On the history of the Institute of Theoretical and Experimental Physics (ITEP, Moscow)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abov, Yu. G.
A survey of investigations performed at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the realms of low-energy physics from the foundation of the institute to the present time is given.
Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the H1 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efremenko, V. I.
A group of researchers from the Institute of Theoretical and Experimental Physics (ITEP, Moscow) took part at almost all stages of the H1 experiment performed at the HERA collider (Hamburg) in order to study lepton-proton interactions at high energies. Several subdetectors of the H1 detector were developed, designed, and constructed at the ITEP industrial workshop and domestic enterprises. In particular, the ITEP staff participated in assembling and tunning the equipment, servicing the detector and the data acquisition system, and analyzing and presenting the results. Researchers from ITEP have been playing a crucial role at many stages of the experiment tomore » the present day.« less
Achievements of ITEP astrophysicists
NASA Astrophysics Data System (ADS)
Baklanov, P. V.; Blinnikov, S. I.; Manukovskiy, K. V.; Nadyozhin, D. K.; Panov, I. V.; Utrobin, V. P.; Yudin, A. V.
2016-08-01
Astrophysical research at the Institute for Theoretical and Experimental Physics (ITEP) is examined historically over a period of more than 30 years. The primary focus is on the supernova problem, starting with how it was approached in the classical pioneering work of Imshennik and Nadyozhin and ending with present-day models of these most powerful star explosions in the Universe. The paper also reviews work in other areas of astrophysics, including chemical nucleosynthesis, the cosmological use of type-IIn supernovae and dark matter models. The paper was written as a contribution to the 70th anniversary of ITEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, A. V.
A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.
NASA Astrophysics Data System (ADS)
2014-02-01
On 5 - 6 June 2013, an extended session of the all-institute seminar was held at the Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics' (ITEP). It was devoted to the 100th anniversary of the birth of Academician Isaak Yakovlevich Pomeranchuk, the founder of the Theory Department of ITEP. The announced agenda of the session on the ITEP website http://www.itep.ru/rus/Pomeranchuk100.html contained the following reports: (1) Gershtein S S (SRC 'Institute for High Energy Physics', Protvino, Moscow region) "I Ya Pomeranchuk and the large accelerator";(2) Keldysh L V (Lebedev Physical Institute, RAS (FIAN), Moscow) "Dynamic tunneling";(3) Vaks V G (National Research Centre 'Kurchatov Institute' (NRC KI), Moscow) "Brief reminiscences";(4) Smilga A V (Laboratoire Physique Subatomique et des technologies associées, Université de Nantes, France) "Vacuum structure in 3D supersymmetric gauge theories";(5) Khriplovich I B (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Gravitational four-fermion interaction and early Universe dynamics";(6) Dremin I M (FIAN, Moscow) "Elastic scattering of hadrons";(7) Belavin A A (Landau Institute of Theoretical Physics, RAS, Moscow) "Correlators in minimal string models";(8) Voloshin M B (Theoretical Physics Institute, University of Minnesota, USA) "Exotic quarkonium";(9) Nekrasov N A (Institut des hautes études scientifiques (IHES), France) "BPS/CFT correspondence";(10) Zarembo K (Uppsala Universitet, Sweden) "Exact results in supersymmetric theories and AdS/CFT correspondence";(11) Gorsky A S (ITEP, Moscow) "Baryon as a dyon instanton";(12) Blinnikov S I (ITEP, Moscow) "Mirror substance and other models for dark matter";(13) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Test-tube Universe";(14) Kancheli O V (ITEP, Moscow) "50 years of reggistics";(15) Shevchenko V I (NRC KI) "In search of the chiral magnetic effect";(16) Kirilin V P (ITEP, Moscow) "Anomalies and long-range action";(17) Narozhny N B (National Research Nuclear University 'MEPhI', Moscow) "Superpower lasers as instruments for studying the properties of vacuum";(18) Kerbikov B O (ITEP, Moscow) "Hadrons in strong magnetic fields";(19) Neznamov V P, Safronov I I (Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), Sarov, Nizhny Novgorod region) "A new method for solving the 'Z > 137' problem and determining hydrogen-like energy levels";(20) Vysotsky M I, Godunov S I (ITEP, Moscow) "Critical charge in a superstrong magnetic field";(21) Dolgov A D (Universitè degli Studi di Ferrara, Italy) "Cosmology: from Pomeranchuk to the present day".Papers written around the reports Nos 4, 5, 11, 12, 19 - 21 are published below. The content of report 6 in an extended form is reflected in I M Dremin's 2013 review of the same title published in Phys. Usp. 56 3 (2013). An extended version of report 13 is published in the present issue of Phys. Usp. 57 128 (2014). • Vacuum structure in 3D supersymmetric gauge theories, A V Smilga Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 155-166 • Gravitational four-fermion interaction in the early Universe, A S Rudenko, I B Khriplovich Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 167-170 • Limit cycles in renormalization group dynamics, K M Bulycheva, A S Gorsky Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 171-182 • Mirror matter and other dark matter models, S I Blinnikov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 183-188 • New method for solving the Z>137 problem and determining hydrogen-like energy levels, V P Neznamov, I I Safronov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 189-193 • Critical charge in a superstrong magnetic field, M I Vysotskii, S I Godunov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 194-198 • Cosmology: from Pomeranchuk to the present day, A D Dolgov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 199-208
NASA Astrophysics Data System (ADS)
Bolshakov, A. E.; Golubev, A. A.; Zenkevich, P. R.; Kats, M. M.; Kolomiets, A. A.
2014-09-01
We report the results of a study into the feasibility of conducting the ELISE and EXL experiments on collisions of nuclei of radioactive fragments with electrons at the Institute for Theoretical and Experimental Physics (ITEP). A scheme for uranium ion acceleration in the ITEP accelerator complex is chosen, and it is shown that uranium ions may be accelerated with an intensity of ˜1 × 1011 ions/s as soon as the complex is modified and a new injector is constructed. The basic parameters of the modified complex are given, and a layout diagram indicating the positions of the target that serves to produce radioactive fragments, the separator, and the storage rings (CR, RESR, NESR, and ER) at the ITEP site is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeldovich, O. Ya.; Kirpichnikov, I. V.
Investigation of neutrinoless double-beta (2{beta}0{nu}) decay is presently being considered as one of the most important problems in particle physics and cosmology Interest in the problem was quickened by the observation of neutrino oscillations. The results of oscillation experiments determine the mass differences between different neutrino flavors, and the observation of neutrinoless decay may fix the absolute scale and the hierarchy of the neutrino masses. Investigation of 2{beta}0{nu} decay is the most efficient method for solving the problem of whether the neutrino is a Dirae or a Majorana particle, Physicists from the Institute of Theoretical and Experimental Physics (ITEP, Moscow)more » have been participating actively in solving this problem. They initiated and pioneered the application of semiconductor detectors manufactured from enriched germanium to searches for the double-beta decay of {sup 76}Ge. Investigations with {sup 76}Ge provided the most important results. At present, ITEP physicists are taking active part in four very large projects, GERDA. Majorana, EXO, and NEMO, which are capable of recording 2{beta}0{nu} decay at a Majorana neutrino mass of
Hadron therapy: history, status, prospects
NASA Astrophysics Data System (ADS)
Klenov, G. I.; Khoroshkov, V. S.
2016-08-01
A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.
ITEP MEVVA ion beam for rhenium silicide production.
Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O
2010-02-01
The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.
NASA Astrophysics Data System (ADS)
Orlov, Yuri F.
2013-06-01
It happened that our careers in physics - that of Boris Lazarevich Ioffe and mine - started almost simultaneously at the Institute of Theoretical and Experimental Physics (ITEP) in Moscow.
Portable emittance measurement device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakin, D.; Seleznev, D.; Orlov, A.
2010-02-15
In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.
Cosmology: from Pomeranchuk to the present day
NASA Astrophysics Data System (ADS)
Dolgov, A. D.
2014-02-01
A review of half a century of cosmology is presented for an intended audience of elementary particle physicists. The review is based on a half-hour seminar talk (at the Institute of Theoretical and Experimental Physics, ITEP) and is therefore brief and superficial. The introductory historical section is mostly devoted to the fundamental work done in, but not always known outside, Russia (USSR). Foundational works and astronomical observations instrumental in shaping the field are discussed, as are inflation, baryosynthesis, dark matter and dark energy, vacuum energy, large-scale gravity modifications, and microwave background angular fluctuations. The presentation is admittedly not entirely objective but rather is given from the Russian (ITEP) perspective and is influenced by the author's personal views and biases.
Barminova, H Y; Saratovskyh, M S
2016-02-01
The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10(10) ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@bk.ru; Saratovskyh, M. S.
2016-02-15
The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10{sup 10} ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turnmore » in magnetic field are presented for different initial conditions.« less
The first dozen years of the history of ITEP Theoretical Physics Laboratory
NASA Astrophysics Data System (ADS)
Ioffe, B. L.
2013-01-01
The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.
Measurement of the {sup 214}Po half-life by the DEVIS track setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, V. A.; Brakhman, E. V.; Zeldovich, O. Ya.
2013-04-15
Measurement of the {sup 214}Po half-life with the DEVIS track setup at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) by means of a procedure based on determining lifetimes of individual nuclei is described. The value obtained for the {sup 214}Po half-life is 163.8 {+-} 3.0 Micro-Sign s. The possibility of reaching the accuracy of the measurements that is required for testing the statement that the decay of some nuclei has a nonexponential character and the source intensity necessary for this are discussed.
Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.
Cho, S; Dong, S; Parent, K N; Chen, M
2016-01-01
Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.
Tribal Air Quality Monitoring.
ERIC Educational Resources Information Center
Wall, Dennis
2001-01-01
The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…
Quark-gluon plasma (Selected Topics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, V. I., E-mail: vzakharov@itep.ru
Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.
ITEP: an integrated toolkit for exploration of microbial pan-genomes.
Benedict, Matthew N; Henriksen, James R; Metcalf, William W; Whitaker, Rachel J; Price, Nathan D
2014-01-03
Comparative genomics is a powerful approach for studying variation in physiological traits as well as the evolution and ecology of microorganisms. Recent technological advances have enabled sequencing large numbers of related genomes in a single project, requiring computational tools for their integrated analysis. In particular, accurate annotations and identification of gene presence and absence are critical for understanding and modeling the cellular physiology of newly sequenced genomes. Although many tools are available to compare the gene contents of related genomes, new tools are necessary to enable close examination and curation of protein families from large numbers of closely related organisms, to integrate curation with the analysis of gain and loss, and to generate metabolic networks linking the annotations to observed phenotypes. We have developed ITEP, an Integrated Toolkit for Exploration of microbial Pan-genomes, to curate protein families, compute similarities to externally-defined domains, analyze gene gain and loss, and generate draft metabolic networks from one or more curated reference network reconstructions in groups of related microbial species among which the combination of core and variable genes constitute the their "pan-genomes". The ITEP toolkit consists of: (1) a series of modular command-line scripts for identification, comparison, curation, and analysis of protein families and their distribution across many genomes; (2) a set of Python libraries for programmatic access to the same data; and (3) pre-packaged scripts to perform common analysis workflows on a collection of genomes. ITEP's capabilities include de novo protein family prediction, ortholog detection, analysis of functional domains, identification of core and variable genes and gene regions, sequence alignments and tree generation, annotation curation, and the integration of cross-genome analysis and metabolic networks for study of metabolic network evolution. ITEP is a powerful, flexible toolkit for generation and curation of protein families. ITEP's modular design allows for straightforward extension as analysis methods and tools evolve. By integrating comparative genomics with the development of draft metabolic networks, ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.
Current experiments in elementary particle physics. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Armstrong, F.E.; von Przewoski, B.
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Current Experiments in Particle Physics. 1996 Edition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, Hrvoje
2003-06-27
This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.
Kim, Ha; Sin, Jeong-Im
2012-11-01
Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.
NASA Astrophysics Data System (ADS)
Kostyuchenko, V. I.; Makarova, A. S.; Ryazantsev, O. B.; Samarin, S. I.; Uglov, A. S.
2014-06-01
A great breakthrough in proton therapy has happened in the new century: several tens of dedicated centers are now operated throughout the world and their number increases every year. An important component of proton therapy is a treatment planning system. To make calculations faster, these systems usually use analytical methods whose reliability and accuracy do not allow the advantages of this method of treatment to implement to the full extent. Predictions by the Monte Carlo (MC) method are a "gold" standard for the verification of calculations with these systems. At the Institute of Experimental and Theoretical Physics (ITEP) which is one of the eldest proton therapy centers in the world, an MC code is an integral part of their treatment planning system. This code which is called IThMC was developed by scientists from RFNC-VNIITF (Snezhinsk) under ISTC Project 3563.
Defense Acquisitions: Assessments of Selected Weapon Programs
2016-03-01
Increment 3 81 Indirect Fire Protection Capability Increment 2-Intercept Block 1 (IFPC Inc 2-I Block 1) 83 Improved Turbine Engine Program (ITEP...ITEP Improved Turbine Engine Program JAGM Joint Air-to-Ground Missile JLTV Joint Light Tactical Vehicle JSTARS Recap Joint Surveillance Target...Attack Radar System Recap 09/2017 —- Improved Turbine Engine Program 06/2018 O O O Amphibious Ship Replacement 09/2018 O O Advanced Pilot
Defense Acquisitions: Assessments of Selected Weapon Programs
2017-03-01
PAC-3 MSE) 81 Warfighter Information Network-Tactical (WIN-T) Increment 2 83 Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires...Unmanned Air System 05/2018 —- O Joint Surveillance Target Attack Radar System Recapitalization 10/2017 —- O Improved Turbine Engine Program TBD...Network-Tactical (WIN-T) Increment 2 83 1-page assessments Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires (LRPF) 86
Noncommissioned Officer Professional Development Study (NCOPDS). Volume 1
1986-02-14
materialism by purchasing more consumer goods. 11. People were on the move - the country "shrank." 12. Traditional sex roles began to change. 13...Who should be responsible for NCODP at the various levels? -- How can NCOES be made more effective ? -- What should be the role of ITEP in...various levels? -- How can NCOES be made more effective ? -- What should be the role of ITEP in professional development? -- how can NCODP be
Spectra of double-cumulative photons in the central rapidity region at high transverse momenta
NASA Astrophysics Data System (ADS)
Alekseev, I. G.; Golubev, A. A.; Goryachev, V. S.; Dzubenko, G. B.; Dolgolenko, A. G.; Zhigareva, N. M.; Kiselev, S. M.; Mikhaylov, K. R.; Morozova, E. A.; Polozov, P. A.; Prokudin, M. S.; Romanov, D. V.; Svirida, D. N.; Stavinsky, A. V.; Stolin, V. L.; Sharkov, G. B.
2015-11-01
The spectra of photons produced in the interaction between carbon ions of kinetic energy 2.0 and 3.2 GeV per nucleon and beryllium nuclei were measured at the FLINT facility by means of electromagnetic calorimeters that is deployed at the accelerator of the Institute for Theoretical and Experimental Physics (ITEP, Moscow). The spectra in question were measured in the central rapidity region (at angles between 35° and 73° in the laboratory frame) at photon energies of 1 to 3 GeV by using a cumulative-photon trigger. An analysis of the data obtained in this way reveals that the interaction of multinucleon fluctuation in the projectile nucleus with a multinucleon fluctuation in the target nucleus is a dominant process that leads to photon production in the measured region of angles and momenta. As a development of the generally accepted terminology, an interaction of this type may be called a double cumulative interaction.
NASA Astrophysics Data System (ADS)
Danilyan, G. V.
2018-02-01
Signs of the ROT-effects in ternary fission of 233U and 235U experimentally defined by PNPI group are the same, whereas in binary fission defined by ITEP group are opposite. This contradiction cannot be explained by the errors in the experiments of both groups, since such instrumental effects would be too large not to be noticed. Therefore, it is necessary to find the answer to this problem in the differences of the ternary and binary fission mechanisms.
Rep. Kilmer, Derek [D-WA-6
2013-05-22
House - 06/20/2013 Referred to the Subcommittee on Intelligence, Emerging Threats & Capabilities. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.
The cross sections for the production of {sup 148}Gd in {sup nat}W and {sup 181}Ta targets irradiated by 0.4-, 0.6-, 0.8-, 1.2-, 1.6-, and 2.6-GeV protons at the ITEP accelerator complex have been measured by direct {alpha} spectrometry without chemical separation. The experimental data have been compared with the data obtained at other laboratories and with the theoretical simulations of the yields on the basis of the BERTINI, ISABEL, CEM03.02, INCL4.2, INCL4.5, CASCADE07, and PHITS codes.
32 CFR 241.11 - Numerical limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Numerical limitation. 241.11 Section 241.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED...) § 241.11 Numerical limitation. The ITEP Pilot is an opportunity for the exchange of knowledge...
Handheld standoff mine detection system (HSTAMIDS) field evaluation in Namibia
NASA Astrophysics Data System (ADS)
Doheny, Robert C.; Burke, Sean; Cresci, Roger; Ngan, Peter; Walls, Richard; Chernoff, Jeff
2006-05-01
The Humanitarian Demining Research and Development Program of the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), under the direction of the Office of Assistant Secretary of Defense for Special Operations and Low-Intensity Conflict (OASD SO/LIC) and with participation from the International Test and Evaluation Program (ITEP) for humanitarian demining, conducted an in-country field evaluation of the Handheld Standoff Mine Detection System (HSTAMIDS) in the southern African country of Namibia. Participants included the US Humanitarian Demining Team of NVESD; ITEP personnel from several member countries; deminers from two non-governmental organizations in Angola, Menschen Gegen Minen (MgM) and HALO Trust; and CyTerra Corporation. The primary objectives were to demonstrate the performance of the U.S. Army's newest handheld multisensor mine detector, the HSTAMIDS, to the performance of the metal detector being used by local demining organizations and also to assess the performance of deminers using the HSTAMIDS after limited experience and training.
Global Student Teaching Experiences: Stories Bridging Cultural and Inter-Cultural Difference
ERIC Educational Resources Information Center
Alfaro, Cristina
2008-01-01
The study described in this article took place in an international consortium type model program. The International Teacher Education Program (ITEP) is a California State University System (CSUS) credential program for elementary teacher candidates who are pursuing teacher certification as bilingual teachers (Spanish). Besides San Diego State…
32 CFR 241.5 - Written agreements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Written agreements. 241.5 Section 241.5 National... PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.5 Written agreements. (a... to be assigned to ITEP must sign a three-party agreement. Prior to the agreement being signed the...
Information Technology Exchange Program (ITEP) - U.S. Department of Defense
Skip to main content (Press Enter). Toggle navigation Chief Information Officer Search Search Chief Information Officer: Search Search Chief Information Officer: Search Chief Information Officer U.S. Department of Defense Chief Information Officer Home About DoD CIO Bios Organization DCIO C4&IIC DCIO IE
Defense Acquisitions: Assessments of Selected Weapon Programs
2017-03-01
PAC-3 MSE) 81 Warfighter Information Network-Tactical (WIN-T) Increment 2 83 Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires...incorporated certain 2010 acquisition reform initiatives. DOD and Congress have previously addressed some of the challenges and problems in the defense...additional quantities. While that does represent a cost increase, it does not necessarily indicate acquisition problems or a loss of buying power
Electronics of the data acquisition system of the DANSS detector based on silicon photomultipliers
NASA Astrophysics Data System (ADS)
Svirida, D.
2018-01-01
The electronics of the data acquisition system based on silicon photomultipliers is briefly described. The elements and modules of the system were designed and constructed at ITEP especially for the DANSS detector. Examples of digitized signals obtained with the presented electronic modules and selected results on processing of the DANSS engineering data-taking run in spring 2016 are given.
Radiative Decay Width of Neutral non-Strange Baryons from PWA
NASA Astrophysics Data System (ADS)
Strakovsky, Igor I.; Briscoe, William J.; Kudryavtsev, Alexander E.; Kulikov, Viacheslav V.; Martemyanov, Maxim A.; Tarasov, Vladimir E.
2015-06-01
An overview of the GW SAID and ITEP groups effort to analyze pion photoproduction on the neutron-target will be given. The disentanglement the isoscalar and isovector EM couplings of N∗ and Δ∗ resonances does require compatible data on both proton and neutron targets. The final-state interaction plays a critical role in the state-of-the-art analysis in extraction of the γn → πN data from the deuteron target experiments. It is important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH programs.
Automotive Stirling Engine Development Project
NASA Technical Reports Server (NTRS)
Ernst, William D.; Shaltens, Richard K.
1997-01-01
The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.
Progress in neutron electromagnetic couplings
NASA Astrophysics Data System (ADS)
Strakovsky, Igor; Briscoe, William; Kudryavtsev, Alexander; Kulikov, Viacheslav; Martemianov, Maxim; Tarasov, Vladimir; Workman, Ron
2016-05-01
An overview of the GW SAID and ITEP groups' effort to analyze pion photoproduction on the neutron-target will be given. The disentangling of the isoscalar and isovector EM couplings of N* and Δ* resonances does require compatible data on both proton and neutron targets. The final-state interactions play a critical role in the state-of-the-art analysis in extraction of the γn → πN data from the deuteron target experiments. Then resonance couplings determined by the SAID PWA technique are compared to previous findings. The neutron program is an important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.
2015-05-15
Yields of protons at 3.5° from carbon ion fragmentation at energies of T{sub 0} = 0.3, 0.6, 0.95, and 2.0 GeV/nucleon on a Be target were measured in the FRAGM experiment at TWA-ITEP heavy-ion facility. Proton momentum spectra cover both the region of the fragmentation maximum and the cumulative region. The differential cross sections span six orders of its magnitude. The spectra are compared with the predictions of four models of ion-ion interactions: LAQGSM03.03, SHIELD-HIT, QMD, and BC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, B. M.; Alexeev, P. N.; Borodin, Yu. A.
The yields of long-lived nuclear fragments at an angle of 3.5° that originate fromthe fragmentation of carbon ions with an energy of T{sub 0} = 0.6 GeV per nucleon on a berylliumtarget were measured in the FRAGMexperiment at the ITEP TWA heavy-ion accelerator. The momentum spectra of these fragments cover both the fragmentation-maximum region and the cumulative region. The respective differential cross sections change by about five orders of magnitude. The momentum distributions of fragments in the laboratory frame and their kinetic-energy distributions in the rest frame of the fragmenting nucleus are used to test the predictions of four modelsmore » of ion–ion interactions: BC, INCL++, LAQGSM03.03, and QMD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimirsky, V. V.; Grigor'ev, V. K.; Erofeev, I. A.
2006-03-15
On the basis of experimental data from the 6-m spectrometer of the Institute of Theoretical and Experimental Physics (ITEP, Moscow), an amplitude analysis of 40 553 events of the reaction {pi}{sup -}p {sup {yields}} K{sub S}K{sub S}n induced by a negatively charged pion of energy 40 GeV is performed over a broad momentum transfer range by using a new procedure. The results for vertical bar t vertical bar > 0.1 GeV{sup 2} are obtained for the first time. In particular, resonances of mass 1700 and 1900 MeV and width 120 MeV are discovered in the D{sub +} wave (there weremore » no such resonances for vertical bar t vertical bar < 0.1 GeV{sup 2}). In the region of low momentum transfers, the S wave exhibits a structure that lies in the mass region around 1370 MeV and which requires three resonances for its explanation. Two of these (that of mass 1234 {+-} 6 MeV and width 47 {+-} 33 MeV and that of mass 1478 {+-} 6 MeV and width 119 {+-} 10 MeV) were found in the studies of A. Etkin et al. [Phys. Rev. D 25, 2446 (1982)] and O.N. Baloshin et al. {l_brace}Yad. Fiz. 43, 1487 (1986) [Phys. At. Nucl. 43, 959 (1986)]{r_brace}. The third has a mass of 1389 {+-} 9 MeV and a width of 30 {+-} 24 MeV. At high momentum transfers, the S wave is found to feature resonances that have the following parameters: M = 1328 {+-} 8 MeV and {gamma} = 237 {+-} 20 MeV, M = 1440 {+-} 6 MeV and {gamma} = 121 {+-} 15 MeV, and M = 1776 {+-} 15 MeV and {gamma} 250 {+-} 30 MeV. For the D{sub 0} wave, it is found that, in addition to the well-known resonances f{sub 2}, a{sub 2}, and f'{sub 2}, there appear the following resonances in this wave: a resonance of mass 2005 {+-} 12 MeV and width 209 {+-} 32 MeV and a resonance of mass 2270 {+-} 12 MeV and width 90 {+-} 29 MeV at low vertical bar t vertical bar and a resonance of mass 1659 {+-} 6 and width 152 {+-} 18 and a resonance of mass 2200 {+-} 13 MeV and width 91 {+-} 62 MeV at high vertical bar t vertical bar.« less
Front-end simulation of injector for terawatt accumulator.
Kropachev, G N; Balabin, A I; Kolomiets, A A; Kulevoy, T V; Pershin, V I; Shumshurov, A V
2008-02-01
A terawatt accumulator (TWAC) accelerator/storage ring complex with the laser ion source is in progress at ITEP. The new injector I4 based on the radio frequency quadrupole (RFQ) and interdigital H-mode (IH) linear accelerator is under construction. The front end of the new TWAC injector consists of a laser ion source, an extraction system, and a low energy beam transport (LEBT). The KOBRA3-INP was used for the simulation and optimization of the ion source extraction system. The optimization parameter is the maximum brightness of the beam generated by the laser ion source. Also the KOBRA3-INP code was used for LEBT investigation. The LEBT based on electrostatic grid lenses is chosen for injector I4. The results of the extraction system and LEBT investigations for ion beam matching with RFQ are presented.
Cryogenic experiences during W7-X HTS-current lead tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Thomas; Lietzow, Ralph
2014-01-29
The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three mainmore » parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.« less
NASA Astrophysics Data System (ADS)
2007-11-01
Mohab Abou ZeidVrije Universiteit, Brussel Joke AdamKatholieke Universiteit Leuven Nikolas AkerblomMax-Planck-Institut für Physik, München Luis Fernando Alday Utrecht University Stelios Alexandris University of Patras Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Pascal Anastasopoulos Università di Roma Tor Vergata Laura Andrianopoli Enrico Fermi Center Carlo Angelantonj Università di Torino Lilia Anguelova Queen Mary, University of London Daniel AreanUniversidade de Santiago de Compostela Gleb ArutyunovUtrecht University Spyros Avramis NTU Athens—University of Patras Ioannis Bakas University of Patras Subrata Bal Dublin Institute for Advanced Studies Igor Bandos Valencia University Jessica Barrett University of Iceland Marco Baumgartl Eidgenössische Technische Hochschule, Zürich Jacopo Bechi Università di Firenze James Bedford Queen Mary, University of London Jorge Bellorin Universidad Autonoma de Madrid Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Gaetano BertoldiUniversity of Wales, Swansea Adel Bilal Laboratoire de Physique Théorique, École Normale Superieure, Paris Matthias Blau Université de Neuchâtel Johannes BroedelUniversität Hannover Felix Brümmer Universität Heidelberg Julio Cesar Bueno de Andrade São Paulo State University—UNESP Cliff Burgess McMaster University Agostino Butti Laboratoire de Physique Théorique, École Normale Superieure, Paris Marco Caldarelli Universitat de Barcelona Pablo G Camara Centre de Physique Théorique, École Polytechnique, Palaiseau Joan Camps Universitat de Barcelona Felipe Canoura FernandezUniversidade de Santiago de Compostela Luigi Cappiello Università di Napoli Federico II Luca Carlevaro École Polytechnique, Palaiseau Roberto Casero Centre de Physique Théorique, École Polytechnique, Palaiseau Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare and Università di Torino Kang Sin Choi University of Bonn Michele Cirafici University of Patras Andres Collinucci Katholieke Universiteit Leuven Aldo Cotrone Universitat de Barcelona Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Gianguido Dall'Agata Padova University Sanjit Das Indian Institute of Technology, Kharagpur Forcella Davide SISSA, Trieste Jose A de Azcarraga Valencia University and Instituto de Fìsica Corpuscular (CSIC-UVEG), Valencia Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Jean-Pierre Derendinger Université de Neuchâtel Stephane Detournay Università Degli Studi di Milano Paolo Di Vecchia NORDITA, København Oscar Dias Universitat de Barcelona Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Joel Ekstrand Department of Theoretical Physics, Uppsala University Federico Elmetti Università di Milano I Diaconu Eugen University of Craiova Oleg Evnin Vrije Universiteit, Brussel Bo Feng Imperial College, London Livia Ferro Università di Torino Pau Figueras Universitat de Barcelona Raphael Flauger University of Texas at Austin Valentina Forini Università di Perugia Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Lisa Freyhult Albert-Einstein-Institut, Golm Carlos Fuertes Instituto de Física Teórica, Madrid Matthias Gaberdiel Eidgenössische Technische Hochschule, Zürich Maria Pilar Garcia del Moral Università di Torino Daniel Gerber Instituto de Física Teórica, Madrid Valentina Giangreco Marotta Puletti Uppsala University Joaquim Gomis Universitat de Barcelona Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Umut Gursoy École Polytechnique, Palaiseau and École Normale Supérieure, Paris Michael Haack Ludwig-Maximilians-Universität, München Troels Harmark Niels Bohr Institute, København Alexander Haupt Imperial College, London Michal Heller Jagiellonian University, Krakow Samuli Hemming University of Iceland Yasuaki Hikida DESY, Hamburg Christian Hillmann Max-Planck-Institut für Gravitationsphysik, Potsdam Stephan Hoehne Max-Planck-Institut für Physik, München Gabriele Honecker CERN, Geneva Carlos Hoyos University of Wales, Swansea Mechthild Huebscher Consejo Superior de Investigaciones Cientificas, Madrid Matthias Ihl University of Texas at Austin Emiliano Imeroni University of Wales, Swansea Nikos Irges University of Crete Negru Iulian University of Craiova Matthias Kaminski Ludwig-Maximilians-Universität, München Stefanos Katmadas Universiteit Utrecht Shoichi Kawamoto Oxford University Christoph Keller Eidgenössische Technische Hochschule, Zürich Arjan Keurentjes Vrije Universiteit, Brussel Sadi Khodaee Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran Michael Kiermaier Massachusetts Institute of Technology, Cambridge, MA Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Ingo KirschEidgenössische Technische Hochschule, Zürich Johanna Knapp CERN, Geneva Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Anatoly Konechny Heriot-Watt University, Edinburgh Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow Daniel KreflLudwig-Maximilians-Universität and Max-Planck-Institut für Physik, München Chethan KrishnanUniversité Libre de Bruxelles Stanislav Kuperstein Université Libre de Bruxelles Alberto Lerda Università del Piemonte Orientale, Alessandria Roman Linares Universidad Autonoma Metropolitana, Iztapalapa, México Maria A Lledo Universidad de Valencia Dieter Luest Ludwig-Maximilians-Universität and Max-Planck-Institut für Physik, München Joseph Lykken Fermi National Accelerator Laboratory (Fermilab), Batavia, IL Carlo Maccaferri Vrije Universiteit, Brussel Oscar Macia Universidad de Valencia Tristan Maillard Centre de Physique Théorique, École Polytechnique, Palaiseau Diego Mansi Università Degli Studi di Milano Matteo Marescotti Università del Piemonte Orientale, Alessandria Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Luca Martucci Instituto de Física Teórica, Madrid and Katholieke Universiteit Leuven David Mateos University of California, Santa Barbara Andrea Mauri Università di Milano Liuba Mazzanti Università di Milano-Bicocca Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Lotta Mether Helsinki Institute of Physics Rene Meyer Max-Planck-Institut für Physik, München Giuseppe Milanesi SISSA, Trieste Cesar Miquel-Espanya Universitat de Valencia and Instituto de Física Corpuscular, Valencia Alexander Monin Institute for Theoretical and Experimental Physics (ITEP), Moscow and Moscow State University (MSU) Samuel Monnier Université de Genève Sergio Montero Instituto de Física Teórica, Madrid Nicola Mori Università di Firenze Alexander Marcel Morisse University of California, Santa Cruz Sebastian Moster Max-Planck-Institut für Physik, München Adele Nasti Queen Mary, University of London Vasilis Niarchos École Polytechnique, Palaiseau Emil Nissimov Institute for Nuclear Research and Nuclear Energy, Sofia Francesco Nitti École Polytechnique, Palaiseau Eoin O'Colgain Imperial College, London Niels Obers Niels Bohr Institute, København Rodrigo Olea Università Degli Studi di Milano Marta Orselli Niels Bohr Institute, København Enrico PajerLudwig-Maximilians-Universität, München Eran PaltiOxford University Georgios PapathanasiouBrown University, Providence, RI Angel ParedesCentre de Physique Théorique, École Polytechnique, Palaiseau Jeong-Hyuck ParkMax-Planck-Institut für Physik, München Sara PasquettiUniversità di Parma Silvia PenatiUniversità di Milano-Bicocca Igor PesandoUniversità di Torino Marios PetropoulosÉcole Polytechnique, Palaiseau Roberto PettorinoUniversità di Napoli Federico II Franco PezzellaIstituto Nazionale di Fisica Nucleare, Napoli Moises Picon PonceIstituto Nazionale di Fisica Nucleare, Padova Marco PirroneUniversità di Milano-Bicocca Erik PlauschinnMax-Planck-Institut für Physik, München Andre PloeghCentre for Theoretical Physics, University of Groningen Giuseppe PolicastroLaboratoire de Physique Théorique, École Normale Superieure, Paris Josep PonsUniversitat de Barcelona S Prem KumarUniversity of Wales, Swansea Nikolaos PrezasCERN, Geneva Carlo Alberto RattiUniversità di Milano-Bicocca Riccardo RicciImperial College, London Alejandro RiveroEscuela Universitaria Politécnica de Teruel, Universidad de Zaragoza Irene RodriguezInstituto de Física Teórica, Madrid Maria Jose RodriguezUniversitat de Barcelona Diederik RoestUniversitat de Barcelona Alberto RomagnoniLaboratoire de Physique Théorique d'Orsay, Paris Christian RomelsbergerDublin Institute for Advanced Studies Jan RosseelKatholieke Universiteit Leuven Sebastiano RossiEidgenössische Technische Hochschule, Zürich Felix RustMax-Planck-Institut für Physik, München Cheol RyouPohang University of Science and Technology (POSTECH) Christian SaemannDublin Institute for Advanced Studies Houman Safaai SISSA, Trieste Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Frank SaueressigUniversiteit Utrecht Ricardo SchiappaCERN, Geneva Cornelius Schmidt-ColinetEidgenössische Technische Hochschule, Zürich Maximilian Schmidt-SommerfeldMax-Planck-Institut für Physik, München Waldemar SchulginMax-Planck-Institut für Physik, München Claudio ScruccaUniversité de Neuchâtel Nathan SeibergInstitute of Advanced Studies, Princeton, NJ Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Kostas SiamposUniversity of Patras Christoph SiegUniversità Degli Studi di Milano Vaula Silvia Instituto de Física Teórica, Madrid Aaron Sim Imperial College, London Woojoo Sim Pohang University of Science and Technology (POSTECH) Sergey Slizovskiy Department of Theoretical Physics, Uppsala University Paul Smyth Katholieke Universiteit Leuven Corneliu Sochichiu Laboratori Nazionali di Frascati Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Kellogg Stelle Imperial College, London Piotr Surowka Jagiellonian University, Krakow Yasutoshi Takayama Niels Bohr Institute, København Laura Tamassia Katholieke Universiteit Leuven Radu Tatar University of Liverpool Larus Thorlacius University of Iceland Paavo Tiitola Helsinki Institute of Physics Diego Trancanelli Stony Brook University, NY Michele TraplettiInstitut für Theoretische Physik, Universität Heidelberg Mario Trigiante Politecnico di Torino Angel Uranga CERN, Geneva and Instituto de Física Teórica, Madrid Roberto Valandro SISSA, Trieste Dieter Van den Bleeken Katholieke Universiteit Leuven Antoine Van Proeyen Katholieke Universiteit Leuven Thomas Van Riet Centre for Theoretical Physics, University of Groningen Pierre Vanhove Service de Physique Théorique, Saclay Oscar Varela Universidad de Valencia Alessandro Vichi Scuola Normale Superiore di Pisa Massimiliano VinconQueen Mary, University of London John Ward Queen Mary, University of London and CERN, Geneva Brian Wecht Massachusetts Institute of Technology, Cambridge, MA Marlene Weiss Eidgenössische Technische Hochschule, Zürich and CERN, Geneva Sebastian Weiss Université de Neuchâtel Alexander Wijns Vrije Universiteit, Brussel Przemek Witaszczyk Jagiellonian University, Krakow Timm Wrase University of Texas at Austin Jun-Bao Wu SISSA, Trieste Amos Yarom Ludwig-Maximilians-Universität, München Marco Zagermann Max-Planck-Institut für Physik, München Daniela Zanon Dipartimento di Fisica, Università di Milano Andrea Zanzi University of Bonn Andrey Zayakin Moscow State University (MSU) and Institute for Theoretical and Experimental Physics (ITEP), Moscow Konstantinos Zoubos Queen Mary, University of London
MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.
2001-01-01
Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less
Krutenkova, A. P.; Abramov, B. M.; Alekseev, P. N.; ...
2015-05-29
Momentum distributions of hydrogen and helium isotopes from ¹²C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared tomore » the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less
Krutenkova, Anna P.; Abramov, B. M.; Alekseev, P. N.; ...
2015-05-29
The momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. Moreover, the differential cross sections cover six orders of magnitude. The distributions measured aremore » compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less
Physical versus Virtual Manipulative Experimentation in Physics Learning
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; Olympiou, Georgios
2011-01-01
The aim of this study was to investigate whether physical or virtual manipulative experimentation can differentiate physics learning. There were four experimental conditions, namely Physical Manipulative Experimentation (PME), Virtual Manipulative Experimentation (VME), and two sequential combinations of PME and VME, as well as a control condition…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…
A survey of environmental needs and innovative technologies in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, C.F.; Roberds, W.J.
1995-05-01
The International Technology Program (IT?), formerly the international Technology Exchange Program (ITEP), of the Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) is responsible for promoting: (1) the import of innovative technologies to better address EM`s needs; and (2) the export of US services into foreign markets to enhance US competitiveness. Under this program: (1) the environmental restoration market in Germany was evaluated, including the description of the general types of environmental problems, the environmental regulations, and specific selected contaminated sites; and (2) potentially innovative environmental restoration technologies, either commercially available or under development in Germany,more » were identified, described and evaluated. It was found that: (1) the environmental restoration market in Germany is very large, on the order of several billion US dollars per year, with a significant portion possibly available to US businesses; and (2) a large number (54) of innovative environmental restoration technologies, which are either commercially available or under development in Germany, may have some benefit to the DOE EM program and should be considered for transfer to the US.« less
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.
A summary of research-based assessment of students' beliefs about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2018-03-01
Within the undergraduate physics curriculum, students' primary exposure to experimental physics comes from laboratory courses. Thus, as experimentation is a core component of physics as a discipline, lab courses can be gateways in terms of both recruiting and retaining students within the physics major. Physics lab courses have a wide variety of explicit and/or implicit goals for lab courses, including helping students to develop expert-like beliefs about the nature and importance of experimental physics. To assess students' beliefs, attitudes, and expectations about the nature of experimental physics, there is currently one research-based assessment instrument available—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Since its development, the E-CLASS has been the subject of multiple research studies aimed at understanding and evaluating the effectiveness of various laboratory learning environments. This paper presents a description of the E-CLASS assessment and a summary of the research that has been done using E-CLASS data with a particular emphasis on the aspects of this work that are most relevant for instructors.
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany
2017-04-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that addresses the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions = 71 and Nstudents = 7167) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expert-like response even in cases where their personal views disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics. This work was funded by the NSF-IUSE Grant No. DUE-1432204 and NSF Grant No. PHY-1125844.
Students' Views about the Nature of Experimental Physics
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive…
Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)
Battaglia, Marco
2018-01-12
How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
NASA Astrophysics Data System (ADS)
Davis, Edith G.
The pilot study compared the effectiveness of using an experimental spiral physics curriculum to a traditional linear physics curriculum for sixth through eighth grades. The study also surveyed students' parents and principals about students' academic history and background as well as identified resilient children's attributes for academic success. The pilot study was used to help validate the testing instrument as well as help refine the complete study. The purpose of the complete study was to compare the effectiveness of using an experimental spiral physics curriculum and a traditional linear curriculum with sixth graders only; seventh and eighth graders were dropped in the complete study. The study also surveyed students' parents, teachers, and principals about students' academic history and background as well as identified resilient children's attributes for academic success. Both the experimental spiral physics curriculum and the traditional linear physics curriculum increased physics achievement; however, there was no statistically significant difference in effectiveness of teaching experimental spiral physics curriculum in the aggregated sixth grade group compared to the traditional linear physics curriculum. It is important to note that the majority of the subgroups studied did show statistically significant differences in effectiveness for the experimental spiral physics curriculum compared to the traditional linear physics curriculum. The Grounded Theory analysis of resilient student characteristics resulted in categories for future studies including the empathy factor ("E" factor), the tenacity factor ("T" factor), the relational factor ("R" factor), and the spiritual factor ("S" factor).
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2016-12-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.
Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview
NASA Astrophysics Data System (ADS)
Weisenberger, Andrew G.
A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.
Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E
2018-06-01
Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing…
76 FR 29998 - Removal and Modifications for Persons Listed Under Russia on the Entity List
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... language clarifying that both the All-Russian Scientific Research Institute of Technical Physics (VNIITF) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), which are Rosatom... Physics (VNIITF) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF)) which...
NASA Astrophysics Data System (ADS)
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.
2016-05-01
The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; ...
2016-01-01
Our results of 3H production in Al foil monitors (~ 59 mg/cm 2 thickness) are presented. We irradiated these foils in 15×15 mm polyethylene bags of ~ 14 mg/cm 2 thickness together with foils of Cr (~ 395 mg/cm 2 thickness) and 56Fe (~ 332 mg/cm 2 thickness) by protons of different energies in a range of 0.04 – 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U–10 under the ISTC Project # 3266 in 2006–2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer.more » We then used an ultra low level liquid scintillation spectrometer Quantulus1220 to measure the 3H β–spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x) 3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.« less
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an opportunity to develop students' understanding of the nature and importance of experimental physics within the discipline as a whole. Here, we present and compare both a longitudinal and pseudolongitudinal analysis of students' responses to a research-based assessment targeting students' views about experimental physics—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS)—across multiple, required lab courses at a single institution. We find that, while pseudolongitudinal averages showed increases in students' E-CLASS scores in each consecutive course, analysis of longitudinal data indicates that this increase was not driven by a cumulative impact of laboratory instruction. Rather, the increase was driven by a selection effect in which students who persisted into higher-level lab courses already had more expertlike beliefs, attitudes, and expectations than their peers when they started the lower-level courses.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an…
(Fundamental of hadron physics from the theoretical and the experimental points of view)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luccio, A.
1991-02-19
A winter course at a School of Nuclear Physics was organized by the Italian Government Agency INFN. Lectures included fundamental of Hadron Physics from the theoretical and the experimental points of view. The present traveler was invited to hold a course on relevant accelerator physics. All expenses were paid by the Italians.
Masculinities and Experimental Practices in Physics: The View from Three Case Studies
ERIC Educational Resources Information Center
Gonsalves, Allison J.; Danielsson, Anna; Pettersson, Helena
2016-01-01
This article analyzes masculinity and experimental practices within three different physics communities. This work is premised on the understanding that the discipline of physics is not only dominated by men, but also is laden with masculine connotations on a symbolical level, and that this limited and limiting construction of physics has made it…
Fermilab History and Archives Project | Lederman Becomes Director
which is the Columbia physics department center for experimental research in high energy physics. With the most important discoveries in particle physics, including the first observation of the non leave the directorship at Fermilab." "... the experimental physicists... recognize and
Chang, Ae Kyung; Fritschi, Cynthia; Kim, Mi Ja
2013-04-01
The aim of this study was to determine the effect of an 8-week empowerment intervention on sedentary behavior, physical activity, and psychological health in Korean older adults with hypertension. Using a quasi-experimental design, older adults participated in either an experimental group (n = 27) or control group (n = 21). The experimental group received an empowerment intervention including lifestyle modification education, group discussion, and exercise training for 8 weeks, and the control group received standard hypertension education. After 8 weeks, participants in the experimental group had significantly decreased sedentary behavior, increased physical activity, increased self-efficacy for physical activity, and increased perceived health (p < 0.05). However, no significant group difference was found for depression. Findings from this study suggest that empowerment interventions may be more effective than standard education in decreasing sedentary behavior and increasing physical activity, self-efficacy for physical activity, and perceived health in Korean older adults with hypertension. Copyright 2013, SLACK Incorporated.
Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP
2016-09-01
ARL-TN-0788 ● SEP 2016 US Army Research Laboratory Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by... Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP by Rose A Pesce-Rodriguez Weapons and Materials
this award for his wide-ranging experimental physics research accomplishments. From 2015-2017 Fenton is a JQI Fellow and assistant professor of physics, and his chief area of research is experimental starting a new experimental research program focused on quantum memory and quantum information in solid
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
Promoting Physical Activity through Student Life and Academics
ERIC Educational Resources Information Center
McDaniel, Tyler; Melton, Bridget F.; Langdon, Jody
2014-01-01
Objective: A physical activity passport (PAP) was developed to increase student's physical activity through the collaboration of student life and academics. The purpose was to measure the effectiveness of the PAP. Design: The research design used was a quantitative, descriptive, quasi-experimental design with experimental and control groups.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.
2011-12-05
We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).
Electromagnetic backscattering by corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, C. A.; Griesser, T.
1986-01-01
The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…
A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kiernan, Michael T.; Duke, John C., Jr.
1990-01-01
A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.
Impact of Hypnosis Intervention in Alleviating Psychological and Physical Symptoms During Pregnancy.
Beevi, Zuhrah; Low, Wah Yun; Hassan, Jamiyah
2016-04-01
Physical symptoms (e.g., vomiting) and psychological symptoms (stress, anxiety, and depression) during pregnancy are common. Various strategies such as hypnosis are available to reduce these symptoms. The objective of the authors in this study is to investigate the impact of a hypnosis intervention in reducing physical and psychological symptoms during pregnancy. A pre-test/post-test quasi-experimental design was employed in this study. The hypnosis intervention was given to the experimental group participants at weeks 16 (baseline), 20 (time point 1), 28 (time point 2), and 36 (time point 3) of their pregnancy. Participants in the control group received only the traditional antenatal care. Participants from both groups completed the Depression Anxiety Stress Scale-21 (DASS-21) and a Pregnancy Symptoms Checklist at weeks 16, 20, 28 and 36 of pregnancy. Results indicated that stress and anxiety symptoms were significantly reduced for the experimental group, but not for the control group. Although mean differences for the depressive symptoms were not significant, the experimental group had lower symptoms at time point 3. The physical symptoms' results showed significant group differences at time point 3, indicating a reduction in the experience of physical symptoms for the experimental group participants. Our study showed that hypnosis intervention during pregnancy aided in reducing physical and psychological symptoms during pregnancy.
Status and Prospects of Hirfl Experiments on Nuclear Physics
NASA Astrophysics Data System (ADS)
Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
NASA Astrophysics Data System (ADS)
Dallal, Kamel Salim
The effect of guided constructivism (bridging analogies) and expository instructional methods on the attitudes of students toward physics was investigated. A nonrandomize nonequivalent pretest-posttest control group quasi- experimental design was employed. The sample consisted of 127 eleventh-grade and twelfth-grade students from five selected classes from two private high schools in Beirut, Lebanon. Two intact classes were assigned to the control group and three classes to the experimental group. The experimental group was exposed to the bridging analogies instructional method, and the control group was taught using the traditional expository method. A Likert-type instrument, the Physics Attitude Index, was used to measure attitudes on four dimensions. The 40-item Physics Attitude Index (PAI) is a questionnaire using a five response scale. Performance in the assigned topics in physics, cognitive developmental levels, and gender were used as covariants and to examine interaction effects. The experimental groups had significantly higher means than the control groups on all criterion variables. A significant interaction was found between groups and performance levels in the following cases: (a) criterion variable of attitude toward physics; (b) views toward physics learning; and (c) enjoyment of physics. This result indicated that the low performing students among the experimental group had greater gain in attitude toward physics than the high performing students in same group. On the other hand, no interaction occurred between treatment groups and gender, which shows that in this study gender has no significant effect on attitude toward physics. Significant interactions between the treatment groups and cognitive levels were found on the criterion variable of beliefs about physics as a process of learning and enjoyment of physics. In both cases, the difference between the group means were widely different among students at the concrete and transitional levels, but narrowly different among students at the formal level.
Two decades of Mexican particle physics at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Rubinstein
2002-12-03
This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At themore » time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.« less
What can we learn from noise? — Mesoscopic nonequilibrium statistical physics —
KOBAYASHI, Kensuke
2016-01-01
Mesoscopic systems — small electric circuits working in quantum regime — offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.
Franco, Evelia; Coterón, Javier
2017-10-01
The aim of the study was to investigate the effects of an intervention to support the basic psychological needs on the satisfaction of these needs, intrinsic motivation, intention to be physically active and some enjoyment-related outcomes in Physical Education. The present study incorporated strategies presented by Standage and Ryan (2012) in a previous study. A quasi-experimental study was conducted with two groups (n experimental = 30; n control = 23) of 2nd year Secondary Education students aged between 13 and 15 (M = 13.35, SD = .62) by delivering 24 physical education classes. The teacher in the experimental group underwent prior and continual training. The results revealed that the students from the experimental group showed a significant increase in the perception of autonomy and competence. Furthermore, the experimental group showed a greater perception than the control group in the enjoyment related to learning and contents. These results provide information about the efficacy of an intervention programme based on the strategies presented by Standage and Ryan (2012) to foster satisfaction of basic psychological needs and facilitate support for basic psychological needs to promote the development of positive learning-related outcomes.
Experimental projects in graduate theoretical physics courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosner, J.L.
1996-10-01
Some beginning graduate courses in physics at the University of Chicago have been taught with final projects in addition to or in place of written final examinations. Although these courses and many of the projects are theoretical, experimental projects have been encouraged, with some success. A few examples are discussed. {copyright} {ital 1996 American Association of Physics Teachers.}
Experimental studies of electroweak physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etzion, E.
1997-09-01
Some experimental new Electroweak physics results measured at the LEP/SLD and the TEVATRON are discussed. The excellent accuracy achieved by the experiments still yield no significant evidence for deviation from the Standard Model predictions, or signal to physics beyond the Standard Model. The Higgs particle still has not been discovered and a low bound is given to its mass.
SELF-INSTRUCTIONAL SUPPLEMENTS FOR A TELEVISED PHYSICS COURSE, STUDY PLAN AND EXPERIMENTAL DESIGN.
ERIC Educational Resources Information Center
KLAUS, DAVID J.; LUMSDAINE, ARTHUR A.
THE INITIAL PHASES OF A STUDY OF SELF-INSTRUCTIONAL AIDS FOR A TELEVISED PHYSICS COURSE WERE DESCRIBED. THE APPROACH, EXPERIMENTAL DESIGN, PROCEDURE, AND TECHNICAL ASPECTS OF THE STUDY PLAN WERE INCLUDED. THE MATERIALS WERE PREPARED TO SUPPLEMENT THE SECOND SEMESTER OF HIGH SCHOOL PHYSICS. THE MATERIAL COVERED STATIC AND CURRENT ELECTRICITY,…
USDA-ARS?s Scientific Manuscript database
The study explores whether messages about the physical activity levels of the majority (i.e., normative messages) affect young adults' intention to engage in regular physical activity. An experimental survey among 16- to 24-year-olds in Bulgaria, Croatia, and Romania (n=1200) was conducted in March ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ryszard Stroynowski
2003-07-01
The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).
Joint Actinide Shock Physics Experimental Research - JASPER
None
2018-01-16
Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.
Leaving No Stone Unturned in the Pursuit of New Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Timothy
The major goal of this project was to investigate a variety of topics in theoretical particle physics, with an emphasis on beyond the Standard Model phenomena. A particular emphasis is placed on making a connection to ongoing experimental efforts designed to extend our knowledge of the fundamental physics frontiers. The principal investigator aimed to play a leading role in theoretical research that complements this impressive experimental endeavor. Progress requires a strong synergy between the theoretical and experimental communities to design and interpret the data that is produced. Thus, this project's main goal was to improve our understanding of models, signatures,more » and techniques as we continue the hunt for new physics.« less
NASA Astrophysics Data System (ADS)
Josephy, Richard
1986-07-01
For some years there has been a growing recognition of the need for changes in assessment patterns in school science. These changes include a move towards criterion-based assessment linking to objectives and an increased emphasis on the assessment of practical and experimental skills. These changes are, to a significant extent, embodied in the new GCSE assessment schemes and will thus affect all students and teachers of physics from September (1986). At least 20% of the total assessment in GCSE physics examinations must be of practical and experimental skills, and at least half of this must be carried out in the laboratory environment. One development which addresses the needs and problems outlined above is the science component of OCEA, the Oxford Certificate of Educational Achievement. Because this covers a much wider field than assessment of practical and experimental skills in physics, a brief description of the whole project is given.
NASA Astrophysics Data System (ADS)
Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hüseyin
2010-04-01
Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped
Project-based physics labs using low-cost open-source hardware
NASA Astrophysics Data System (ADS)
Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.
2017-03-01
We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.
NASA Technical Reports Server (NTRS)
Grasza, K.; Palosz, W.; Trivedi, S. B.
1998-01-01
The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.
ERIC Educational Resources Information Center
Hirsch, Jorge E.; Scalapino, Douglas J.
1983-01-01
Discusses ways computers are being used in condensed-matter physics by experimenters and theorists. Experimenters use them to control experiments and to gather and analyze data. Theorists use them for detailed predictions based on realistic models and for studies on systems not realizable in practice. (JN)
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
Experimental Demonstration of Observability and Operability of Robustness of Coherence
NASA Astrophysics Data System (ADS)
Zheng, Wenqiang; Ma, Zhihao; Wang, Hengyan; Fei, Shao-Ming; Peng, Xinhua
2018-06-01
Quantum coherence is an invaluable physical resource for various quantum technologies. As a bona fide measure in quantifying coherence, the robustness of coherence (ROC) is not only mathematically rigorous, but also physically meaningful. We experimentally demonstrate the witness-observable and operational feature of the ROC in a multiqubit nuclear magnetic resonance system. We realize witness measurements by detecting the populations of quantum systems in one trial. The approach may also apply to physical systems compatible with ensemble or nondemolition measurements. Moreover, we experimentally show that the ROC quantifies the advantage enabled by a quantum state in a phase discrimination task.
RESEARCH DESIGNS IN SPORTS PHYSICAL THERAPY
2012-01-01
Research is designed to answer a question or to describe a phenomenon in a scientific process. Sports physical therapists must understand the different research methods, types, and designs in order to implement evidence‐based practice. The purpose of this article is to describe the most common research designs used in sports physical therapy research and practice. Both experimental and non‐experimental methods will be discussed. PMID:23091780
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Constantinou, Constantinos P.
2008-04-01
We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.
Perlovsky, Leonid I
2016-01-01
Is it possible to turn psychology into "hard science"? Physics of the mind follows the fundamental methodology of physics in all areas where physics have been developed. What is common among Newtonian mechanics, statistical physics, quantum physics, thermodynamics, theory of relativity, astrophysics… and a theory of superstrings? The common among all areas of physics is a methodology of physics discussed in the first few lines of the paper. Is physics of the mind possible? Is it possible to describe the mind based on the few first principles as physics does? The mind with its variabilities and uncertainties, the mind from perception and elementary cognition to emotions and abstract ideas, to high cognition. Is it possible to turn psychology and neuroscience into "hard" sciences? The paper discusses established first principles of the mind, their mathematical formulations, and a mathematical model of the mind derived from these first principles, mechanisms of concepts, emotions, instincts, behavior, language, cognition, intuitions, conscious and unconscious, abilities for symbols, functions of the beautiful and musical emotions in cognition and evolution. Some of the theoretical predictions have been experimentally confirmed. This research won national and international awards. In addition to summarizing existing results the paper describes new development theoretical and experimental. The paper discusses unsolved theoretical problems as well as experimental challenges for future research.
Perlovsky, Leonid I.
2016-01-01
Is it possible to turn psychology into “hard science”? Physics of the mind follows the fundamental methodology of physics in all areas where physics have been developed. What is common among Newtonian mechanics, statistical physics, quantum physics, thermodynamics, theory of relativity, astrophysics… and a theory of superstrings? The common among all areas of physics is a methodology of physics discussed in the first few lines of the paper. Is physics of the mind possible? Is it possible to describe the mind based on the few first principles as physics does? The mind with its variabilities and uncertainties, the mind from perception and elementary cognition to emotions and abstract ideas, to high cognition. Is it possible to turn psychology and neuroscience into “hard” sciences? The paper discusses established first principles of the mind, their mathematical formulations, and a mathematical model of the mind derived from these first principles, mechanisms of concepts, emotions, instincts, behavior, language, cognition, intuitions, conscious and unconscious, abilities for symbols, functions of the beautiful and musical emotions in cognition and evolution. Some of the theoretical predictions have been experimentally confirmed. This research won national and international awards. In addition to summarizing existing results the paper describes new development theoretical and experimental. The paper discusses unsolved theoretical problems as well as experimental challenges for future research. PMID:27895558
Müftüler, Mine; İnce, Mustafa Levent
2015-08-01
This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships.
Experimental Physical Sciences Vistas Performance through Science Winter 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Cruz, James Michael; Hockaday, Mary Yvonne P.
This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-06-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.
Robert Dicke and the naissance of experimental gravity physics, 1957-1967
NASA Astrophysics Data System (ADS)
Peebles, Phillip James Edwin
2017-06-01
The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of developments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of natural science. The role of contingency is illustrated by Robert Dicke's decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The review also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach's Principle and Dirac's Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity. I conclude by offering lessons from this history, some peculiar to the study of gravity physics during the naissance, some of more general relevance. The central lesson, which is familiar but not always well advertised, is that physical theories can be empirically established, sometimes with surprising results.
Caliskan Yilmaz, Medine; Ozsoy, Suheyla A
2010-02-01
The purpose of this study was to investigate the effectiveness of a discharge-planning program on helping caregivers meet the physical care needs of children with cancer. This research is a quasi-experimental type of study in a pediatric oncology clinic at a university hospital in Izmir/Turkey. The control group had 25 and the experimental group had 24 patients with their caregivers. For the experimental group, discharge planning, discharge teaching, home visits, and telephone consultation were provided and has been planned to investigate the effectiveness of a discharge-planning program on helping caregivers meet the physical care needs of children with cancer between 0-18 years of age. In the third assessment, the number of patients that needed physical care needs in the experimental and control groups was decreased, and children in the experimental group had a lower number of physical care needs. A decreased number of unplanned admissions to the hospital at the first and third follow-up times, a decrease in unplanned admissions, and higher satisfaction rate were seen in the experimental group caregivers. A discharge-planning program and a hospital-based home care model had a very significant effect on the care needs of children with cancer and their caregivers. Our findings indicate that a discharge-planning program and a hospital-based home care model had a very significant effect on the care needs of children with cancer and their caregivers.
Effects of online games on student performance in undergraduate physics
NASA Astrophysics Data System (ADS)
Sadiq, Irfan
The present state of physics teaching and learning is a reflection of the difficulty of the subject matter which has resulted in students' low motivation toward physics as well as lack of meaningful and deeper learning experiences. In light of an overall decline in interest in physics, an investigation of alternate teaching and learning methods and tools was appropriate. The research posed the following question: To what extent do online games about kinematics and two-dimensional motion impact student performance in undergraduate general physics as measured by a unit posttest? Two intact classes of 20 students each were randomly assigned to either the experimental group or the control group. Only the experimental group received the treatment of using online games. The duration of topics covered in the game content was identical to the lecture on kinematics and two-dimensional motion. Instructors for the experimental group incorporated online games in their regular classroom teaching, whereas those in the control group continued with their previously used curriculum without games. This study was conducted in three weekly sessions. Although students were not selected using random sampling, existing classes were randomly assigned to either the experimental group or the control group. There were 20 students in the experimental group and 20 students in the control group. The independent samples t test was conducted to compare the means of two independently sampled experimental and control groups. Analysis of covariance (ANCOVA) was used to determine if the two groups were significantly different with regard to their general physics performance on the posttest while controlling for the pretest scores. Analysis of posttest and pretest scores revealed that game-based learning did not significantly impact student performance.
ERIC Educational Resources Information Center
Kuhn, Jochen; Vogt, Patrik
2013-01-01
New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan
2011-10-01
Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.
The Joint Physics Analysis Center: Recent results
NASA Astrophysics Data System (ADS)
Fernández-Ramírez, César
2016-10-01
We review some of the recent achievements of the Joint Physics Analysis Center, a theoretical collaboration with ties to experimental collaborations, that aims to provide amplitudes suitable for the analysis of the current and forthcoming experimental data on hadron physics. Since its foundation in 2013, the group is focused on hadron spectroscopy in preparation for the forthcoming high statistics and high precision experimental data from BELLEII, BESIII, CLAS12, COMPASS, GlueX, LHCb and (hopefully) PANDA collaborations. So far, we have developed amplitudes for πN scattering, KN scattering, pion and J/ψ photoproduction, two kaon photoproduction and three-body decays of light mesons (η, ω, ϕ). The codes for the amplitudes are available to download from the group web page and can be straightforwardly incorporated to the analysis of the experimental data.
Comparative Cognitive Task Analyses of Experimental Science and Instructional Laboratory Courses
NASA Astrophysics Data System (ADS)
Wieman, Carl
2015-09-01
Undergraduate instructional labs in physics generate intense opinions. Their advocates are passionate as to their importance for teaching physics as an experimental activity and providing "hands-on" learning experiences, while their detractors (often but not entirely students) offer harsh criticisms that they are pointless, confusing and unsatisfying, and "cookbook." Here, both to help understand the reason for such discrepant views and to aid in the design of instructional lab courses, I compare the mental tasks or types of thinking ("cognitive task analysis") associated with a physicist doing tabletop experimental research with the cognitive tasks of students in an introductory physics instructional lab involving traditional verification/confirmation exercises.
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Eastman, Michael P.
1982-01-01
Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…
NASA Astrophysics Data System (ADS)
Konopleva, Nelly
2017-03-01
Fundamental physical theory axiomatics is closely connected with methods of experimental measurements. The difference between the theories using global and local symmetries is explained. It is shown that symmetry group localization leads not only to the change of the relativity principle, but to the fundamental modification of experimental programs testing physical theory predictions. It is noticed that any fundamental physical theory must be consistent with the measurement procedures employed for its testing. These ideas are illustrated by events of my biography connected with Yang-Mills theory transformation from an ordinary phenomenological model to a fundamental physical theory based on local symmetry principles like the Einsteinian General Relativity. Baldin position in this situation is demonstrated.
Linking the subcultures of physics: virtual empiricism and the bonding role of trust.
Reyes-Galindo, Luis
2014-10-01
This article draws on empirical material concerning the communication and use of knowledge in experimental physics and its relations to the culture of theoretical physics. The role that trust plays in these interactions is used to create a model of social distance between interacting theoretical and experimental cultures. This article thus seeks to reintroduce trust as a fundamental element in answering the problem of disunity in the sociology of knowledge.
Masculinities and experimental practices in physics: The view from three case studies
NASA Astrophysics Data System (ADS)
Gonsalves, Allison J.; Danielsson, Anna; Pettersson, Helena
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] This article analyzes masculinity and experimental practices within three different physics communities. This work is premised on the understanding that the discipline of physics is not only dominated by men, but also is laden with masculine connotations on a symbolical level, and that this limited and limiting construction of physics has made it difficult for many women to find a place in the discipline. Consequently, we argue that in order to further the understanding of gender dynamics within physics communities and enrich the current understandings about the lack of women in physics, perspectives from masculinity studies are crucial. The article draws on three different ethnographic case studies dealing with undergraduate students, graduate students, and research scientists.
Qualitative Investigation of Students' Views about Experimental Physics
ERIC Educational Resources Information Center
Hu, Dehui; Zwickl, Benjamin M.; Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
This study examines students' reasoning surrounding seemingly contradictory Likert-scale responses within five items in the Colorado Learning Attitudes About Science Survey for Experimental Physics (E-CLASS). We administered the E-CLASS with embedded open-ended prompts, which asked students to provide explanations after making a Likert-scale…
Physical Science Laboratory Manual, Experimental Version.
ERIC Educational Resources Information Center
Cooperative General Science Project, Atlanta, GA.
Provided are physical science laboratory experiments which have been developed and used as a part of an experimental one year undergraduate course in general science for non-science majors. The experiments cover a limited number of topics representative of the scientific enterprise. Some of the topics are pressure and buoyancy, heat, motion,…
Comparative Cognitive Task Analyses of Experimental Science and Instructional Laboratory Courses
ERIC Educational Resources Information Center
Wieman, Carl
2015-01-01
Undergraduate instructional labs in physics generate intense opinions. Their advocates are passionate as to their importance for teaching physics as an experimental activity and providing "hands-on" learning experiences, while their detractors (often but not entirely students) offer harsh criticisms that they are pointless, confusing and…
Emotional Arousal of Beginning Physics Teachers during Extended Experimental Investigations
ERIC Educational Resources Information Center
Ritchie, Stephen M.; Tobin, Kenneth; Sandhu, Maryam; Sandhu, Satwant; Henderson, Senka; Roth, Wolff-Michael
2013-01-01
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations…
Final Report of DOE Grant No. DE-FG02-04ER41306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera
2013-12-10
Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less
Yang, Ke-Ping; Su, Whei-Ming; Huang, Chen-Kuan
2009-12-01
Physical stress and mental stress are increasingly common phenomena in our rapidly changing and stressful modern society. Research has found meditation to produce positive and demonstrable stress reduction effects on brain and immune functions. This study is grounded in traditional Chinese philosophical mores that teach a process summarized by the keynote activities of "calm, still, quiet, consider, and get" and the potential of this process to reduce stress in adolescents. The purpose of this study was to examine the effects of meditation on the physical and mental health of junior college students. This research employed a quasi-experimental design. Participants included 242 freshmen from a junior college in Taiwan selected using a convenience sampling technique. Participants were then randomly separated into experimental (n = 119) and control (n = 123) groups. The project duration was 18 weeks, during which the experimental group received 2 hours of meditation treatment per week, for a total of 36 hours. Both groups completed pretest and posttest Life Adaptation Scale forms, which included questionnaires addressing information on physical and mental distress and positive and negative coping strategies. Data were analyzed using analysis of covariance. Findings showed that the effect of the experiment treatment was significant when student physical and mental distress pretest scores were controlled. Physical and mental symptoms in the experimental group were lower than those in the control group. Meditation can help students to adapt to life stressors. This study also provides support for traditional Chinese wisdom, which promotes meditation as one way to improve health.
An intervention program to promote health-related physical fitness in nurses.
Yuan, Su-Chuan; Chou, Ming-Chih; Hwu, Lien-Jen; Chang, Yin-O; Hsu, Wen-Hsin; Kuo, Hsien-Wen
2009-05-01
To assess the effects of exercise intervention on nurses' health-related physical fitness. Regular exercise that includes gymnastics or aerobics has a positive effect on fitness. In Taiwan, there are not much data which assess the effects of exercise intervention on nurses' health-related physical fitness. Many studies have reported the high incidence of musculoskeletal disorders (MSDs) in nurses However, there has been limited research on intervention programs that are designed to improve the general physical fitness of nurses. A quasi-experimental study was conducted at a medical centre in central Taiwan. Ninety nurses from five different units of a hospital volunteered to participate in this study and participated in an experimental group and a control group. The experimental group engaged in a three-month intervention program consisting of treadmill exercise. Indicators of the health-related physical fitness of both groups were established and assessed before and after the intervention. Before intervention, the control group had significantly better grasp strength, flexibility and durability of abdominal muscles than the experimental group (p < 0.05). After the intervention, logistic regression was used to adjust for marital status, work duration, regular exercise and workload and found that the experimental group performed significantly better (p < 0.05) on body mass index, grasp strength, flexibility, durability of abdominal and back muscles and cardiopulmonary function. This study demonstrates that the development and implementation of an intervention program can promote and improve the health-related physical fitness of nurses. It is suggested that nurses engage in an exercise program while in the workplace to lower the risk of MSDs and to promote working efficiency.
Changes in psychosocial adjustment of adolescent girls in the lessons of physical education.
Klizas, Šarūnas; Malinauskas, Romualdas; Karanauskienė, Diana; Senikienė, Žibuoklė; Klizienė, Irina
2012-01-01
The aim of the present study was to establish the changes in psychosocial adjustment of adolescent girls in the modified lessons of physical education. An experimental design was used in the study. The experimental group included 14- to 15-year-old adolescent girls (n=128), and the control group comprised adolescent girls of the same school and the same age (n=137). The girls of the experimental group participated in modified physical education lessons. Once a month, they had a theory class where they received knowledge on communication disorders among adolescents and ways of preventing them by means of physical activities. In practical classes, the girls of the experimental group had sports games (basketball, volleyball, and football), enhancing physical abilities, and Pilates exercises. For the estimation of the level of adolescents' psychosocial adjustment and its components (self-esteem and domination), an adapted questionnaire developed by Rogers and Dymond was applied. An adapted questionnaire developed by Huebner was administered to measure students' satisfaction with life. The analysis of the data demonstrated that when comparing the psychosocial adjustment of the adolescent girls in the experimental group before and after the experiment, a significant differences in the score of the psychosocial adjustment scale was established (53.81±8.34 vs. 59.41±7.66, P<0.05). After the experiment, high life satisfaction was reported by 42.19% of the girls (P<0.05). After the educational experiment, the index of the psychosocial adjustment scale in the experimental group improved statistically significantly.
NASA Astrophysics Data System (ADS)
Usmeldi
2018-05-01
The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.
CASTO, KATHLEEN; LECCI, LEN
2012-01-01
This study attempts to determine whether the presentation of an experimentally manipulated somatic experience during a physically strenuous task can influence physical performance and symptom reporting. The study also compares the relative influence of experimentally manipulated somatic information (state somatization) with stable individual differences in the tendency to amplify physical symptoms (trait somatization) on performance and symptom reporting. 194 participants completed standardized measures of somatization tendencies, state anxiety, neuroticism and conscientiousness. Participants where then given a mock physical exam, with individuals randomly assigned to receive either favorable or unfavorable somatic information. All participants then had their body mass index assessed and completed a rigorous exercise task, with quantification of performance. Physiological measures of blood pressure and pulse were also assessed before and after the exercise task. The experimentally manipulated presentation of somatic information predicted both performance and physical symptoms, even after controlling for BMI, neuroticism, conscientiousness, and state anxiety. Moreover, expected performance uniquely and significantly predicted performance above and beyond condition, anxiety, BMI, neuroticism, and conscientiousness. Somatosensory amplification tendencies also predicted symptom endorsement, but not performance. Findings suggest that both state and trait expectations with respect to somatic experiences influence symptom reporting and to a lesser extent performance, even after controlling for variables known to strongly influence each of these outcomes. Results are consistent with the cognitive-perceptual and the cognitive-appraisal models of somatic interpretation. PMID:27182375
NASA Astrophysics Data System (ADS)
Hernandez, K. F.; Shah-Fairbank, S.
2016-12-01
The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.
Murillo Pardo, Berta; García Bengoechea, Enrique; Julián Clemente, José Antonio; Generelo Lanaspa, Eduardo
2016-04-01
The purpose of this study was to investigate the effects of the multicomponent Sigue la Huella intervention on selected motivational outcomes and whether any of these outcomes, in addition to relevant socio-demographic, biological, and behavioral factors, served as predictors of moderate-to-vigorous physical activity and sedentary time among participants through the intervention. This quasi-experimental, cohort study took place in four secondary schools in Huesca (Spain) during three academic years (students aged 12-15 years). Two schools were assigned to the experimental condition (n = 368) and two schools to the control condition (n = 314). Outcome variables were assessed objectively. A total of 553 participants met study inclusion criteria. Compared to the control group, participants in the experimental group reported greater enjoyment of physical activity, intrinsic and extrinsic motivation in physical education, perceived autonomy in physical education, perceived competence in physical education, and perceived importance of physical education over time. Participants in this group reported also lower amotivation in physical education over time. In subsequent analyses, gender, organized physical activity out of school, sedentary time, and perceived importance of physical education predicted moderate-to-vigorous physical activity. Type of school (public vs. private), moderate-to-vigorous physical activity, and perceived autonomy in physical education emerged as predictors of sedentary time. Sigue la Huella had a positive effect on motivational outcomes relevant to moderate-to-vigorous physical activity, sedentary time, and, particularly, student engagement in physical education. The analyses identified shared and unique determinants of moderate-to-vigorous physical activity and sedentary time, suggesting that specific intervention strategies may be required to address each outcome.
Cecchini, Jose A; Fernandez-Rio, Javier; Mendez-Gimenez, Antonio
2014-06-01
The aim of this study was to examine the effects of Epstein's TARGET strategies on adolescents' intentions to be physically active and leisure-time physical activity (LTPA) levels. A total of 447 secondary education students (193 females and 254 males), range age 12-17 years, were divided in two groups: control (N = 224) and experimental (N = 223). Epstein's TARGET strategies were applied by especially trained teachers only to the experimental group in their physical education (PE) classes during 12 consecutive weeks. Participants' intentions to be physically active and their LTPA levels were assessed prior to the intervention (pre), at the end of it (post-1) and 3 months after the intervention (post-2). Significant increases were observed only in the experimental group in post-1 and post-2 on both variables. PE interventions based on TARGET strategies seem to be effective increasing adolescents' intentions to be physically active, as well as time spent in LTPA. As most adolescents participate in PE, these interventions could lead to substantial public health benefits. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Larson, Tracy A; Normand, Matthew P; Morley, Allison J; Miller, Bryon G
2014-01-01
Inadequate physical activity increases the risks related to several health problems in children; however, increasing physical activity mitigates these risks. In this study, we examined the relations between moderate-to-vigorous physical activity (MVPA) and several environmental conditions (attention, interactive play, alone, escape) with 4 preschool children. We compared the experimental conditions to a control condition and a naturalistic baseline according to a combined multielement and reversal design. Results indicated that all participants were most active in the interactive play condition and that the percentage of MVPA varied across experimental and control conditions. In addition, the frequency and duration of bouts of MVPA were greatest in the interactive play condition. The current study presents a methodology for the identification of environmental contingencies that support increased levels of MVPA in young children, and it holds promise for improving our understanding of the variables related to physical activity. © Society for the Experimental Analysis of Behavior.
Smith, Lee; Kipps, Courtney; Aggio, Daniel; Fox, Paul; Robinson, Nigel; Trend, Verena; Munnery, Suzie; Kelly, Barry; Hamer, Mark
2014-01-01
Physical activity is essential for every facet of children's health. However, physical activity levels in British children are low. The school environment is a promising setting to increase children's physical activity but limited empirical evidence exists on how a change in the outdoor physical school environment influences physical activity behaviour. The London Borough of Camden is redesigning seven existing school playgrounds to engage children to become more physically active. The primary aim of this project is to evaluate the impact of the redesigned playgrounds on children's physical activity, well-being and physical function/fitness. This project will use a longitudinal quasi-experimental design. Seven experimental schools and one control school will take part. One baseline data collection session and two follow-ups will be carried out. Between baseline and follow-up, the experimental school playgrounds will be redesigned. At baseline, a series of fitness tests, anthropometric and questionnaire measurements, and 7-day objective physical activity monitoring (Actigraph accelerometer) will be carried out on children (aged 5–16 years). This will be repeated at follow-up. Changes in overall physical activity levels and levels during different times of the day (eg, school breaks) will be examined. Multilevel regression modelling will be used to analyse the data. The results of this study will be disseminated through peer-review publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number: 4400/002).
Nicosia, Nancy; Datar, Ashlesha
2018-05-01
Experimental and quasi-experimental evidence on the relationship between adolescents' physical activity and their physical activity environments is scarce. This study provides natural experimental evidence using within-person longitudinal variation in physical activity environments resulting from the compulsory re-assignment of military families to new installations, termed permanent changes of station. Adolescents in Army families (N=749) reported usual weekly minutes of moderate and vigorous physical activity in 2013-2015. Objective measures of the physical activity environment, including the number of fitness and recreation facilities within 2 miles, were constructed for adolescents' neighborhoods using GIS methods. In 2017, individual-level fixed-effects models with and without a comparison group estimated the relationship between usual weekly minutes of physical activity and physical activity environments among permanent changes of station movers using within-person variation. Increases in opportunities for physical activity were significantly and positively associated with increases in total (p<0.05) and vigorous physical activity (p<0.05) among adolescents who experienced permanent changes of station moves. The relationships were statistically significant for permanent changes of station movers living off-installation (p<0.05) and hence subject to greater variation in physical activity environments and those with more time to adjust to their new environments (p<0.05). Significant findings persisted when broader measures of physical activity environments were utilized. The decline in physical activity and alarming obesity levels during adolescence suggest that this age may represent an important opportunity to address the obesity epidemic. This study provides evidence that increasing opportunities for physical activity may be an important pathway to improving their levels of physical activity and, consequently, obesity. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
Assessing student understanding of measurement and uncertainty
NASA Astrophysics Data System (ADS)
Jirungnimitsakul, S.; Wattanakasiwich, P.
2017-09-01
The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.
An Experimental Introduction to Acoustics
NASA Astrophysics Data System (ADS)
Black, Andy Nicholas; Magruder, Robert H.
2017-11-01
Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitrasinovic, V.; Toki, H.; Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047
2006-02-15
We make a critical comparison of several versions of instanton-induced interactions present in the literature, all based on ITEP group's extension to three colours and flavours of 't Hooft's effective lagrangian, with the predictions of the phenomenological Kobayashi-Kondo-Maskawa (KKM) chiral quark lagrangian. We analyze the effects of all versions of the effective U {sub A} (1) symmetry breaking interactions on light hadron spectra in the non-relativistic constituent quark model. We show that the KKMT force, when used as a residual hyperfine interaction reproduces the correct ordering of pseudoscalar and vector mesons even without explicitly taking chiral symmetry into account. Moreover,more » the nucleon spectra are also correctly reproduced, only the Roper resonance remains too high, albeit lower than usual, at 1660 MeV. The latter's lower than expected mass is not due to a small excitation energy, as in the Glozman-Riska (GR) model, but to a combination of colour, flavour, and spatial wave function properties that enhance the relevant matrix elements. The KKMT interaction explicitly depends on flavour and spin of the quarks, but unlike the GR flavour-spin one it has a firm footing in QCD. In the process we provide several technical advances, in particular we show the first explicit derivation of the three-body Fierz transformation and apply it to the KKM interaction. We also discuss the ambiguities associated with the colour degree of freedom.« less
Bridging Gender Gap in the Physics Classroom: The Instructional Method Perspective
ERIC Educational Resources Information Center
Obafemi, Deborah T. A.
2015-01-01
The study investigated the influence of students' gender on their understanding, application and analysis of Light waves concept in physics in Ikwerre Local Government Area of Rivers State, Nigeria. A quasi-experimental pretest-posttest design comprising of three experimental and one control group was used, each group was taught with a different…
Quantum energy teleportation in a quantum Hall system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift
2015-05-18
that provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...Ea The hydrodynamic model, utilizing the Stokes equation describes isothermal conductivity, self-diffusion coefficient, and the dielectric
ERIC Educational Resources Information Center
Stanley, Jacob T.; Lewandowski, H. J.
2016-01-01
In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews…
NASA Astrophysics Data System (ADS)
Di Capua, R.; Offi, F.; Fontana, F.
2014-07-01
Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.
Physical modeling in geomorphology: are boundary conditions necessary?
NASA Astrophysics Data System (ADS)
Cantelli, A.
2012-12-01
Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.
A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
Learning physics: A comparative analysis between instructional design methods
NASA Astrophysics Data System (ADS)
Mathew, Easow
The purpose of this research was to determine if there were differences in academic performance between students who participated in traditional versus collaborative problem-based learning (PBL) instructional design approaches to physics curricula. This study utilized a quantitative quasi-experimental design methodology to determine the significance of differences in pre- and posttest introductory physics exam performance between students who participated in traditional (i.e., control group) versus collaborative problem solving (PBL) instructional design (i.e., experimental group) approaches to physics curricula over a college semester in 2008. There were 42 student participants (N = 42) enrolled in an introductory physics course at the research site in the Spring 2008 semester who agreed to participate in this study after reading and signing informed consent documents. A total of 22 participants were assigned to the experimental group (n = 22) who participated in a PBL based teaching methodology along with traditional lecture methods. The other 20 students were assigned to the control group (n = 20) who participated in the traditional lecture teaching methodology. Both the courses were taught by experienced professors who have qualifications at the doctoral level. The results indicated statistically significant differences (p < .01) in academic performance between students who participated in traditional (i.e., lower physics posttest scores and lower differences between pre- and posttest scores) versus collaborative (i.e., higher physics posttest scores, and higher differences between pre- and posttest scores) instructional design approaches to physics curricula. Despite some slight differences in control group and experimental group demographic characteristics (gender, ethnicity, and age) there were statistically significant (p = .04) differences between female average academic improvement which was much higher than male average academic improvement (˜63%) in the control group which may indicate that traditional teaching methods are more effective in females, whereas there was no significant difference noted in the experimental group between male and female participants. There was a statistically significant and negative relationship (r = -.61, p = .01) between age and physics pretest scores in the control group. No statistical analyses yielded significantly different average academic performance values in either group as delineated by ethnicity.
9th International Workshop on the CKM Unitarity Triangle
NASA Astrophysics Data System (ADS)
The CKM series is a well-established international meeting in the field of quark-flavour physics that brings both experimenters and theorists on a common platform. On the experimental front, we bridge borders between neutron, kaon, charm and beauty hadron, and top quark physics. The theory program tries to cover a wide range of approaches. We shall discuss how this marriage can indirectly probe physics beyond the standard model, taking into account the interplay with high-pT collider searches.
NASA Astrophysics Data System (ADS)
Wesendonk, F. S.; Terrazzan, E. A.
2016-12-01
In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.
Innovative experimental particle physics through technological advances: Past, present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Harry W.K.; /Fermilab
This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.
Zhao, Mengxian; Chen, Shihui
2018-01-01
The purpose of this study was to investigate the effects of structured physical activity program on social interaction and communication of children with autism spectrum disorder (ASD). Fifty children with ASD from a special school were randomly divided into experimental and control groups. 25 children with ASD were placed in the experimental group, and the other 25 children as the control group participated in regular physical activity. A total of forty-one participants completed the study. A 12-week structured physical activity program was implemented with a total of 24 exercise sessions targeting social interaction and communication of children with ASD, and a quasi-experimental design was used for this study. Data were collected using quantitative and qualitative instruments. SSIS and ABLLS-R results showed that an overall improvement in social skills and social interaction for the experimental group across interim and posttests, F = 8.425, p = 0.001 ( p < 0.005), and significant improvements appeared in communication, cooperation, social interaction, and self-control subdomains ( p < 0.005). Conversely, no statistically significant differences were found in the control group ( p > 0.005). The study concluded that the special structured physical activity program positively influenced social interaction and communication skills of children with ASD, especially in social skills, communication, prompt response, and frequency of expression.
Mayorga-Vega, Daniel; Merino-Marban, Rafael; Manzano-Lagunas, Jorge; Blanco, Humberto; Viciana, Jesús
2016-01-01
The main purpose of the present study was to examine the effects of a physical education-based stretching development and maintenance program on hamstring extensibility in schoolchildren. A sample of 150 schoolchildren aged 7-10 years old from a primary school participated in the present study (140 participants were finally included). The six classes balanced by grade were cluster randomly assigned to the experimental group 1 (n = 51), experimental group 2 (n = 51) or control group (n = 49) (i.e., a cluster randomized controlled trial design was used). During the physical education classes, the students from the experimental groups 1 and 2 performed a four-minute stretching program twice a week for nine weeks (first semester). Then, after a five-week period of detraining coinciding with the Christmas holidays, the students from the experimental groups 1 and 2 completed another stretching program twice a week for eleven weeks (second semester). The students from the experimental group 1 continued performing the stretching program for four minutes while those from the experimental group 2 completed a flexibility maintenance program for only one minute. The results of the two-way analysis of variance showed that the physical education-based stretching development program significantly improved the students’ hamstring extensibility (p < 0.001), as well as that these gains obtained remained after the stretching maintenance program (p < 0.001). Additionally, statistically significant differences between the two experimental groups were not found (p > 0.05). After a short-term stretching development program, a physical education-based stretching maintenance program of only one-minute sessions twice a week is effective in maintaining hamstring extensibility among schoolchildren. This knowledge could help and guide teachers to design programs that allow a feasible and effective development and maintenance of students’ flexibility in the physical education setting. Key points A physical education-based stretching maintenance program of only one-minute sessions twice a week is effective in maintaining hamstring extensibility among schoolchildren. A four-minute maintenance program shows similar effects that the one-minute maintenance program on hamstring extensibility among schoolchildren. Physical education teachers and other practitioners could carry out one-minute programs for a feasible and effective maintenance of students’ flexibility. PMID:26957928
The value of (pre)school playgrounds for children’s physical activity level: a systematic review
2014-01-01
The (pre)school environment is an important setting to improve children’s health. Especially, the (pre)school playground provides a major opportunity to intervene. This review presents an overview of the existing evidence on the value of both school and preschool playgrounds on children’s health in terms of physical activity, cognitive and social outcomes. In addition, we aimed to identify which playground characteristics are the strongest correlates of beneficial effects and for which subgroups of children effects are most distinct. In total, 13 experimental and 17 observational studies have been summarized of which 10 (77%) and 16 (94%) demonstrated moderate to high methodological quality, respectively. Nearly all experimental studies (n = 11) evaluated intervention effects on time spent in different levels of physical activity during recess. Research on the effects of (pre)school playgrounds on cognitive and social outcomes is scarce (n = 2). The experimental studies generated moderate evidence for an effect of the provision of play equipment, inconclusive evidence for an effect of the use of playground markings, allocating play space and for multi-component interventions, and no evidence for an effect of decreasing playground density, the promotion of physical activity by staff and increasing recess duration on children’s health. In line with this, observational studies showed positive associations between play equipment and children’s physical activity level. In contrast to experimental studies, significant associations were also found between children’s physical activity and a decreased playground density and increased recess duration. To confirm the findings of this review, researchers are advised to conduct more experimental studies with a randomized controlled design and to incorporate the assessment of implementation strategies and process evaluations to reveal which intervention strategies and playground characteristics are most effective. PMID:24885611
The value of (pre)school playgrounds for children's physical activity level: a systematic review.
Broekhuizen, Karen; Scholten, Anne-Marie; de Vries, Sanne I
2014-05-03
The (pre)school environment is an important setting to improve children's health. Especially, the (pre)school playground provides a major opportunity to intervene. This review presents an overview of the existing evidence on the value of both school and preschool playgrounds on children's health in terms of physical activity, cognitive and social outcomes. In addition, we aimed to identify which playground characteristics are the strongest correlates of beneficial effects and for which subgroups of children effects are most distinct. In total, 13 experimental and 17 observational studies have been summarized of which 10 (77%) and 16 (94%) demonstrated moderate to high methodological quality, respectively. Nearly all experimental studies (n = 11) evaluated intervention effects on time spent in different levels of physical activity during recess. Research on the effects of (pre)school playgrounds on cognitive and social outcomes is scarce (n = 2). The experimental studies generated moderate evidence for an effect of the provision of play equipment, inconclusive evidence for an effect of the use of playground markings, allocating play space and for multi-component interventions, and no evidence for an effect of decreasing playground density, the promotion of physical activity by staff and increasing recess duration on children's health. In line with this, observational studies showed positive associations between play equipment and children's physical activity level. In contrast to experimental studies, significant associations were also found between children's physical activity and a decreased playground density and increased recess duration. To confirm the findings of this review, researchers are advised to conduct more experimental studies with a randomized controlled design and to incorporate the assessment of implementation strategies and process evaluations to reveal which intervention strategies and playground characteristics are most effective.
Li, H C William; Chung, Oi Kwan Joyce; Ho, Ka Yan; Chiu, Sau Ying; Lopez, Violeta
2013-11-01
There is growing concern about declining levels of physical activity in childhood cancer survivors. This study aimed to examine the effectiveness of an integrated adventure-based training and health education program in promoting changes in exercise behavior and enhancing the physical activity levels, self-efficacy, and quality of life of Hong Kong Chinese childhood cancer survivors. A randomized controlled trial, two-group pretest and repeated post-test, between-subjects design was conducted to 71 childhood cancer survivors (9- to 16-year-olds). Participants in the experimental group joined a 4-day integrated adventure-based training and health education program. Control group participants received the same amount of time and attention as the experimental group but not in such a way as to have any specific effect on the outcome measures. Participants' exercise behavior changes, levels of physical activity, self-efficacy, and quality of life were assessed at the time of recruitment, 3, 6, and 9 months after starting the intervention. Participants in the experimental group reported statistically significant differences in physical activity stages of change (p < 0.001), higher levels of physical activity (p < 0.001) and self-efficacy (p = 0.04) than those in the control group. Besides, there were statistically significant mean differences (p < 0.001) in physical activity levels (-2.6), self-efficacy (-2.0), and quality of life (-4.3) of participants in the experimental group from baseline to 9 months after starting the intervention. The integrated adventure-based training and health education program was found to be Copyright © 2013 John Wiley & Sons, Ltd.
Smith, Lee; Kipps, Courtney; Aggio, Daniel; Fox, Paul; Robinson, Nigel; Trend, Verena; Munnery, Suzie; Kelly, Barry; Hamer, Mark
2014-01-01
Introduction Physical activity is essential for every facet of children's health. However, physical activity levels in British children are low. The school environment is a promising setting to increase children's physical activity but limited empirical evidence exists on how a change in the outdoor physical school environment influences physical activity behaviour. The London Borough of Camden is redesigning seven existing school playgrounds to engage children to become more physically active. The primary aim of this project is to evaluate the impact of the redesigned playgrounds on children's physical activity, well-being and physical function/fitness. Method and analysis This project will use a longitudinal quasi-experimental design. Seven experimental schools and one control school will take part. One baseline data collection session and two follow-ups will be carried out. Between baseline and follow-up, the experimental school playgrounds will be redesigned. At baseline, a series of fitness tests, anthropometric and questionnaire measurements, and 7-day objective physical activity monitoring (Actigraph accelerometer) will be carried out on children (aged 5–16 years). This will be repeated at follow-up. Changes in overall physical activity levels and levels during different times of the day (eg, school breaks) will be examined. Multilevel regression modelling will be used to analyse the data. Ethics and dissemination The results of this study will be disseminated through peer-review publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number: 4400/002). PMID:25232566
Study of a Variable Mass Atwood's Machine Using a Smartphone
ERIC Educational Resources Information Center
Lopez, Dany; Caprile, Isidora; Corvacho, Fernando; Reyes, Orfa
2018-01-01
The Atwood machine was invented in 1784 by George Atwood and this system has been widely studied both theoretically and experimentally over the years. Nowadays, it is commonplace that many experimental physics courses include both Atwood's machine and variable mass to introduce more complex concepts in physics. To study the dynamics of the masses…
A Systematic Review of Universal Campaigns Targeting Child Physical Abuse Prevention
ERIC Educational Resources Information Center
Poole, Mary Kathryn; Seal, David W.; Taylor, Catherine A.
2014-01-01
The purpose of this review was to better understand the impact of universal campaign interventions with a media component aimed at preventing child physical abuse (CPA). The review included 17 studies featuring 15 campaigns conducted from 1989 to 2011 in five countries. Seven studies used experimental designs, but most were quasi-experimental. CPA…
ERIC Educational Resources Information Center
Tesolowski, Dennis G.; Halpin, Gerald
Twenty-two physically handicapped sheltered workshop employees were matched on the severity of their disabilities and randomly assigned to either an experimental or control group. Those in the experimental group participated in a one-hour-per-day, fifteen-day job readiness training program in addition to their regular sheltered workshop jobs while…
ERIC Educational Resources Information Center
Julien, L. M.
1984-01-01
Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)
Choi, Keumbong; Kim, Jinsun
2009-12-01
The purposes of this study were to develop an educational program to reduce the use of physical restraints for caregivers in geriatric hospitals and to evaluate the effects of the program on caregivers' knowledge, attitude and nursing practice related to the use of physical restraints. A quasi experimental study with a non-equivalent control group pretest-posttest design was used. Participants were recruited from two geriatric hospitals. Eighteen caregivers were assigned to the experimental group and 20 to the control group. The data were collected prior to the intervention and at 6 weeks after the intervention through the use of self-administered questionnaires. Descriptive statistics, X(2) test, Fisher's exact probability test, and Mann-Whitney U test were used to analyze the data. After the intervention, knowledge about physical restraints increased significantly in experimental group compared to the control group. However, there were no statistically significant differences between the groups for attitude and nursing practice involving physical restraints. Findings indicate that it is necessary to apply knowledge acquired through educational programs to nursing practice to reduce the use of physical restraints. User friendly guidelines for physical restraints, administrative support of institutions, and multidisciplinary approaches are required to achieve this goal.
From Heavy-Ion Collisions to Quark Matter (2/3)
Lourenco, C.
2018-05-23
The art of experimental (high-energy heavy-ion) physics 1) many experimental issues are crucial to properly understand the measurements and derive a correct physics interpretation: Acceptance and phase space windows; Efficiencies (of track reconstruction, vertexing, track matching, trigger, etc); Resolutions (of mass, momenta, energies, etc); Backgrounds, feed-downs and "expected sources"; Data selection; Monte Carlo adjustments, calibrations and smearing; luminosity and trigger conditions; Evaluation of systematic uncertainties, and several others. 2) "New Physics" often appears as excesses or suppressions with respect to "normal baselines", which must be very carefully established, on the basis of "reference" physics processes and collision systems. If we misunderstand these issues we can miss an important discovery...or we can "discover" non-existent "new physics."
Supersymmetry and Kaon physics
NASA Astrophysics Data System (ADS)
Yamamoto, Kei
2017-01-01
Kaon physics has played an essential role in testing the Standard Model and in searching for new physics with measurements of CP violation and rare decays. Current progress of lattice calculations enables us to predict kaon observables accurately, especially for the direct CP violation, ε‧/ε, and there is a discrepancy from the experimental data at the 2.9 σ level. On the experimental side, the rare kaon decays and are ongoing to be measured at the SM accuracy by KOTO at J-PARC and NA62 at CERN. These kaon observables are good probes for new physics. We study supersymmetric effects; the chargino and gluino contributions to Z penguin, in kaon observables.
Nuclear physics experiments with low cost instrumentation
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz
2016-11-01
One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.
Fermilab | Science at Fermilab | Theory
future direction of experimental programs. Experimental results, in turn, can confirm or rule out GPS satellites, rely on the advances made in experimental and theoretical physics. Without a firm
Hall, Peter A; Zehr, Christopher; Paulitzki, Jeffrey; Rhodes, Ryan
2014-08-01
Implementation intentions are effective for enhancing physical activity, but it is unknown how well these effects extend to older adults and/or are modified by cognitive variables. Our objective is to examine (1) the efficacy of an implementation intentions intervention for physical activity in older adult women and (2) to examine the moderating effects of executive function. Participants (N = 75, M age = 73.72) completed measures of executive function and were randomly assigned to weekly implementation intentions for physical activity (experimental condition), implementation intentions for an unrelated behavior (control condition), or no treatment. Baseline activity was measured by accelerometer and self-report; follow-up activity was measured by weekly self-report. Findings indicated a significant treatment effect for the experimental condition and a treatment by executive function interaction. Specifically, participants with relatively stronger executive function benefited most from the experimental intervention. Implementation intentions are effective for enhancing physical activity among older adult women, and the effects may be especially pronounced for those with relatively stronger executive function.
NASA Astrophysics Data System (ADS)
Bistrow, Van
What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.
2012-11-01
Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics
ERIC Educational Resources Information Center
Leptokaridou, Elisavet T.; Vlachopoulos, Symeon P.; Papaioannou, Athanasios G.
2016-01-01
The present study examined the efficacy of autonomy-supportive teaching during elementary school physical education (PE) in influencing pupils' enjoyment, fear of failure, boredom and effort. A sample of 54 pupils attending fifth and sixth grades comprised the control group (typical instruction; n = 27) and the experimental group…
ERIC Educational Resources Information Center
Yilmaz, Gül Kaleli
2015-01-01
This study aims to investigate the effects of using Dynamic Geometry Software (DGS) Cabri II Plus and physical manipulatives on the transformational geometry achievement of candidate teachers. In this study, the semi-experimental method was used, consisting of two experimental and one control groups. The samples of this study were 117 students. A…
Training to Use the Scientific Method in a First-Year Physics Laboratory: A Case Study
ERIC Educational Resources Information Center
Sarasola, Ane; Rojas, Jose Félix; Okariz, Ana
2015-01-01
In this work, a specific implementation of a so-called experimental or open-ended laboratory is proposed and evaluated. Keeping in mind the scheduling limitations imposed by the context, first-year engineering physics laboratory practices have been revised in order to facilitate acquisition of the skills that are required in the experimental work.…
Experimental constraints from flavour changing processes and physics beyond the Standard Model.
Gersabeck, M; Gligorov, V V; Serra, N
Flavour physics has a long tradition of paving the way for direct discoveries of new particles and interactions. Results over the last decade have placed stringent bounds on the parameter space of physics beyond the Standard Model. Early results from the LHC, and its dedicated flavour factory LHCb, have further tightened these constraints and reiterate the ongoing relevance of flavour studies. The experimental status of flavour observables in the charm and beauty sectors is reviewed in measurements of CP violation, neutral meson mixing, and measurements of rare decays.
Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li
Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
NASA Astrophysics Data System (ADS)
Ibrahim, Hyatt Abdelhaleem
The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and power of the study suggest that the effect may not be subtle, but reliable. Physics teachers can use these results to inform their decisions about structuring learning environment when conceptual learning is important.
Zhao, Mengxian
2018-01-01
The purpose of this study was to investigate the effects of structured physical activity program on social interaction and communication of children with autism spectrum disorder (ASD). Fifty children with ASD from a special school were randomly divided into experimental and control groups. 25 children with ASD were placed in the experimental group, and the other 25 children as the control group participated in regular physical activity. A total of forty-one participants completed the study. A 12-week structured physical activity program was implemented with a total of 24 exercise sessions targeting social interaction and communication of children with ASD, and a quasi-experimental design was used for this study. Data were collected using quantitative and qualitative instruments. SSIS and ABLLS-R results showed that an overall improvement in social skills and social interaction for the experimental group across interim and posttests, F = 8.425, p = 0.001 (p < 0.005), and significant improvements appeared in communication, cooperation, social interaction, and self-control subdomains (p < 0.005). Conversely, no statistically significant differences were found in the control group (p > 0.005). The study concluded that the special structured physical activity program positively influenced social interaction and communication skills of children with ASD, especially in social skills, communication, prompt response, and frequency of expression. PMID:29568743
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Monthly Progress Report No. 60 for April 1948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.
NASA Astrophysics Data System (ADS)
Rustam, Shahrulfadly; Kassim, Mohar
2018-05-01
The aim of this study is to develop physical fitness index (PFI) for physical fitness among Army Reserve Officer Training Unit Cadet Malaysia. This study use 30 meter speed run as a physical fitness test battery to develop physical fitness index (PFI) and to evaluate the subject fitness speed. 212 male respondent (N=212) was selected in this study including Army Reserve Officer Training Unit Cadet of National Defence University of Malaysia. 30 meter sprint was used as a instrument for this study. The methodology will be adopted for this study is quantitative research in the form of a quasi-experiment. Quasi-experimental methods is used to measure and evaluate the level of physical fitness and develop Physical Fitness Index especially in speed. The design of this study is quasi-experimental study design with pre-test and post-test. The study design is quasi-experimental research design in which the data is obtained through the practical test in the field. The data were analysed by using the SPSS software version 20 to calculate the mean, standard deviation and t-test for develop physical fitness index (PFI) and to evaluate the fitness speed level for Army Reserve Officers Training Unit Cadet Malaysia. The findings showed mean and standard deviation for develope physical fitness index is (M=4.84) and (SD=0.48). The t-test for evaluate fitness level in speed for pre-test and post-test is significantly difference (p ≤ 0.05). The implication at this study is that the develope of standard physical fitness index is able to identify the level of physical fitness among Army Reserve Officer Training Unit Cadet Malaysia.
Revisiting kaon physics in general Z scenario
NASA Astrophysics Data System (ADS)
Endo, Motoi; Kitahara, Teppei; Mishima, Satoshi; Yamamoto, Kei
2017-08-01
New physics contributions to the Z penguin are revisited in the light of the recently-reported discrepancy of the direct CP violation in K → ππ. Interference effects between the standard model and new physics contributions to ΔS = 2 observables are taken into account. Although the effects are overlooked in the literature, they make experimental bounds significantly severer. It is shown that the new physics contributions must be tuned to enhance B (KL →π0 ν ν bar), if the discrepancy of the direct CP violation is explained with satisfying the experimental constraints. The branching ratio can be as large as 6 ×10-10 when the contributions are tuned at the 10% level.
Evidence for consciousness-related anomalies in random physical systems
NASA Astrophysics Data System (ADS)
Radin, Dean I.; Nelson, Roger D.
1989-12-01
Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.
Kong, Muwen; Van Houten, Bennett
2017-08-01
Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)
None
2017-12-09
This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. The lectures are aimed at graduate students.
Amado, Diana; Del Villar, Fernando; Leo, Francisco Miguel; Sánchez-Oliva, David; Sánchez-Miguel, Pedro Antonio; García-Calvo, Tomás
2014-01-01
This research study purports to verify the effect produced on the motivation of physical education students of a multi-dimensional programme in dance teaching sessions. This programme incorporates the application of teaching skills directed towards supporting the needs of autonomy, competence and relatedness. A quasi-experimental design was carried out with two natural groups of 4(th) year Secondary Education students--control and experimental -, delivering 12 dance teaching sessions. A prior training programme was carried out with the teacher in the experimental group to support these needs. An initial and final measurement was taken in both groups and the results revealed that the students from the experimental group showed an increase of the perception of autonomy and, in general, of the level of self-determination towards the curricular content of corporal expression focused on dance in physical education. To this end, we highlight the programme's usefulness in increasing the students' motivation towards this content, which is so complicated for teachers of this area to develop.
Can violations of Bell's inequalities be considered as a final proof of quantum physics?
NASA Astrophysics Data System (ADS)
Hénault, François
2013-10-01
Nowadays, it is commonly admitted that the experimental violation of Bell's inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the whole microscopic world and beyond. But the historical and scientific story may not be envisioned so clearly: it starts with the original paper of Einstein, Podolsky and Rosen (EPR) aiming at demonstrating that the formalism of quantum theory is incomplete. It then goes through the works of D. Bohm, to finally proceed to the famous John Bell's relationships providing an experimental setup to solve the EPR paradox. In this communication is proposed an alternative reading of this history, showing that modern experiments based on correlations between light polarizations significantly deviate from the original spirit of the EPR paper. It is concluded that current experimental violations of Bell's inequalities cannot be considered as an ultimate proof of the completeness of quantum physics models.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-08-31
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-01-01
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287
Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness.
Oliveira-Silva, Iransé; Leicht, Anthony S; Moraes, Milton R; Simões, Herbert G; Del Rosso, Sebastián; Córdova, Cláudio; Boullosa, Daniel A
2016-01-01
The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5-39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26-45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness ( r = 0.43 to 0.51; -0.53 to -0.52) and body composition ( r = -0.63 to -0.43; 0.48-0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being.
Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness
Oliveira-Silva, Iransé; Leicht, Anthony S.; Moraes, Milton R.; Simões, Herbert G.; Del Rosso, Sebastián; Córdova, Cláudio; Boullosa, Daniel A.
2016-01-01
The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5–39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26–45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness (r = 0.43 to 0.51; −0.53 to −0.52) and body composition (r = −0.63 to −0.43; 0.48–0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being. PMID:28082914
An Experimental Introduction to Acoustics
ERIC Educational Resources Information Center
Black, Andy Nicholas; Magruder, Robert H.
2017-01-01
Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is…
An Investigation of Tertiary-Level Learning in Some Practical Physics Courses
ERIC Educational Resources Information Center
Wang, Weili; Coll, Richard K.
2005-01-01
Experimental physics is seen as an essential part of tertiary physics education. Students are supposed to develop practical skills and advance from closed "cookbook" experiments to open experiment and design experiment procedures independently. As a consequence tertiary practical physics courses increase in the level of challenge…
Physical Chemistry in Practice: Evaluation of DVD Modules
ERIC Educational Resources Information Center
Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.
2007-01-01
The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…
Bridges. A Physics Unit for 14/15 Year Old Students. Experimental Edition.
ERIC Educational Resources Information Center
Utrecht State Univ., (Netherlands).
Bridges and similar constructions are highlighted in this book of guided lessons and activities for secondary school physics students. This program was developed by the Physics Curriculum Development Project under the auspices of the Physics Curriculum Innovation Committee. Contents include: (1) "Introduction" (presenting a rationale for…
ERIC Educational Resources Information Center
González-Cutre, David; Sierra, Ana C.; Beltrán-Carrillo, Vicente J.; Peláez-Pérez, Manuel; Cervelló, Eduardo
2018-01-01
The authors analyzed the effects of a multidimensional intervention to promote physical activity (PA) in school, based on self-determination theory. The study involved 88 students, between 14 and 17 years old, who were divided into a control group (n = 59) and an experimental group (n = 29). In the experimental group, a 6-month intervention was…
The Effects of Folk Dance Training on 5-6 Years Children's Physical and Social Development
ERIC Educational Resources Information Center
Biber, Kazim
2016-01-01
The purpose of this study is to analyze the effects of folk dance training on 5-6 year old Pre-school children's physical and social development. The experimental design with an experimental and control group was used in accordance with the quantitative research methods in this research. The research has been conducted with the participation of 40…
NASA Astrophysics Data System (ADS)
Lawrence, Lettie Carol
1997-08-01
The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.
Evolving landscape of low-energy nuclear physics publications
Pritychenko, B.
2016-10-01
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
NASA Astrophysics Data System (ADS)
Yang, Kun-Yuan; Heh, Jia-Sheng
2007-10-01
The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.
Evolving landscape of low-energy nuclear physics publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
The effects of a self-esteem program incorporated into health and physical education classes.
Lai, Hsiang-Ru; Lu, Chang-Ming; Jwo, Jiunn-Chern; Lee, Pi-Hsia; Chou, Wei-Lun; Wen, Wan-Yu
2009-12-01
Self-esteem, a key construct of personality, influences thoughts, actions, and feelings. Adolescence is a critical stage to the development of self-esteem. Taiwan currently offers no self-esteem building curriculum in the public education system. Therefore, incorporating self-esteem-related teaching activities into the existing curriculum represents a feasible approach to enhance self-esteem in middle school students. This study aimed to explore the effects on junior high school students' self-esteem of a self-esteem program incorporated into the general health and physical education curriculum. A quasi-experimental research design was used, and 184 seventh-grade students at two junior high schools in Taipei City were randomly selected and separated into two groups. The experimental group received one 32-week self-esteem program incorporated into their regular health and physical education curriculum, which was administered in three 45-minute-session classes each week. The control group received the regular health and physical education with no specially designed elements. During the week before the intervention began and the week after its conclusion, each participant's global and academic, physical, social, and family self-esteem was assessed. Data were analyzed using analysis of covariance. For all participants, the experimental group was significantly superior to the control group in respect to physical self-esteem (p = .02). For girls, the experimental group was significantly superior to the control group in family self-esteem (p = .02). However, there was no significant difference between the two groups in terms of global self-esteem. This study provides preliminary evidence that incorporating self-esteem activities into the regular school health and physical education curriculum can result in minor effects in students' physical self-esteem and family self-esteem. Findings may provide teachers and school administrators with information to help them design programs to improve students' self-esteem. This study also reminds health professionals to focus on providing self-esteem-building programs when working with adolescent clients.
Quick, Virginia; Martin-Biggers, Jennifer; Povis, Gayle Alleman; Worobey, John; Hongu, Nobuko; Byrd-Bredbenner, Carol
2018-05-01
This study examined long-term follow-up effects of participation in the HomeStyles RCT, using Social Cognitive Theory constructs, on physical activity cognitions, home environment, and lifestyle behavioral practices of families with preschool children (ages 2 to 5 years). Parents were systematically randomized to experimental or attention control group at baseline. Those completing all surveys that comprised of valid, reliable measures were the analytic sample (n = 61 experimental, n = 63 control; mean age 32.8 ± 5.9SD years). Repeated measures ANCOVA, controlling for prognostic variables (e.g., parent sex) revealed that variables assessing modeling of physical activity for children increased significantly (P ≤ .01) in both groups with no significant time by group effects. Paired t-tests indicated the experimental group's self-efficacy for keeping children's weight healthy and performing health promoting behaviors increased significantly over time whereas the control group did not but with no significant time by group effects. Self-regulation paired t-test findings indicated that total screentime the experimental group allowed children decreased significantly over time with no significant time by group effect. The value parents placed on physical activity for children increased over time in both groups with a significant time effect. The experimental group over time had significantly greater increases in the availability of physical activity space and supports inside the home than the control group. Improvements noted have the potential to help protect children and parents from excess weight gain, yet findings indicate considerable opportunity for continued improvement as well as elucidation of factors affecting concomitant changes in both study groups. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan
Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Kim, DeokJu; Yang, YeongAe
2016-03-01
[Purpose] This study investigates the effects of welfare IT convergence contents on physical function, depression, and social participation among the elderly. It also aims to provide material for future activity mediation for the elderly. [Subjects] Two hundred subjects >65 years were selected from six elderly welfare facilities and related institutions in the Busan and Gyeongbuk areas and were evaluated from 2014 to 2015. [Methods] This study assessed physical function, depression, and social participation; 100 subjects who utilized commercialized welfare IT convergence contents were included in an experimental group and 100 subjects who had no experience thereof were included in a control group. [Results] When comparing differences in physical function between the groups, balance maintenance was better in the experimental group. There were also significant differences in depression and social participation. The experimental group displayed higher physical function, lower depression levels, and higher social participation levels compared to the control group. [Conclusion] Welfare IT convergence contents positively influence occupational performance in the elderly. Future research is necessary to provide information to the elderly through various routes, so that they can understand welfare IT convergence contents and actively utilize them.
Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath
2011-01-01
The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.
Strangeness Nuclear Physics at J-PARC
NASA Astrophysics Data System (ADS)
Nagae, Tomofumi
2013-08-01
After the big earthquake in the east part of Japan on March 11, 2011, the beams in the hadron experimental hall at J-PARC have been successfully recovered in February, 2012. The experimental program using pion beams is now on-going with the primary proton beam power of ~5 kW. Before a long summer shutdown scheduled in 2013, several experiments in strangeness nuclear physics are going to take data. In this period, we anticipate the beam power would exceed 10 kW and the experiments to use K - beams will start. The experimental program is explained briefly.
The impact of supercomputers on experimentation: A view from a national laboratory
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Arnold, J. O.
1985-01-01
The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.
Pilot Wave Model for Impulsive Thrust from RF Test Device Measured in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; Lawrence, James; Sylvester, Andre; Vera, Jerry; Chap, Andrew; George, Jeff
2017-01-01
A physics model is developed in detail and its place in the taxonomy of ideas about the nature of the quantum vacuum is discussed. The experimental results from the recently completed vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) are summarized. The empirical data from this campaign is compared to the predictions from the physics model tools. A discussion is provided to further elaborate on the possible implications of the proposed model if it is physically valid. Based on the correlation of analysis prediction with experimental data collected, it is proposed that the observed anomalous thrust forces are real, not due to experimental error, and are due to a new type of interaction with quantum vacuum fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, M.L.
This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics atmore » very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references.« less
Experimental study and simulation of space charge stimulated discharge
NASA Astrophysics Data System (ADS)
Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.
2002-11-01
The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.
Traditions and Reforms in Bulgarian Physics Milko Borissov (1921-1998)
NASA Astrophysics Data System (ADS)
Kamisheva, Ganka
2010-01-01
University physics in Bulgaria is examined comparatively. Physical chairs, courses, lecturers and students, finished Sofia University successfully, are analyzed quantitatively. Traditions in Experimental physics are traced into scientific results of Professors P. Bachmetjew, A. Christow, and G. Nadjakov during the first half of XX century. Professor Milko Borissov's reformations of University physics in the second half of XX century are analysed.
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
Embodiment: A New Perspective for Evaluating Physicality in Learning
ERIC Educational Resources Information Center
Han, Insook
2013-01-01
The purpose of this study is to provide a new perspective for evaluating physicality in learning with a preliminary experimental study based on embodied cognition. While there are studies showing no superiority of physical manipulation over virtual manipulation, there are also studies that seem to advocate adding more physicality in simulations…
"Quod Erat Demonstrandum": Understanding and Explaining Equations in Physics Teacher Education
ERIC Educational Resources Information Center
Karam, Ricardo; Krey, Olaf
2015-01-01
In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this…
Experimental Mathematics and Mathematical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David
2009-06-26
One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.
2007-12-21
of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in
ERIC Educational Resources Information Center
Kariuki, Patrick N. K.; Bush, Elizabeth Danielle
2008-01-01
The purpose of this study was to examine the effects of Total Physical Response by Storytelling and the traditional teaching method on a foreign language in a selected high school. The sample consisted of 30 students who were randomly selected and randomly assigned to experimental and control group. The experimental group was taught using Total…
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
2011-01-01
Background Empirical evidence suggests that an association between the built environment and physical activity exists. This evidence is mostly derived from cross-sectional studies that do not account for other causal explanations such as neighborhood self-selection. Experimental and quasi-experimental designs can be used to isolate the effect of the built environment on physical activity, but in their absence, statistical techniques that adjust for neighborhood self-selection can be used with cross-sectional data. Previous reviews examining the built environment-physical activity relationship have not differentiated among findings based on study design. To deal with self-selection, we synthesized evidence regarding the relationship between objective measures of the built environment and physical activity by including in our review: 1) cross-sectional studies that adjust for neighborhood self-selection and 2) quasi-experiments. Method In September 2010, we searched for English-language studies on built environments and physical activity from all available years in health, leisure, transportation, social sciences, and geographical databases. Twenty cross-sectional and 13 quasi-experimental studies published between 1996 and 2010 were included in the review. Results Most associations between the built environment and physical activity were in the expected direction or null. Land use mix, connectivity and population density and overall neighborhood design were however, important determinants of physical activity. The built environment was more likely to be associated with transportation walking compared with other types of physical activity including recreational walking. Three studies found an attenuation in associations between built environment characteristics and physical activity after accounting for neighborhood self-selection. Conclusion More quasi-experiments that examine a broader range of environmental attributes in relation to context-specific physical activity and that measure changes in the built environment, neighborhood preferences and their effect on physical activity are needed. PMID:22077952
Experimental gaze at nonlinear phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libchaber, A.
1988-09-20
Experimental observations of nonlinear problems in physics are presented, including liquid crystal phase transformations, convection of mercury, and the transition to turbulence in helium gas thermal convection./aip/.
NASA Astrophysics Data System (ADS)
A. Khan, M.; Qayyum, A.; I., Ahmed; T., Iqbal; A. Khan, A.; Waleed, R.; Mohuddin, B.; Malik, M.
2016-07-01
Not Available Supported by the Department of Physics, the University of AJK, High Tech. Centralized Instrumentation Lab, the University of AJK, Pakistan and the Experimental Physics Division, and the National Center for Physics, Islamabad Pakistan.
The impact of football training on motor development in male children.
Erceg, Marko; Zagorac, Nebojsa; Katić, Ratko
2008-03-01
The aim of the study was to determine the effect of football school program and physical education curriculum on changes in the motor abilities of 7- and 8-year-old boys. The study included a sample of 180 boys divided into group 1 (7-year-old boys), subdivided to experimental (n = 40) and control (n = 50) groups, and group 2 (8-year-old boys), subdivided to experimental (n = 40) and control (n = 50) groups. Experimental groups included children attending three training units of football training over a 9-month period, in addition to the conventional physical education curriculum. Control groups included children attending only conventional physical education curriculum. All study subjects underwent testing with a battery of 12 motor tests at the beginning and at the end of the study. Results obtained by discriminative canonic analysis showed no statistically significant between-group difference in motor abilities at the beginning of the study. However, significant differences in favor of experimental groups were recorded at the end of the study. Favorable changes in all motor variables were observed in both experimental and control groups of children from the initial through the final state. These changes were more pronounced in experimental groups. Analysis of variance for difference variables (final to initial measurement) indicated programmed education in the form of football training in addition to regular physical education curriculum to predominantly influence the development of aerobic endurance, agility, speed and flexibility in 7-year-old boys, and of explosive strength, aerobic endurance, flexibility and speed in 8-year-old boys. In the latter, football training led to the formation of a motor complex integrating explosiveness, speed, coordination, endurance and flexibility as a general motor factor determining future quality development in football.
NASA Astrophysics Data System (ADS)
Angelova, Maia; Zakrzewski, Wojciech; Hussin, Véronique; Piette, Bernard
2011-03-01
This volume contains contributions to the XXVIIIth International Colloquium on Group-Theoretical Methods in Physics, the GROUP 28 conference, which took place in Newcastle upon Tyne from 26-30 July 2010. All plenary and contributed papers have undergone an independent review; as a result of this review and the decisions of the Editorial Board most but not all of the contributions were accepted. The volume is organised as follows: it starts with notes in memory of Marcos Moshinsky, followed by contributions related to the Wigner Medal and Hermann Weyl prize. Then the invited talks at the plenary sessions and the public lecture are published followed by contributions in the parallel and poster sessions in alphabetical order. The Editors:Maia Angelova, Wojciech Zakrzewski, Véronique Hussin and Bernard Piette International Advisory Committee Michael BaakeUniversity of Bielefeld, Germany Gerald DunneUniversity of Connecticut, USA J F (Frank) GomesUNESP, Sao Paolo, Brazil Peter HanggiUniversity of Augsburg, Germany Jeffrey C LagariasUniversity of Michigan, USA Michael MackeyMcGill University, Canada Nicholas MantonCambridge University, UK Alexei MorozovITEP, Moscow, Russia Valery RubakovINR, Moscow, Russia Barry SandersUniversity of Calgary, Canada Allan SolomonOpen University, Milton Keynes, UK Christoph SchweigertUniversity of Hamburg, Germany Standing Committee Twareque AliConcordia University, Canada Luis BoyaSalamanca University, Spain Enrico CeleghiniFirenze University, Italy Vladimir DobrevBulgarian Academy of Sciences, Bulgaria Heinz-Dietrich DoebnerHonorary Member, Clausthal University, Germany Jean-Pierre GazeauChairman, Paris Diderot University, France Mo-Lin GeNankai University. China Gerald GoldinRutgers University, USA Francesco IachelloYale University, USA Joris Van der JeugtGhent University, Belgium Richard KernerPierre et Marie Curie University, France Piotr KielanowskiCINVESTAV, Mexico Alan KosteleckyIndiana University, USA Mariano del OlmoValladolid University, Spain George PogosyanUNAM, Mexico, JINR, Dubna, Russia Christoph SchweigertUniversity of Hamburg, Germany Reidun TwarockYork University, UK Luc VinetMontréal University, Canada Apostolos VourdasBradford University, UK Kurt WolfUNAM, Mexico Local Organising Committee Maia Angelova - ChairNorthumbria University, Newcastle Wojtek Zakrzewski - ChairDurham University, Durham Sarah Howells - SecretaryNorthumbria University, Newcastle Jeremy Ellman - WebNorthumbria University, Newcastle Véronique HussinNorthumbria, Durham and University of Montréal Safwat MansiNorthumbria University, Newcastle James McLaughlinNorthumbria University, Newcastle Bernard PietteDurham University, Durham Ghanim PutrusNorthumbria University, Newcastle Sarah ReesNewcastle University, Newcastle Petia SiceNorthumbria University, Newcastle Anne TaorminaDurham University, Durham Rosemary ZakrzewskiAccompanying persons programme Lighthouse Photograph by Bernard Piette: Souter Lighthouse, Marsden, Tyne and Wear, England
Physical Test Prototypes Based on Microcontroller
NASA Astrophysics Data System (ADS)
Paramitha, S. T.
2017-03-01
The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.
Sazontova, T G; Glazachev, O S; Bolotova, A V; Dudnik, E N; Striapko, N V; Bedareva, I V; Anchishkina, N A; Arkhipenko, Iu V
2012-06-01
We have conducted theoretical foundation, experimental analysis and a pilot study of a new method of adaptation to hypoxia and hyperoxia in the prevention of hypoxic and stress-induced disorders and improving the body's tolerance to physical stress. It has been shown in the experimental part that a combination of physical exercise with adaptation to hypoxia-hyperoxia significantly increased tolerance to acute physical load (APL) and its active phase. Analysis of lipid peroxidation processes, antioxidant enzymes and HSPs showed that short-term training for physical exercise by itself compensates the stressor, but not the hypoxic component of the APL, the combination of training with adaptation to hypoxia-hyperoxia completely normalizes the stressor and hypoxic components of APL. The pilot study has been performed to evaluate the effectiveness of hypoxic-hyperoxic training course in qualified young athletes with over-training syndrome. After completing the course of hypoxia-hyperoxia adaptation, 14 sessions, accompanied by light mode sports training, the athletes set the normalization of autonomic balance, increased resistance to acute hypoxia in hypoxic test, increased physical performance--increased PWC170, maximal oxygen consumption (VO2max) parameters, their relative values to body mass, diminished shift of rate pressure product in the load. Thus, we confirmed experimental findings that hypoxic-hyperoxic training optimizes hypoxic (increased athletes resistance to proper hypoxia) and stress (myocardium economy in acute physical stress testing) components in systemic adaptation and restoration of athletes' with over-training syndrome.
ERIC Educational Resources Information Center
Baily, Charles Raymond
2011-01-01
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…
Phillip E. Farnes; Raymond C. Shearer; Ward W. McCaughey; Katherine J. Hansen
1995-01-01
There are two experimental forests in Montana established by the U.S. Department of Agriculture, Forest Service, Intermountain Research Station (INT). Both experimental forests are administered by INT's Research work Unit, RWU-4151, Silviculture of Subalpine Forest Ecosystems. Tenderfoot Creek Experimental Forest (TCEF) is east of the continental Divide and is...
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-01-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111
Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon
2014-10-01
[Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.
Park, Chorong; Song, Misoon; Cho, Belong; Lim, Jaeyoung; Song, Wook; Chang, Heekyung; Park, Yeon-Hwan
2015-04-01
The purpose of this study was to develop a multi-disciplinary self-management intervention based on empowerment theory and to evaluate the effectiveness of the intervention for older adults with chronic illness. A randomized controlled trial design was used with 43 Korean older adults with chronic illness (Experimental group=22, Control group=21). The intervention consisted of two phases: (1) 8-week multi-disciplinary, team guided, group-based health education, exercise session, and individual empowerment counseling, (2) 16-week self-help group activities including weekly exercise and group discussion to maintain acquired self-management skills and problem-solving skills. Baseline, 8-week, and 24-week assessments measured health empowerment, exercise self-efficacy, physical activity, and physical function. Health empowerment, physical activity, and physical function in the experimental group increased significantly compared to the control group over time. Exercise self-efficacy significantly increased in experimental group over time but there was no significant difference between the two groups. The self-management program based on empowerment theory improved health empowerment, physical activity, and physical function in older adults. The study finding suggests that a health empowerment strategy may be an effective approach for older adults with multiple chronic illnesses in terms of achieving a sense of control over their chronic illness and actively engaging self-management.
The GENIE Neutrino Monte Carlo Generator: Physics and User Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreopoulos, Costas; Barry, Christopher; Dytman, Steve
2015-10-20
GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of itsmore » physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.« less
Experimental And Theoretical High Energy Physics Research At UCLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousins, Robert D.
2013-07-22
This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describesmore » frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.« less
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
Mariani, Alberto; Brunner, S.; Dominski, J.; ...
2018-01-17
Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less
The Advanced Lab Course at the University of Houston
NASA Astrophysics Data System (ADS)
Forrest, Rebecca
2009-04-01
The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.
Influence of culture and language sensitive physics on science attitude enhancement
NASA Astrophysics Data System (ADS)
Morales, Marie Paz E.
2015-12-01
The study critically explored how culture and language sensitive curriculum materials in physics improve Pangasinan learners' attitude towards science. Their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning process determined their cultural preference or profile. Design and development of culture and language sensitive curriculum materials in physics were heavily influenced by these learners' cultural preference or profile. Pilot-study using interviews and focus group discussions with natives of Pangasinan and document analysis were conducted to identify the culture, practices, and traditions integrated in the lesson development. Comparison of experimental participants' pretest and posttest results on science attitude measure showed significant statistical difference. Appraisal of science attitude enhancement favored the experimental group over the control group. Qualitative data deduced from post implementation interviews, focus group discussions, and journal log entries showed the same trend in favor of the experimental participants. The study revealed that culture and language integration in the teaching and learning process of physics concepts enabled students to develop positive attitude to science, their culture, and native language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, Alberto; Brunner, S.; Dominski, J.
Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less
The teacher benefits from giving autonomy support during physical education instruction.
Cheon, Sung Hyeon; Reeve, Johnmarshall; Yu, Tae Ho; Jang, Hue Ryen
2014-08-01
Recognizing that students benefit when they receive autonomy-supportive teaching, the current study tested the parallel hypothesis that teachers themselves would benefit from giving autonomy support. Twenty-seven elementary, middle, and high school physical education teachers (20 males, 7 females) were randomly assigned either to participate in an autonomy-supportive intervention program (experimental group) or to teach their physical education course with their existing style (control group) within a three-wave longitudinal research design. Manipulation checks showed that the intervention was successful, as students perceived and raters scored teachers in the experimental group as displaying a more autonomy-supportive and less controlling motivating style. In the main analyses, ANCOVA-based repeated-measures analyses showed large and consistent benefits for teachers in the experimental group, including greater teaching motivation (psychological need satisfaction, autonomous motivation, and intrinsic goals), teaching skill (teaching efficacy), and teaching well-being (vitality, job satisfaction, and lesser emotional and physical exhaustion). These findings show that giving autonomy support benefits teachers in much the same way that receiving it benefits their students.
Physical descriptions of the bacterial nucleoid at large scales, and their biological implications
NASA Astrophysics Data System (ADS)
Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2012-07-01
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Exploring the Impact of Culture- and Language-Influenced Physics on Science Attitude Enhancement
NASA Astrophysics Data System (ADS)
Morales, Marie Paz E.
2016-02-01
"Culture," a set of principles that trace and familiarize human beings within their existential realities, may provide an invisible lens through which reality could be discerned. Critically explored in this study is how culture- and language-sensitive curriculum materials in physics improve Pangasinan learners' attitude toward science. Their cultural preference or profile defined their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning processes. The culture- and language-influenced curriculum materials in physics were heavily influenced by Pangasinan learners' cultural preference or profile. Results of the experimental participants' pretest and posttest on science attitude measure, when compared, showed significant statistical difference. Assessment of science attitude enhancement favored the experimental group over the control group. Qualitative data gathered from postimplementation interviews, focus group discussions, and journal log entries indicated the same trend in favor of the experimental participants. The study yielded that culture and language integration in the teaching and learning processes of physics concepts allowed students to develop positive attitude to science, their culture, and native language.
Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests
NASA Technical Reports Server (NTRS)
Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.
1984-01-01
The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.
Post-Fisherian Experimentation: From Physical to Virtual
Jeff Wu, C. F.
2014-04-24
Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.
[Effect of hedgehog hydnum on the delay of fatigue in mice].
Lu, Y H; Xin, C L; Zhou, Y F; Liu, X W; Chi, J W; Chang, X
1996-02-01
Two groups of mice were fed with either hedgehog hydnum powder or extract for sixty days. For the assay of fatigue, the activity of serum lactate dehydrogenase, the serum urea nitrogen content, blood lactic acid, hepatic and muscular glycogen, and the physical stamina of the mice were determined. The activity of serum lactate dehydrogenase and the hepatic and muscular glycogen content in the experimental mice were evidently higher than that in the control mice (P < 0.05 or P < 0.01). After exercise, the increase in blood lactic acid and serum urea nitrogen in the experimental mice was significantly lower than that in the control mice (P < 0.05 or P < 0.01), but the rate of elimination of blood lactic acid in the experimental mice was significantly higher than that in the control mice (P < 0.05). In the physical stamina swimming, the experimental mice drowned after a longer period of time than the control mice (P < 0.05). In conclusion hedgehog hydnum had a significant effect on raising physical stamina and delaying fatigue in mice.
The Effectiveness of Attribution Retraining on Health Enhancement of Epileptic Children
NAJAFI FARD, Tahereh; POURMOHAMADREZATAJRISHI, Masoume; SAJEDI, Firoozeh; Pouria, Pouria; DELAVAR KASMAEI, Hosein
2016-01-01
Objective Epilepsy is a chronic neurological disease. Evidence has indicated that epilepsy has an impact on mental and physical health of children. The present study aimed to determine the effectiveness of attribution retraining on health enhancement of epileptic children. Materials & Methods This was an experimental study with a pre-test and a post-test design with a control group. Thirty students with epilepsy (11 female and 19 male students) were selected in convenience from Iranian Epilepsy Association. They were assigned to experimental and control groups and their mothers completed Child Health Questionnaire (CHQ-PF.28) before and after the intervention. The experimental group attended to eleven sessions (each session 45 minutes; twice a week). Subjects were trained by attribution retraining program, but control group was not. Multivariate analysis of covariance (MANCOVA) was used for analyzing the data. Results Health (both psychosocial and physical) of experimental group enhanced significantly after the intervention sessions compared to control group. Conclusion Attribution retraining is an effective intervention to enhance the psychosocial and physical health of epileptic children. PMID:27247584
2017-01-01
Framed within Self-Determination Theory, the purpose of the present study was to test the effects of a training program with physical education (PE) teachers. Participants were 21 high school PE teachers (experimental group, n = 10; control group, n = 11), and their 836 students, aged 12 to 16 years. Teachers in the experimental group received a training program consisting of strategies to support autonomy, competence, and relatedness need satisfaction. A repeated measures ANCOVA was carried out for each dependent variable. After the intervention, students in the experimental group significantly increased their scores on autonomy support, relatedness support, autonomy satisfaction, autonomous motivation, controlled motivation, and intention to be physically active, as compared to the control group. These findings emphasize the utility of a training program with PE teachers to promote the students’ psychological need satisfaction, and hence, self-determined motivation toward PE classes. PMID:29284027
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
The Discovery of the Tau Lepton and the Changes in Elementary Particle Physics in 40 Years
DOE R&D Accomplishments Database
Perl, M.
2003-10-22
This is a history of my discovery of the tau lepton in the 1970s for which I was awarded the Nobel Prize in Physics. I have previously described some aspects of the discovery. In 1996 in my collection of papers entitled, ''Reflections on Experimental Science,'' I gave a straightforward account of the experimental method and the physics involved in the discovery as an introduction to the collection. In a 2002 paper written with Mary A. Meyer published in the journal ''Theoria et Historia Scientiarum'' I used the story of the discovery to outline my thoughts on the practice of experimental science. That 2002 paper was written primarily for young women and men who are beginning their lives in science and it was based on a lecture given at Los Alamos National Laboratory. Some of the historical material in this paper has appeared in those two earlier papers.
ERIC Educational Resources Information Center
King, Kristi McClary; Ling, Jiying
2015-01-01
Improving children's nutrition and physical activity have become priorities in the United States. This quasi-experimental study evaluated the longitudinal effects of a 3-year, school-based, health promotion intervention (i.e. nutrition and physical education, classroom physical activity, professional development and health promotion for teachers…
ERIC Educational Resources Information Center
Peterson, Jamie Lee; Puhl, Rebecca M.; Luedicke, Joerg
2012-01-01
Background: At school, physical education (PE) teachers and coaches may be key supports for physical activity. Unfortunately, PE teachers may endorse negative stereotypes and attitudes toward overweight youth. These biases may influence the amount of instruction physical educators provide to students and their participation in PE or other physical…
Physical Chemistry, Science (Experimental): 5318.60.
ERIC Educational Resources Information Center
Mary, Charlotta B.; Feuer, Jerold
Performance objectives are stated for this secondary school instructional unit concerned with aspects of physical chemistry, involving the physical properties of matter, and laws and theories regarding chemical interaction. Lists of films and state-adopted and other texts are presented. Included are enrollment guidelines; an outline summarizing…
van Bavel, René; Esposito, Gabriele; Baranowski, Tom
2014-07-31
The study explores whether messages about the physical activity levels of the majority (i.e. normative messages) affect young adults' intention to engage in regular physical activity. An experimental survey among 16 to 24 year-olds in Bulgaria, Croatia and Romania (n = 1200) was conducted in March 2013. A control group received no message; one treatment group was told that the majority was physically active (positive message); and another treatment group was told that the majority was not physically active (negative message). Both the positive and (unexpectedly) the negative normative messages showed a significant and positive effect on intention to be physically active. There was no difference between the effects of the messages. Normative messages affect intention, which is encouraging for public health campaigns. The effect of the positive message confirms previous findings on conformity to the norm; the effect of the negative message is unexpected and requires further research to be understood.
A network of experimental forests and ranges: Providing soil solutions for a changing world
Mary Beth Adams
2010-01-01
The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...
LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ABE,T.; DAWSON,S.; HEINEMEYER,S.
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less
Linear Collider Physics Resource Book for Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, Michael E
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less
Current challenges in fundamental physics
NASA Astrophysics Data System (ADS)
Egana Ugrinovic, Daniel
The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.
Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC
NASA Astrophysics Data System (ADS)
Campana, P.; Klute, M.; Wells, P. S.
2016-10-01
The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.
Mathematical, theoretical and experimental confirmations of IRS and IBS by R.M. Santilli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohale, Ritesh L.
The objective of present work is to put forward the Santilli’s experimental, physical and mathematical conception of IsoRedShift (IRS), IsoBlueShift (IBS) and NoIsoShift (NIS). Santilli has carried out a step-by step isotopic lifting of the physical laws of special relativity resulting in a new theory today specifically known Santilli isorelativity. In his 1991 hypothesis Santilli established the requirement to realize the light as electromagnetic waves propagating within a universal substratum. Furthermore Santilli has carried out a step-by step isotopic lifting of the physical laws of special relativity resulting in a new theory today specifically known Santilli isorelativity.
Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil
NASA Astrophysics Data System (ADS)
Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.
2017-12-01
The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.
Experimental Approach to Teaching Fluids
NASA Astrophysics Data System (ADS)
Stern, Catalina
2015-11-01
For the last 15 years we have promoted experimental work even in the theoretical courses. Fluids appear in the Physics curriculum of the National University of Mexico in two courses: Collective Phenomena in their sophomore year and Continuum Mechanics in their senior year. In both, students are asked for a final project. Surprisingly, at least 85% choose an experimental subject even though this means working extra hours every week. Some of the experiments were shown in this congress two years ago. This time we present some new results and the methodology we use in the classroom. I acknowledge support from the Physics Department, Facultad de Ciencias, UNAM.
NASA Astrophysics Data System (ADS)
Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French
2007-03-01
A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
2016-08-04
Killian1 1Department of Physics and Astronomy , Rice University, Houston, Texas 77005, USA 2Theoretical Division, Los Alamos National Laboratory, Los...2] L. Spitzer, Physics of Fully Ionized Gases, Interscience Tracts on Physics and Astronomy (Interscience Publishers, New York, 1962), Vol. 3. [3] L
Epistemology and expectations survey about experimental physics: Development and initial results
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.
2014-06-01
In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.
Experimental physical methods and theories--then and now.
Schulte, Jurgen
2015-10-01
A first evaluation of fundamental research into the physics and physiology of Ultra high dilutions (UHDs) was conducted by the author in 1994(1). In this paper we revisit methods and theories from back then and follow their paths through their evolution and contribution to new knowledge in UHD research since then. Physical methods and theories discusses in our anthology on UHD in 1994(1) form the basis for tracing ideas and findings along their path of further development and impact on new knowledge in UHD. Experimental approaches to probe physical changes in homeopathic preparations have become more sophisticated over past two decades, so did the desire to report results to a scientific standard that is on par with those in specialist literature. The same cannot be said about underlying supporting theoretical models and simulations. Grant challenges in science often take a more targeted and more concerted approach to formulate a research question and then look for answers. A concerted effort to focus on one hypothesized physical aspect of a well-defined homeopathic preparation may help aligning experimental methods with theoretical models and, in doing so, help to gain a deeper understanding of the whole body of insights and data produced. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Noakes, Richard
2014-12-01
This paper analyses the relationship between the 'elusive' science of psychical research and experimental physics in the period approximately, 1870-1930. Most studies of the relationship between psychical research and the established sciences have examined the ways in which psychical researchers used theories in the established sciences to give greater plausibility to their interpretations of such puzzling phenomena as telepathy, telekinesis and ectoplasm. A smaller literature has examined the use of laboratory instruments to produce scientific evidence for these phenomena. This paper argues that the cultures of experiment in the established science of physics could matter to psychical research in a different way: it suggests that experience of capricious effects, recalcitrant instruments and other problems of the physical laboratory made British physicists especially sympathetic towards the difficulties of the spiritualistic séance and other sites of psychical enquiry. In the wake of widely-reported claims that the mediums they had investigated had been exposed as frauds, these scientific practitioners were eventually persuaded by the merits of an older argument that human psychic subjects could not be treated like laboratory hardware. However, well into the twentieth century, they maintained that experimental physics had important lessons for psychical researchers. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.
2013-01-01
A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…
ERIC Educational Resources Information Center
Nation-Grainger, Stephen
2017-01-01
Motivating adolescents to participate in exercise and physical activity is becoming increasingly important due to a rise in obesity but can be prevented through Physical Education. A quasi-experimental design, grounded in the Self-determination theory, was utilised to assess the impact of an intervention using wrist-worn digital physical activity…
ERIC Educational Resources Information Center
Tanel, Zafer
2013-01-01
This study examined the effect of learning the history of physics on the epistemological beliefs of pre-service physics teachers. The research was conducted with 25 pre-service physics teachers using a single-group pre-test/post-test experimental model. The quantitative data of the research were collected using the Turkish version of the…
On the Advantage of Integrated Science Education in the Middle School Years
ERIC Educational Resources Information Center
Makashvili, Malkhaz; Slowinsky, Ekaterine
2009-01-01
We report on the advantage of integrating teaching of biology and physics in the 7th grade as compared to the teaching physics and biology as discrete units. Experimental group (EG) had a lesson integrating knowledge of physics and biology, while control group (CG) had discrete lessons in physics and biology, referring each to their specific…
Light and dark: A survey of new physics ideas in the 1-100 MeV window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pospelov, Maxim
2013-11-07
I review the set of theoretical ideas motivating experimental searches of light physics beyond Standard Model using the high-intensity electron beams. While 'dark photon' is the chief example of such physics, the other 'light and dark' states (e.g. 'Dark Higgses') are also of interest. I discuss particle physics, cosmology and astrophysics applications.
Jo, Garam; Rossow-Kimball, Brenda; Lee, Yongho
2018-04-01
The current study examined the effects of an exercise program on health related physical fitness, self-efficacy, and physical activity levels in adults with intellectual disability. The study used pre- and posttest experimental research design with a control group. Total of 23 adults with intellectual disability were recruited with 12 assigned for the exercise group and 11 for the control group, separately. The measures of health related physical fitness included cardio pulmonary endurance (step-test), body composition (bioelectrical impedance analysis), flexibility (sit and reach), muscle endurance (sit-up), and strength (hand grip strength). Self-efficacy was measured using the physical self-efficacy scale. Accelerometers were used to measure physical activity levels. All variables were measured and evaluated twice at baseline and at the end of the program. The exercise program consisted of band exercises and rhythmic activity for 90 min, twice per week for 12 weeks. After the intervention, significant improvements were found in the experimental group in muscle endurance, self-efficacy, and physical activity levels. An exercise program may be recommended as a nonpharmaceutical method to improve the health of adults with intellectual disabilities.
NASA Astrophysics Data System (ADS)
Sezgin Selçuk, Gamze; Sahin, Mehmet; Açıkgöz, Kamile Ün
2011-01-01
This article reports on the influence of learning strategy instruction on student teachers' physics achievement, attitude towards physics, and achievement motivation. A pre-test/post-test quasi-experimental design with matching control group was used in the study. Two groups of student teachers ( n = 75) who were enrolled in an introductory physics course participated in the study. In the experimental group, questioning, summarizing, and graphic organizers were taught. The control group did not receive any presentation on strategy learning. Data were collected via the pre- and post-administration of the Physics Course Achievement Test, the Scale of Attitudes towards Physics, and the Achievement Motivation Scale. Univariate and multivariate analyses of variance on the data revealed no significant differences in the attitude and achievement motivation between the strategy and control groups. However, the strategy group students were observed to have a tendency of more positive attitude and motivation than the control group students. Results also showed that explicit learning strategy instruction was more effective than traditional instruction in improving physics achievement of the participating students. The implications of these results for physics education are discussed.
Open-loop feedback to increase physical activity in obese children.
Goldfield, G S; Kalakanis, L E; Ernst, M M; Epstein, L H
2000-07-01
The present study investigated whether making access to sedentary activities contingent on physical activity would increase physical activity. Experimental. Thirty-four obese children aged 8-12 y were randomized to one of three groups in which children had to accumulate 750 or 1500 pedometer counts to earn 10 min of access to video games or movies, or to a control group in which access to sedentary behaviors was provided noncontingently. Physical activity in the 20 min experimental session was measured by electronic pedometer and triaxial accelerometer (ie TriTrac(R)). Activity liking was measured by visual analog scales. Anthropometric and demographic characteristics were also assessed. Children in the 750 and 1500 count contingency groups engaged in significantly more physical activity and spent more time in moderate intensity activity or higher compared with controls. Children in the Contingent 1500 group engaged in more activity and spent more time in moderate or greater intensity activity compared to children in the Contingent 750 group. Findings suggest that contingent access to sedentary activities can reinforce physical activity in obese children, and changes in physical activity level depend in part on the targeted physical activity goal.
An intervention study to enhance girls' interest, self-concept, and achievement in physics classes
NASA Astrophysics Data System (ADS)
Häussler, Peter; Hoffmann, Lore
2002-11-01
Many interest studies have shown the decline of students' interest in physics during secondary education, particularly among girls. Research into physics-related interests of students suggests applying different measures to reduce or reverse that trend such as: (a) suggesting curricular changes that do justice to the specific interests and experiences of girls, (b) improving the ability of teachers to support girls in the development of a positive physics related self-concept, and (c) changing to an organizational setting that gives girls a better chance to improve their self-concept about physics. The purpose of this study was to examine whether these hypothetically effective measures lead to an improvement of the situation for girls when implemented in the physics classroom. The intervention took a whole school year of some 60 one-hour lessons and comprised 12 experimental and 7 control classes of seventh graders (age about 13). Their immediate and long-term achievements, as well as their change of interest in physics, their subjectively experienced competence, and their physics-related self-concept were assessed by written tests at various stages of the intervention. The intervention proved successful and significantly improved most of these indicators for girls (and boys) in the experimental group.
Experimental Summary: Step-by-Step Towards New Physics
NASA Astrophysics Data System (ADS)
Schwartz, A. J.
2016-11-01
We summarize some highlights from experimental results presented at the XIIth International Conference on Beauty, Charm, and Hyperons in Hadronic Interactions, held at George Mason University June 12-18, 2016.
The effect of simulated ostracism on physical activity behavior in children
USDA-ARS?s Scientific Manuscript database
Objective: Assess the effects of simulated ostracism on children’s physical activity behavior, time allocated to sedentary behavior, and liking of physical activity. Methods: Nineteen (N=11 males, 8 females) children (11.7±1.3 years) completed two experimental sessions. During each session childre...
Cokorilo, Nebojsa; Mikalacki, Milena; Satara, Goran; Cvetkovic, Milan; Marinkovic, Dragan; Zvekic-Svorcan, Jelena; Obradovic, Borislav
2018-03-30
Aerobic exercises to music can have a positive effect on functional and motor skills of an exerciser, their health, as well as an aesthetic and socio-psychological component. The objective of this study was to determine the effects of reactive exercising in a group on functional capabilities in physically active and physically inactive women. A prospective study included 64 healthy women aged 40-60 years. The sample was divided into the experimental group (n= 36), i.e. physically active women who have been engaged in recreational group exercises at the Faculty of Sport and Physical Education, University of Novi Sad, Serbia, and the control group (n= 28), which consisted of physically inactive women. All the participants were monitored using the same protocol before and after the implementation of the research. All women had their height, weight, body mass index measured as well as spiroergometric parameters determined according to the Bruce protocol. A univariate analysis of variance has shown that there is a statistically significant difference between the experimental group and the control group in maximum speed, the total duration of the test, relative oxygen consumption, absolute oxygen consumption and ventilation during the final measurement. After the training intervention, the experimental group showed improvements in all the parameters analyzed compared with pretest values. The recreational group exercise model significantly improves aerobic capacity and functioning of the cardiovascular system. Therefore, it is essential for women to be involved more in any form of recreational group exercising in order to improve functional capacity and health.
Clark, Imogen N; Baker, Felicity A; Peiris, Casey L; Shoebridge, Georgie; Taylor, Nicholas F
2017-03-01
To evaluate effects of participant-selected music on older adults' achievement of activity levels recommended in the physical activity guidelines following cardiac rehabilitation. A parallel group randomized controlled trial with measurements at Weeks 0, 6 and 26. A multisite outpatient rehabilitation programme of a publicly funded metropolitan health service. Adults aged 60 years and older who had completed a cardiac rehabilitation programme. Experimental participants selected music to support walking with guidance from a music therapist. Control participants received usual care only. The primary outcome was the proportion of participants achieving activity levels recommended in physical activity guidelines. Secondary outcomes compared amounts of physical activity, exercise capacity, cardiac risk factors, and exercise self-efficacy. A total of 56 participants, mean age 68.2 years (SD = 6.5), were randomized to the experimental ( n = 28) and control groups ( n = 28). There were no differences between groups in proportions of participants achieving activity recommended in physical activity guidelines at Week 6 or 26. Secondary outcomes demonstrated between-group differences in male waist circumference at both measurements (Week 6 difference -2.0 cm, 95% CI -4.0 to 0; Week 26 difference -2.8 cm, 95% CI -5.4 to -0.1), and observed effect sizes favoured the experimental group for amounts of physical activity (d = 0.30), exercise capacity (d = 0.48), and blood pressure (d = -0.32). Participant-selected music did not increase the proportion of participants achieving recommended amounts of physical activity, but may have contributed to exercise-related benefits.
Research in High Energy Physics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, John S.
2013-08-09
This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.
NASA Astrophysics Data System (ADS)
Danilova, N. P.
2015-09-01
From the Editorial Board. In a brief followup to the talk by E I Kats on "Van der Waals, Casimir, and Lifshitz forces in soft matter" (see pp. 892 - 896 of this issue) at the E M Lifshitz centennial session of the Physical Sciences Division of the Russian Academy of Sciences, an interesting and instructive story was told by Nina Petrovna Danilova (Department of Low Temperature Physics and Superconductivity, Faculty of Physics, Moscow State University) of how E M Lifshitz was enlisted to explain I I Abrikosova's and B V Derjaguin's experimental results. The Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal found the story appropriate to be published in the "Letters to the Editor" section of UFN in a jubilee selection of works marking the centennial of E M Lifshitz' birth.
Nuclear Physics Research at ELI-NP
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2018-05-01
The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.
NASA Astrophysics Data System (ADS)
Morozov, A. N.
2017-11-01
The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.
Physics of mind: Experimental confirmations of theoretical predictions.
Schoeller, Félix; Perlovsky, Leonid; Arseniev, Dmitry
2018-02-02
What is common among Newtonian mechanics, statistical physics, thermodynamics, quantum physics, the theory of relativity, astrophysics and the theory of superstrings? All these areas of physics have in common a methodology, which is discussed in the first few lines of the review. Is a physics of the mind possible? Is it possible to describe how a mind adapts in real time to changes in the physical world through a theory based on a few basic laws? From perception and elementary cognition to emotions and abstract ideas allowing high-level cognition and executive functioning, at nearly all levels of study, the mind shows variability and uncertainties. Is it possible to turn psychology and neuroscience into so-called "hard" sciences? This review discusses several established first principles for the description of mind and their mathematical formulations. A mathematical model of mind is derived from these principles. This model includes mechanisms of instincts, emotions, behavior, cognition, concepts, language, intuitions, and imagination. We clarify fundamental notions such as the opposition between the conscious and the unconscious, the knowledge instinct and aesthetic emotions, as well as humans' universal abilities for symbols and meaning. In particular, the review discusses in length evolutionary and cognitive functions of aesthetic emotions and musical emotions. Several theoretical predictions are derived from the model, some of which have been experimentally confirmed. These empirical results are summarized and we introduce new theoretical developments. Several unsolved theoretical problems are proposed, as well as new experimental challenges for future research. Copyright © 2017. Published by Elsevier B.V.
Kaltsatou, Antonia; Mameletzi, Dimitra; Douka, Stella
2011-04-01
The purpose of the present study was to evaluate the influence of a mixed exercise program, including Greek traditional dances and upper body training, in physical function, strength and psychological condition of breast cancer survivors. Twenty-seven women (N = 27), who had been diagnosed and surgically treated for breast cancer, volunteered to participate in this study. The experimental group consisted of 14 women with mean age 56.6 (4.2) years. They attended supervised Greek traditional dance courses and upper body training (1 h, 3 sessions/week) for 24 weeks. The control group consisted of 13 sedentary women with mean age 57.1 (4.1) years. Blood pressure, heart rate, physical function (6-min walking test), handgrip strength, arm volume and psychological condition (Life Satisfaction Inventory and Beck Depression Inventory) were evaluated before and after the exercise program. The results showed significant increases of 19.9% for physical function, 24.3% for right handgrip strength, 26.1% for left handgrip strength, 36.3% for life satisfaction and also a decrease of 35% for depressive symptoms in the experimental group after the training program. Significant reductions of 9% for left hand and 13.7% for right hand arm volume were also found in the experimental group. Consequently, aerobic exercise with Greek traditional dances and upper body training could be an alternative choice of physical activity for breast cancer survivors, thus promoting benefits in physical function, strength and psychological condition. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effect of music-movement therapy on physical and psychological states of stroke patients.
Jun, Eun-Mi; Roh, Young Hwa; Kim, Mi Ja
2013-01-01
This study evaluated the effects of combined music-movement therapy on physical and psychological functioning of hospitalised stroke patients. Few studies have focused on music-movement therapy's effects on physical and psychological functioning of stroke patients. A quasi-experimental design with pre- and post-tests was used. A convenience sample was used: patients hospitalised for stroke and within two weeks of the onset of stroke were randomised to either an experimental group (received music-movement therapy in their wheelchairs for 60 minutes three times per week for 8 weeks) or control group (received only routine treatment). The effect of music-movement therapy was assessed in terms of physical outcomes (range of motion, muscle strength and activities of daily living) and psychological outcomes (mood states, depression), measured in both groups pre- and post-test. The experimental group had significantly increased shoulder flexion and elbow joint flexion in physical function and improved mood state in psychological function, compared with the control group. Early rehabilitation of hospitalised stroke patients within two weeks of the onset of stroke was effective by using music-movement therapy. It improved their mood state and increased shoulder flexion and elbow joint flexion. The findings of this study suggest that rehabilitation for stroke patients should begin as early as possible, even during their hospitalisation. Nursing practice should incorporate the concept of combining music and movements to improve stroke patients' physical and psychological states starting from the acute phase. © 2012 Blackwell Publishing Ltd.
Revision by means of computer-mediated peer discussions
NASA Astrophysics Data System (ADS)
Soong, Benson; Mercer, Neil; Er, Siew Shin
2010-05-01
In this article, we provide a discussion on our revision method (termed prescriptive tutoring) aimed at revealing students' misconceptions and misunderstandings by getting them to solve physics problems with an anonymous partner via the computer. It is currently being implemented and evaluated in a public secondary school in Singapore, and statistical analysis of our initial small-scale study shows that students in the experimental group significantly outperformed students in both the control and alternative intervention groups. In addition, students in the experimental group perceived that they had gained improved understanding of the physics concepts covered during the intervention, and reported that they would like to continue revising physics concepts using the intervention methods.
Long path-length experimental studies of longitudinal phenomena in intense beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B. L.; Haber, I.; Kishek, R. A.
2016-05-15
Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands ofmore » plasma periods, illustrating good agreement with simulations.« less
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
A guide to experimental particle physics literature, 1991-1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.
1996-10-01
We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.
Physical concepts in the development of constitutive equations
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1985-01-01
Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.
Experimental history: swinging pendulums and melting shellac.
Palmieri, Paolo
2009-09-01
Four hundred years ago Galileo Galilei aimed a telescope at the sky. He revolutionized astronomy. Equally revolutionary were his experiments in physics. Unlike his astronomical observations the experiments remain difficult to understand and replicate even today. Two centuries after Galileo, Augustin Coulomb demonstrated experimentally the law of electrostatic force. It has never been successfully replicated. Yet both Galileo and Coulomb were exquisite experimentalists. The fact is that revolutionary experiments in physics are never finished. They are open for investigation for generations to come.
Pronskikh, Vitaly
2015-10-01
The book Shifting Standards is a valuable contribution to the literature on the history and philosophy of science and specifically to the philosophy of scientific experimentation, the discipline of which Allan Franklin is one of the outstanding scholars and founders. Here, the central focus of the book is the contemporary shift in the norms of representation of experimental results in particle physics as well as the increasing role and drawbacks of statistical standards of acceptance for those results.
ERIC Educational Resources Information Center
Koç, Yakup
2017-01-01
The study aims to investigate the effect of "Physical Education and Sport Culture" (PESC) course on the attitudes of preservice classroom teachers towards physical education and sports. The one group pre-test post-test design among experimental models which is included in quantitative research designs was employed in the study. The study…
Physical and Chemical Processing in Flames
2013-08-12
hydrogen-air flames. It order to evaluate the closeness of theoretical limit based on the Sivashinsky criterion with the experimental results we have... experimental H2-O2 results, and it is seen that the experimental transition regime does span around the neighborhood of the theoretical boundary, suggesting...for hydrogen–oxygen flames with the calculated theoretical boundary superimposed 13 In Fig. II-4 we plot the experimentally measured
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Denlinger, Jonathan; Fedorov, Alexei; Yang, Haitao; Duan, Wenhui; Yao, Hong; Wu, Yang; Fan, Shoushan; Zhang, Haijun; Chen, Xi; Zhou, Shuyun
2016-12-01
Weyl semimetal is a new quantum state of matter hosting the condensed matter physics counterpart of the relativistic Weyl fermions originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance and possibly emergent supersymmetry. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs ,,). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Analysis and projections of physics in Chile
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutiérrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio
2008-11-01
In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ~160 correspond to theoretical physicists and only ~40 to experimental physicists; ~178 are men and only ~22 are women. A more detailed analysis shows that ~160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y Tecnología (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is insufficient for a community that has doubled. Likewise, even 50% of the productivity corresponds to regional centres, only 35% of projects coming from FONDECYT are awarded to the regions (away from the metropolitan region). Regarding experimental Physics, this represents 20% of the community in both, researchers and productivity of the community. However, in the regular FONDECYT contest in 2005, only 2 projects (10%) were awarded in experimental Physics, which is undoubtedly insufficient. The study also includes a brief analysis according to social appraisal of Physics, dissemination activities to other areas of national living, and relation of Physics with the productive sector. Finally, some recommendations are made: - To create a special fund for experimental Physics in the regular FONDECYT contest. Complementarily, experimental Physics should be one of the priority areas for the technological and scientific development of the country. - To duplicate the amount assigned to Physics in the regular FONDECYT contest. - To create a system that allows increasing the salaries of the researchers in Physics so they could be assimilated to other professional salaries in our country or at an international level. Not only demands must be globalized but also the benefits.
The Physics of "Copenhagen" for Students and the General Public.
ERIC Educational Resources Information Center
Bergstrom, L.; Johansson, K. E.; Nilsson, Ch.
2001-01-01
The play Copenhagen has attracted the attention of a large audience in several countries. The hypothetical discussion between two of the giants in physics, Niels Bohr and Werner Heisenberg, has inspired us to start a theoretical and experimental exploration of quantum physics. This theme has been used in Stockholm Science Laboratory for audiences…
Effects of Evaluative vs. Co-Constructive Interactions on Learning in Physics
ERIC Educational Resources Information Center
Toczek, Marie-Christine; Morge, Ludovic
2009-01-01
We conducted an experimental study to assess the effects of two physics-learning situations that differed in the type of teacher-student interactions that took place: evaluative or co-constructive. As found in various studies on physics teaching and social psychology, the results showed that co-constructive interactions generated a more effective…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittich, Peter
2011-10-14
This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.
ERIC Educational Resources Information Center
Duncan-Bazil, Lisa; Foster, Sharon L.
Despite abundant research relating physical attractiveness and social skill, no studies have systematically assessed the influence of social behavior on perceived attractiveness. This study experimentally investigated how exposure to positive, negative, and neutral childhood behaviors influences ratings of physical attractiveness and other social…
Epistemology and Expectations Survey about Experimental Physics: Development and Initial Results
ERIC Educational Resources Information Center
Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.
2014-01-01
In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning…
How to Incorporate Total Physical Response into the English Programme.
ERIC Educational Resources Information Center
Sano, Masayuki
1986-01-01
An experimental project attempted to incorporate Total Physical Response (TPR--a method which requires learners to respond physically to imperatives given by the teacher to teach certain aspects of the language) into an English course in a Japanese junior high school. Results indicated that TPR shows potential for usefulness in second language…
ERIC Educational Resources Information Center
Koponen, Ismo T.; Mantyla, Terhi
2006-01-01
In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…
Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach
ERIC Educational Resources Information Center
Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.
2014-01-01
Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; de Jong, Ton
2014-01-01
This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…
Physical-enhanced secure strategy in an OFDM-PON.
Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yu, Jianjun
2012-01-30
The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.
Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters
ERIC Educational Resources Information Center
McElhaney, Kevin W.; Linn, Marcia C.
2011-01-01
This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…
[N.K. Kol'tsov and experimental embryology (dedicated to the 140th anniversary of his birth)].
Pomelova, M A
2012-01-01
It is common knowledge that the majority ofN.K. Kol'tsov's studies investigated the structure of a cell through the methods of physical chemistry and cytogenetics. At the same time, Kol'tsov was also interested in the development of experimental biology, specifically experimental embryology.
Code of Federal Regulations, 2013 CFR
2013-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Code of Federal Regulations, 2014 CFR
2014-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Code of Federal Regulations, 2012 CFR
2012-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Yang, Zhihan; Tang, Xiaoqing; Duan, Wenjie; Zhang, Yonghong
2015-03-01
The present study examines the efficacy of expressive writing among Chinese undergraduates. The sample comprised of 74 undergraduates enrolled in a 9-week intervention (35 in experimental class vs. 39 in control class). The writing exercises were well-embedded in an elective course for the two classes. The 46-item simplified Chinese Self-Rated Health Measurement Scale, which assesses psychological, physical and social health, was adopted to measure the outcome of this study. Baseline (second week) and post-test (ninth week) scores were obtained during the classes. After the intervention on the eighth week, the self-reported psychological, social and physical health of the experimental class improved. Psychological health obtained the maximum degree of improvement, followed by social and physical health. Furthermore, female participants gained more psychological improvement than males. These results demonstrated that the expressive writing approach could improve the physical, social and psychological health of Chinese undergraduates, and the method can be applied in university psychological consulting settings in Mainland China. © 2014 International Union of Psychological Science.
Synthetic electromagnetic knot in a three-dimensional skyrmion
Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.
2018-01-01
Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735
Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo A; Arroyo-Morales, Manuel; Saavedra-Hernández, Manuel; Fernández-Sola, Cayetano; Moreno-Lorenzo, Carmen
2011-09-01
To determine the effect of myofascial release techniques on pain symptoms, postural stability and physical function in fibromyalgia syndrome. A randomized, placebo-controlled trial was undertaken. Eighty-six patients with fibromyalgia syndrome were randomly assigned to an experimental group and a placebo group. Patients received treatments for 20 weeks. The experimental group underwent 10 myofascial release modalities and the placebo group received sham short-wave and ultrasound electrotherapy. Outcome variables were number of tender points, pain, postural stability, physical function, clinical severity and global clinical assessment of improvement. Outcome measures were assessed before and immediately after, at six months and one year after the last session of the corresponding intervention. After 20 weeks of myofascial therapy, the experimental group showed a significant improvement (P < 0.05) in painful tender points, McGill Pain Score (20.6 ± 6.3, P < 0.032), physical function (56.10 ± 17.3, P < 0.029), and clinical severity (5.08 ± 1.03, P < 0.039). At six months post intervention, the experimental group had a significantly lower mean number of painful points, pain score (8.25 ± 1.13, P < 0.048), physical function (58.60 ± 16.30, P < 0.049) and clinical severity (5.28 ± 0.97, P < 0.043). At one year post intervention, the only significant improvements were in painful points at second left rib and left gluteal muscle, affective dimension, number of days feeling good and clinical severity. The results suggest that myofascial release techniques can be a complementary therapy for pain symptoms, physical function and clinical severity but do not improve postural stability in patients with fibromyalgia syndrome.
A school-based health promotion program for stressed nursing students in Taiwan.
Hsieh, Pei-Lin
2011-09-01
: Nursing students face both clinical and academic stress. Extensive theoretical and research literature suggests that peer support and regular exercise are critically important and can efficiently manage stress for nursing students. : The purpose of this study was to investigate the effect of a school-based health promotion program in a group physical activity intervention and peer support program for stressed nursing students. : This study used a quasi-experimental design to collect information and collected data from a stress questionnaire, semistructured questionnaire, and group discussion. Participants included 77 nursing students at an institute of technology in northern Taiwan. Participants were randomly assigned into experimental (n = 37) and control (n = 40) groups. Program duration was 16 weeks. Participants were selected based on their assessment results as having moderate or severe levels of stress. All participants in the experimental group took part in a group physical activity for 30 minutes three times a week. Eight weeks later, the researcher invited each group to discuss their feelings and stress coping strategies. Both groups completed pretest and posttest stress questionnaires. Quantitative data were analyzed using SPSS 14.0 Statistical Package for Windows, and qualitative data from each group discussion were analyzed using content analysis. : Results revealed that level of stress was statistically decreased in the experimental group. Posttest stress levels were significantly different in experimental and control groups. The results suggested that students who participated in the intervention had less stress than did those in the control group after the intervention. Those in the experimental group held positive views of peer support and physical activity. : The results of this study confirmed the efficacy of school-based health promotion programs in reducing stress in nursing students. Findings may provide educators with information to assist their developing effective health promotion programs to manage stress for their students. This study can also help students develop personal coping strategies through physical activity and peer support.
The uses of isospin in early nuclear and particle physics
NASA Astrophysics Data System (ADS)
Borrelli, Arianna
2017-11-01
This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.
Plotnikoff, Ronald C; Pickering, Michael A; McCargar, Linda J; Loucaides, Constantinos A; Hugo, Kylie
2010-01-01
To evaluate the effects of a 12-week e-mail intervention promoting physical activity and nutrition, and to describe participant use and satisfaction feedback. A longitudinal, randomized trial. Five large workplaces in Alberta, Canada. One thousand forty-three participants completed all three assessments, and 1263 participants in the experimental group provided use and satisfaction feedback after receiving the 12-week intervention. Paired physical activity and nutrition messages were e-mailed weekly to the experimental group. The control group received all messages in bulk (i.e., within a single e-mail message) at the conclusion of the intervention. Self-report measures of knowledge, cognitions, and behaviors related to physical activity and nutrition were used. Satisfaction with e-mail messages was assessed at Time 2. Planned contrasts compared the experimental group measures at Time 3 with those reported at Time 2 and with control group measures reported at Time 3. Control group measures at Time 3 were also compared with control group measures at Time 2. The small intervention effects previously reported between Time 1 and Time 2 were maintained at Time 3. Providing the e-mail messages in bulk also had a significant positive effect on many of the physical activity and nutrition variables. E-mail offers a promising medium for promoting health-enhancing knowledge, attitudes, and behaviors. Additional research is needed to determine optimal message dose and content.
NASA Astrophysics Data System (ADS)
Koskinen, H. E.
2008-12-01
Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.
Van Kann, Dave H H; Jansen, M W J; de Vries, S I; de Vries, N K; Kremers, S P J
2015-12-29
The worldwide increase in the rates of childhood overweight and physical inactivity requires successful prevention and intervention programs for children. The aim of the Active Living project is to increase physical activity and decrease sedentary behavior of Dutch primary school children by developing and implementing tailored, multicomponent interventions at and around schools. In this project, school-centered interventions have been developed at 10 schools in the south of the Netherlands, using a combined top-down and bottom-up approach in which a research unit and a practice unit continuously interact. The interventions consist of a combination of physical and social interventions tailored to local needs of intervention schools. The process and short- and long-term effectiveness of the interventions will be evaluated using a quasi-experimental study design in which 10 intervention schools are matched with 10 control schools. Baseline and follow-up measurements (after 12 and 24 months) have been conducted in grades 6 and 7 and included accelerometry, GPS, and questionnaires. Primary outcome of the Active Living study is the change in physical activity levels, i.e. sedentary behavior (SB), light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), and counts-per-minute (CPM). Multilevel regression analyses will be used to assess the effectiveness of isolated and combined physical and social interventions on children's PA levels. The current intervention study is unique in its combined approach of physical and social environmental PA interventions both at school(yard)s as well as in the local neighborhood around the schools. The strength of the study lies in the quasi-experimental design including objective measurement techniques, i.e. accelerometry and GPS, combined with more subjective techniques, i.e. questionnaires, implementation logbooks, and neighborhood observations. Current Controlled Trials ISRCTN25497687 (registration date 21/10/2015), METC 12-4-077, Project number 200130003.
[Eutrophication control in local area by physic-ecological engineering].
Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan
2012-07-01
An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.
USDA-ARS?s Scientific Manuscript database
We assessed the effects of a 6-month, church¬-based, diet and supervised physical activity intervention, conducted between 2011 and ¬2012, on improving diet quality and increasing physical activity of southern, African American adults. Using a quasi¬-experimental design, 8 self-selected, eligible c...
ERIC Educational Resources Information Center
Carifio, James; Doherty, Michael
2012-01-01
The Take-away Technique was used in High School Physics and Physical Science courses for the unit on Newtonian mechanics in a teacher (6) by grade level (4) partially crossed design (N = 272). All classes received the same IE instructional treatment. The experimental group (classrooms) did a short Take-away after each class summarizing the key…
Hansen, Murphy, Receive Mineral and Rock Physics Graduate Research Awards
NASA Astrophysics Data System (ADS)
2014-08-01
Lars N. Hansen and Caitlin A. Murphy were awarded the 2013 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties.
ERIC Educational Resources Information Center
Hameed, Saddam Mohammed; Mohammed, Essam Mahmoud
2016-01-01
The current research aims know the effectiveness of enriching the physics curriculum for students in middle school electronic learning in the development of their thinking and scientific their direction towards physics, sample formed from second grade students in Sinae intermediate school 64 students (32) student as experimental group & (32)…
Suresh, Srinivasan; Saladino, Richard A; Fromkin, Janet; Heineman, Emily; McGinn, Tom; Richichi, Rudolph; Berger, Rachel P
2018-04-12
To evaluate the effect of a previously validated electronic health record-based child abuse trigger system on physician compliance with clinical guidelines for evaluation of physical abuse. A randomized controlled trial (RCT) with comparison to a preintervention group was performed. RCT-experimental subjects' providers received alerts with a direct link to a physical abuse-specific order set. RCT-control subjects' providers had no alerts, but could manually search for the order set. Preintervention subjects' providers had neither alerts nor access to the order set. Compliance with clinical guidelines was calculated. Ninety-nine preintervention subjects and 130 RCT subjects (73 RCT-experimental and 57 RCT-control) met criteria to undergo a physical abuse evaluation. Full compliance with clinical guidelines was 84% pre-intervention, 86% in RCT-control group, and 89% in RCT-experimental group. The physical abuse order set was used 43 times during the 7-month RCT. When the abuse order set was used, full compliance was 100%. The proportion of cases in which there was partial compliance decreased from 10% to 3% once the order set became available (P = .04). Male gender, having >10 years of experience and completion of a pediatric emergency medicine fellowship were associated with increased compliance. A child abuse clinical decision support system comprised of a trigger system, alerts and a physical abuse order set was quickly accepted into clinical practice. Use of the physical abuse order set always resulted in full compliance with clinical guidelines. Given the high baseline compliance at our site, evaluation of this alert system in hospitals with lower baseline compliance rates will be more valuable in assessing the efficacy in adherence to clinical guidelines for the evaluation of suspected child abuse.
A review and meta-analysis of affective judgments and physical activity in adult populations.
Rhodes, Ryan E; Fiala, Bonnie; Conner, Mark
2009-12-01
Popular theories of health behavior have often been criticized for neglecting an affective component to behavioral engagement. This study reviewed affective judgment (AJ) constructs employed in physical activity research to assess the relationship with behavior. Studies were eligible if they included: (a) a measure of physical activity; (b) a distinct measure of AJ (e.g., affective attitude, enjoyment, intrinsic motivation); and (c) involved participants with a mean age of 18 years or older. Literature searches were concluded in September, 2009 among five key search engines. This search yielded a total of 10,631 potentially relevant records; of these, 102 passed the eligibility criteria. Random effects meta-analysis procedures with correction for sampling and measurement bias were employed in the analysis. Articles were published between 1989 and 2009, with sample sizes ranging from 15 to 6,739. Of the studies included, 82 were correlational and 20 were experimental, yielding 114 independent samples. The majority of the correlational samples reported a significant positive correlation between AJ and physical activity (83 out of 85), with a summary r of 0.42 (95% CI 0.37 to 0.46) that was invariant across the measures employed, study quality, population sampled and cultural variables. Experimental studies demonstrated that persuasive, information-based, and self-regulatory interventions failed to change AJ; by contrast, environmental and experiential interventions showed promise in their capability to influence AJ. The results point to a medium-effect size relationship between AJ and physical activity. Interventions that change AJ are scarce despite their potential for changing physical activity. Future experimental work designed to evaluate the causal impact ofAJ on physical activity is required.
Glapa, Agata; Grzesiak, Joanna; Laudanska-Krzeminska, Ida; Chin, Ming-Kai; Edginton, Christopher R; Mok, Magdalena Mo Ching; Bronikowski, Michal
2018-02-21
The purpose of this study was to examine the effectiveness of the Brain Breaks® Physical Activity Solutions in changing attitudes toward physical activity of school children in a community in Poland. In 2015, a sample of 326 pupils aged 9-11 years old from 19 classes at three selected primary schools were randomly assigned to control and experimental groups within the study. During the classes, children in the experimental group performed physical activities two times per day in three to five minutes using Brain Breaks® videos for four months, while the control group did not use the videos during the test period. Students' attitudes toward physical activities were assessed before and after the intervention using the "Attitudes toward Physical Activity Scale". Repeated measures of ANOVA were used to examine the change from pre- to post-intervention. Overall, a repeated measures ANOVA indicated time-by-group interaction effects in 'Self-efficacy on learning with video exercises', F(1.32) = 75.28, p = 0.00, η2 = 0.19. Although the changes are minor, there were benefits of the intervention. It may be concluded that HOPSports Brain Breaks® Physical Activity Program contributes to better self-efficacy on learning while using video exercise of primary school children.
Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design
NASA Technical Reports Server (NTRS)
Newman, Dava
2003-01-01
The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.
Masatoshi Koshiba and Cosmic Neutrinos
Koshiba, American Institute of Physics (AIP) 2002 W.K.H. Panofsky Prize in Experimental Particle Physics Institute Top Some links on this page may take you to non-federal websites. Their policies may differ from
Georges Charpak, Particle Detectors, and Multiwire Chambers
particle detectors used throughout experimental particle physics. In 1968, he invented and developed the the 2005 International Year of Physics (video) Top Some links on this page may take you to non-federal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piekarz, Henryk; /Fermilab
The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.
Physical View of Cloud Seeding
ERIC Educational Resources Information Center
Tribus, Myron
1970-01-01
Reviews experimental data on various aspects of climate control. Includes a discussion of (1) the physics of cloud seeding, (2) the applications of cloud seeding, and (3) the role of statistics in the field of weather modification. Bibliography. (LC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-07-01
This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)
NASA Astrophysics Data System (ADS)
Huang, J. H.; Wang, X. J.; Wang, J.
2016-02-01
The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic-electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model.
Statistical Physics Experiments Using Dusty Plasmas
NASA Astrophysics Data System (ADS)
Goree, John
2016-10-01
Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.
Ikuma, Laura H; Babski-Reeves, Kari; Nussbaum, Maury A
2009-05-01
The objectives of this study were to determine the efficacy of experimental manipulations of psychosocial exposures and to evaluate the sensitivity of a psychosocial questionnaire by determining the factors perceived. A 50-item questionnaire was developed from the job content questionnaire (JCQ) and the quality of worklife survey (QWL). The experiment involved simulated work at different physical and psychosocial levels. Forty-eight participants were exposed to two levels of one psychosocial manipulation (job control, job demands, social support, or time pressure). Significantly different questionnaire responses supported the effectiveness of psychosocial manipulations. Exploratory factor analysis revealed five factors: skill discretion and decision authority, stress level and supervisor support, physical demands, quality of coworker support, and decision-making support. These results suggest that psychosocial factors can be manipulated experimentally, and that questionnaires can distinguish perceptions of these factors. These questionnaires may be used to assess perceptions of psychosocial factors in experimental settings.
Comparison of GEANT4 very low energy cross section models with experimental data in water.
Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C
2010-09-01
The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.
2016-10-01
The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.
The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students
ERIC Educational Resources Information Center
Chen, Chao-Chien; Lin, Shih-Yen
2011-01-01
The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…
ERIC Educational Resources Information Center
Changeiywo, Johnson M.; Wambugu, P. W.; Wachanga, S. W.
2011-01-01
Teaching method is a major factor that affects students' motivation to learn physics. This study investigated the effects of using mastery learning approach (MLA) on secondary school students' motivation to learn physics. Solomon four non-equivalent control group design under the quasi-experimental research method was used in which a random sample…
Applied Physics Laboratory, An Experimental Program for Aerospace Education, 12th Year.
ERIC Educational Resources Information Center
Abramson, David A.
This physics laboratory manual is the result of curriculum development begun at Aviation High School (New York City) in 1967. It represents a semester of advanced laboratory work for those students who have completed the usual course in physics. The 91 laboratory experiments included in the manual have been developed and modified through use for…
An Instructional System in Physical Science, Teacher's Guide and Keys.
ERIC Educational Resources Information Center
Washington State Univ., Pullman.
This manual is a teacher's guide to a self-instructional program in basic physical science, designed for high school students who have not had a course in chemistry or physics. There are six units in the manual relating to these areas: problem solving and experimental procedures; universal standards, metric system and conversion; mechanics; the…
Pre-Service Physics Teachers' Knowledge of Models and Perceptions of Modelling
ERIC Educational Resources Information Center
Ogan-Bekiroglu, Feral
2006-01-01
One of the purposes of this study was to examine the differences between knowledge of pre-service physics teachers who experienced model-based teaching in pre-service education and those who did not. Moreover, it was aimed to determine pre-service physics teachers' perceptions of modelling. Posttest-only control group experimental design was used…
Physical properties of organic soils. Chapter 5.
Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni
2011-01-01
Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...
ERIC Educational Resources Information Center
Munier, Valerie; Merle, Helene
2009-01-01
The present study takes an interdisciplinary mathematics-physics approach to the acquisition of the concept of angle by children in Grades 3-5. This paper first presents the theoretical framework we developed, then we analyse the concept of angle and the difficulties pupils have with it. Finally, we report three experimental physics-based teaching…
Physics and Analysis at a Hadron Collider - An Introduction (1/3)
None
2018-05-11
This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, Sebastien
A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world. Graduate student Sébastien Philippe discusses the experiment.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly
NASA Technical Reports Server (NTRS)
Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.
1971-01-01
A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.
2017-07-21
Technology Branch (RVSW) is conducting a first time experimental and theoretical investigation focused on evaluating new physical phenomena in the quasi ...bandgap energy, are formulated in our microscopic model for explaining the experimentally observed enhancements in both conduction- and valence... experimental and theoretical study on the nature of carrier transport, of both electrons and holes, through narrow constricted crystalline Si “wall
Capitalizing on Community: the Small College Environment and the Development of Researchers
NASA Astrophysics Data System (ADS)
Stoneking, M. R.
2014-03-01
Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.
Aerobic Dance and the Mentally Retarded--A Winning Combination.
ERIC Educational Resources Information Center
Barton, Bonnie J.
1982-01-01
The results of a study on an experimental dance program for mentally retarded children show that these children can improve in physical fitness and that success through physical activities can enhance their generally poor self-concept. (JN)
The mechanism of thermal-gradient mass transfer in the sodium hydroxide-nickel system
NASA Technical Reports Server (NTRS)
May, Charles E
1958-01-01
"Thermal-gradient mass transfer" was investigated in the molten sodium hydroxide-nickel system. Possible mechanisms (physical, electrochemical, and chemical) are discussed in terms of experimental and theoretical evidence. Experimental details are included in appendixes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, M.L.
This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words.
Numeric data distribution: The vital role of data exchange in today's world
NASA Technical Reports Server (NTRS)
Chase, Malcolm W.
1994-01-01
The major aim of the NIST standard Reference Data Program (SRD) is to provide critically evaluated numeric data to the scientific and technical community in a convenient and accessible form. A second aim of the program is to provide feedback into the experimental and theoretical programs to help raise the general standards of measurement. By communicating the experience gained in evaluating the world output of data in the physical sciences, NIST/SRD helps to advance the level of experimental techniques and improve the reliability of physical measurements.
Brown, J; Sherrill, C; Gench, B
1981-08-01
Two approaches to facilitating perceptual-motor development in children, ages 4 to 6 yr., were investigated. The experimental group (n = 15) received 24 sessions of integrated physical education/music instruction based upon concepts of Kodaly and Dalcroze. The control group (n = 15) received 24 sessions of movement exploration and self-testing instruction. Analysis of covariance indicated that significant improvement occurred only in the experimental group, with discharges changes in the motor, auditory, and language aspects of perceptual-motor performance as well as total score.
Physical application: Cannon case
NASA Astrophysics Data System (ADS)
Prada, D. A.; Tarazona, J. D.; Gómez, J. M.
2018-04-01
The study of physical phenomena by means of guided experimentation and experimental thinking, allow students to infer and understand the reason for the different variations that evidence. Parabolic motion of a projectile powered by a cannon under the spring mechanism, generates discussion regarding the choice of the proper angle, according to a certain distance, a known average initial velocity, and a given height. Give the blank is a great encouragement, however, being able to explain which conditions of the environment influenced the failed launches, generates a space of dialogue and a durable concrete learning.
NASA Astrophysics Data System (ADS)
Takada, Tohru; Nakamura, Jin; Suzuki, Masaru
All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.
ERIC Educational Resources Information Center
Mayorga-Vega, Daniel; Montoro-Escaño, Jorge; Merino-Marban, Rafael; Viciana, Jesús
2016-01-01
The purpose of this study was to examine the effects of a physical education-based development and maintenance programme on objective and perceived health-related physical fitness in high school students. A sample of 111 students aged 12-14 years old from six classes were cluster-randomly assigned to an experimental group (n = 54) or a control…
Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.
Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty yearsmore » ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.« less
NASA Astrophysics Data System (ADS)
Guo, Yunlong
This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results. Nonisothermal physical aging was monitored by sequential short-term creep tests after a series of temperature jumps; the resulting strain histories were analyzed to determine aging shift factors (ate) for each of the creep tests. The nonisothermal aging response was predicted using the KAHR-ate model, which combines the KAHR model of volume recovery with a suitable linear relationship between aging shift factors and specific volume. The KAHR-ate model can be utilized to both predict aging response and to determine necessary model parameters from a set of aging shift factor data. For the PEEK and PPS materials considered in the current study, predictions of mechanical response were demonstrated to be in good agreement with the experimental results for several complicated thermal histories. In addition to short-term nonisothermal aging, long-term creep tests under identical thermal conditions were also analyzed. Effective time theory was unitized to predict long-term response under both isothermal and nonisothermal temperature histories. The long-term compliance after a series of temperature changes was predicted by the KAHR- ate model, and the theoretical predictions and experimental data showed good agreement for various thermal histories. Lastly, physical aging behavior of PPS near the glass transition temperature was investigated, in order to observe the mechanical response in the process of the evolution of the material into equilibrium. At several temperatures near Tg, the time need to reach equilibrium were determined by the creep test results at various aging times. In addition to isothermal physical aging, mechanical shift factors in the period of approaching equilibrium at a common temperature after temperature up-jumps and down-jumps are monitored from creep tests; prior to these temperature jumps, the materials were aged to reach equilibrium states. From these tests, asymmetry of approaching equilibrium phenomenon in ate was observed, which is first-time reported in the literature. This finding shows the similarity between the thermodynamic and mechanical properties during structural relaxation. This work will lead to improved understanding of the viscoelastic behavior of glassy polymers, which is important for better understanding and design of PMCs in elevated temperature applications. With the above findings, this dissertation deals with nonisothermal physical aging of glassy polymers, including both experimental characterization and constructing a framework for predictions of mechanical behavior of polymeric materials under complicated thermal conditions. (Abstract shortened by UMI.)
Li, William H C; Ho, K Y; Lam, K K W; Lam, H S; Chui, S Y; Chan, Godfrey C F; Cheung, A T; Ho, L L K; Chung, O K
2018-04-14
Cancer-related fatigue is one of the most distressing symptoms reported by childhood cancer survivors. Despite the body of evidence that regular physical activity helps alleviate cancer-related fatigue, insufficient participation in physical activity is frequently observed among childhood cancer survivors. This study examined the effectiveness of an adventure-based training programme in promoting physical activity, reducing fatigue, and enhancing self-efficacy and quality of life among Hong Kong Chinese childhood cancer survivors. A prospective randomised controlled trial. A paediatric oncology outpatient clinic, a non-governmental organisation, and a non-profit voluntary organisation. Hong Kong Chinese childhood cancer survivors aged 9-16 years who reported symptoms of fatigue and had not engaged in regular physical exercise in the past 6 months. The experimental group underwent a 4-day adventure-based training programme. The control group received a placebo intervention. The primary outcome was fatigue at 12 months. Secondary outcomes were physical activity levels, self-efficacy and quality of life at 12 months. Data collection was conducted at baseline, and 6 and 12 months after the intervention began. We performed intention-to-treat analyses. From 6 January, 2014 to 8 June, 2015, we randomly assigned 222 eligible childhood cancer survivors to either an experimental (n = 117) or a control group (n = 105). The experimental group showed statistically significantly lower levels of cancer-related fatigue (P < 0.001), higher levels of self-efficacy (P < 0.001) and physical activity (P < 0.001), and better quality of life (P < 0.01) than the control group at 12 months. This study provides evidence that adventure-based training is effective in promoting physical activity, reducing cancer-related fatigue, and enhancing self-efficacy and quality of life among Hong Kong Chinese childhood cancer survivors. These results may help inform parents and healthcare professionals that regular physical activity is crucial for the physical and psychological wellbeing and quality of life of childhood cancer survivors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optical response of thin amorphous films to infrared radiation
NASA Astrophysics Data System (ADS)
Orosco, J.; Coimbra, C. F. M.
2018-03-01
We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.
Rolling friction—models and experiment. An undergraduate student project
NASA Astrophysics Data System (ADS)
Vozdecký, L.; Bartoš, J.; Musilová, J.
2014-09-01
In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.
Usability and feasibility of mobile phone diaries in an experimental physical exercise study.
Heinonen, Reetta; Luoto, Riitta; Lindfors, Pirjo; Nygård, Clas-Håkan
2012-03-01
Wireless and mobile phone technology as a method of data collection will increase alongside conventional methods. The aim of the present study was to evaluate the use of a mobile phone application for recording symptoms and physical activity exertion during an experimental physical exercise study. An experimental study on the effects of physical exercise on the well-being of menopausal women included 158 subjects between 44 and 63 years of age. The women were randomized into intervention and control groups. All participants in both groups reported daily symptoms by responding to morning and evening questionnaires via mobile phones. The usability of the mobile phone as a data collector tool was evaluated with the System Usability Scale (SUS) questionnaire 2 months after the intervention. The feasibility evaluation was based on the frequency of responses and open questions. The response rates were about 70% to both morning and evening questionnaires. The average frequency of responses (n =158) to morning questionnaires was 125 (±40)/170 (±14) and to evening questionnaires was 118 (±40)/171 (±14). The response rate did not differ between the intervention and the control groups. The SUS score was on average 75.4 (range, 0-100; n =107). A mobile phone diary is a feasible and usable tool for data collection in clinical trials.
Choi, HyeJeong; Kim, Shin-Jeong; Oh, Jina; Lee, Myung-Nam; Kim, SungHee; Kang, Kyung-Ah
2016-09-01
To promote the growth and development of premature infants, effective and tender care is required in neonatal intensive care units (NICUs). The purpose of this study was to test the potential effects of massage therapy on increasing physical growth and promoting gastrointestinal function in premature infants. Twenty subjects were divided into two groups in the NICU of one general hospital located in South Korea. The experimental group (n = 10) were given massage therapy and the control group (n = 10) received routine care. Massage therapy was performed twice daily for 14 days, for 15 minutes per session. In the physical growth, height and chest circumference were significantly increased in the experimental group. In assessing gastrointestinal function, frequency of pre-feed gastric residual was significantly decreased and numbers of bowel movements were significantly increased in the experimental group. This study showed massage therapy has the potential effects on increasing physical growth and gastrointestinal function in premature infants. The massage in the NICU might be utilized as a part of developmental care, but more research needs to be done. NICU nurses need to be trained in massage therapy techniques to provide more effective clinical care for premature infants. © The Author(s) 2015.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.
Fundamental Physics with Antihydrogen
NASA Astrophysics Data System (ADS)
Hangst, J. S.
Antihydrogen—the antimatter equivalent of the hydrogen atom—is of fundamental interest as a test bed for universal symmetries—such as CPT and the Weak Equivalence Principle for gravitation. Invariance under CPT requires that hydrogen and antihydrogen have the same spectrum. Antimatter is of course intriguing because of the observed baryon asymmetry in the universe—currently unexplained by the Standard Model. At the CERN Antiproton Decelerator (AD) [
Modern projection of the old electroscope for nuclear radiation quantitative work and demonstrations
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Baltokoski Boch, Layara
2017-11-01
Although quantitative measurements in radioactivity teaching and research are only believed to be possible with high technology, early work in this area was fully accomplished with very simple apparatus such as zinc sulphide screens and electroscopes. This article presents an experimental practice using the electroscope, which is a very simple apparatus that has been widely used for educational purposes, although generally for qualitative work. The main objective is to show the possibility of measuring radioactivity not only in qualitative demonstrations, but also in quantitative experimental practices. The experimental set-up is a low-cost ion chamber connected to an electroscope in a configuration that is very similar to that used by Marie and Pierre Currie, Rutherford, Geiger, Pacini, Hess and other great researchers from the time of the big discoveries in nuclear and high-energy particle physics. An electroscope leaf is filmed and projected, permitting the collection of quantitative data for the measurement of the 220Rn half-life, collected from the emanation of the lantern mantles. The article presents the experimental procedures and the expected results, indicating that the experiment may provide support for nuclear physics classes. These practices could spread widely to either university or school didactic laboratories, and the apparatus has the potential to allow the development of new teaching activity for nuclear physics.
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Self-Care Posters Serve as a Low-Cost Option for Physical Activity Promotion of Hospital Nurses.
Raney, Marcella; Van Zanten, Erin
2018-03-01
Hospital nurses play an important role in the nation's short- and long-term patient care. At the same time, nurses often experience high levels of occupational stress and participate in low levels of physical activity (PA). The purpose of this study was to examine the impact of self-monitoring and a poster campaign on the PA behaviors of hospital nurses. Motivational and instructional exercise posters were hung in break rooms of experimental units and replaced biweekly for 8 weeks. A total of 26 nurses (control: n = 13; experimental: n = 13) wore accelerometers for 3 workdays pre-, mid-, and postintervention. Participants were provided a step counter at baseline and a PA report at each stage. Moderate to vigorous PA (MVPA) and step count (SC) increased pre- to midintervention for control (MVPA: 14.8 ± 7.6%; SC: 19.1 ± 7.8%) and experimental (MVPA: 26.7 ± 18.5%, SC: 17.6 ± 8.3%) participants. Physical activity levels returned to baseline postintervention for control ( p > .05) and increased mid- to postintervention for experimental (MVPA: 16.2 ± 5.2%, SC: 10.7 ± 4.7%, p < .05) participants. In conclusion, a low-cost, self-care poster campaign may increase PA levels of hospital nurses when combined with personalized PA feedback.
Big Physics at Small Places: The Mongol Horde Model of Undergraduate Research
ERIC Educational Resources Information Center
Voss, Philip J.; Finck, Joseph E.; Howes, Ruth H.; Brown, James; Baumann, Thomas; Schiller, Andreas; Thoennessen, Michael; DeYoung, Paul A.; Peaslee, Graham F.; Hinnefeld, Jerry; Luther, Bryan; Pancella, Paul V.; Rogers, Warren F.
2008-01-01
A model for engaging undergraduates in cutting-edge experimental nuclear physics research at a national user facility is discussed. Methods to involve students and examples of their success are presented. (Contains 2 figures and 3 tables.)
Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Tellinghuisen, Joel
1981-01-01
Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)
DiffPy-CMI-Python libraries for Complex Modeling Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billinge, Simon; Juhas, Pavol; Farrow, Christopher
2014-02-01
Software to manipulate and describe crystal and molecular structures and set up structural refinements from multiple experimental inputs. Calculation and simulation of structure derived physical quantities. Library for creating customized refinements of atomic structures from available experimental and theoretical inputs.
DOT National Transportation Integrated Search
1964-01-01
"Physical fitness" - the potential capacity for making adequate functional adjustments to increased metabolic demands - is most meaningful and accurately assessed in the laboratory by making physiological measurements on the experimental subject whil...
Moment of Inertia of a Ping-Pong Ball
ERIC Educational Resources Information Center
Cao, Xian-Sheng
2012-01-01
This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.
Effectiveness of CAI Package on Achievement in Physics of IX Standard Students
ERIC Educational Resources Information Center
Maheswari, I. Uma; Ramakrishnan, N.
2015-01-01
The present study is an experimental one in nature, to find out the effectiveness of CAI package on in Physics of IX std. students. For this purpose a CAI package was developed and validated. The validated CAI package formed an independent variable of this study. The dependent variable is students' achievements in physics content. In order to find…
Four-Year Follow-Up on Physics Students. A Preliminary Report.
ERIC Educational Resources Information Center
Watson, Fletcher G.
A follow-up study was made, in 1972, for 3,150 students who enrolled in a physics course during the 1967-68 experimental year of Project Physics (PP). An eight-page questionnaire was mailed to the students. The questionnaire included one section on students' biographical information, two sections of items identical to those of 1967-68 devices, and…
ERIC Educational Resources Information Center
Gok, Tolga
2018-01-01
The purpose of the research was to investigate the effects of think pair share (TPS) instructional strategy on students' conceptual learning and epistemological beliefs on physics and physics learning. The research was conducted with two groups. One of the groups was the experimental group (EG) and the other group was the control group (CG). 35…
ERIC Educational Resources Information Center
Fricke, Hans; Lechner, Michael; Steinmayr, Andreas
2017-01-01
What is the role of physical activity in the process of human capital accumulation? Brain research provides growing evidence of the importance of physical activity for various aspects of cognitive functions. An increasingly sedentary lifestyle could thus be not only harmful to population health, but also disrupt human capital accumulation. This…
THE SELECTION OF A NATIONAL RANDOM SAMPLE OF TEACHERS FOR EXPERIMENTAL CURRICULUM EVALUATION.
ERIC Educational Resources Information Center
WELCH, WAYNE W.; AND OTHERS
MEMBERS OF THE EVALUATION SECTION OF HARVARD PROJECT PHYSICS, DESCRIBING WHAT IS SAID TO BE THE FIRST ATTEMPT TO SELECT A NATIONAL RANDOM SAMPLE OF (HIGH SCHOOL PHYSICS) TEACHERS, LIST THE STEPS AS (1) PURCHASE OF A LIST OF PHYSICS TEACHERS FROM THE NATIONAL SCIENCE TEACHERS ASSOCIATION (MOST COMPLETE AVAILABLE), (2) SELECTION OF 136 NAMES BY A…
ERIC Educational Resources Information Center
Shephard, Roy J.; Trudeau, Francois
2013-01-01
This article offers a brief and personal account of the historical background, implementation and principal findings from the Trois-Rivieres regional project, a large-scale quasi-experimental intervention that tested the impact of providing a daily hour of specialist-taught quality physical education upon the physical and mental development of…
ERIC Educational Resources Information Center
Sinaga, Parlindungan; Feranie, Shelly
2017-01-01
The research aims to identify the impacts of embedding non-traditional writing tasks within the course of modern physics conducted to the students of Physics Education and Physics Study Programs. It employed a quasi-experimental method with the pretest-posttest control group design. The used instruments were tests on conceptual mastery, tests on…
Computer Model of the Empirical Knowledge of Physics Formation: Coordination with Testing Results
ERIC Educational Resources Information Center
Mayer, Robert V.
2016-01-01
The use of method of imitational modeling to study forming the empirical knowledge in pupil's consciousness is discussed. The offered model is based on division of the physical facts into three categories: 1) the facts established in everyday life; 2) the facts, which the pupil can experimentally establish at a physics lesson; 3) the facts which…
ERIC Educational Resources Information Center
Esslinger, Keri A.; Grimes, Amanda R.; Pyle, Elizabeth
2016-01-01
In this study, we investigated students' attitudes toward physical activity (PA) when including a required PA component in a university-required personal wellness class. The study included (a) an experimental group of students enrolled in a personal wellness course in which there was a required PA requirement and (b) a control group of students…
ERIC Educational Resources Information Center
American Association of Physics Teachers, Washington, DC.
This second volume, a compilation of reprints of experimental notes in physics, was prepared by the American Association of Physics Teachers (AAPT) Committee on Apparatus and by the AAPT Executive Office in response to requests received by the Association for a completely new edition. The goal of the Committee was to provide a selection of…
ERIC Educational Resources Information Center
Robbins, Lorraine B.; Pfeiffer, Karin A.; Maier, Kimberly S.; Lo, Yun-Jia; Wesolek, Stacey M.
2012-01-01
The primary purpose of the study was to determine whether girls in one school receiving nurse counseling plus an after-school physical activity club showed greater improvement in physical activity, cardiovascular fitness, and body composition than girls assigned to an attention control condition in another school (N = 69). Linear regressions…
Predicting the valley physics of silicon quantum dots directly from a device layout
NASA Astrophysics Data System (ADS)
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.
Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.
Modeling and Experiments with Carbon Nanotubes for Applications in High Performance Circuits
2017-04-06
purchased and installed for experimental characterization of atomic layer deposited graphene on different substrates for radiation-hardened studies...72 3.6 Experimental Research in Graphene for Radiation Hardened Devices……………..73 4 Recommendations...physics for analysis and design of integrated circuits. The developed model is verified from published experimental data. Basic logic gates in
On the Experimental Determination of the One-Way Speed of Light
ERIC Educational Resources Information Center
Perez, Israel
2011-01-01
In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…
Physical activity and epilepsy: proven and predicted benefits.
Arida, Ricardo M; Cavalheiro, Esper A; da Silva, Antonio C; Scorza, Fulvio A
2008-01-01
Epilepsy is a common disease found in 2% of the population, affecting people from all ages. Unfortunately, persons with epilepsy have previously been discouraged from participation in physical activity and sports for fear of inducing seizures or increasing seizure frequency. Despite a shift in medical recommendations toward encouraging rather than restricting participation, the stigma remains and persons with epilepsy continue to be less active than the general population. For this purpose, clinical and experimental studies have analysed the effect of physical exercise on epilepsy. Although there are rare cases of exercise-induced seizures, studies have shown that physical activity can decrease seizure frequency, as well as lead to improved cardiovascular and psychological health in people with epilepsy. The majority of physical activities or sports are safe for people with epilepsy to participate in with special attention to adequate seizure control, close monitoring of medications, and preparation of family or trainers. The evidence shows that patients with good seizure control can participate in both contact and non-contact sports without harmfully affecting seizure frequency. This article reviews the risks and benefits of physical activity in people with epilepsy, discusses sports in which persons with epilepsy may participate, and describes the positive effect of physical exercise in experimental models of epilepsy.
The Effect of New Shower Facilities on Physical Activity Behaviors of Employees: A Quasi-experiment.
Nehme, Eileen K; Pérez, Adriana; Ranjit, Nalini; Amick, Benjamin C; Kohl, Harold W
2017-02-01
This quasi-experimental study assessed the effects of new workplace showers on physical activity behaviors in a sample of downtown employees in Austin, TX. The study design was quasi-experimental with 2 comparison groups. Data were collected via internet-based surveys before and 4 months after shower installation at 1 worksite. Differences across study groups in the ranks of change in past-week minutes of physical activity from baseline to follow-up were assessed. Adjusted odds ratios and 95% confidence intervals for reporting an increase of ≥10 min past-week physical activity and workday physical activity among those with new showers and existing showers relative to those with no showers were also assessed. No significant differences in changes in physical activity from baseline to follow-up across study groups were found. One-quarter of participants with new workplace showers and 46.9% of those with existing workplace showers at baseline reported ever using the showers. This prospective study did not find significant changes in employee physical activity 4 months after installation of worksite showers. Worksite shower users were highly active at baseline, suggesting a possible early adopter effect, with potential for diffusion. Future studies may benefit from longer exposure times and larger samples.
Bohn-Goldbaum, Erika E; Phongsavan, Philayrath; Merom, Dafna; Rogers, Kris; Kamalesh, Venugopal; Bauman, Adrian E
2013-01-01
Outdoor recreational spaces have the potential to increase physical activity. This study used a quasi-experimental evaluation design to determine how a playground renovation impacts usage and physical activity of children and whether the visitations correlate with children's physical activity levels and parental impressions of the playground. Observational data and intercept interviews were collected simultaneously on park use and park-based activity among playground visitors at pre- and postrenovation at an intervention and a comparison park during three 2-hour periods each day over two weeks. No detectable difference in use between parks was observed at followup. In the intervention park, attendance increased among boys, but decreased among girls although this (nonsignificant) decline was less marked than in the comparison park. Following renovation, there was no detectable difference between parks in the number of children engaged in MVPA (interaction between park and time: P = 0.73). At the intervention park, there was a significant decline in girls engaging in MVPA at followup (P = 0.04). Usage was correlated with parental/carer perceptions of playground features but not with physical activity levels. Renovations have limited the potential to increase physical activity until factors influencing usage and physical activity behavior are better understood.
Examining students' views about validity of experiments: From introductory to Ph.D. students
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.
2018-06-01
We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.
Antunes, Hanna Karen M.; De Mello, Marco Túlio; de Aquino Lemos, Valdir; Santos-Galduróz, Ruth Ferreira; Camargo Galdieri, Luciano; Amodeo Bueno, Orlando Francisco; Tufik, Sergio; D'Almeida, Vânia
2015-01-01
Background Physical exercise influences homocysteine (Hcy) concentrations, cognitive function and the metabolic profile. The purpose of this study was to investigate the influence of regular physical exercise on Hcy levels, the metabolic profile and cognitive function in healthy elderly males before and after an endurance exercise program. Methods Forty-five healthy and sedentary volunteers were randomized into 2 groups: (1) a control group asked not to change their normal everyday activities and not to start any regular physical exercise program and (2) an experimental group trained at a heart rate intensity corresponding to ventilatory threshold 1 (VT-1) for 60 min/day 3 times weekly on alternate days for 6 months using a cycle ergometer. All volunteers underwent cognitive evaluations, blood sample analyses and ergospirometric assessments. Results A significant improvement in cognitive function was observed in the experimental group compared with the control group (p < 0.05). No significant changes in Hcy levels were observed in the experimental group (p > 0.05), but there was a significant increase in peak oxygen consumption and workload at VT-1 as well as a significant improvement in cholesterol, triglycerides, HDL, glucose, alkaline phosphatase, urea, T3, T4 and prostate-specific antigen compared with the control group (p < 0.05). Conclusion The data suggest that a physical exercise program does not reduce Hcy levels in healthy elderly males, although it improves the cardiovascular and metabolic profile as well as cognitive function. PMID:25759715
NASA Astrophysics Data System (ADS)
Granger Morgan, M.
2011-04-01
In a book for the general public published a year before his death, Carl Sagan wrote, "Every time a scientific paper presents a bit of data, it's accompanied by an error bar---a quiet but instant reminder that no knowledge is complete or perfect." For those of us educated in experimental natural science such an observation seems so obvious as to hardly need saying. Yet when, after completing a PhD in experimental radio physics, I began to work on problems in environmental and energy risk and policy analysis in the early 1970s, I was amazed to find that the characterization and treatment of uncertainty was almost completely lacking in the analysis of that day. In the first part of this talk, I will briefly summarize how I, and a number of my physics-educated colleagues, have worked to rectify this situation. Doctoral education in the Department of Engineering and Public Policy (EPP) at Carnegie Mellon University has also been shaped by a number of ideas and problem-solving styles that derive from physics. These have been strengthened considerably through integration with a number of ideas from experimental social science -- a field that too many in physics ignore or even belittle. In the second part of the talk, I will describe the PhD program in EPP, talk a bit about some of its unique features, and describe a few of the problems we address.
Joint International Physics Summer School: Optics
NASA Astrophysics Data System (ADS)
Bondani, Maria; Allevi, Alessia; Soubusta, Jan; Haderka, Ondřej
2015-10-01
We report on the organization and realization of the Joint International Physics Summer School - Optics" devoted to High-School students. The idea of the School is to teach Physics through high-level experimental activities, suitably supported by introductory lectures and complemented by data analysis. The School is also open to the participation of a number of teachers, as an opportunity of refreshing their knowledge and increasing their experimental skills. Students and teachers are directly involved in the experimental activities. The aim of the activity is to stimulate students curiosity and interest and help them decide whether a future job career in Science could be suited for them. The School is organized in two weeks: the first in June-July in Como (Italy) at the Department of Science and High Technology and the second at the end of August in Olomouc (Czech Republic) at the Joint Laboratory of Optics. Two editions of the Summer School took place in 2013 and 2014 (overall 40 students and 3 teachers from Italy, 9 students from Czech Republic) and the third one will be in 2015. The first week of the School is devoted to introductory lectures (theoretical and experimental) to consolidate students' and teachers' knowledge of basic optics. The second week is devoted to several advanced experiments in linear, nonlinear, classical and quantum optics, performed in research laboratories. During the last day of the School, students are required to give a presentation of the results obtained during the experimental sessions.
MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
Ko, Ellen Wen-Ching; Teng, Terry Te-Yi; Huang, Chiung Shing; Chen, Yu-Ray
2015-01-01
The study was conducted to evaluate the effect of early physical rehabilitation by comparing the differences of surface electromyographic (sEMG) activity in the masseter and anterior temporalis muscles after surgical correction of skeletal class III malocclusion. The prospective study included 63 patients; the experimental groups contained 31 patients who received early systematic physical rehabilitation; the control group (32 patients) did not receive physiotherapy. The amplitude of sEMG in the masticatory muscles reached 72.6-121.3% and 37.5-64.6% of pre-surgical values in the experimental and control groups respectively at 6 weeks after orthognathic surgery (OGS). At 6 months after OGS, the sEMG reached 135.1-233.4% and 89.6-122.5% of pre-surgical values in the experimental and control groups respectively. Most variables in the sEMG examination indicated that recovery of the masticatory muscles in the experimental group was better than the control group as estimated in the early phase (T1 to T2) and the total phase (T1 to T3); there were no significant differences between the mean recovery percentages in the later phase (T2 to T3). Early physical rehabilitative therapy is helpful for early recovery of muscle activity in masticatory muscles after OGS. After termination of physical therapy, no significant difference in recovery was indicated in patients with or without early physiotherapy. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Physics and Physics Education at Clarion University
NASA Astrophysics Data System (ADS)
Aravind, Vasudeva
Clarion University is located in the rolling hills of western Pennsylvania. We are a primarily undergraduate public institution serving about 6000 students. We graduate students who take different career paths, one of them being teaching physics at high schools. Since educating teachers of tomorrow requires us to introduce currently trending, research proven pedagogical methods, we incorporate several aspects of physics pedagogies such as peer instruction, flipped classroom and hands on experimentation in a studio physics lab format. In this talk, I discuss some of our projects on physics education, and seek to find potential collaborators interested in working along similar lines.
The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory
NASA Astrophysics Data System (ADS)
Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark
2011-06-01
Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.
Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab
NASA Astrophysics Data System (ADS)
Holmes, N. G.; Bonn, D. A.
2015-09-01
In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high levels of inquiry behaviors to reflect on data and iterate measurements, which students rarely do in lab experiments. Often, they perform lab experiments in a plug-and-chug frame, procedurally completing each activity with little to no sensemaking. An emphasis on obtaining true theoretical values or agreement on individual measurements also reinforces inauthentic behaviors such as retroactively inflating measurement uncertainties. This paper aims to offer a relatively simple pedagogical framework for engaging students authentically in experimentation and inquiry in physics labs.
Physics Division progress report, January 1, 1984-September 30, 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, W.E.
1987-10-01
This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less
Physics through the 1990s: Condensed-matter physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.
Comparing fluid mechanics models with experimental data.
Spedding, G R
2003-01-01
The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-06-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
B Physics at the D0 experiment A Mexican review
DOE Office of Scientific and Technical Information (OSTI.GOV)
De La Cruz-Burelo, E.
2010-07-29
On April of 1992 a Mexican group from Cinvestav officially joined the D0 experiment, one of the two experiments in the Tevatron collider at Fermilab. The seed for this experimental group on high energy physics from Cinvestav was planted in Mexico in some measure by Augusto Garcia, to whom this workshop is in memorial. Augusto's efforts and support to groups dedicated to this area was clear and important. Some of these seeds have given origin to today's established Mexican groups on experimental high energy physics, one example of this is the Mexican group at D0. I present here a shortmore » review of some of the D0 results on which the Mexican group has contributed, emphasizing the last decade, which I have witnessed.« less
The Scientific Work of John A. McClelland: A Recently Discovered Manuscript
NASA Astrophysics Data System (ADS)
O'Connor, Thomas
2010-09-01
John Alexander McClelland (1870-1920) was educated at Queen’s College Galway and the Cavendish Laboratory in Cambridge. He was Professor of Experimental Physics at University College Dublin from 1900 to 1920. He was best known for his pioneering work on the scattering of β rays and on the conductivity of gases and the mobility of ions. He established a research school on atmospheric aerosols that was continued by his successor, John James Nolan (1887-1952), which strongly influenced physics research in Ireland up to the present. A recently discovered manuscript of a commemorative address by Nolan in 1920, which is reproduced in Appendix I, is a unique contemporary summary of McClelland’s research and character, and is an important contribution to the history of experimental physics in Ireland.
An integrated radiation physics computer code system.
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Harris, D. W.
1972-01-01
An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Kuriyan, Rebecca; Kumar, Divya R; R, Rajendran; Kurpad, Anura V
2010-06-17
Hibiscus sabdariffa is used regularly in folk medicine to treat various conditions. The study was a double blind, placebo controlled, randomized trial. Sixty subjects with serum LDL values in the range of 130-190 mg/dl and with no history of coronary heart disease were randomized into experimental and placebo groups. The experimental group received 1 gm of the extract for 90 days while the placebo received a similar amount of maltodextrin in addition to dietary and physical activity advice for the control of their blood lipids. Anthropometry, blood biochemistry, dietary and physical activity were assessed at baseline, day 45 and day 90. While body weight, serum LDL cholesterol and triglyceride levels decreased in both groups, there were no significant differences between the experimental and placebo group. It is likely that the observed effects were as a result of the patients following the standard dietary and physical activity advice. At a dose of 1 gm/day, hibiscus sabdariffa leaf extract did not appear to have a blood lipid lowering effect. REFCTRI2009000472.
Evaluating experimental molecular physics studies of radiation damage in DNA*
NASA Astrophysics Data System (ADS)
Śmiałek, Małgorzata A.
2016-11-01
The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.
Experimental modelling of fragmentation applied to volcanic explosions
NASA Astrophysics Data System (ADS)
Haug, Øystein Thordén; Galland, Olivier; Gisler, Galen R.
2013-12-01
Explosions during volcanic eruptions cause fragmentation of magma and host rock, resulting in fragments with sizes ranging from boulders to fine ash. The products can be described by fragment size distributions (FSD), which commonly follow power laws with exponent D. The processes that lead to power-law distributions and the physical parameters that control D remain unknown. We developed a quantitative experimental procedure to study the physics of the fragmentation process through time. The apparatus consists of a Hele-Shaw cell containing a layer of cohesive silica flour that is fragmented by a rapid injection of pressurized air. The evolving fragmentation of the flour is monitored with a high-speed camera, and the images are analysed to obtain the evolution of the number of fragments (N), their average size (A), and the FSD. Using the results from our image-analysis procedure, we find transient empirical laws for N, A and the exponent D of the power-law FSD as functions of the initial air pressure. We show that our experimental procedure is a promising tool for unravelling the complex physics of fragmentation during phreatomagmatic and phreatic eruptions.
Physical realization of the Glauber quantum oscillator.
Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio
2015-11-02
More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.
Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, Satoshi; Yoshikawa, Tadashi
2004-11-01
We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite largemore » compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.« less
Physics-based enzyme design: predicting binding affinity and catalytic activity.
Sirin, Sarah; Pearlman, David A; Sherman, Woody
2014-12-01
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.
Oh, Dongha; Kim, Gayeong; Lee, Wanhee; Shin, Mary Myong Sook
2016-01-01
[Purpose] This study evaluated the effects of inspiratory muscle training on pulmonary function, deep abdominal muscle thickness, and balance ability in stroke patients. [Subjects] Twenty-three stroke patients were randomly allocated to an experimental (n = 11) or control group (n = 12). [Methods] The experimental group received inspiratory muscle training-based abdominal muscle strengthening with conventional physical therapy; the control group received standard abdominal muscle strengthening with conventional physical therapy. Treatment was conducted 20 minutes per day, 3 times per week for 6 weeks. Pulmonary function testing was performed using an electronic spirometer. Deep abdominal muscle thickness was measured by ultrasonography. Balance was measured using the Berg balance scale. [Results] Forced vital capacity, forced expiratory volume in 1 second, deep abdominal muscle thickness, and Berg balance scale scores were significantly improved in the experimental group than in the control group. [Conclusion] Abdominal muscle strengthening accompanied by inspiratory muscle training is recommended to improve pulmonary function in stroke patients, and may also be used as a practical adjunct to conventional physical therapy. PMID:26957739
NASA Astrophysics Data System (ADS)
Thoms, L.-J.; Girwidz, R.
2016-05-01
Assessment of experimental competencies is not yet well established. We just began an empirical pilot study, too. This study aims to examine if secondary school students may successfully use a predefined remote lab activity to introduce themselves to atomic physics. The analysis of spectra is a fundamental component for the understanding of wave optics and color perception. Hence, every student should have the opportunity to conduct own optical emission experiments. Since spectrometers are expensive and an accurate calibration is necessary to achieve energy distribution spectra of high quality, we developed a remotely controlled laboratory. We evaluated the experimental set-up and the accompanying worksheet with groups of two to four students in a laboratory condition. Additionally, the emerged learning material was brought to school and tested as a homework activity with 9th-graders replacing the regular introduction to atomic physics. The results show that the experiment presented here can be used by ninth grade students and is useful in connection with the created material for the self-regulated introduction to atomic physics in the context of homework.
Mechanobiology by the numbers: a close relationship between biology and physics.
Schwarz, Ulrich S
2017-12-01
Studies of mechanobiology lie at the interface of various scientific disciplines from biology to physics. Accordingly, quantification and mathematical modelling have been instrumental in fuelling the progress in this rapidly developing research field, assisting experimental work on many levels.
Modelling Students' Construction of Energy Models in Physics.
ERIC Educational Resources Information Center
Devi, Roshni; And Others
1996-01-01
Examines students' construction of experimentation models for physics theories in energy storage, transformation, and transfers involving electricity and mechanics. Student problem solving dialogs and artificial intelligence modeling of these processes is analyzed. Construction of models established relations between elements with linear causal…
Microcomputer Data Management in an Introductory Physics Laboratory.
ERIC Educational Resources Information Center
Chonacky, Norman
1982-01-01
Discusses the use of a microcomputer/mini-floppy disk system by physics students to store and analyze experimental data and exchange messages with the lab instructor. Also discusses other uses, in particular those fostering critical thinking and hypothetico-deductive reasoning. (Author/SK)
Experimental attempts to evoke a differential response to different stressors.
DOT National Transportation Integrated Search
1978-04-01
Ten paid male subjects each worked at a physical task with no competitive element (treadmill) and a competitive task ('Pong') with minimal physical activity. There were three work periods, each 50 min long. Ten minutes were allowed for rest and urine...
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Nuclear Physics Laboratory 1979 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelberger, E.G.
1979-07-01
Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)
Soil carbon analysis using gamma rays induced by neutrons
USDA-ARS?s Scientific Manuscript database
Agronomy is a research field where various physics concepts and experimental methods are widely used, particularly in agro-chemistry and soil elemental analysis. The evolution of methodology and instrumentation of nuclear physics combined with the availability of not highly expensive commercial prod...
The Importance of Measurement Data Spacing
ERIC Educational Resources Information Center
Seixas, T. M.; da Silva, M. A. Salgueiro
2015-01-01
When conducting experiments involving the measurement of physically related quantities, choosing an appropriate spacing for the experimental independent variable is a crucial procedure whose consequences may go beyond data graphical visualization. This is particularly true if the measured quantities are nonlinearly related and experimental errors…
Storming a Citadel: Mathematical Theory and Experimental Practice
NASA Astrophysics Data System (ADS)
Sichau, Christian
2006-09-01
Based upon a comparison of the viscosity experiments of James Clerk Maxwell (1831 1879) and Oskar Emil Meyer (1834 1909) in the 1860s, I argue that mathematical theory plays a significant role in both aspects of experimental practice, the design and construction of an experimental apparatus and the transformation of the observed experimental data into the value of a physical quantity. I argue further that Maxwell’s and Meyer’s evaluation of each other’s theoretical and experimental work depended significantly on the mathematical tools they employed in their theories.
Qualitative investigation of students' views about experimental physics
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.; Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
This study examines students' reasoning surrounding seemingly contradictory Likert-scale responses within five items in the Colorado Learning Attitudes About Science Survey for Experimental Physics (E-CLASS). We administered the E-CLASS with embedded open-ended prompts, which asked students to provide explanations after making a Likert-scale selection. The quantitative scores on those items showed that our sample of the 216 students enrolled in first year and beyond first year physics courses demonstrated the same trends as previous national data. A qualitative analysis of students' open-ended responses was used to examine common reasoning patterns related to particular Likert-scale responses. When explaining responses to items regarding the role of experiments in confirming known results and also contributing to the growth of scientific knowledge, a common reasoning pattern suggested that confirming known results in a classroom experiment can help with understanding concepts. Thus, physics experiments contribute to students' personal scientific knowledge growth, while also confirming widely known results. Many students agreed that having correct formatting and making well-reasoned conclusions are the main goal for communicating experimental results. Students who focused on sections and formatting emphasized how it enables clear and efficient communication. However, very few students discussed the link between well-reasoned conclusions and effective scientific communication. Lastly, many students argued it was possible to complete experiments without understanding equations and physics concepts. The most common justification was that they could simply follow instructions to finish the lab without understanding. The findings suggest several implications for teaching physics laboratory courses, for example, incorporating some lab activities with outcomes that are unknown to the students might have a significant impact on students' understanding of experiments as an important approach for developing scientific knowledge.
Social cognitive mediators of the effect of the MobileMums intervention on physical activity.
Fjeldsoe, Brianna S; Miller, Yvette D; Marshall, Alison L
2013-07-01
To explore whether improvements in physical activity following the MobileMums intervention were mediated by changes in Social Cognitive Theory (SCT) constructs targeted in the intervention (barrier self efficacy, goal setting skills, outcome expectancy, social support, and perceived environmental opportunity for exercise). This paper also examined if the mediating constructs differed between initial (baseline to 6 weeks) and overall (baseline to 13 weeks) changes in physical activity. Secondary analysis of data from a randomized controlled trial involving 88 postnatal women (<12 months postpartum). Participants were randomized to receive either the 12-week MobileMums intervention or a minimal-contact control condition. Physical activity and proposed mediators were assessed by self-report at baseline, 6 weeks, and 13 weeks. Walking for Exercise frequency was assessed using the Australian Women's Activity Survey and frequency of moderate-to-vigorous physical activity (MVPA) was assessed using a single-item question. Initial improvements in goal-setting skills mediated the relationship between experimental condition and initial changes in MVPA, αβ (95% CI) = 0.23(0.01, 0.59), and Walking for Exercise, αβ (95% CI) = 0.34(0.06, 0.73). Initial improvements in barrier self efficacy mediated the relationship between experimental condition and initial change in MVPA, αβ (95% CI) = 0.36(0.12, 0.65), but not Walking for Exercise. None of the SCT outcomes significantly mediated the relationship between experimental condition and overall (baseline to 13 weeks) change in frequency of MVPA or Walking for Exercise. Future interventions with postnatal women using SCT should target barrier self-efficacy and goal setting skills in order to increase physical activity. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Microelectromechanical systems for experimental physics and optical telecommunications
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir Anatolyevich
1999-12-01
Micro-Electro-Mechanical Systems (MEMS) are an emerging technology, which, when applied to the field of physical sensors, offers not only an obvious advantage of being small and cheap, but more importantly, provides some unique experimental opportunities. These are based on the way physical properties scale with decreasing size. This thesis discusses these basic principles and corresponding advantages and limitations of MEMS technology and presents several experiments in which micromachines are used to do physical measurements that could not be done before. Three types of micromechanical magnetometers are demonstrated. When compared to the state of the art traditional techniques they show greater sensitivity, faster response and can be applied over a wider range of experimental conditions. The high-Q micromechanical torsional oscillator magnetometer is used to observe mesoscopic vortex physics, including single flux lines penetrating into a type-II superconductor just above the first critical field. The Faraday balance ``Trampoline'' magnetometer combines high sensitivity, high bandwidth and can be operated in a wide temperature range. It is used in both high pulsed magnetic fields to record deHaas-vanAlphen oscillations and in DC magnetic fields for magnetization measurements at temperatures down to 100mK. The high sensitivity DC torque magnetometer offers yet higher sensitivity and can be used for a variety of magnetization measurements. Several other MEMS devices for physics and telecommunications applications are presented, including a micromachined near field scanning optical microscope, MEMS fiberoptic switches and large-area large-angle scanners. They provide examples of complex functionality that can be achieved with micromechanics by combining sensors with inherently low-power electrostatic actuators. The optically powered optical power limiter demonstrates the possibility of operating MEMS with optical rather than electrical power.
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
The physics of Copenhagen for students and the general public
NASA Astrophysics Data System (ADS)
Bergström, L.; Johansson, K. E.; Nilsson, Ch
2001-09-01
The play Copenhagen has attracted the attention of a large audience in several countries. The hypothetical discussion in Copenhagen between two of the giants in physics, Niels Bohr and Werner Heisenberg, has inspired us to start a theoretical and experimental exploration of quantum physics. This theme has been used in Stockholm Science Laboratory for audiences of both students and the general public.
Artificial Oxide Heterostructures with Tunable Band Gap
2016-12-20
PIs: Xiaoxing Xi 1, and Jon Spanier2 1. Department of Physics , Temple University, Philadelphia, PA 19122, USA 2. Department of Materials Science...been summarized in the following. Our thin-film experimental group under the leadership of Prof. Xiaoxing Xi at physics department of Temple...theoretical group of Xifan Wu at physics department of Temple University. The first- principles calculations were performed by using density functional theory
ERIC Educational Resources Information Center
Rengasamy, Shabeshan; Raju, Subramaniam; Lee, Wee Akina Sia Seng; Roa, Ramachandran
2014-01-01
The aim of the study was to investigate the effect of a physical fitness intervention program within a physical education class on cardiovascular endurance of Malaysian secondary school boys and girls. A quasi experimental design was adopted for the study. Two schools in a district were randomly selected. In each school, two classes were randomly…
Planetary atmospheric physics and solar physics research
NASA Technical Reports Server (NTRS)
1973-01-01
An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.
Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT
2012-05-02
D-15738 Zeuthen, Germany 2W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics...and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA 3Department of Physics, Center for Cosmology and Astro...Greenbelt, Maryland 20771, USA 57Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy E. Komatsu{ Texas Cosmology Center
The physical characteristics of the surface of the satellites and rings of giant planets
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Morozhenko, O. V.
2017-10-01
The book gives the main results of the study of the optical characteristics of the field diffusely reflected radiation and physical characteristics of the surface of the satellites of giant planets and their rings. The publication is intended for teachers of higher educational institutions, students - graduate students and professionals who specialize in experimental physics and astrophysics and solar system surfaces.
Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiruba, R., E-mail: krbranjini@gmail.com, E-mail: drkingson@karunya.edu; George, Ritty; Gopalakrishnan, M.
2015-06-24
The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application.
[Role of occupational rehabilitation therapy in returning to work: experimental experience].
Bazzini, Giacomo; Panigazzil, Monica; Prestifilippo, Elena; Capodaglio, Edda Maria; Candura, Stefano M; Scafa, Fabrizio; Nuccio, Carla; Cortese, Giovanni; Matarrese, Maria Rosaria; Miccio, Antonella
2014-01-01
The experimental experience is the result of combining cultural, clinical and scientific interest in rehabilitative, occupational and forensic mnedicine and in ergonomics. It deals with the rehabilitation and return at work of patients with physical disabilities caused by occupational trauma or disease. The programme described starts with a selection by INAIL and involves with an outpatient surgery inclusion. It is composed of: preliminary physical examination, functional assessment, the formulation of a rehabilitation plan and its successive implementation. At the end of the evaluation plan, there is a final assessment to identify outcome indicators and residual functional and work capacity.
Chastin, Sebastien F M; De Craemer, Marieke; De Cocker, Katrien; Powell, Lauren; Van Cauwenberg, Jelle; Dall, Philippa; Hamer, Mark; Stamatakis, Emmanuel
2018-04-25
To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Systematic review and meta-analysis. Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis. Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83). Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.
2014-01-01
With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to investigate different injector concepts, improve understanding of the flow structure and flow physics, and develop functional relationships. Both RAS and large eddy simulations (LES) are planned for post-test analysis of the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, J. P.; Lebrat, J. F.; Soule, R.
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment ismore » planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.« less
Space radiation health research, 1991-1992
NASA Technical Reports Server (NTRS)
Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)
1993-01-01
The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.
Rydberg phases of Hydrogen and low energy nuclear reactions
NASA Astrophysics Data System (ADS)
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1995-01-01
An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.
Galileo as an intellectual heretic and why that matters
NASA Astrophysics Data System (ADS)
Palmieri, Paolo
2014-03-01
What was physics like before Galileo? Five centuries ago physics was taught in universities all over Europe as part of a broader field of knowledge known as natural philosophy. It was neither quantitative, nor experimental, but mostly an a-priori, logical type of inquiry about principles concerning notions such as space, time, and motion, from which deductions could be made about the natural world. Galileo changed all that. He claimed that inquiry about nature should be experimental, and that reasoning in natural philosophy should be mathematical. It was a bold enough move. But Galileo's intellectual heresy was the discovery that knowledge of the natural world could only be achieved by relaxing the requirement that principles be known with absolute certainty. He demonstrated that a new mathematical physics could be built upon principles based on experiment. Thus the new physics could be extended recklessly by starting from less than certain foundations. Galileo's startling insight was that scientific truth need not be localized but can be diffused throughout the structure of science.
NASA Astrophysics Data System (ADS)
Roberson, James Chadwick
The purpose of this study was to determine if supplementary mathematics materials (created to be complementary to a physical science course) could provide a significant change in the attitudes and performance of the students involved. The supplementary text was provided in the form of a booklet. Participants were students in a physical science class. Students were given surveys to evaluate existing knowledge of physical science, mathematics skill, and mathematics anxiety in the context of a science class. Students were divided into control and experimental groups by lab section, with the experimental group receiving a supplemental booklet. At the end of the semester, another anxiety survey was given. The anxiety surveys and test grades were compared between groups. Anxiety scores were compared between the beginning and end of the semester within each group. Too few students reported using the booklets for a reliable statistical comparison (of grades) to be made. A statistically significant difference in mathematics anxiety levels was found between the groups.
The Fraser Experimental Forest, Colorado
Robert R. Alexander; Ross K. Watkins
1977-01-01
This report provides a general overview of work done on the Fraser Experimental Forest. It replaces Station Paper No.8, published in 1952 and revised by L. D. Love in 1960. Included are descriptions of physical features and resource values, and highlights of past and current research programs.
Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nietert, R.E.
1983-02-01
The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)
Experimental simulation of the Unruh effect on an NMR quantum simulator
NASA Astrophysics Data System (ADS)
Jin, FangZhou; Chen, HongWei; Rong, Xing; Zhou, Hui; Shi, MingJun; Zhang, Qi; Ju, ChenYong; Cai, YiFu; Luo, ShunLong; Peng, XinHua; Du, JiangFeng
2016-03-01
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curceanu, C.; Bragadireanu, M.; Sirghi, D.
The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. We present an experimental test of the validity of the Pauli Exclusion Principle for electrons based on a straightforward idea put forward a few years ago by Ramberg and Snow (E. Ramberg and G. A. Snow 1990 Phys. Lett. B 238 438). We performed a very accurate search ofmore » X-rays from the Pauli-forbidden atomic transitions of electrons in the already filled 1S shells of copper atoms. Although the experiment has a very simple structure, it poses deep conceptual and interpretational problems. Here we describe the experimental method and recent experimental results interpreted as an upper limit for the probability to violate the Pauli Exclusion Principle. We also present future plans to upgrade the experimental apparatus.« less
de Boer, Anke; Pijl, Sip Jan; Minnaert, Alexander; Post, Wendy
2014-03-01
In this study we examine the effectiveness of an intervention program to influence attitudes of elementary school students towards peers with intellectual, physical and severe physical and intellectual disabilities. A quasi-experimental longitudinal study was designed with an experimental group and a control group, both comprising two rural schools. An intervention program was developed for kindergarten (n(experimental) = 22, n(control) = 31) and elementary school students without disabilities (n(experimental) = 91, n(control) = 127) (age range 4-12 years old). This intervention consisted of a 3 weeks education project comprising six lessons about disabilities. The Acceptance Scale for Kindergarten-revised and the Attitude Survey to Inclusive Education were used to measure attitudes at three moments: prior to the start of the intervention, after the intervention and 1 year later. The outcomes of the multilevel analysis showed positive, immediate effects on attitudes of kindergarten students, but limited effects on elementary school students' attitudes.
Mesenchymal stem cell mechanobiology and emerging experimental platforms
MacQueen, Luke; Sun, Yu; Simmons, Craig A.
2013-01-01
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493
Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph
Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced inmore » TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in combination with other ion modalities.« less
ABSORPTION OF I$sup 131$ BY THYROID GLAND IN ATHLETES DURING PHYSICAL EXERTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khorol, I.S.
Radioiodine absorption by the thyroid gland after prolonged physical exercise (3000 m race) was studied in 16 athletes, aged 20 to 24 years. Two hours after administration of the isotope the level of its accumulation in the gland was halved. In 24 and 72 hours the content of radioiodine in the gland was higher than in experimental conditions without physical exercise. The phenomenon described evidently reflects the normal reaction of the thyroid gland of athletes to habitual physical exercise. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, T.; et al.
This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.
Inference for the physical sciences
Jones, Nick S.; Maccarone, Thomas J.
2013-01-01
There is a disconnect between developments in modern data analysis and some parts of the physical sciences in which they could find ready use. This introduction, and this issue, provides resources to help experimental researchers access modern data analysis tools and exposure for analysts to extant challenges in physical science. We include a table of resources connecting statistical and physical disciplines and point to appropriate books, journals, videos and articles. We conclude by highlighting the relevance of each of the articles in the associated issue. PMID:23277613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, J. D.; Briggs, J. B.; Gulliford, J.
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less
Hughes, Alicia M; Gordon, Rola; Chalder, Trudie; Hirsch, Colette R; Moss-Morris, Rona
2016-11-01
There is an abundance of research into cognitive processing biases in clinical psychology including the potential for applying cognitive bias modification techniques to assess the causal role of biases in maintaining anxiety and depression. Within the health psychology field, there is burgeoning interest in applying these experimental methods to assess potential cognitive biases in relation to physical health conditions and health-related behaviours. Experimental research in these areas could inform theoretical development by enabling measurement of implicit cognitive processes that may underlie unhelpful illness beliefs and help drive health-related behaviours. However, to date, there has been no systematic approach to adapting existing experimental paradigms for use within physical health research. Many studies fail to report how materials were developed for the population of interest or have used untested materials developed ad hoc. The lack of protocol for developing stimuli specificity has contributed to large heterogeneity in methodologies and findings. In this article, we emphasize the need for standardized methods for stimuli development and replication in experimental work, particularly as it extends beyond its original anxiety and depression scope to other physical conditions. We briefly describe the paradigms commonly used to assess cognitive biases in attention and interpretation and then describe the steps involved in comprehensive/robust stimuli development for attention and interpretation paradigms using illustrative examples from two conditions: chronic fatigue syndrome and breast cancer. This article highlights the value of preforming rigorous stimuli development and provides tools to aid researchers engage in this process. We believe this work is worthwhile to establish a body of high-quality and replicable experimental research within the health psychology literature. Statement of contribution What is already known on this subject? Cognitive biases (e.g., tendencies to attend to negative information and/or interpret ambiguous information in negative ways) have a causal role in maintaining anxiety and depression. There is mixed evidence of cognitive biases in physical health conditions and chronic illness; one reason for this may be the heterogeneous stimuli used to assess attention and interpretation biases in these conditions. What does this study add? Steps for comprehensive/robust stimuli development for attention and interpretation paradigms are presented. Illustrative examples are provided from two conditions: chronic fatigue syndrome and breast cancer. We provide tools to help researchers develop condition-specific materials for experimental studies. © 2016 The British Psychological Society.
Hagovska, Magdalena; Nagyova, Iveta
2017-06-01
Ageing is associated with the deterioration of all cognitive functions, including attention, memory and psychomotor speed. It has not yet been clearly confirmed whether the effects of cognitive and physical interventions can improve activities of daily living (ADL). This study compared the effectiveness of cognitive and physical training on cognitive functions and the transfer to ADL. Eighty older people with mild cognitive impairment (mean age 67.07 ± 4.3 years) were randomly divided into an experimental group ( n = 40) and a control group ( n = 40). Data were collected in an outpatient psychiatric clinic in a randomised controlled trial. Primary outcome measures included the following: cognitive functions were evaluated using the mini mental state examination, the AVLT-Auditory verbal learning test, the Stroop test, the TMT-trail making test, the DRT-disjunctive reaction time and the NHPT-nine hole peg test. Secondary outcome measure was the Bristol activities of daily living scale. The experimental group underwent a CogniPlus and physical training; consisting of 20 training sessions over 10 weeks. Both groups went through 30 min of daily physical training for 10 weeks. After the training, significant differences in favour of the experimental group were found in almost all the tests. In memory (AVLT) (p ≤ 0.0001, effect size (ES) η 2 = 0.218. In reduction of the response time on attention tasks (Stroop tasks) ( p ≤ 0.006, ES = 0.092-0.115). In lower error rates in all tests: Stroop tasks, DRT, TMT, NHPT ( p ≤ 0.02-0.001, ES = 0.062-0.176). In ADL ( p ≤ 0.0001, ES = 0.176). The combined cognitive and physical training had better efficacy for most cognitive functions and for ADL when compared with the physical training only.
NASA Astrophysics Data System (ADS)
Arevalo, L.; Wu, D.; Jacobson, B.
2013-08-01
The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.
NASA Technical Reports Server (NTRS)
Sen, Subhayu; Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Dhindaw, B. K.; Curreri, P. A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The interaction of an insoluble particle with a growing solid-liquid interface (SLI) has been a subject of investigation for the four decades. For a metallurgist or a material scientist understanding the fundamental physics of such an interaction is relevant for applications that include distribution of reinforcement particles in metal matrix composites, inclusion management in castings, and distribution of Y2Ba1Cu1O5 (211) precipitates (flux pinning sites) in Y1Ba2Cu3O7 (123) superconducting crystals. The same physics is also applicable to other areas including geological applications (frost heaving in soils) and preservation of biological cells. Experimentally this interaction can be quantified in terms of a critical growth velocity, Vcr, of the SLI below which particles are pushed ahead of the advancing interface, and above which the particles are engulfed. Past experimental evidence suggests that this Vcr is an inverse function of the particle radius, R. In order to isolate the fundamental physics that governs such a relationship it is necessary to minimize natural convection at the SLI that is inherent in ground based experiments. Hence for the purpose of producing benchmark data (Vcr vs. R) PEP is a natural candidate for micro-gravity experimentation. Accordingly, experiments with pure Al containing a dispersion of ZrO2 particles and an organic analogue, succinonitrile (SCN) containing polystyrene particles have been performed on the LMS and USMP-4 mission respectively. In this paper we will summarize the experimental data that was obtained during these two micro-gravity missions and show that the results differ compared to terrestrial experiments. We will also discuss the basic elements of our analytical and numerical model and present a comparison of the predictions of these models against micro-gravity experimental data. Finally. we will discuss our future experimental plan that includes the ISS glovebox and MSRRl.
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume; ...
2017-07-10
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
The use of animal welfare indicators
USDA-ARS?s Scientific Manuscript database
At any given time, an animal’s welfare ranges on a scale of very good to very poor. It contains both physical elements and mental elements. The physical elements, such as behaviour, physiology, health, productivity and pathology, can be measured relatively easily, in an experimental setting, but the...
Interdisciplinary Aspects of Learning: Physics and Psychology
ERIC Educational Resources Information Center
Oleg, Yavoruk
2015-01-01
The article deals with interdisciplinary aspects of learning in the case of physics and psychology. It describes the lab-based academic course focused on: observation and experimentation; discovery of new scientific facts; measurement; identification of errors; the study of psychological characteristics of people (time perception, the reaction…
A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Clifford, Ben; Ochiai, E. I.
1980-01-01
Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)
Measurement of Coriolis Acceleration with a Smartphone
ERIC Educational Resources Information Center
Shaku, Asif; Kraft, Jakob
2016-01-01
Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…
Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators
ERIC Educational Resources Information Center
Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres
2018-01-01
In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy
ERIC Educational Resources Information Center
Dionisio, Madalena S. C.; Diogo, Herminio P.; Farinha, J. P. S.; Ramos, Joaquim J. Moura
2005-01-01
A laboratory experiment for undergraduate physical chemistry courses that uses the experimental technique of dielectric relaxation spectroscopy to study molecular mobility in a crystal is proposed. An experiment provides an excellent opportunity for dealing with a wide diversity of important basic concepts in physical chemistry.
Application of the pulsed fast/thermal neutron method for soil elemental analysis
USDA-ARS?s Scientific Manuscript database
Soil science is a research field where physic concepts and experimental methods are widely used, particularly in agro-chemistry and soil elemental analysis. Different methods of analysis are currently available. The evolution of nuclear physics (methodology and instrumentation) combined with the ava...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Amiya K.
The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less
NASA Astrophysics Data System (ADS)
Li, Qiong; Chen, Jie; He, Jian-Jun
2017-12-01
In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P-and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young's modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.
Energy and enthalpy distribution functions for a few physical systems.
Wu, K L; Wei, J H; Lai, S K; Okabe, Y
2007-08-02
The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.
The Impact of Paralympic School Day on Student Attitudes Toward Inclusion in Physical Education.
McKay, Cathy; Block, Martin; Park, Jung Yeon
2015-10-01
The purpose of this study was to determine if Paralympic School Day (PSD), a published disability awareness program, would have a positive impact on the attitudes of students without disabilities toward the inclusion of students with disabilities in physical education classes. Participants were 143 sixth-grade students who were divided into 2 groups (experimental n = 71, control n = 72), with the experimental group receiving the PSD treatment. Participants responded 2 times to Siperstein's Adjective Checklist and Block's Children's Attitudes Toward Integrated Physical Education-Revised (CAIPE-R) questionnaire. Four ANCOVA tests were conducted. Results indicated a significant PSD treatment effect across all 4 measures: Adjective Checklist (p = .046, η² = .03), CAIPE-R (p = .002, η² = .04), inclusion subscale (p = .001, η² = .05), and sport-modification subscale (p = .027, η² = .02).
Study of combustion experiments in space
NASA Technical Reports Server (NTRS)
Berlad, A. L.; Huggett, C.; Kaufman, F.; Markstein, G. H.; Palmer, H. B.; Yang, C. H.
1974-01-01
The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding.
. "Experimental and Computational Investigation of Acetic Acid Deoxygenation over Oxophilic programmed reaction (TPRxn) at 200 to 500C. The right pane is a plot of experimental TPRxn data, collected Nanocrystal Films," The Journal of Physical Chemistry Letters (2013) "Non-aqueous Thermolytic Route
Making Controlled Experimentation More Informative in Inquiry Investigations
ERIC Educational Resources Information Center
McElhaney, Kevin Wei Hong
2010-01-01
This dissertation incorporates three studies that examine how the design of inquiry based science instruction, dynamic visualizations, and guidance for experimentation contribute to physics students' understanding of science. I designed a week-long, technology-enhanced inquiry module on car collisions that logs students' interactions with a…
Studying the Binomial Distribution Using LabVIEW
ERIC Educational Resources Information Center
George, Danielle J.; Hammer, Nathan I.
2015-01-01
This undergraduate physical chemistry laboratory exercise introduces students to the study of probability distributions both experimentally and using computer simulations. Students perform the classic coin toss experiment individually and then pool all of their data together to study the effect of experimental sample size on the binomial…
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
A Combined Experimental and Computational Study on Selected Physical Properties of Aminosilicones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, RJ; Genovese, SE; Farnum, RL
2014-01-29
A number of physical properties of aminosilicones have been determined experimentally and predicted computationally. It was found that COSMO-RS predicted the densities of the materials under study to within about 4% of the experimentally determined values. Vapor pressure measurements were performed, and all of the aminosilicones of interest were found to be significantly less volatile than the benchmark MEA material. COSMO-RS was reasonably accurate for predicting the vapor pressures for aminosilicones that were thermally stable. The heat capacities of all aminosilicones tested were between 2.0 and 2.3 J/(g.degrees C); again substantially lower than a benchmark 30% aqueous MEA solution. Surfacemore » energies for the aminosilicones were found to be 23.3-28.3 dyne/cm and were accurately predicted using the parachor method.« less
Experimental Anomalies in Neutrino Physics
NASA Astrophysics Data System (ADS)
Palamara, Ornella
2014-03-01
In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.
NASA Astrophysics Data System (ADS)
Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo
2017-12-01
Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
Jäger, Katja; Schmidt, Mirko; Conzelmann, Achim; Roebers, Claudia M.
2014-01-01
The aim of the present study was to investigate the effects of an acute physical activity intervention that included cognitive engagement on executive functions and on cortisol level in young elementary school children. Half of the 104 participating children (6–8 years old) attended a 20-min sport sequence, which included cognitively engaging and playful forms of physical activity. The other half was assigned to a resting control condition. Individual differences in children's updating, inhibition, and shifting performance as well as salivary cortisol were assessed before (pre-test), immediately after (post-test), and 40 min after (follow-up) the intervention or control condition, respectively. Results revealed a significantly stronger improvement in inhibition in the experimental group compared to the control group, while it appeared that acute physical activity had no specific effect on updating and shifting. The intervention effect on inhibition leveled out 40 min after physical activity. Salivary cortisol increased significantly more in the experimental compared to the control group between post-test and follow-up and results support partly the assumed inverted U-shaped relationship between cortisol level and cognitive performance. In conclusion, results indicate that acute physical activity that includes cognitive engagement may have immediate positive effects on inhibition, but not necessarily on updating and shifting in elementary school children. This positive effect may partly be explained through cortisol elevation after acute physical activity. PMID:25566148
Physical principles for DNA tile self-assembly.
Evans, Constantine G; Winfree, Erik
2017-06-19
DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.
Pienaar, Cindy; Coetzee, Ben
2013-02-01
The purpose of this study was to determine the effects of a microcycle (4 weeks) combined rugby conditioning plyometric compared with a nonplyometric rugby conditioning program on selected physical and motor performance components and anthropometric measurements of university-level rugby players. Players (18.94 ± 0.40 years) were assigned to either a control (n = 16) or experimental group (n = 19) from the U/19 rugby teams of the North-West University (South Africa). Twenty-six direct and indirect anthropometric measurements were taken, and the players performed a battery of 5 physical and motor performance tests before and after a microcycle (4 week) combined rugby conditioning plyometric (experimental group) and a nonplyometric rugby conditioning program (control group). The dependent t-test results showed that the control group's upper-body explosive power decreased significantly, whereas the stature, skeletal mass, and femur breadth increased significantly from pre- to posttesting. The experimental group showed significant increases in wrist breadth, speed over 20 m, agility, and power and work measurements of the Wingate anaerobic test (WAnT). Despite these results, the independent t-test revealed that speed over 20 m, average power output at 20 seconds, relative work of the WAnT, and agility were the only components of the experimental group that improved significantly more than the control group. A microcycle combined rugby conditioning plyometric program therefore leads to significantly bigger changes in selected physical and motor performance components of university-level rugby players than a nonplyometric rugby conditioning program alone. Based on these findings, coaches and sport scientists should implement 3 weekly combined rugby conditioning plyometric programs in rugby players' training regimens to improve the players' speed, agility, and power.
Sebastien Philippe Discusses the Zero-Knowledge Protocol
Philippe, Sebastien
2018-06-12
A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energyâs (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world. Graduate student Sébastien Philippe discusses the experiment.
Permafrost, Seasonally Frozen Ground, Snow Cover and Vegetation in the USSR
1984-12-01
Snow Cover in Physical Geographic Processes (1948). He covered aspects of the dynamics of the snow cover, its properties and the connection between...Bigl, Research Physical Scientist, of the Geotechnical Research Branch, Experimental Engineering Division, un- der the general supervision of Dr...generalized from a detailed vegetation map in the volume Physical Geographic Atlas of the World (Gerasimov 1964), The tundra zone consists mostly of
ERIC Educational Resources Information Center
Boudreau, Francois; Godin, Gaston; Poirier, Paul
2011-01-01
The promotion of regular physical activity for people with type 2 diabetes poses a challenge for public health authorities. The purpose of this study was to evaluate the efficiency of a computer-tailoring print-based intervention to promote the adoption of regular physical activity among people with type 2 diabetes. An experimental design was…
1983-11-28
A Space Shuttle mission STS-9 onboard view show's Spacelab-1 (SL-1) module in orbiter Columbia's payload bay. Spacelab-1 was a cooperative venture of NASA and the European Space Agency. Scientists from eleven European nations plus Canada, Japan and the U.S. provided instruments and experimental procedures for over 70 different investigations in five research areas of disciplines: astronomy and solar physics, space plasma physics, atmospheric physics and Earth observations, life sciences and materials science.