    NASA Astrophysics Data System (ADS)

    Hanafi, Hafizul Fahri bin; Soh Said, Che; Hanee Ariffin, Asma; Azlan Zainuddin, Nur; Samsuddin, Khairulanuar

    2016-11-01

    This study was carried out to improve student learning in ICT course using a collaborative mobile augmented reality learning application (CoMARLA). This learning application was developed based on the constructivist framework that would engender collaborative learning environment, in which students could learn collaboratively using their mobile phones. The research design was based on the pretest posttest control group design. The dependent variable was students’ learning performance after learning, and the independent variables were learning method and gender. Students’ learning performance before learning was treated as the covariate. The sample of the study comprised 120 non-IT (non-technical) undergraduates, with the mean age of 19.5. They were randomized into two groups, namely the experimental and control group. The experimental group used CoMARLA to learn one of the topics of the ICT Literacy course, namely Computer System; whereas the control group learned using the conventional approach. The research instrument used was a set of multiple-choice questions pertaining to the above topic. Pretesting was carried out before the learning sessions, and posttesting was performed after 6 hours of learning. Using the SPSS, Analysis of Covariance (ANCOVA) was performed on the data. The analysis showed that there were main effects attributed to the learning method and gender. The experimental group outperformed the control group by almost 9%, and male students outstripped their opposite counterparts by as much as 3%. Furthermore, an interaction effect was also observed showing differential performances of male students based on the learning methods, which did not occur among female students. Hence, the tool can be used to help undergraduates learn with greater efficacy when contextualized in an appropriate setting.

  20. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  1. Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy.

    PubMed

    Pazesh, Samaneh; Lazorova, Lucia; Berggren, Jonas; Alderborn, Göran; Gråsjö, Johan

    2016-09-10

    The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Experimental Identification and Characterization of Multirotor UAV Propulsion

    NASA Astrophysics Data System (ADS)

    Kotarski, Denis; Krznar, Matija; Piljek, Petar; Simunic, Nikola

    2017-07-01

    In this paper, an experimental procedure for the identification and characterization of multirotor Unmanned Aerial Vehicle (UAV) propulsion is presented. Propulsion configuration needs to be defined precisely in order to achieve required flight performance. Based on the accurate dynamic model and empirical measurements of multirotor propulsion physical parameters, it is possible to design diverse configurations with different characteristics for various purposes. As a case study, we investigated design considerations for a micro indoor multirotor which is suitable for control algorithm implementation in structured environment. It consists of open source autopilot, sensors for indoor flight, “take off the shelf” propulsion components and frame. The series of experiments were conducted to show the process of parameters identification and the procedure for analysis and propulsion characterization. Additionally, we explore battery performance in terms of mass and specific energy. Experimental results show identified and estimated propulsion parameters through which blade element theory is verified.

  3. Investigation of charge weight and shock factor effect on non-linear transient structural response of rectangular plates subjected to underwater explosion (UNDEX) shock loading

    NASA Astrophysics Data System (ADS)

    Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer

    2012-09-01

    Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].

  4. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  5. Immunomagnetic separation for MEMS-based biosensor of waterborne pathogens detection

    NASA Astrophysics Data System (ADS)

    Guo, Jianjiang; Zhang, Rongbiao

    2017-07-01

    Rapid isolation and detection of special pathogens present in environmental drinking water is critical for water quality monitoring. Numerical analysis and experimental investigations on immunomagnetic capture and isolation of waterborne pathogens with magnetic nanoparticles (MNPs) in microfluidic channel are performed. A finite-element COMSOL-based model is established to demonstrate the novel method of on-chip capturing pathogens using MNPs together with periodic pulse magnetic field. Simulation results determine the optimum magnetic pole current and switching frequency for magnetic separation. With the magnetic isolation experiment platform built up, as a pathogen example of Escherichia coli O157:H7, the performance of the method is experimentally verified. Both numerical and experimental results are found to agree reasonably well. Results of these investigations show that the capture efficiency of the immunomagnetic separation method is more than 92%, which could be encouraging for the design and optimization of MEMS-based biosensor of waterborne pathogen detection.

  6. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  7. Experimental validation of a distribution theory based analysis of the effect of manufacturing tolerances on permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Boscaino, V.; Cipriani, G.; Di Dio, V.; Corpora, M.; Curto, D.; Franzitta, V.; Trapanese, M.

    2017-05-01

    An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.

  8. Predicting transport regime and local electrostatic environment from Coulomb blockade diamond sizes

    NASA Astrophysics Data System (ADS)

    Olsen, Stine T.; Hansen, Thorsten; Mikkelsen, Kurt V.

    2017-03-01

    Electron transport through a molecule is often described in one of the two regimes: the coherent tunnelling regime or the Coulomb blockade regime. The twilight zone of the two regimes still possesses many unsolved questions. A theoretical analysis of the oligophenylenevinylene OPV3 experiments by Bjørnholm and co-workers is performed. The experiments showed how two OPV3 derivatives performed very differently despite the strong similarity of the molecular structure, hence the experimental data showed two different transport mechanisms. The different transport mechanisms of the two OPV3 derivatives are explained from quantum mechanical calculations of the molecular redox energies and from the experimentally accessible window size.

  9. Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne

    2013-08-01

    The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.

  10. Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Nehl, T. W.; Demerdash, N. A.

    1983-01-01

    Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.

  11. Description of operation of fast-response solenoid actuator in diesel fuel system model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.

    2018-03-01

    The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.

  12. Greased Lightning (GL-10) Performance Flight Research: Flight Data Report

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)

    2017-01-01

    Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.

  13. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  14. Optimization of Maghemite (γ-Fe2O3) Nano-Powder Mixed micro-EDM of CoCrMo with Multiple Responses Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj

    2017-10-01

    This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.

  15. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  16. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation.

    PubMed

    Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C

    2015-11-01

    Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.

  17. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  18. Manufacture of low carbon astroloy turbine disk shapes by hot isostatic pressing. Volume 2, project 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1979-01-01

    The performance of a hot isotatic pressed disk installed in an experimental engine and exposed to realistic operating conditions in a 150-hour engine test and a 1000 cycle endurance test is documented. Post test analysis, based on visual, fluorescent penetrant and dimensional inspection, revealed no defects in the disk and indicated that the disk performed satisfactorily.

  19. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  20. 3D engineered fiberboard : finite element analysis of a new building product

    Treesearch

    John F. Hunt

    2004-01-01

    This paper presents finite element analyses that are being used to analyze and estimate the structural performance of a new product called 3D engineered fiberboard in bending and flat-wise compression applications. A 3x3x2 split-plot experimental design was used to vary geometry configurations to determine their effect on performance properties. The models are based on...

  1. Experimental and Numerical Analysis of a DECSMAR Structure’s Deployment and Deployed Performance

    DTIC Science & Technology

    2007-04-01

    compromise of deployed performance due to the hinge cross- section, Nitinol SMA wires can be embedded in the composite lay-up across the reduced...100 !m 0˚ 2 (two, 1.47 mm width wires positioned along longitudinal edges) Nitinol 305 !m N/A 3 IM7/977-2 100 !m 0˚ batten transition 1 IM7

  2. Longitudinal Analysis of Student Performance between Host and Cooperating College Learners in the Dental Hygiene Program at Northcentral Technical College in Wausau, Wisconsin.

    ERIC Educational Resources Information Center

    Olmsted, Jodi L.

    The academic performance of students enrolled in a distance education dental hygiene program at Northcentral Technical College (NTC) in Wausau, Wisconsin, was analyzed in a comparative, quasi-experimental study. The study sample consisted of five cohorts of program graduates (students graduating in 1997-2001). The experiment groups were divided…

  3. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  4. Effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke: A pilot randomized controlled trial.

    PubMed

    Dell'Uomo, Daniela; Morone, Giovanni; Centrella, Antonio; Paolucci, Stefano; Caltagirone, Carlo; Grasso, Maria Grazia; Traballesi, Marco; Iosa, Marco

    2017-01-01

    Despite upper limb rehabilitation is widely investigated in patients with stroke, the effects of scapulohumeral rehabilitation on trunk stabillization are mainly unknown. To test the effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke. A pilot randomized controlled trial with two groups of 14 patients each one performing 20 minutes per day, 5 days a week, for 6 weeks in add on to standard therapy. Experimental group performed a specific scapulohumeral rehabilitation protocol aiming to improve trunk competencies whereas control group performed conventional arm rehabilitation. Clinical scale tests and accelerometric evaluations were performed pre- and post-treatment. Experimental groups showed better scores at discharge at Trunk impairment Scale (p < 0.001), Barthel Index (p = 0.024), Trunk Control Test (p = 0.002), Sitting Balance Scale (p = 0.002), but neither at Fugl-Meyer Scale (p = 0.194) nor Modified Ashworth Scale (p = 0.114). Accelerometric analysis showed higher stability of trunk for experimental group especially during static and dynamic items. The recovery of scapulohumeral functions also acts on trunk stabilization post-stroke.

  5. A full three dimensional Navier-Stokes numerical simulation of flow field inside a power plant Kaplan turbine using some model test turbine hill chart points

    NASA Astrophysics Data System (ADS)

    Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.

    2012-06-01

    A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.

  6. Comparative analysis of the modified enclosed energy metric for self-focusing holograms from digital lensless holographic microscopy.

    PubMed

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2015-06-01

    A comparative analysis of the performance of the modified enclosed energy (MEE) method for self-focusing holograms recorded with digital lensless holographic microscopy is presented. Notwithstanding the MEE analysis previously published, no extended analysis of its performance has been reported. We have tested the MEE in terms of the minimum axial distance allowed between the set of reconstructed holograms to search for the focal plane and the elapsed time to obtain the focused image. These parameters have been compared with those for some of the already reported methods in the literature. The MEE achieves better results in terms of self-focusing quality but at a higher computational cost. Despite its longer processing time, the method remains within a time frame to be technologically attractive. Modeled and experimental holograms have been utilized in this work to perform the comparative study.

  7. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.

    PubMed

    Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2007-01-01

    A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.

  8. Issues on machine learning for prediction of classes among molecular sequences of plants and animals

    NASA Astrophysics Data System (ADS)

    Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.

    2012-09-01

    Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.

  9. Noise levels and data correction analysis for seven general aviation propeller aircraft

    DOT National Transportation Integrated Search

    1980-09-30

    This document reports noise levels of a general aviation propeller aircraft noise test at the FAA National Aviation Facility Experimental Center located in Atlantic City, New Jersey. The test was performed to acquire noise data on general aviation ty...

  10. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    DOT National Transportation Integrated Search

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  11. Mechanical analysis of pipe-type cable under TMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, A.N.; Levy, R.; Spillers, W.R.

    1982-07-01

    This paper summarizes recent work performed at Rensselaer Polytechnic Institute on the mechanical response of pipe-type cable to the TMB environment. It deals with both the internal stress distribution at a point and gross cable moduli. Typical experimental results are included.

  12. Analysis and testing of a bridge deck reinforced with GFRP rebars : final report, April 3, 2007.

    DOT National Transportation Integrated Search

    2007-04-03

    The present project had two main objectives, to experimentally and analytically investigate a bridge deck reinforced with glass : fiber reinforced polymer rebars, and to perform durability tests on four rebar types. : An analytical investigation was ...

  13. Effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds.

    PubMed

    Suzuki, Nao; Tanabe, Kazunari; Takeshita, Toru; Yoneda, Masahiro; Iwamoto, Tomoyuki; Oshiro, Sueko; Yamashita, Yoshihisa; Hirofuji, Takao

    2012-03-01

    The objective of this paper is to evaluate the effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds (VSCs). For this study, 42 subjects were randomly assigned to receive oil samples containing L. salivarius WB21 or a placebo for two weeks. Oral assessment and saliva collection were performed on days 1 and 15. Bacterial analysis was performed using the real-time polymerase chain reaction and terminal restriction fragment length polymorphism (T-RFLP). In both the experimental and placebo groups, the average probing depth, number of periodontal pockets, and the percentage of bleeding on probing (BOP) decreased while stimulated salivary flow increased on day 15. BOP was reduced in the experimental group compared with the placebo group (P = 0.010). In the experimental group, total bacterial numbers decreased, and the number of L. salivarius increased. The number of Prevotella intermedia, which is correlated with hydrogen sulfide concentration in mouth air, increased in the placebo group and did not change in the experimental group. T-RFLP analysis found that the peak area proportions representing Porphyromonas gingivalis, P. intermedia, Tannerella forsythensis, and Fusobacterium nucleatum decreased in the experimental group, although there was no significant change in the bacterial composition. Thus we observed oil drops containing L. salivarius WB21 improved BOP and inhibited the reproduction of total and VSC-producing periodontopathic bacteria compared with the placebo group, but also showed the limit of its efficacy in controlling VSCs producing and periodontal pathogens.

  14. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  15. The energetics of hydrogen atom recombination - Analysis, experiments, and modeling. [in electrothermal propulsion system

    NASA Technical Reports Server (NTRS)

    Filpus, J. W.; Hawley, M. C.

    1984-01-01

    A theoretical investigation of the effect of the microscopic energetics of the recombination reaction on the performance of a microwave-plasma electrothermal propulsion system is described, and the results of the analysis are presented. A series of experiments to test the concept is described and analyzed by comparison with a computer model of the recombination reaction. It is concluded that internal energy considerations are not likely to significantly affect the design of a microwave-plasma electrothermal rocket. The experimental results indicate that the microwave power is far higher than the capacity of the gas to absorb it; the cooling needed to control the energy dominates the experimental results.

  16. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  17. Rotating Shake Test and Modal Analysis of a Model Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Mirick, Paul H.; Langston, Chester W.

    1997-01-01

    Rotating blade frequencies for a model generic helicopter rotor blade mounted on an articulated hub were experimentally determined. Testing was conducted using the Aeroelastic Rotor Experimental System (ARES) testbed in the Helicopter Hover Facility (HBF) at Langley Research Center. The measured data were compared to pretest analytical predictions of the rotating blade frequencies made using the MSC/NASTRAN finite-element computer code. The MSC/NASTRAN solution sequences used to analyze the model were modified to account for differential stiffening effects caused by the centrifugal force acting on the blade and rotating system dynamic effects. The correlation of the MSC/NASTRAN-derived frequencies with the experimental data is, in general, very good although discrepancies in the blade torsional frequency trends and magnitudes were observed. The procedures necessary to perform a rotating system modal analysis of a helicopter rotor blade with MSC/NASTRAN are outlined, and complete sample data deck listings are provided.

  18. Analysis of Thermal Energy Storage Tank by ANSYS and Comparison with Experimental Results to Improve its Thermal Efficiency

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    The discontinuous temperament of the solar power forces to consider about the energy storage. This work is to analyze the tank, amount of energy stored and its storage time. The thermal and flow analysis has been done by ANSYS with different set temperature values. The experimentation is done for various encapsulating materials with different phase change material (PCM). Findings: The results obtained from experimental work are compared with ANSYS output. The competence of the TES is calculated and further improvements are made to enhance its performance. During charging process the temperature distribution from heat transfer fluid (HTF) to PCM is maximum in copper encapsulations followed by aluminium encapsulations and brass encapsulations. The comparison shows only when the electrical power as an input source. The efficient way of captivating solar energy could be a better replacement for electrical input.

  19. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    NASA Astrophysics Data System (ADS)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  20. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Optimal bioprocess design through a gene regulatory network - growth kinetic hybrid model: Towards Replacing Monod kinetics.

    PubMed

    Tsipa, Argyro; Koutinas, Michalis; Usaku, Chonlatep; Mantalaris, Athanasios

    2018-05-02

    Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive experimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate systems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an industrially-relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene, was achieved through application of a novel experimental-modelling gene regulatory network - growth kinetic (GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model informed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics. The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental values, when compared to four commonly used models that deviated significantly from the experimental values. Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation, respectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimisation at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bioprocess design. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic approach for model-driven strain modification for synthetic biology and metabolic engineering applications. Copyright © 2018. Published by Elsevier Inc.

  2. Coupled CFD and Particle Vortex Transport Method: Wing Performance and Wake Validations

    DTIC Science & Technology

    2008-06-26

    the PVTM analysis. The results obtained using the coupled RANS/PVTM analysis compare well with experimental data , in particular the pressure...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments...is validated against wind tunnel test data . Comparisons with measured pressure distribution, loadings, and vortex parameters, and the corresponding

  3. Model Selection in Systems Biology Depends on Experimental Design

    PubMed Central

    Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.

    2014-01-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483

  4. Model selection in systems biology depends on experimental design.

    PubMed

    Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H

    2014-06-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.

  5. Study of guided wave propagation on a plate between two solid bodies with imperfect contact conditions.

    PubMed

    Balvantín, A J; Diosdado-De-la-Peña, J A; Limon-Leyva, P A; Hernández-Rodríguez, E

    2018-02-01

    In this work, fundamental symmetric Lamb wave S0 mode is characterized in terms of its velocity variation as function of the interfacial conditions between solid bodies in contact. Imperfect contact conditions are numerically and experimentally determined by using ultrasonic Lamb wave propagation parameters. For the study, an experimental system was used, formed by two solid aluminum rods (25.4mm in diameter) axially loading a thin aluminum plate to control contact interfacial stiffness. The axially applied load on the aluminum plate was varied from 0MPa to 10MPa. Experimental Lamb wave signals were excited on the plate through two longitudinal contact transducers (1MHz of central frequency) using a pitch-catch configuration. Numerical simulations of contact conditions and Lamb wave propagation were performed through Finite Element Analysis (FEA) in commercial software, ANSYS 15®. Simulated Lamb wave signals were generated by means of a 5 cycles tone burst signals with different frequency values. Results indicate a velocity change in both, experimental and simulated Lamb wave signals as function of the applied load. Finally, a comparison between numerical results and experimental measurements was performed obtaining a good agreement. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach.

    PubMed

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-06-17

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(ʟ-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.

  7. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(l-Lysine): Experimental Study and Modeling Approach

    PubMed Central

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-01-01

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4. PMID:28629130

  8. Virtual Diagnostics Interface: Real Time Comparison of Experimental Data and CFD Predictions for a NASA Ares I-Like Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2007-01-01

    Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.

  9. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data

    PubMed Central

    Rothman, Jason S.; Silver, R. Angus

    2018-01-01

    Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic. PMID:29670519

  10. Building America Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NorthernSTAR

    2014-09-01

    This report focuses on the progress made to date and the technical details of the experiment. An overview of the experimental data being collected with some interesting highlights noted thus far is also provided. A full analysis of the experimental data and the drawing of conclusions with regard to the thermal and hygrothermal performance of the retrofit foundation insulation systems tested will only be possible after a full year of data has been collected in 2014.

  11. An experimental investigation of the separating/reattaching flow over a backstep

    NASA Technical Reports Server (NTRS)

    Jovic, Srboljub

    1993-01-01

    This progress report covers the grant period from March until the end of January 1993. Extensive data reduction and analysis of single and two-point measurements for a backward-facing experiment were performed. Pertinent results are presented in two conference papers which are appended to this report. The titles of the papers are as follows: (1) 'Two-point correlation measurements in a recovering turbulent boundary layer'; and (2) 'An experimental study on the recovery of a turbulent boundary layer downstream of the reattachment'.

  12. The flight of a balsa glider

    NASA Astrophysics Data System (ADS)

    Waltham, Chris

    1999-07-01

    A simple analysis is performed on the flight of a small balsa toy glider. All the basic features of flight have to be included in the calculation. Key differences between the flight of small objects like the glider, and full-sized aircraft, are examined. Good agreement with experimental data is obtained when only one parameter, the drag coefficient, is allowed to vary. The experimental drag coefficient is found to be within a factor of 2 of that obtained using the theory of ideal flat plates.

  13. Variable Entry Biased Paracentric Hemispherical Deflector: Experimental results on energy resolution for different entry positions

    NASA Astrophysics Data System (ADS)

    Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.

    2014-04-01

    A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.

  14. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  15. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  16. Developmental coordination disorder in children - experimental work and data annotation.

    PubMed

    Vareka, Lukáš; Bruha, Petr; Moucek, Roman; Mautner, Pavel; Cepicka, Ladislav; Holecková, Irena

    2017-04-01

    Developmental coordination disorder (DCD) is described as a motor skill disorder characterized by a marked impairment in the development of motor coordination abilities that significantly interferes with performance of daily activities and/or academic achievement. Since some electrophysiological studies suggest differences between children with/without motor development problems, we prepared an experimental protocol and performed electrophysiological experiments with the aim of making a step toward a possible diagnosis of this disorder using the event-related potentials (ERP) technique. The second aim is to properly annotate the obtained raw data with relevant metadata and promote their long-term sustainability. The data from 32 school children (16 with possible DCD and 16 in the control group) were collected. Each dataset contains raw electroencephalography (EEG) data in the BrainVision format and provides sufficient metadata (such as age, gender, results of the motor test, and hearing thresholds) to allow other researchers to perform analysis. For each experiment, the percentage of ERP trials damaged by blinking artifacts was estimated. Furthermore, ERP trials were averaged across different participants and conditions, and the resulting plots are included in the manuscript. This should help researchers to estimate the usability of individual datasets for analysis. The aim of the whole project is to find out if it is possible to make any conclusions about DCD from EEG data obtained. For the purpose of further analysis, the data were collected and annotated respecting the current outcomes of the International Neuroinformatics Coordinating Facility Program on Standards for Data Sharing, the Task Force on Electrophysiology, and the group developing the Ontology for Experimental Neurophysiology. The data with metadata are stored in the EEG/ERP Portal. © The Authors 2017. Published by Oxford University Press.

  17. Experimental evaluation of the certification-trail method

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.; Itoh, Mamoru; Smith, Warren W.; Kay, Jonathan S.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. A comprehensive attempt to assess experimentally the performance and overall value of the method is reported. The method is applied to algorithms for the following problems: huffman tree, shortest path, minimum spanning tree, sorting, and convex hull. Our results reveal many cases in which an approach using certification-trails allows for significantly faster overall program execution time than a basic time redundancy-approach. Algorithms for the answer-validation problem for abstract data types were also examined. This kind of problem provides a basis for applying the certification-trail method to wide classes of algorithms. Answer-validation solutions for two types of priority queues were implemented and analyzed. In both cases, the algorithm which performs answer-validation is substantially faster than the original algorithm for computing the answer. Next, a probabilistic model and analysis which enables comparison between the certification-trail method and the time-redundancy approach were presented. The analysis reveals some substantial and sometimes surprising advantages for ther certification-trail method. Finally, the work our group performed on the design and implementation of fault injection testbeds for experimental analysis of the certification trail technique is discussed. This work employs two distinct methodologies, software fault injection (modification of instruction, data, and stack segments of programs on a Sun Sparcstation ELC and on an IBM 386 PC) and hardware fault injection (control, address, and data lines of a Motorola MC68000-based target system pulsed at logical zero/one values). Our results indicate the viability of the certification trail technique. It is also believed that the tools developed provide a solid base for additional exploration.

  18. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  19. Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liu, Nan-Suey

    2005-01-01

    The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.

  20. Study of advanced techniques for determining the long-term performance of components

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was conducted of techniques having the capability of determining the performance and reliability of components for spacecraft liquid propulsion applications for long term missions. The study utilized two major approaches; improvement in the existing technology, and the evolution of new technology. The criteria established and methods evolved are applicable to valve components. Primary emphasis was placed on the propellants oxygen difluoride and diborane combination. The investigation included analysis, fabrication, and tests of experimental equipment to provide data and performance criteria.

  1. Procedures for determination of detection limits: application to high-performance liquid chromatography analysis of fat-soluble vitamins in human serum.

    PubMed

    Browne, Richard W; Whitcomb, Brian W

    2010-07-01

    Problems in the analysis of laboratory data commonly arise in epidemiologic studies in which biomarkers subject to lower detection thresholds are used. Various thresholds exist including limit of detection (LOD), limit of quantification (LOQ), and limit of blank (LOB). Choosing appropriate strategies for dealing with data affected by such limits relies on proper understanding of the nature of the detection limit and its determination. In this paper, we demonstrate experimental and statistical procedures generally used for estimating different detection limits according to standard procedures in the context of analysis of fat-soluble vitamins and micronutrients in human serum. Fat-soluble vitamins and micronutrients were analyzed by high-performance liquid chromatography with diode array detection. A simulated serum matrix blank was repeatedly analyzed for determination of LOB parametrically by using the observed blank distribution as well as nonparametrically by using ranks. The LOD was determined by combining information regarding the LOB with data from repeated analysis of standard reference materials (SRMs), diluted to low levels; from LOB to 2-3 times LOB. The LOQ was determined experimentally by plotting the observed relative standard deviation (RSD) of SRM replicates compared with the concentration, where the LOQ is the concentration at an RSD of 20%. Experimental approaches and example statistical procedures are given for determination of LOB, LOD, and LOQ. These quantities are reported for each measured analyte. For many analyses, there is considerable information available below the LOQ. Epidemiologic studies must understand the nature of these detection limits and how they have been estimated for appropriate treatment of affected data.

  2. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Anderson, M. R.

    1985-01-01

    Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.

  3. Programmable neural processing on a smartdust for brain-computer interfaces.

    PubMed

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  4. Experimental design in chemistry: A tutorial.

    PubMed

    Leardi, Riccardo

    2009-10-12

    In this tutorial the main concepts and applications of experimental design in chemistry will be explained. Unfortunately, nowadays experimental design is not as known and applied as it should be, and many papers can be found in which the "optimization" of a procedure is performed one variable at a time. Goal of this paper is to show the real advantages in terms of reduced experimental effort and of increased quality of information that can be obtained if this approach is followed. To do that, three real examples will be shown. Rather than on the mathematical aspects, this paper will focus on the mental attitude required by experimental design. The readers being interested to deepen their knowledge of the mathematical and algorithmical part can find very good books and tutorials in the references [G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, New York, 1978; R. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, John Wiley & Sons, New York, 1978; R. Carlson, J.E. Carlson, Design and Optimization in Organic Synthesis: Second Revised and Enlarged Edition, in: Data Handling in Science and Technology, vol. 24, Elsevier, Amsterdam, 2005; J.A. Cornell, Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data, in: Series in Probability and Statistics, John Wiley & Sons, New York, 1991; R.E. Bruns, I.S. Scarminio, B. de Barros Neto, Statistical Design-Chemometrics, in: Data Handling in Science and Technology, vol. 25, Elsevier, Amsterdam, 2006; D.C. Montgomery, Design and Analysis of Experiments, 7th edition, John Wiley & Sons, Inc., 2009; T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nyström, J. Pettersen, R. Bergman, Chemolab 42 (1998) 3; Y. Vander Heyden, LC-GC Europe 19 (9) (2006) 469].

  5. The impact of extended voice use on the acoustic characteristics of phonation after training and performance of actors from the La MaMa Experimental Theater club.

    PubMed

    Ferrone, Carol; Galgano, Jessica; Ramig, Lorraine Olson

    2011-05-01

    To test the hypothesis that extensive use of La MaMa vocal technique may result in symptoms of vocal abuse, an evaluation of the acoustic and perceptual characteristics of voice for eight performers from the Great Jones Repertory Company of the La MaMa Experimental Theater was conducted. This vocal technique includes wide ranges of frequency from 46 to 2003 Hz and vocal intensity that is sustained at 90-108 dB sound pressure level with a mouth-to-microphone distance of 30 cm for 3-4 hours per performance. The actors rehearsed for 4 hours per day, 5 days per week for 14 weeks before the series of performances. Thirty-nine performances were presented in 6 weeks. Three pretraining, three posttraining, and two postperformance series data collection sessions were carried out for each performer. Speech samples were gathered using the CSL 4500 and analyzed using Real-Time Pitch program and Multidimensional Voice Program. Acoustic analysis was performed on 48 tokens of sustained vowel phonation for each subject. Statistical analysis was performed using the Friedman test of related samples. Perceptual analysis included professional listeners rating voice quality in pretraining, posttraining, and postperformance samples of the Rainbow Passage and sample lines from the plays. The majority of professional listeners (11/12) judged that this technique would result in symptoms of vocal abuse; however, acoustic data revealed statistically stable or improved measurements for all subjects in most dependent acoustic variables when compared with both posttraining and postperformance trials. These findings add support to the notion that a technique that may be perceived as vocally abusive, generating 90-100 dB sound pressure level and sustained over 6 weeks of performances, actually resulted in improved vocal strength and flexibility. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Utilizing hot electrons

    DOE PAGES

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  7. Utilizing hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozik, Arthur J.

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  8. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  9. Theoretical and experimental analyses to determine the effects of crystal orientation and grain size on the thermoelectric properties of oblique deposited bismuth telluride thin films

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki

    2018-06-01

    The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.

  10. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    PubMed Central

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  11. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    PubMed

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  12. Performance improvement of a binary quantized all-digital phase-locked loop with a new aided-acquisition technique

    NASA Astrophysics Data System (ADS)

    Sandoz, J.-P.; Steenaart, W.

    1984-12-01

    The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.

  13. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    PubMed

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance

    NASA Astrophysics Data System (ADS)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J.

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR.

  15. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  16. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-01-01

    The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725

  17. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  18. A high-frequency servosystem for fuel control in hypersonic engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    1991-01-01

    A hydrogen fuel-flow valve with an electrohydraulic servosystem is described. An analysis of the servosystem is presented along with a discussion of the limitations imposed on system performance by nonlinearities. The response of the valve to swept-frequency inputs is experimentally determined and compared with analytical results obtained from a computer model. The valve is found to perform favorably for frequencies up to 200 Hz.

  19. Mechanisms of Temporal Pattern Discrimination by Human Observers

    DTIC Science & Technology

    1994-02-15

    Research Center Department of Psychology University of Florida Gainesville, Florida 32611 15 February 1994 Final Technical Report for Period 1 October 1990...Center tfpdCbE Department of Psychology ________ AFOSR/NL Gr. &OORESS (City. Stteco and ZIP Code) 7b. ADDRESS (City’. State and ZIP Code) University of...contrasting novice and experienced performance. Journal of Experimental Psychology : Human Perception and Performance, 18, 50-71. Berg, B. G. (1989). Analysis

  20. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    PubMed

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  1. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    PubMed Central

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  2. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  3. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  4. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  5. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  6. An Integrated Framework for Parameter-based Optimization of Scientific Workflows.

    PubMed

    Kumar, Vijay S; Sadayappan, P; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel

    2009-01-01

    Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework.

  7. Performance testing and analysis results of AMTEC cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Barkan, A.; Hendricks, T.J.

    1998-01-01

    Testing and analysis has shown that AMTEC (Alkali Metal Thermal to Electric Conversion) (Weber, 1974) cells can reach the performance (power) levels required by a variety of space applications. The performance of an AMTEC cell is highly dependent on the thermal environment to which it is subjected. A guard heater assembly has been designed, fabricated, and used to expose individual AMTEC cells to various thermal environments. The design and operation of the guard heater assembly will be discussed. Performance test results of an AMTEC cell operated under guard heated conditions to simulate an adiabatic cell wall thermal environment are presented.more » Experimental data and analytic model results are compared to illustrate validation of the model. {copyright} {ital 1998 American Institute of Physics.}« less

  8. Falsifying falsifications: the most critical task of theoreticians in biology.

    PubMed

    de Grey, Aubrey D N J

    2004-01-01

    Occasionally, experimental biologists obtain results which mystify them so deeply that the paradoxical nature of their finding is acknowledged in the paper reporting it. This constitutes a more-or-less explicit invitation to those who did not perform the experiments - and even those who do not perform experiments at all - to propose explanations that eluded the experimenter. A much more frequent scenario, however, is that the experimenter asserts confidently that his or her data can be explained by a particular model but are at odds with some other model. In such circumstances, it is often overlooked that the stated falsification of the latter model is error-prone: just as the mystified experimenter saw no explanation when in fact there is one, the other experimenter may see only one explanation of the data when there are two. The main reason this phenomenon is neglected is, of course, the fact that here the theoretician (or other experimenter) must take the initiative in critiquing a conclusion that, far from troubling the experimenter, may by the time of its publication be a cornerstone of his or her research program, so whose refutation may be decidedly unwelcome. For precisely this reason, such critiques - especially, perhaps, when they come from those who do not do bench work at all and thus have a complementary approach to the analysis of data - are fundamental to maximising the rate of progress in fields of biology that otherwise risk languishing in ever-better-studied cul-de-sacs for many years. Computational biology, including simulation, plays an especially important role in this, whereas its ability to contribute to biology in other ways is often less than its proponents claim. Here I discuss some representative examples of falsification-falsification, including a previously unpublished analysis of mitochondrial DNA population dynamics in cell culture, in the hope of stimulating more theoreticians - and perhaps also more experimentalists - to engage in it.

  9. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less

  10. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  11. Polypropylene Production Optimization in Fluidized Bed Catalytic Reactor (FBCR): Statistical Modeling and Pilot Scale Experimental Validation

    PubMed Central

    Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed

    2014-01-01

    Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif

    This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA basedmore » on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.« less

  13. A novel method linking neural connectivity to behavioral fluctuations: Behavior-regressed connectivity.

    PubMed

    Passaro, Antony D; Vettel, Jean M; McDaniel, Jonathan; Lawhern, Vernon; Franaszczuk, Piotr J; Gordon, Stephen M

    2017-03-01

    During an experimental session, behavioral performance fluctuates, yet most neuroimaging analyses of functional connectivity derive a single connectivity pattern. These conventional connectivity approaches assume that since the underlying behavior of the task remains constant, the connectivity pattern is also constant. We introduce a novel method, behavior-regressed connectivity (BRC), to directly examine behavioral fluctuations within an experimental session and capture their relationship to changes in functional connectivity. This method employs the weighted phase lag index (WPLI) applied to a window of trials with a weighting function. Using two datasets, the BRC results are compared to conventional connectivity results during two time windows: the one second before stimulus onset to identify predictive relationships, and the one second after onset to capture task-dependent relationships. In both tasks, we replicate the expected results for the conventional connectivity analysis, and extend our understanding of the brain-behavior relationship using the BRC analysis, demonstrating subject-specific BRC maps that correspond to both positive and negative relationships with behavior. Comparison with Existing Method(s): Conventional connectivity analyses assume a consistent relationship between behaviors and functional connectivity, but the BRC method examines performance variability within an experimental session to understand dynamic connectivity and transient behavior. The BRC approach examines connectivity as it covaries with behavior to complement the knowledge of underlying neural activity derived from conventional connectivity analyses. Within this framework, BRC may be implemented for the purpose of understanding performance variability both within and between participants. Published by Elsevier B.V.

  14. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  15. Experimental Evaluation of an Invasive Medical Instrument Based on a Displacement Measurement System.

    PubMed

    Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis

    2015-09-01

    This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.

  16. Comparison of LIDAR system performance for alternative single-mode receiver architectures: modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Toliver, Paul; Ozdur, Ibrahim; Agarwal, Anjali; Woodward, T. K.

    2013-05-01

    In this paper, we describe a detailed performance comparison of alternative single-pixel, single-mode LIDAR architectures including (i) linear-mode APD-based direct-detection, (ii) optically-preamplified PIN receiver, (iii) PINbased coherent-detection, and (iv) Geiger-mode single-photon-APD counting. Such a comparison is useful when considering next-generation LIDAR on a chip, which would allow one to leverage extensive waveguide-based structures and processing elements developed for telecom and apply them to small form-factor sensing applications. Models of four LIDAR transmit and receive systems are described in detail, which include not only the dominant sources of receiver noise commonly assumed in each of the four detection limits, but also additional noise terms present in realistic implementations. These receiver models are validated through the analysis of detection statistics collected from an experimental LIDAR testbed. The receiver is reconfigurable into four modes of operation, while transmit waveforms and channel characteristics are held constant. The use of a diffuse hard target highlights the importance of including speckle noise terms in the overall system analysis. All measurements are done at 1550 nm, which offers multiple system advantages including less stringent eye safety requirements and compatibility with available telecom components, optical amplification, and photonic integration. Ultimately, the experimentally-validated detection statistics can be used as part of an end-to-end system model for projecting rate, range, and resolution performance limits and tradeoffs of alternative integrated LIDAR architectures.

  17. Structural and vibrational spectroscopic studies on charge transfer and ionic hydrogen bonding interactions of melaminium benzoate dihydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.

    2015-06-01

    Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by 1H and 13C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358 K for heating and cooling, respectively.

  18. Structural and vibrational spectroscopic studies on charge transfer and ionic hydrogen bonding interactions of melaminium benzoate dihydrate.

    PubMed

    Kanagathara, N; Marchewka, M K; Drozd, M; Gunasekaran, S; Rajakumar, P R; Anbalagan, G

    2015-06-15

    Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by (1)H and (13)C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358K for heating and cooling, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  20. Special report on the data collection programs for the ground based nitrogen washout experiment. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Bueker, P. A.

    1982-01-01

    The Nitrogen Washout System measures nitrogen elimination on a breath basis from the body tissues of a subject breathing pure oxygen. The system serves as a prototype for a Space Shuttle Life Sciences experiment and in the Environmental Physiology Laboratory. Typically, a subject washes out body nitrogen for three hours while breathing oxygen from a mask enclosed in a positive-pressure oxygen tent. A nitrogen washout requires one test operator and the test subject. A DEC LSI-11/02 computer is used to (1) control and calibrate the mass spectrometer and Skylab spirometer, (2) gather and store experimental data and (3) provide limited real time analysis and more extensive post-experiment analysis. Five programs are used to gather and store the experimental data and perform all the real time control and analysis.

  1. In vivo measurement of mechanical properties of human long bone by using sonic sound

    NASA Astrophysics Data System (ADS)

    Hossain, M. Jayed; Rahman, M. Moshiur; Alam, Morshed

    2016-07-01

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  2. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.

  3. Characterization of 1,5-dimethoxynaphthalene by vibrational spectroscopy (FT-IR and FT-Raman) and density functional theory calculations.

    PubMed

    Kandasamy, M; Velraj, G; Kalaichelvan, S; Mariappan, G

    2015-01-05

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and natural bond orbital (NBO) analysis of 1,5-dimethoxynaphthalene. The optimized molecular structure, atomic charges, vibrational frequencies and natural bond orbital analysis of 1,5-dimethoxynaphthalene have been studied by performing DFT/B3LYP/6-31G(d,p) level of theory. The FTIR, FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of the most fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO analysis. Natural Population Analysis (NPA) was used for charge determination in the title molecule. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Experimental Investigations of Space Shuttle BX-265 Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2009-01-01

    This report presents a variety of experimental studies on the polyurethane foam, BX-265. This foam is used as a close-out foam insulation on the space shuttle external tank. The purpose of this work is to provide a better understanding of the foam s behavior and to support advanced modeling efforts. The following experiments were performed: Thermal expansion was measured for various heating rates. The in situ expansion of foam cells was documented by heating the foam in a scanning electron microscope. Expansion mechanisms are described. Thermogravimetric analysis was performed at various heating rates and for various environments. The glass transition temperature was also measured. The effects of moisture on the foam were studied. Time-dependent effects were measured to give preliminary data on viscoelastoplastic properties.

  5. A nonlinear auxetic structural vibration damper with metal rubber particles

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie

    2013-08-01

    The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsz, M.; Duchene, G.; Didierjean, F.

    The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less

  7. Computer code for off-design performance analysis of radial-inflow turbines with rotor blade sweep

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1983-01-01

    The analysis procedure of an existing computer program was extended to include rotor blade sweep, to model the flow more accurately at the rotor exit, and to provide more detail to the loss model. The modeling changes are described and all analysis equations and procedures are presented. Program input and output are described and are illustrated by an example problem. Results obtained from this program and from a previous program are compared with experimental data.

  8. Development of advanced methods for analysis of experimental data in diffusion

    NASA Astrophysics Data System (ADS)

    Jaques, Alonso V.

    There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix. Case studies are presented to demonstrate the reliability and the stability of the method. To the best of our knowledge there is no published analysis of the effects of experimental errors on the reliability of the estimates for the diffusivities. For the case of linear multicomponent diffusion, we analyze the effects of the instrument analytical spot size, positioning uncertainty, and concentration uncertainty on the resulting values of the diffusivities. These effects are studied using Monte Carlo method on simulated experimental data. Several useful scaling relationships were identified which allow more rigorous and quantitative estimates of the errors in the measured data, and are valuable for experimental design. To further analyze anomalous diffusion processes, where traditional diffusional transport equations do not hold, we explore the use of fractional calculus in analytically representing these processes is proposed. We use the fractional calculus approach for anomalous diffusion processes occurring through a finite plane sheet with one face held at a fixed concentration, the other held at zero, and the initial concentration within the sheet equal to zero. This problem is related to cases in nature where diffusion is enhanced relative to the classical process, and the order of differentiation is not necessarily a second--order differential equation. That is, differentiation is of fractional order alpha, where 1 ≤ alpha < 2. For alpha = 2, the presented solutions reduce to the classical second-order diffusion solution for the conditions studied. The solution obtained allows the analysis of permeation experiments. Frequently, hydrogen diffusion is analyzed using electrochemical permeation methods using the traditional, Fickian-based theory. Experimental evidence shows the latter analytical approach is not always appropiate, because reported data shows qualitative (and quantitative) deviation from its theoretical scaling predictions. Preliminary analysis of data shows better agreement with fractional diffusion analysis when compared to traditional square-root scaling. Although there is a large amount of work in the estimation of the diffusivity from experimental data, reported studies typically present only the analytical description for the diffusivity, without scattering. However, because these studies do not consider effects produced by instrument analysis, their direct applicability is limited. We propose alternatives to address these, and to evaluate their influence on the final resulting diffusivity values.

  9. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  10. Influence of the piezoelectric parameters on the dynamics of an active rotor

    NASA Astrophysics Data System (ADS)

    Gawryluk, Jarosław; Mitura, Andrzej; Teter, Andrzej

    2018-01-01

    The main aim of this paper is an experimental and numerical analysis of the dynamic behavior of an active rotor with three composite blades. The study focuses on developing an effective FE modeling technique of a macro fiber composite element (denoted as MFC or active element) for the dynamic tests of active structures. The active rotor under consideration consists of a hub with a drive shaft, three grips and three glass-epoxy laminate blades with embedded active elements. A simplified FE model of the macro fiber composite element exhibiting the d33 piezoelectric effect is developed using the Abaqus software package. The discussed transducer is modeled as quasi-homogeneous piezoelectric material, and voltage is applied to the opposite faces of the element. In this case, the effective (equivalent) piezoelectric constant d33* is specified. Both static and dynamic tests are performed to verify the proposed model. First, static deflections of the active blade caused by the voltage signal are determined by numerical and experimental analyses. Next, a numerical modal analysis of the active rotor is performed. The eigenmodes and corresponding eigenfrequencies are determined by the Lanczos method. The influence of the model parameters (i.e., the effective piezoelectric constant d33 *, voltage signal, angular velocity) on the dynamics of the active rotor is examined. Finally, selected numerical results are validated in experimental tests. The experimental findings demonstrate that the structural stiffening effect caused by the active element strongly depends on the value of the effective piezoelectric constant.

  11. Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel

    NASA Astrophysics Data System (ADS)

    Edelmann, Paul G.

    There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.

  12. Experimental investigation on secondary combustion characteristics of airbreathing rockets

    NASA Astrophysics Data System (ADS)

    Mano, Takeshi; Eguchi, Akihiro; Shinohara, Suetsugu; Etou, Takao; Kaneko, Yutaka; Yamamoto, Youichi; Nakagawa, Ichirou

    Empirical correlations of the secondary combustion efficiency of the airbreathing rocket were derived. From the results of a series of experiments employing a connected pipe facility, the combustion efficiency was related to dominant parameters. The feasibility of the performance prediction by one-dimensional analysis was also discussed. The analysis was found to be applicable to the flow processes in the secondary combustor, which include two-stream mixing and combustion.

  13. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  14. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    PubMed Central

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  15. Numerical simulation and experimentation of adjusting the curvatures of micro-cantilevers using the water-confined laser-generated plasma

    NASA Astrophysics Data System (ADS)

    Gu, Chunxing; Shen, Zongbao; Liu, Huixia; Li, Pin; Lu, Mengmeng; Zhao, Yinxin; Wang, Xiao

    2013-04-01

    This paper describes a precise and non-contact adjustment technique using the water-confined laser-generated plasma to adjust the curvature of micro-components (micro-mechanical cantilevers). A series of laser shock micro-adjustment experiments were conducted on 0.4 mm-thick Al samples using pulsed Nd:YAG lasers operating at 1064 nm wavelengths to verify the technical feasibility. Systematic study was carried out in the term of effects of various factors on the adjusting results, including laser energies, laser focus positions, laser shock times and confined regime configuration. The research results have shown that the different bending angles and bending directions can be obtained by changing the laser processing parameters. And, for the adjustment process, the absence of confined regime configuration could also generate suitable bending deformation. But, in the case of larger energy, the final surfaces would have the sign of ablation, hence resulting in poor surface quality. An analysis procedure including dynamic analysis performed by ANSYS/LS-DYNA and static analysis performed by ANSYS is presented in detail to attain the simulation of laser shock micro-adjustment to predict the final bending deformation. The predicted bending profiles is well correlated with the available experimental data, showing the finite element analysis can predict the final curvatures of the micro-cantilevers properly.

  16. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    PubMed

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Newly synthesized dihydroquinazoline derivative from the aspect of combined spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Mary, Y. Sheena; Mary, Y. Shyma; Panicker, C. Yohannan; Abdel-Aziz, Alaa A.-M.; El-Sherbeny, Magda A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2017-04-01

    In this work, spectroscopic characterization of 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione have been obtained with experimentally and theoretically. Complete assignments of fundamental vibrations were performed on the basis of the potential energy distribution of the vibrational modes and good agreement between the experimental and scaled wavenumbers has been achieved. Frontier molecular orbitals have been used as indicators of stability and reactivity. Intramolecular interactions have been investigated by NBO analysis. The dipole moment, linear polarizability and first and second order hyperpolarizability values were also computed. In order to determine molecule sites prone to electrophilic attacks DFT calculations of average local ionization energy (ALIE) and Fukui functions have been performed as well. Intra-molecular non-covalent interactions have been determined and analyzed by the analysis of charge density. Stability of title molecule have also been investigated from the aspect of autoxidation, by calculations of bond dissociation energies (BDE), and hydrolysis, by calculations of radial distribution functions after molecular dynamics (MD) simulations. In order to assess the biological potential of the title compound a molecular docking study towards breast cancer type 2 complex has been performed.

  18. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  19. Inclusion of sorghum, millet and cottonseed meal in broiler diets: a meta-analysis of effects on performance.

    PubMed

    Batonon-Alavo, D I; Umar Faruk, M; Lescoat, P; Weber, G M; Bastianelli, D

    2015-07-01

    A meta-analysis was conducted (i) to evaluate broiler response to partial or total substitution of corn by sorghum and millet and (ii) to determine the effect of soybean meal replacement by cottonseed meal in broiler diet. The database included 190 treatments from 29 experiments published from 1990 to 2013. Bird responses to an experimental diet were calculated relative to the control (Experimental-Control), and were submitted to mixed-effect models. Results showed that diets containing millet led to similar performance as the corn-based ones for all parameters, whereas sorghum-based diets decreased growth performance. No major effect of the level of substitution was observed with millet or cottonseed meal. No effect of the level of substitution of sorghum on feed intake was found; however, growth performance decreased when the level of substitution of corn by sorghum increased. Cottonseed meal was substituted to soybean meal up to 40% and found to increase feed intake while reducing growth performance. Young birds were not more sensitive to these ingredients than older birds since there was no negative effect of these ingredients on performance in the starter phase. Results obtained for sorghum pointed out the necessity to find technological improvements that will increase the utilization of these feedstuffs in broiler diet. An additional work is scheduled to validate these statistical results in vivo and to evaluate the interactions induced with the simultaneous inclusions of sorghum, millet and cottonseed meal in broiler feeding.

  20. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

Top