Creative Digital Worksheet Base on Mobile Learning
NASA Astrophysics Data System (ADS)
Wibawa, S. C.; Cholifah, R.; Utami, A. W.; Nurhidayat, A. I.
2018-01-01
The student is required to understand and act in the classroom and it is very important for selecting the media learning to determine the learning outcome. An instructional media is needed to help students achieve the best learning outcome. The objectives of this study are (1) to make Android-based student worksheet, (2) to know the students’ response on Android-based student worksheet in multimedia subject, (3) to determine the student result using Android-based student worksheet. The method used was Research and Development (R&D) using post-test-only in controlled quasi-experimental group design. The subjects of the study were 2 classes, a control class and an experimental class. The results showed (1) Android-based student worksheet was categorized very good as percentage of 85%; (2) the students’ responses was categorized very good as percentage of 86.42%; (3) the experimental class results were better than control class. The average result on cognitive tests on the experimental class was 89.97 and on control class was 78.31; whether the average result on psychomotor test on the experimental class was 89.90 and on the control class was 79.83. In conclusion, student result using Android-based student worksheet was better than those without it.
NASA Technical Reports Server (NTRS)
Chambers, A. B.; Blackaby, J. R.; Miles, J. B.
1973-01-01
Experimental results for three subjects walking on a treadmill at exercise rates of up to 590 watts showed that thermal comfort could be maintained in a liquid cooled garment by using an automatic temperature controller based on sweat rate. The addition of head- and neck-cooling to an Apollo type liquid cooled garment increased its effectiveness and resulted in greater subjective comfort. The biothermal model of man developed in the second portion of the study utilized heat rates and exchange coefficients based on the experimental data, and included the cooling provisions of a liquid-cooled garment with automatic temperature control based on sweat rate. Simulation results were good approximations of the experimental results.
NASA Technical Reports Server (NTRS)
Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.
1978-01-01
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.
Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C
2015-12-01
through experimentation. Although the Literature Review showed that some theories and models have been developed based on extensive experimental results...of Some Refractory Metals & Ceramics [Fahrenholtz] ........... 14 Figure 4: Creep Strain vs Time Based on Burgers Model ...
Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs.
Hriberšek, M; Zajdela, B; Hribernik, A; Zadravec, M
2011-02-01
The paper studies the properties and sedimentation characteristics of sludge flocs, as they appear in biological wastewater treatment (BWT) plants. The flocs are described as porous and permeable bodies, with their properties defined based on conducted experimental study. The derivation is based on established geometrical properties, high-speed camera data on settling velocities and non-linear numerical model, linking settling velocity with physical properties of porous flocs. The numerical model for derivation is based on generalized Stokes model, with permeability of the floc described by the Brinkman model. As a result, correlation for flocs porosity is obtained as a function of floc diameter. This data is used in establishing a CFD numerical model of sedimentation of flocs in test conditions, as recorded during experimental investigation. The CFD model is based on Euler-Lagrange formulation, where the Lagrange formulation is chosen for computation of flocs trajectories during sedimentation. The results of numerical simulations are compared with experimental results and very good agreement is observed. © 2010 Elsevier Ltd. All rights reserved.
Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang
2017-01-01
Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487
Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.
2016-08-01
Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.
ERIC Educational Resources Information Center
Little, Priscilla M. D.; Harris, Erin
As the amount of resources allocated to out-of-school (OST) programming and policymakers' demands for research-based results increase, there is increasing interest in rigorous research designs to examine OST program outcomes. This issue of "Out-of-School Time Evaluation Snapshots" reviews 27 quasi-experimental and experimental OST…
Empirical predictions of hypervelocity impact damage to the space station
NASA Technical Reports Server (NTRS)
Rule, W. K.; Hayashida, K. B.
1991-01-01
A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.
NASA Astrophysics Data System (ADS)
Guy, N.; Seyedi, D. M.; Hild, F.
2018-06-01
The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.
Sukhin, I A; Furmanov, Iu O; Kozhukhar, O T; Savits'ka, I M; Kachan, S H; Bililovets', O M; Savits'kiĭ, O V
2012-03-01
Results of experimental investigation on elaboration and trial of surgical hemostasis method, using the quartz heating optic noncoherent irradiators of light, are adduced. Basing on analysis of the results obtained, the apparatus for photooptic coagulation was elaborated and trialed on experimental animals.
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Mackley, E. A.
1976-01-01
An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic.
Physical and Chemical Processing in Flames
2013-08-12
hydrogen-air flames. It order to evaluate the closeness of theoretical limit based on the Sivashinsky criterion with the experimental results we have... experimental H2-O2 results, and it is seen that the experimental transition regime does span around the neighborhood of the theoretical boundary, suggesting...for hydrogen–oxygen flames with the calculated theoretical boundary superimposed 13 In Fig. II-4 we plot the experimentally measured
DOT National Transportation Integrated Search
2009-10-01
This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Hagemann, G.; Immich, H.
2003-01-01
A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.
NASA Astrophysics Data System (ADS)
Jianxiu, Su; Xiqu, Chen; Jiaxi, Du; Renke, Kang
2010-05-01
Distribution forms of abrasives in the chemical mechanical polishing (CMP) process are analyzed based on experimental results. Then the relationships between the wafer, the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics. According to the track length of abrasives on the wafer surface, the relationships between the material removal rate and the polishing velocity are obtained. The analysis results are in accord with the experimental results. The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP.
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
NASA Astrophysics Data System (ADS)
Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou
2014-02-01
In this paper, the magnetic rubber plate absorber (MRPA) and metamaterial absorber (MA) based on MRP substrate were proposed and studied numerically and experimentally. Based on the characteristic of L-C resonances, experimental results show that the MA composed of cross resonator (CR) embedded single layer MRP could be adjustable easily by changing the wire length and width of CR structure and MRP thickness. Finally, experimental results show that the MA composed of CR-embedded two layers MRP with the total thickness of 2.42 mm exhibit a -10 dB absorption bandwidth from 1.65 GHz to 3.7 GHz, which is 1.86 times wider than the same thickness MRPA.
Reversible Data Hiding Based on DNA Computing
Xie, Yingjie
2017-01-01
Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504
Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples
NASA Astrophysics Data System (ADS)
Tümkaya, Mehmet Ali; Dinçer, Furkan; Karaaslan, Muharrem; Sabah, Cumali
2017-08-01
A metamaterial-based sensor has been realized to distinguish authentic and inauthentic fuel samples in the microwave frequency regime. Unlike the many studies in literature on metamaterial-based sensor applications, this study focuses on a compact metamaterial-based sensor operating in the X-band frequency range. Firstly, electromagnetic properties of authentic and inauthentic fuel samples were obtained experimentally in a laboratory environment. Secondly, these experimental results were used to design and create a highly efficient metamaterial-based sensor with easy fabrication characteristics and simple design structure. The experimental results for the sensor were in good agreement with the numerical ones. The proposed sensor offers a more efficient design and can be used to detect fuel and multiple other liquids in various application fields from medical to military areas in several frequency regimes.
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
Experimental results for correlation-based wavefront sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, L A; Palmer, D W; LaFortune, K N
2005-07-01
Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.
NASA Technical Reports Server (NTRS)
Partridge, William P.; Laurendeau, Normand M.
1997-01-01
We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.
NASA Technical Reports Server (NTRS)
Alcorn, Charles W.; Britcher, Colin
1988-01-01
An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.
Valente, Marco A G; Teixeira, Deiver A; Azevedo, David L; Feliciano, Gustavo T; Benedetti, Assis V; Fugivara, Cecílio S
2017-01-01
The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
Experimental and computational surface and flow-field results for an all-body hypersonic aircraft
NASA Technical Reports Server (NTRS)
Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.
1990-01-01
The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.
Promoting students' conceptual understanding using STEM-based e-book
NASA Astrophysics Data System (ADS)
Komarudin, U.; Rustaman, N. Y.; Hasanah, L.
2017-05-01
This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(p<0.005). N-gain analysis showsthe higher performance of students who were participated in experimental group (mean = 66.03) higher compared to control group (mean = 47.66) in answering conceptual understanding questions. Based on the results, it can be concluded that STEM-based e-book has positiveimpact in promoting students' understanding on lever system in human body. Therefore this learning approach is potential to be used as an alternative to triger the enhancement of students' understanding in science.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
A logic-based method to build signaling networks and propose experimental plans.
Rougny, Adrien; Gloaguen, Pauline; Langonné, Nathalie; Reiter, Eric; Crépieux, Pascale; Poupon, Anne; Froidevaux, Christine
2018-05-18
With the dramatic increase of the diversity and the sheer quantity of biological data generated, the construction of comprehensive signaling networks that include precise mechanisms cannot be carried out manually anymore. In this context, we propose a logic-based method that allows building large signaling networks automatically. Our method is based on a set of expert rules that make explicit the reasoning made by biologists when interpreting experimental results coming from a wide variety of experiment types. These rules allow formulating all the conclusions that can be inferred from a set of experimental results, and thus building all the possible networks that explain these results. Moreover, given an hypothesis, our system proposes experimental plans to carry out in order to validate or invalidate it. To evaluate the performance of our method, we applied our framework to the reconstruction of the FSHR-induced and the EGFR-induced signaling networks. The FSHR is known to induce the transactivation of the EGFR, but very little is known on the resulting FSH- and EGF-dependent network. We built a single network using data underlying both networks. This leads to a new hypothesis on the activation of MEK by p38MAPK, which we validate experimentally. These preliminary results represent a first step in the demonstration of a cross-talk between these two major MAP kinases pathways.
Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning
2014-10-01
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning
2014-01-01
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485
Yemets, Anatoliy V; Donchenko, Viktoriya I; Scrinick, Eugenia O
2018-01-01
Introduction: Experimental work is aimed at introducing theoretical and methodological foundations for the professional training of the future doctor. The aim: Identify the dynamics of quantitative and qualitative indicators of the readiness of a specialist in medicine. Materials and methods: The article presents the course and results of the experimental work of the conditions of forming the readiness of future specialists in medicine. Results: Our methodical bases for studying the disciplines of the general practice and specialized professional stage of experimental training of future physicians have been worked out. Conclusions: It is developed taking into account the peculiarities of future physician training of materials for various stages of experimental implementation in the educational process of higher medical educational institutions.
Theoretical and experimental research on laser-beam homogenization based on metal gauze
NASA Astrophysics Data System (ADS)
Liu, Libao; Zhang, Shanshan; Wang, Ling; Zhang, Yanchao; Tian, Zhaoshuo
2018-03-01
Method of homogenization of CO2 laser heating by means of metal gauze is researched theoretically and experimentally. Distribution of light-field of expanded beam passing through metal gauze was numerically calculated with diffractive optical theory and the conclusion is that method is effective, with comparing the results to the situation without metal gauze. Experimentally, using the 30W DC discharge laser as source and enlarging beam by concave lens, with and without metal gauze, beam intensity distributions in thermal paper were compared, meanwhile the experiments based on thermal imager were performed. The experimental result was compatible with theoretical calculation, and all these show that the homogeneity of CO2 laser heating could be enhanced by metal gauze.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.; Rainsberger, R.
1996-04-01
The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2014-10-01
In this Letter, we propose and experimentally demonstrate a free-space based reconfigurable card-to-card optical interconnect architecture with 16-carrierless-amplitude-phase modulation. Experimental results show that up to 120 Gb/s (3×40 Gb/s) flexible interconnection can be achieved for up to 30 cm distance with a worst-case receiver sensitivity of -9.70 dBm.
Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters
2015-12-01
characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.
2017-01-01
The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602
Analytical and experimental study of axisymmetric truncated plug nozzle flow fields
NASA Technical Reports Server (NTRS)
Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.
1972-01-01
Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.
Immunomagnetic separation for MEMS-based biosensor of waterborne pathogens detection
NASA Astrophysics Data System (ADS)
Guo, Jianjiang; Zhang, Rongbiao
2017-07-01
Rapid isolation and detection of special pathogens present in environmental drinking water is critical for water quality monitoring. Numerical analysis and experimental investigations on immunomagnetic capture and isolation of waterborne pathogens with magnetic nanoparticles (MNPs) in microfluidic channel are performed. A finite-element COMSOL-based model is established to demonstrate the novel method of on-chip capturing pathogens using MNPs together with periodic pulse magnetic field. Simulation results determine the optimum magnetic pole current and switching frequency for magnetic separation. With the magnetic isolation experiment platform built up, as a pathogen example of Escherichia coli O157:H7, the performance of the method is experimentally verified. Both numerical and experimental results are found to agree reasonably well. Results of these investigations show that the capture efficiency of the immunomagnetic separation method is more than 92%, which could be encouraging for the design and optimization of MEMS-based biosensor of waterborne pathogen detection.
NASA Astrophysics Data System (ADS)
Gattesco, Natalino; Boem, Ingrid
2017-10-01
The paper investigates the effectiveness of a modern reinforcement technique based on a Glass Fiber-Reinforced Mortar (GFRM) for the enhancement of the performances of existing masonry vaults subjected to horizontal seismic actions. In fact, the authors recently evidenced, through numerical simulations, that the typical simplified loading patterns generally adopted in the literature for the experimental tests, based on concentrated vertical loads at 1/4 of the span, are not reliable for such a purpose, due to an unrealistic stress distribution. Thus, experimental quasi-static cyclic tests on full-scale masonry vaults based on a specific setup, designed to apply a horizontal load pattern proportional to the mass, were performed. Three samples were tested: an unreinforced vault, a vault reinforced at the extrados and a vault reinforced at the intrados. The experimental results demonstrated the technique effectiveness in both strength and ductility. Moreover, numerical simulations were performed by adopting a simplified FE, smear-crack model, evidencing the good reliability of the prediction by comparison with the experimental results.
The effect of dense gas dynamics on loss in ORC transonic turbines
NASA Astrophysics Data System (ADS)
Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.
2017-03-01
This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.
NASA Astrophysics Data System (ADS)
Vincent, M.; Xolin, P.; Gevrey, A.-M.; Thiebaud, F.; Engels-Deutsch, M.; Ben Zineb, T.
2017-04-01
This paper presents an experimental and numerical study showing that single crystal shape memory alloy (SMA) Cu-based endodontic instruments can lead to equivalent mechanical performances compared to NiTi-based instruments besides their interesting biological properties. Following a previous finite element analysis (FEA) of single crystal CuAlBe endodontic instruments (Vincent et al 2015 J. Mater. Eng. Perform. 24 4128-39), prototypes with the determined geometrical parameters were machined and experimentally characterized in continuous rotation during a penetration/removal (P/R) protocol in artificial canals. The obtained mechanical responses were compared to responses of NiTi endodontic files in the same conditions. In addition, FEA was conducted and compared with the experimental results to validate the adopted modeling and to evaluate the local quantities inside the instrument as the stress state and the distribution of volume fraction of martensite. The obtained results highlight that single crystal CuAlBe SMA prototypes show equivalent mechanical responses to its NiTi homologous prototypes in the same P/R experimental conditions.
Modeling and experimental result analysis for high-power VECSELs
NASA Astrophysics Data System (ADS)
Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner
2003-06-01
We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.
NASA Astrophysics Data System (ADS)
Liliawati, W.; Purwanto; Zulfikar, A.; Kamal, R. N.
2018-05-01
This study aims to examine the effectiveness of the use of teaching materials based on multiple intelligences on the understanding of high school students’ material on the theme of global warming. The research method used is static-group pretest-posttest design. Participants of the study were 60 high school students of XI class in one of the high schools in Bandung. Participants were divided into two classes of 30 students each for the experimental class and control class. The experimental class uses compound-based teaching materials while the experimental class does not use a compound intelligence-based teaching material. The instrument used is a test of understanding of the concept of global warming with multiple choices form amounted to 15 questions and 5 essay items. The test is given before and after it is applied to both classes. Data analysis using N-gain and effect size. The results obtained that the N-gain for both classes is in the medium category and the effectiveness of the use of teaching materials based on the results of effect-size test results obtained in the high category.
Experimental BCAS Performance Results
DOT National Transportation Integrated Search
1978-07-01
The results of the (Litchford) Beacon-based Collision Avoidance System concept feasibility evaluation are reported. Included are a description of the concept, analysis and flight test results. The system concept is based on the range and bearing meas...
NASA Astrophysics Data System (ADS)
Bashirzadeh, Milad
This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... made in 2004, when the fishery was being reopened under an experimental regulatory regime that was... NMFS based the information on Atlantic experimental results. Based on 100 percent observer coverage... quasi-extinction threshold within one generation (25 years) due largely to climate-forcing factors. As...
Early Results in Capella's Prior Learning Assessment Experimental Site Initiative
ERIC Educational Resources Information Center
Klein, Jillian
2017-01-01
In July 2014, the U.S. Department of Education announced a new round of experimental sites focusing on competency-based education. Capella University was selected to participate in three of the Department of Education's competency-based education (CBE) experiments and began by implementing the prior learning assessment experiment, which allows…
The Lα (λ = 121.6 nm) solar plage contrasts calculations.
NASA Astrophysics Data System (ADS)
Bruevich, E. A.
1991-06-01
The results of calculations of Lα plage contrasts based on experimental data are presented. A three-component model ideology of Lα solar flux using "Prognoz-10" and SME daily smoothed values of Lα solar flux are applied. The values of contrast are discussed and compared with experimental values based on "Skylab" data.
NASA Astrophysics Data System (ADS)
Chavan, Durgeshkumar; Pise, Ashok T.
2015-09-01
In the present paper, experimental study is performed to investigate convective heat transfer and flow characteristics of nanofluids through a circular tube. The heat transfer coefficient and friction factor of the γ-Al2O3-water nanofluid flowing through a pipe of 10 mm inner ID and 1 m in length, with constant wall temperature under turbulent flow conditions are investigated. Experiments are conducted with 30 nm size γ-Al2O3 nanoparticle with a volume fraction between 0.1 and to 1.0 and Reynolds number between 8,000 and 14,000. Experimental results emphasize the heat transfer enhancement with the increase in a Reynolds number or nanoparticle volume fraction. The maximum enhancement of 36 % in the heat transfer coefficient for a Reynolds number of 8,550, by using nanofluid with 1.0 vol% was observed compared with base fluid. Experimental measurement also shows the considerable increase in the pressure drop with small addition of nanoparticles in base fluid. Experimental results of nanofluids were compared with existing convective heat transfer correlations in the turbulent regime. Comparison shows that Maiga's correlation has close agreement with experimental results in comparison with Dittus Boelter correlation.
Properties of inductive reasoning.
Heit, E
2000-12-01
This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
Effects of partitioning and scheduling sparse matrix factorization on communication and load balance
NASA Technical Reports Server (NTRS)
Venugopal, Sesh; Naik, Vijay K.
1991-01-01
A block based, automatic partitioning and scheduling methodology is presented for sparse matrix factorization on distributed memory systems. Using experimental results, this technique is analyzed for communication and load imbalance overhead. To study the performance effects, these overheads were compared with those obtained from a straightforward 'wrap mapped' column assignment scheme. All experimental results were obtained using test sparse matrices from the Harwell-Boeing data set. The results show that there is a communication and load balance tradeoff. The block based method results in lower communication cost whereas the wrap mapped scheme gives better load balance.
NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun
2001-05-01
In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.
Functional analysis and treatment of problem behavior in early education classrooms.
Greer, Brian D; Neidert, Pamela L; Dozier, Claudia L; Payne, Steven W; Zonneveld, Kimberley L M; Harper, Amy M
2013-01-01
We conducted functional analyses (FA) with 4 typically developing preschool children during ongoing classroom activities and evaluated treatments that were based on FA results. Results of each child's FA suggested social-positive reinforcement functions, and differential reinforcement of alternative behavior plus time-out was effective in decreasing problem behavior and increasing appropriate behavior. We discuss the utility of classroom-based FAs and potential compromises to experimental control. © Society for the Experimental Analysis of Behavior.
Experimental and analytical studies of high heat flux components for fusion experimental reactor
NASA Astrophysics Data System (ADS)
Araki, Masanori
1993-03-01
In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 (+/-) 1 MW/sq m was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate was analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads.
McNabb, Jaimie; Gray, Rob
2016-01-01
Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study compared the effects of four different smart phone tasks on car-following performance in a driving simulator. Phone tasks were chosen that vary across two factors: interaction medium (text vs image) and task pacing (self-paced vs experimenter-paced) and were as follows: Text messaging with the experimenter (text/other-paced), reading Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat (image, experimenter -paced), and viewing updates on Instagram (image, experimenter -paced). Drivers also performed a driving only baseline. Brake reaction times (BRTs) were significantly greater in the text-based conditions (Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the baseline (0.88 s). There was no significant difference between BRTs in the image-based and baseline conditions and there was no significant effect of task-pacing. Similar results were obtained for Time Headway variability. These results are consistent with the picture superiority effect found in memory research and suggest that image-based interfaces could provide safer ways to “stay connected” while driving than text-based interfaces. PMID:26886099
McNabb, Jaimie; Gray, Rob
2016-01-01
Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study compared the effects of four different smart phone tasks on car-following performance in a driving simulator. Phone tasks were chosen that vary across two factors: interaction medium (text vs image) and task pacing (self-paced vs experimenter-paced) and were as follows: Text messaging with the experimenter (text/other-paced), reading Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat (image, experimenter-paced), and viewing updates on Instagram (image, experimenter-paced). Drivers also performed a driving only baseline. Brake reaction times (BRTs) were significantly greater in the text-based conditions (Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the baseline (0.88 s). There was no significant difference between BRTs in the image-based and baseline conditions and there was no significant effect of task-pacing. Similar results were obtained for Time Headway variability. These results are consistent with the picture superiority effect found in memory research and suggest that image-based interfaces could provide safer ways to "stay connected" while driving than text-based interfaces.
Experimental study of the oscillation of spheres in an acoustic levitator.
Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C
2014-10-01
The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
Joint research effort on vibrations of twisted plates, phase 1: Final results
NASA Technical Reports Server (NTRS)
Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.
1985-01-01
The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.
Accurate position estimation methods based on electrical impedance tomography measurements
NASA Astrophysics Data System (ADS)
Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.
2017-08-01
Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.
NASA Astrophysics Data System (ADS)
Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.
2018-05-01
The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.
Processing biobased polymers using plasticizers: Numerical simulations versus experiments
NASA Astrophysics Data System (ADS)
Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa
2016-03-01
In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.
Huang, Ya-Hsuan; Hsieh, Suh-Ing; Hsu, Li-Ling
2014-04-01
Limited disease knowledge is frequently the cause of disease-related anxiety in myocardial infarction patients. The ability to communicate effectively serves multiple purposes in the professional nursing practice. By communicating effectively with myocardial infarction patients, nurses may help reduce their anxiety by keeping them well informed about their disease and teaching them self-care strategies. This research evaluates the communication skills of nurses following scenario-based simulation education in the context of communication with myocardial infarction patients. This study used an experimental design and an educational intervention. The target population comprised nurses of medicine (clinical qualified level N to N2 for nursing) working at a municipal hospital in Taipei City, Taiwan. A total 122 participants were enrolled. Stratified block randomization divided participants into an experimental group and a control group. The experimental group received clinical scenario-based simulation education for communication. The control group received traditional class-based education for communication. Both groups received a pre-test and a Communication Skills Checklist post-test assessment. Results were analyzed using SPSS 17.0 for Windows software. A t-test showed significant increases in communication skills (p < .001) in the experimental group and ANCOVA results identified significant between-group differences (p < .001) in communication skills following the education intervention. The results indicate that clinical scenario-based simulation education for communication is significantly more effective than traditional class-based education in enhancing the ability of nurses to communicate effectively with myocardial infarction patients.
Dean Stull
2016-05-24
Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.
Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2
NASA Technical Reports Server (NTRS)
Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)
1998-01-01
The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.
Milani, Atefeh; Nikmanesh, Zahra; Farnam, Ali
2013-12-01
In the present era, delinquency in children and adolescents is undoubtedly a difficult and upsetting issue attracting the attention of many experts such as psychologists, sociologists, and criminologists. These experts often try to answer why a number of children and adolescents engage in various crimes such as aggressive and anti-social crimes. They also try to find out how these crimes can be prevented. The present study investigates the effectiveness of mindfulness-based cognitive therapy training (MBCT) in reducing aggression in a juvenile correction and rehabilitation center of Zahedan province during years 1991 to 1992. This experimental study included an experimental and a control group with a pretest, posttest, and follow-up approach. The Buss and Perry aggression questionnaire (1992) was used for data collection. The sample group included 22 (10 experimental and 12 control groups) adolescent males in a juvenile correction and rehabilitation center of Zahedan province who were selected through a census method. Using a matching method based on the pre-test scores of the aggression questionnaire, they were then divided into two equivalent categories and were randomly assigned to the two groups. Mindfulness-based cognitive training took the group training in 8 sessions administered on experimental group. The follow-up test was conducted two weeks after the end of the posttest sessions. The results were analyzed using ANCOVA. The results of ANCOVA showed that mindfulness-based cognitive training could significantly reduce aggression during posttest and follow-up test phases in the experimental group, compared to the control group (P < 0.01). Moreover, the results indicated the effectiveness of this method in significantly reducing anger, physical aggression, and hostility during posttest and follow-up test phases (P < 0.05). However, no significant reduction was observed in the verbal aggression subscale. According to the results of the present study, mindfulness-based cognitive training seems to be effective for reducing aggressive behaviors.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo
2010-03-01
In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
Physical Test Prototypes Based on Microcontroller
NASA Astrophysics Data System (ADS)
Paramitha, S. T.
2017-03-01
The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.
The effect of inquiry based science instruction on student understanding
NASA Astrophysics Data System (ADS)
Nail, Jessica Lynette
According to the TIMSS Study (2007), the United States is falling behind in the subjects of math and science. In order for the students in the United States to develop scientific literacy and remain competitive globally, inquiry must be the priority when teaching science (NRC, 1996; AAAS, 1990). The main purpose of this research was to see if inquiry-based instruction in the science classroom had a significant effect on student understanding and retention of information in a rural school in Virginia. The effect of inquiry-based science instruction on gender was also examined. The researcher implemented a four-week, inquiry-based unit on Virginia Sol 6.7, written in the 5 E learning style to 358 sixth-grade students and compared their posttest gains and delayed posttest scores to a control group consisting of 268 students. The control group received traditional teaching methods. The results for the posttest gains produced a p = 0.01. Therefore, there was a significant difference in the experimental group, which received the treatment, when compared to the control group, which did not receive treatment. A t test was also used to compare the delayed test scores of the experimental group to the control group. The results showed a p < 0.0001 when comparing the experimental group, which received the four-week inquiry-based science instruction treatment, to the control, which did not receive the treatment. This t test showed a very highly significant difference between the experimental group and the control group. Based on these results, it is imperative that Virginia begin implementing inquiry-based instruction in the science classroom.
Solanki, Prem K; Rabin, Yoed
2018-01-01
This study presents experimental results and an analysis approach for polarized light effects associated with thermomechanical stress during cooling of glass promoting solutions, with applications to cryopreservation and tissue banking in a process known as vitrification. Polarized light means have been previously integrated into the cryomacroscope-a visualization device to detect physical effects associated with cryopreservation success, such as crystallization, fracture formation, and contamination. The experimental study concerns vitrification in a cuvette, which is a rectangular container. Polarized light modeling in the cuvette is based on subdividing the tridimensional (3D) domain into a series of planar (2D) problems, for which a mathematical solution is available in the literature. The current analysis is based on tracking the accumulated changes in light polarization and magnitude, as it passes through the sequence of planar problems. Results of this study show qualitative agreement in light intensity history and distribution between experimental data and simulated results. The simulated results help explaining differences between 2D and 3D effects in photoelasticity, most notably, the counterintuitive observation that high stress areas may correlate with low light intensity regions based on the particular experimental conditions. Finally, it is suggested that polarized-light analysis must always be accompanied by thermomechanical stress modeling in order to explain 3D effects.
2018-01-01
This study presents experimental results and an analysis approach for polarized light effects associated with thermomechanical stress during cooling of glass promoting solutions, with applications to cryopreservation and tissue banking in a process known as vitrification. Polarized light means have been previously integrated into the cryomacroscope—a visualization device to detect physical effects associated with cryopreservation success, such as crystallization, fracture formation, and contamination. The experimental study concerns vitrification in a cuvette, which is a rectangular container. Polarized light modeling in the cuvette is based on subdividing the tridimensional (3D) domain into a series of planar (2D) problems, for which a mathematical solution is available in the literature. The current analysis is based on tracking the accumulated changes in light polarization and magnitude, as it passes through the sequence of planar problems. Results of this study show qualitative agreement in light intensity history and distribution between experimental data and simulated results. The simulated results help explaining differences between 2D and 3D effects in photoelasticity, most notably, the counterintuitive observation that high stress areas may correlate with low light intensity regions based on the particular experimental conditions. Finally, it is suggested that polarized-light analysis must always be accompanied by thermomechanical stress modeling in order to explain 3D effects. PMID:29912973
Rossi, Michael R.; Tanaka, Daigo; Shimada, Kenji; Rabin, Yoed
2009-01-01
The current study focuses on experimentally validating a planning scheme based on the so-called bubble-packing method. This study is a part of an ongoing effort to develop computerized planning tools for cryosurgery, where bubble packing has been previously developed as a means to find an initial, uniform distribution of cryoprobes within a given domain; the so-called force-field analogy was then used to move cryoprobes to their optimum layout. However, due to the high quality of the cryoprobes’ distribution, suggested by bubble packing and its low computational cost, it has been argued that a planning scheme based solely on bubble packing may be more clinically relevant. To test this argument, an experimental validation is performed on a simulated cross-section of the prostate, using gelatin solution as a phantom material, proprietary liquid-nitrogen based cryoprobes, and a cryoheater to simulate urethral warming. Experimental results are compared with numerically simulated temperature histories resulting from planning. Results indicate an average disagreement of 0.8 mm in identifying the freezing front location, which is an acceptable level of uncertainty in the context of prostate cryosurgery imaging. PMID:19885373
NASA Astrophysics Data System (ADS)
Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia
2017-01-01
This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.
Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do
2014-01-01
This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.
Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid
2015-04-03
We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.
Square and rectangular concrete columns confined by CFRP: Experimental and numerical investigation
NASA Astrophysics Data System (ADS)
Monti, G.; Nistico, N.
2008-05-01
The results of an experimental and theoretical investigation into the deformation behavior of CFRP-confined square and rectangular concrete columns under axial loads are presented. Three types of columns are considered: unwrapped; fully wrapped; and fully wrapped, with L-slaped steel angles placed at the corners. A mechanical deformation model for them is proposed, which is based on a nonuniform distribution of the stresses caused by the confining device. The results given by the model are in a good agreement with the experimental results obtained.
Equation of State for RX-08-EL and RX-08-EP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.L.; Walton, J.
1985-05-07
JWL Equations of State (EOS's) have been estimated for RX-08-EL and RX-08-EP. The estimated JWL EOS parameters are listed. Previously, we derived a JWL EOS for RX-08-EN based on DYNA2D hydrodynamic code cylinder computations and comparisons with experimental cylinder test results are shown. The experimental cylinder shot results for RX-08-EL, shot K-473, were compared to the experimental cylinder shot results for RX-08-EN, shot K-463, as a reference. 10 figs., 6 tabs.
Mechanisms of carbon dimer formation in colliding laser-produced carbon plasmas
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Oliver, John; Diwakar, Prasoon K.
2017-07-01
It has been demonstrated that the hot stagnation region formed during the collision of laser-produced carbon plasmas is rich with carbon dimers which have been shown to be synthesized into large carbon macromolecules such as carbon fullerene onions and nanotubes. In this study, we developed and integrated experimental and multidimensional modeling techniques to access the temporal and spatial resolution of colliding plasma characteristics that elucidated the mechanism for early carbon dimer formation. Plume evolution imaging, monochromatic imaging, and optical emission spectroscopy of graphite-produced, carbon plasmas were performed. Experimental results were compared with the results of the 3D comprehensive modeling using our HEIGHTS simulation package. The results are explained based on a fundamental analysis of plasma evolution, colliding layer formation, stagnation, and expansion. The precise mechanisms of the plasma collision, plume propagation, and particle formation are discussed based on the experimental and modeling results.
2006-04-17
of the droplet phase are then used for validation of theoretical models of the gas-droplet plume flow. Based on experimental and numerical results...with the continuous model adequately reproduces the Arrhenius rate at high temperatures but significantly underpredicts the theoretical rate at low...continuous model and discrete model of real gas effects, and the results on the shock -wave stand-off distance were compared with the experimental data of
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...
2018-02-28
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
Simulation and experimental research of 1MWe solar tower power plant in China
NASA Astrophysics Data System (ADS)
Yu, Qiang; Wang, Zhifeng; Xu, Ershu
2016-05-01
The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
Chi, Yulang; Zhang, Huanteng; Huang, Qiansheng; Lin, Yi; Ye, Guozhu; Zhu, Huimin; Dong, Sijun
2018-02-01
Environmental risks of organic chemicals have been greatly determined by their persistence, bioaccumulation, and toxicity (PBT) and physicochemical properties. Major regulations in different countries and regions identify chemicals according to their bioconcentration factor (BCF) and octanol-water partition coefficient (Kow), which frequently displays a substantial correlation with the sediment sorption coefficient (Koc). Half-life or degradability is crucial for the persistence evaluation of chemicals. Quantitative structure activity relationship (QSAR) estimation models are indispensable for predicting environmental fate and health effects in the absence of field- or laboratory-based data. In this study, 39 chemicals of high concern were chosen for half-life testing based on total organic carbon (TOC) degradation, and two widely accepted and highly used QSAR estimation models (i.e., EPI Suite and PBT Profiler) were adopted for environmental risk evaluation. The experimental results and estimated data, as well as the two model-based results were compared, based on the water solubility, Kow, Koc, BCF and half-life. Environmental risk assessment of the selected compounds was achieved by combining experimental data and estimation models. It was concluded that both EPI Suite and PBT Profiler were fairly accurate in measuring the physicochemical properties and degradation half-lives for water, soil, and sediment. However, the half-lives between the experimental and the estimated results were still not absolutely consistent. This suggests deficiencies of the prediction models in some ways, and the necessity to combine the experimental data and predicted results for the evaluation of environmental fate and risks of pollutants. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Maraffi, S.
2016-12-01
Context/PurposeWe experienced a new teaching and learning technology: a Computer Class Role Playing Game (RPG) to perform educational activity in classrooms through an interactive game. This approach is new, there are some experiences on educational games, but mainly individual and not class-based. Gaming all together in a class, with a single scope for the whole class, it enhances peer collaboration, cooperative problem solving and friendship. MethodsTo perform the research we experimented the games in several classes of different degrees, acquiring specific questionnaire by teachers and pupils. Results Experimental results were outstanding: RPG, our interactive activity, exceed by 50% the overall satisfaction compared to traditional lessons or Power Point supported teaching. InterpretationThe appreciation of RPG was in agreement with the class level outcome identified by the teacher after the experimentation. Our work experience get excellent feedbacks by teachers, in terms of efficacy of this new teaching methodology and of achieved results. Using new methodology more close to the student point of view improves the innovation and creative capacities of learners, and it support the new role of teacher as learners' "coach". ConclusionThis paper presents the first experimental results on the application of this new technology based on a Computer game which project on a wall in the class an adventure lived by the students. The plots of the actual adventures are designed for deeper learning of Science, Technology, Engineering, Mathematics (STEM) and Social Sciences & Humanities (SSH). The participation of the pupils it's based on the interaction with the game by the use of their own tablets or smartphones. The game is based on a mixed reality learning environment, giving the students the feel "to be IN the adventure".
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi
2015-06-01
This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.
A school-based health promotion program for stressed nursing students in Taiwan.
Hsieh, Pei-Lin
2011-09-01
: Nursing students face both clinical and academic stress. Extensive theoretical and research literature suggests that peer support and regular exercise are critically important and can efficiently manage stress for nursing students. : The purpose of this study was to investigate the effect of a school-based health promotion program in a group physical activity intervention and peer support program for stressed nursing students. : This study used a quasi-experimental design to collect information and collected data from a stress questionnaire, semistructured questionnaire, and group discussion. Participants included 77 nursing students at an institute of technology in northern Taiwan. Participants were randomly assigned into experimental (n = 37) and control (n = 40) groups. Program duration was 16 weeks. Participants were selected based on their assessment results as having moderate or severe levels of stress. All participants in the experimental group took part in a group physical activity for 30 minutes three times a week. Eight weeks later, the researcher invited each group to discuss their feelings and stress coping strategies. Both groups completed pretest and posttest stress questionnaires. Quantitative data were analyzed using SPSS 14.0 Statistical Package for Windows, and qualitative data from each group discussion were analyzed using content analysis. : Results revealed that level of stress was statistically decreased in the experimental group. Posttest stress levels were significantly different in experimental and control groups. The results suggested that students who participated in the intervention had less stress than did those in the control group after the intervention. Those in the experimental group held positive views of peer support and physical activity. : The results of this study confirmed the efficacy of school-based health promotion programs in reducing stress in nursing students. Findings may provide educators with information to assist their developing effective health promotion programs to manage stress for their students. This study can also help students develop personal coping strategies through physical activity and peer support.
NASA Astrophysics Data System (ADS)
Wang, Ding; Ding, Pin-bo; Ba, Jing
2018-03-01
In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.
Games for Traffic Education: An Experimental Study of a Game-Based Driving Simulator
ERIC Educational Resources Information Center
Backlund, Per; Engstrom, Henrik; Johannesson, Mikael; Lebram, Mikael
2010-01-01
In this article, the authors report on the construction and evaluation of a game-based driving simulator using a real car as a joystick. The simulator is constructed from off-the-shelf hardware and the simulation runs on open-source software. The feasibility of the simulator as a learning tool has been experimentally evaluated. Results are…
ERIC Educational Resources Information Center
Laforest, Sophie; Lorthios-Guilledroit, Agathe; Nour, Kareen; Parisien, Manon; Fournier, Michel; Ellemberg, Dave; Guay, Danielle; Desgagnés-Cyr, Charles-Émile; Bier, Nathalie
2017-01-01
This study examined the effects on attitudes and lifestyle behavior of "Jog your Mind," a multi-factorial community-based program promoting cognitive vitality among seniors with no known cognitive impairment. A quasi-experimental study was conducted. Twenty-three community organizations were assigned either to the experimental group…
Oh, Hyun Soo; Park, Won; Kwon, Seong Ryul; Lim, Mie Jin; Suh, Yeon Ok; Seo, Wha Sook; Park, Jong Suk
2013-08-01
This study was conducted to examine the changing patterns of knowledge related to disease, medication adherence, and self-management and to determine if outcomes were more favorable in the experimental group than in the comparison group through 6 months after providing a web-based self-management intervention. A non-equivalent control group quasi-experimental design was used and 65 patients with gout, 34 in experimental group and 31 in comparison group, were selected from the rheumatic clinics of two university hospitals. Data were collected four times, at baseline, at 1 month, 3 months, and 6 months after the intervention. According to the study results, the changing patterns of knowledge and self-management were more positive in the experimental group than in the control group, whereas difference in the changing pattern of medication adherence between two groups was not significant. The results indicate that the web-based self-management program has significant effect on improving knowledge and self-management for middle aged male patients with gout. However, in order to enhance medication adherence, the web-based intervention might not be sufficient and other strategies need to be added.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
Evaluation of ground motion scaling methods for analysis of structural systems
O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.
2011-01-01
Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.
Bunker, Alex; Magarkar, Aniket; Viitala, Tapani
2016-10-01
Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.
Active-learning versus teacher-centered instruction for learning acids and bases
NASA Astrophysics Data System (ADS)
Acar Sesen, Burcin; Tarhan, Leman
2011-07-01
Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p < 0.05). Additionally, in this study 54 misconceptions, 14 of them not reported in the literature before, were observed in the following terms: 'acid and base theories'; 'metal and non-metal oxides'; 'acid and base strengths'; 'neutralization'; 'pH and pOH'; 'hydrolysis'; 'acid-base equilibrium'; 'buffers'; 'indicators'; and 'titration'. Based on the achievement test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the concepts more meaningfully than students in control group. Conclusion The study revealed that active-learning implementation is more effective at improving students' learning achievement and preventing misconceptions.
NASA Astrophysics Data System (ADS)
Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.
2015-12-01
The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.
Vlachos, Ioannis S; Paraskevopoulou, Maria D; Karagkouni, Dimitra; Georgakilas, Georgios; Vergoulis, Thanasis; Kanellos, Ilias; Anastasopoulos, Ioannis-Laertis; Maniou, Sofia; Karathanou, Konstantina; Kalfakakou, Despina; Fevgas, Athanasios; Dalamagas, Theodore; Hatzigeorgiou, Artemis G
2015-01-01
microRNAs (miRNAs) are short non-coding RNA species, which act as potent gene expression regulators. Accurate identification of miRNA targets is crucial to understanding their function. Currently, hundreds of thousands of miRNA:gene interactions have been experimentally identified. However, this wealth of information is fragmented and hidden in thousands of manuscripts and raw next-generation sequencing data sets. DIANA-TarBase was initially released in 2006 and it was the first database aiming to catalog published experimentally validated miRNA:gene interactions. DIANA-TarBase v7.0 (http://www.microrna.gr/tarbase) aims to provide for the first time hundreds of thousands of high-quality manually curated experimentally validated miRNA:gene interactions, enhanced with detailed meta-data. DIANA-TarBase v7.0 enables users to easily identify positive or negative experimental results, the utilized experimental methodology, experimental conditions including cell/tissue type and treatment. The new interface provides also advanced information ranging from the binding site location, as identified experimentally as well as in silico, to the primer sequences used for cloning experiments. More than half a million miRNA:gene interactions have been curated from published experiments on 356 different cell types from 24 species, corresponding to 9- to 250-fold more entries than any other relevant database. DIANA-TarBase v7.0 is freely available. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lee, Chiho; Son, Hyewon; Park, Sungnam
2015-07-21
Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.
Fischer, Kenneth J; Johnson, Joshua E; Waller, Alexander J; McIff, Terence E; Toby, E Bruce; Bilgen, Mehmet
2011-10-01
The objective of this study was to validate the MRI-based joint contact modeling methodology in the radiocarpal joints by comparison of model results with invasive specimen-specific radiocarpal contact measurements from four cadaver experiments. We used a single validation criterion for multiple outcome measures to characterize the utility and overall validity of the modeling approach. For each experiment, a Pressurex film and a Tekscan sensor were sequentially placed into the radiocarpal joints during simulated grasp. Computer models were constructed based on MRI visualization of the cadaver specimens without load. Images were also acquired during the loaded configuration used with the direct experimental measurements. Geometric surface models of the radius, scaphoid and lunate (including cartilage) were constructed from the images acquired without the load. The carpal bone motions from the unloaded state to the loaded state were determined using a series of 3D image registrations. Cartilage thickness was assumed uniform at 1.0 mm with an effective compressive modulus of 4 MPa. Validation was based on experimental versus model contact area, contact force, average contact pressure and peak contact pressure for the radioscaphoid and radiolunate articulations. Contact area was also measured directly from images acquired under load and compared to the experimental and model data. Qualitatively, there was good correspondence between the MRI-based model data and experimental data, with consistent relative size, shape and location of radioscaphoid and radiolunate contact regions. Quantitative data from the model generally compared well with the experimental data for all specimens. Contact area from the MRI-based model was very similar to the contact area measured directly from the images. For all outcome measures except average and peak pressures, at least two specimen models met the validation criteria with respect to experimental measurements for both articulations. Only the model for one specimen met the validation criteria for average and peak pressure of both articulations; however the experimental measures for peak pressure also exhibited high variability. MRI-based modeling can reliably be used for evaluating the contact area and contact force with similar confidence as in currently available experimental techniques. Average contact pressure, and peak contact pressure were more variable from all measurement techniques, and these measures from MRI-based modeling should be used with some caution.
NASA Astrophysics Data System (ADS)
Arsal, Zeki
2017-07-01
In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.
NASA Astrophysics Data System (ADS)
Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin
2017-10-01
Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.
Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system
NASA Astrophysics Data System (ADS)
Li, Tianliang; Tan, Yuegang; Cai, Lin
2015-10-01
This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.
Using entropy measures to characterize human locomotion.
Leverick, Graham; Szturm, Tony; Wu, Christine Q
2014-12-01
Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.
Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells
NASA Astrophysics Data System (ADS)
Saemi, J.; Sedighi, M.; Shariati, M.
2015-09-01
The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.
A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong
2017-03-01
In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
Design and experimental evaluation of robust controllers for a two-wheeled robot
NASA Astrophysics Data System (ADS)
Kralev, J.; Slavov, Ts.; Petkov, P.
2016-11-01
The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.
Model based manipulator control
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.; Oppenheim, Irving J.
1989-01-01
The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Zhao, Dengke; Li, Chuanjun; Shang, Xingfu; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2018-05-01
The effect of a high magnetic field on the γ' phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ' phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ' phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ' phase.
Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates
NASA Astrophysics Data System (ADS)
Laskar, Arghadeep; Gu, Haichang; Mo, Y. L.; Song, Gangbing
2009-07-01
This paper reports the experimental and analytical results of a two-story reinforced concrete frame instrumented with innovative piezoceramic-based smart aggregates (SAs) and subjected to a monotonic lateral load up to failure. A finite element model of the frame is developed and analyzed using a computer program called Open system for earthquake engineering simulation (OpenSees). The finite element analysis (FEA) is used to predict the load-deformation curve as well as the development of plastic hinges in the frame. The load-deformation curve predicted from FEA matched well with the experimental results. The sequence of development of plastic hinges in the frame is also studied from the FEA results. The locations of the plastic hinges, as obtained from the analysis, were similar to those observed during the experiment. An SA-based approach is also proposed to evaluate the health status of the concrete frame and identify the development of plastic hinges during the loading procedure. The results of the FEA are used to validate the SA-based approach for detecting the locations and occurrence of the plastic hinges leading to the progressive collapse of the frame. The locations and sequential development of the plastic hinges obtained from the SA-based approach corresponds well with the FEA results. The proposed SA-based approach, thus validated using FEA and experimental results, has a great potential to be applied in the health monitoring of large-scale civil infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, Ramesh G.; Wegscheider, Werner
2013-12-04
We present the results of a concurrent experimental study of microwave reflection and transport in the GaAs/AlGaAs two dimensional electron gas system and correlate observed features in the reflection with the observed transport features. The experimental results are compared with expectations based on theory.
Simulated BRDF based on measured surface topography of metal
NASA Astrophysics Data System (ADS)
Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang
2017-06-01
The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.
Out-of-Plane Continuous Electrostatic Micro-Power Generators
Mahmoud, M. A. E.; Abdel-Rahman, E. M.; Mansour, R. R.; El-Saadany, E. F.
2017-01-01
This paper presents an out-of-plane electrostatic micro-power generator (MPG). Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic MPGs are also derived and validated by comparison to experimental results. PMID:28420151
Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1937-01-01
The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.
Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels
NASA Astrophysics Data System (ADS)
Sikora, Małgorzata; Bohdal, Tadeusz
2017-12-01
Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, Eduardo S., E-mail: emoura@wisc.edu; Micka, John A.; Hammer, Cliff G.
Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. Tomore » compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. Conclusions: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.« less
Experimental demonstration of a measurement-based realisation of a quantum channel
NASA Astrophysics Data System (ADS)
McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.
2018-03-01
We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.
Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.
Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick
2009-08-17
In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America
NASA Astrophysics Data System (ADS)
Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan
2018-06-01
An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.
Guo, Shaolong; Zhang, Feihu; Zhang, Yong; Luan, Dianrong
2014-01-01
Through the polishing experiments of potassium dihydrogen phosphate (KDP) crystals based on deliquescent action, the effect of several major factors, including crystal's initial surface state, polishing time, and revolution of polishing plate, on material removal was researched. Under certain experimental conditions, the rules of material removal were reached, and experimental results are discussed, which lays the foundation for popularization and application of polishing technology for KDP crystals based on deliquescent action.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
Sahoo, R K; Jacob, C
2014-06-01
The dewetting of a low melting point metal thin film deposited on silicon substrates was studied. The experimental results suggest that the change in the growth temperature affects the nanostructures that form. Based on the experimental results, the temperature which yielded the smallest features for the growth of nanotubes is determined. The mechanism by which these nano-templates become an efficient seeds for the growth of the carbon nanotubes is discussed. The partial bismuth filling inside the CNTs was optimized. Based on the results, a schematic growth model for better understanding of the process parameters has also been proposed.
NASA Technical Reports Server (NTRS)
1981-01-01
The results of the free space reactor experimental work are summarized. Overall, the objectives were achieved and the unit can be confidently scaled to the EPSDU size based on the experimental work and supporting theoretical analyses. The piping and instrumentation of the fluidized bed reactor was completed.
ERIC Educational Resources Information Center
van Lier, Pol A. C.; Huizink, Anja; Vuijk, Patricia
2011-01-01
Having friends who engage in disruptive behavior in childhood may be a risk factor for childhood tobacco experimentation. This study tested the role of friends' disruptive behavior as a mediator of the effects of a classroom based intervention on children's tobacco experimentation. 433 Children (52% males) were randomly assigned to the Good…
Translating standards into practice - one Semantic Web API for Gene Expression.
Deus, Helena F; Prud'hommeaux, Eric; Miller, Michael; Zhao, Jun; Malone, James; Adamusiak, Tomasz; McCusker, Jim; Das, Sudeshna; Rocca Serra, Philippe; Fox, Ronan; Marshall, M Scott
2012-08-01
Sharing and describing experimental results unambiguously with sufficient detail to enable replication of results is a fundamental tenet of scientific research. In today's cluttered world of "-omics" sciences, data standards and standardized use of terminologies and ontologies for biomedical informatics play an important role in reporting high-throughput experiment results in formats that can be interpreted by both researchers and analytical tools. Increasing adoption of Semantic Web and Linked Data technologies for the integration of heterogeneous and distributed health care and life sciences (HCLSs) datasets has made the reuse of standards even more pressing; dynamic semantic query federation can be used for integrative bioinformatics when ontologies and identifiers are reused across data instances. We present here a methodology to integrate the results and experimental context of three different representations of microarray-based transcriptomic experiments: the Gene Expression Atlas, the W3C BioRDF task force approach to reporting Provenance of Microarray Experiments, and the HSCI blood genomics project. Our approach does not attempt to improve the expressivity of existing standards for genomics but, instead, to enable integration of existing datasets published from microarray-based transcriptomic experiments. SPARQL Construct is used to create a posteriori mappings of concepts and properties and linking rules that match entities based on query constraints. We discuss how our integrative approach can encourage reuse of the Experimental Factor Ontology (EFO) and the Ontology for Biomedical Investigations (OBIs) for the reporting of experimental context and results of gene expression studies. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bardino, J.; Ferziger, J. H.; Reynolds, W. C.
1983-01-01
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.
Experimental research of radio-frequency ion thruster
NASA Astrophysics Data System (ADS)
Antropov, N. N.; Akhmetzhanov, R. V.; Bogatyy, A. V.; Grishin, R. A.; Kozhevnikov, V. V.; Plokhikh, A. P.; Popov, G. A.; Khartov, S. A.
2016-12-01
The article is devoted to the research of low-power (300 W) radio-frequency ion thruster designed at the Moscow Aviation Institute. The main results of experimental research of the thruster using the testfacility power supplies and the power processing unit of their own design are presented. The dependence of the working fluid ionization cost on its mass flow rate at the constant ion beam current was investigated experimentally. The influence of the shape and material of the discharge chamber on the integral characteristics of the thruster was studied. The recommendations on the optimization of the thruster primary performance were developed based on the results of experimental studies.
Fizeau simultaneous phase-shifting interferometry based on extended source
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng
2016-09-01
Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.
Reliability-based structural optimization: A proposed analytical-experimental study
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson; Nikolaidis, Efstratios
1993-01-01
An analytical and experimental study for assessing the potential of reliability-based structural optimization is proposed and described. In the study, competing designs obtained by deterministic and reliability-based optimization are compared. The experimental portion of the study is practical because the structure selected is a modular, actively and passively controlled truss that consists of many identical members, and because the competing designs are compared in terms of their dynamic performance and are not destroyed if failure occurs. The analytical portion of this study is illustrated on a 10-bar truss example. In the illustrative example, it is shown that reliability-based optimization can yield a design that is superior to an alternative design obtained by deterministic optimization. These analytical results provide motivation for the proposed study, which is underway.
NASA Astrophysics Data System (ADS)
Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.
2017-10-01
In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
An Evaluation of Material Properties Using EMA and FEM
NASA Astrophysics Data System (ADS)
Ďuriš, Rastislav; Labašová, Eva
2016-12-01
The main goal of the paper is the determination of material properties from experimentally measured natural frequencies. A combination of two approaches to structural dynamics testing was applied: the experimental measurements of natural frequencies were performed by Experimental Modal Analysis (EMA) and the numerical simulations, were carried out by Finite Element Analysis (FEA). The optimization methods were used to determine the values of density and elasticity modulus of a specimen based on the experimental results.
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
Barbarich-Marsteller, Nicole C.; Underwood, Mark D.; Foltin, Richard W.; Myers, Michael M.; Walsh, B. Timothy; Barrett, Jeffrey S.; Marsteller, Douglas A.
2018-01-01
Objective Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Method Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30–35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Results Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. Discussion The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. PMID:23853140
ERIC Educational Resources Information Center
Van Gundy, Karen; Morton, Beth A.; Liu, Hope Q.; Kline, Jennifer
2006-01-01
To explore the effects of web-based instruction (WBI) on math anxiety, the sense of mastery, and global self-esteem, we use quasi-experimental data from undergraduate statistics students in classes assigned to three study conditions, each with varied access to, and incentive for, the use of online technologies. Results suggest that when statistics…
ERIC Educational Resources Information Center
Aaron Price, C.; Chiu, A.
2018-01-01
We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards…
Construction of an Exploratory List of Chemicals to Initiate the Search for Halon Alternatives
1991-06-01
of owne-depletion effectiveness is based on atmospheric modeling. The only experimental work is the determination of possible reaction paths and...results, and additional relevant comments. These compounds should be tested in a selective series of experiments based on the insights used in the...will generate initial information with regard to the relative ordering of the compounds in terms of screen properties. Careful experimentation will
Prediction of Thermodynamic Equilibrium Temperature of Cu-Based Shape-Memory Smart Materials
NASA Astrophysics Data System (ADS)
Eskİl, Murat; Aldaş, Kemal; Özkul, İskender
2015-01-01
The thermodynamic equilibrium temperature ( T 0) is an important factor in the austenite and martensitic phases. In this study, the effects of alloying elements and heat treatments on T 0 temperature were investigated using Genetic Programming (GP) which has become one of the tools used in the study of condensed matter. Due to the changes in T 0, it is possible to analyze the changes in the entropy of the phase transitions. The data patterns of the GP formulation are based on well-established experimental results from the literature. The results of the GP-based formulation were compared with experimental results and found to be reliable with a very high correlation ( R 2 = 0.965 for training and R 2 = 0.952 for testing).
Impact Evaluation of an Addiction Intervention Program in a Quebec Prison
Arseneault, Catherine; Alain, Marc; Plourde, Chantal; Ferland, Francine; Blanchette-Martin, Nadine; Rousseau, Michel
2015-01-01
OBJECTIVES This study evaluates the effects of a prison-based addiction intervention program. The evaluation is based on a multidimensional data collection that draws a portrait of the respondents’ substance use, and of their psychological/emotional, social, and judicial spheres. It measures the changes, or lack thereof, in substance use; the psychological/emotional, social, and judicial spheres; as well as the post-treatment services used. METHOD A quasi-experimental repeated measures design (0, 6 weeks, and 6 months) was used. Effects of the program were identified by comparing the results obtained by a group of inmates who had participated in the program (n = 80; experimental group) with those of another group who had received no intervention (n = 70; control group). RESULTS The preliminary results suggested a certain treatment effect related to impulsivity and psychological distress. CONCLUSION Although the preliminary results were promising, the experimental and control groups did not differ significantly when more robust analyses were used. PMID:26056466
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-21
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-01
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
High pressure melting curve of platinum up to 35 GPa
NASA Astrophysics Data System (ADS)
Patel, Nishant N.; Sunder, Meenakshi
2018-04-01
Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.
NASA Astrophysics Data System (ADS)
Shen, Xia; Bai, Yan-Feng; Qin, Tao; Han, Shen-Sheng
2008-11-01
Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works.
Theoretical and experimental NMR study of protopine hydrochloride isomers.
Tousek, Jaromír; Malináková, Katerina; Dostál, Jirí; Marek, Radek
2005-07-01
The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%. Copyright 2005 John Wiley & Sons, Ltd
Experimental evaluation of a 600 lbf spacecraft rocket engine.
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1972-01-01
Experimental results are presented for a long-duration-capability (1000-sec), space-storable, bipropellant liquid rocket motor burning fluorine/hydrazine or FLOX/monomethylhydrazine. The interrelationship between injected mixture ratio and the per cent film cooling on vacuum specific impulse performance and chamber heat transfer is given. Experimental sea level measurements are used to predict space vacuum performance based upon simplified JANNAF reference procedures. Dynamic combustion stability is demonstrated over a wide range of operating conditions. Analytical results of char penetration, erosion, and ablative wall temperature distributions are presented for prototype chamber designs.
IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works
NASA Technical Reports Server (NTRS)
Davis, Zach S.; Park, M. A.
2017-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.; Dolling, David S.
1992-01-01
A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.
Artificial intelligence systems based on texture descriptors for vaccine development.
Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra
2011-02-01
The aim of this work is to analyze and compare several feature extraction methods for peptide classification that are based on the calculation of texture descriptors starting from a matrix representation of the peptide. This texture-based representation of the peptide is then used to train a support vector machine classifier. In our experiments, the best results are obtained using local binary patterns variants and the discrete cosine transform with selected coefficients. These results are better than those previously reported that employed texture descriptors for peptide representation. In addition, we perform experiments that combine standard approaches based on amino acid sequence. The experimental section reports several tests performed on a vaccine dataset for the prediction of peptides that bind human leukocyte antigens and on a human immunodeficiency virus (HIV-1). Experimental results confirm the usefulness of our novel descriptors. The matlab implementation of our approaches is available at http://bias.csr.unibo.it/nanni/TexturePeptide.zip.
Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium
NASA Astrophysics Data System (ADS)
Pérez, Martín; Blostein, Juan Jerónimo; Bessia, Fabricio Alcalde; Tartaglione, Aureliano; Sidelnik, Iván; Haro, Miguel Sofo; Suárez, Sergio; Gimenez, Melisa Lucía; Berisso, Mariano Gómez; Lipovetzky, Jose
2018-06-01
In this work we will introduce a novel low cost position sensitive thermal neutron detection technique, based on a Commercial Off The Shelf CMOS image sensor covered with a Gadolinium containing conversion layer. The feasibility of the neutron detection technique implemented in this work has been experimentally demonstrated. A thermal neutron detection efficiency of 11.3% has been experimentally obtained with a conversion layer of 11.6 μm. It was experimentally verified that the thermal neutron detection efficiency of this technique is independent on the intensity of the incident thermal neutron flux, which was confirmed for conversion layers of different thicknesses. Based on the experimental results, a spatial resolution better than 25 μm is expected. This spatial resolution makes the proposed technique specially useful for neutron beam characterization, neutron beam dosimetry, high resolution neutron imaging, and several neutron scattering techniques.
Story, Anna; Jaworski, Zdzisław
2017-01-01
Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-01-01
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-04-08
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.
An analytical and experimental evaluation of a Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Allums, S. A.; Cosby, R. M.
1976-01-01
An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.
An experimental study for a miniature Stirling refrigerator
NASA Technical Reports Server (NTRS)
Li, S.; Chen, G.; Huang, Z.; Zhang, F.; Cui, C.; Li, J.
1985-01-01
Experimental results of a miniature two-stage Stirling cryocooler are introduced. The influence of filling gas pressure and refrigeration temperature on the refrigerating capacity along with the relationship between parameters was measured. The valley pressure corresponding to the lowest refrigeration temperature and the cooldown time versus operating pressure are discussed. The coefficient of performance and thermodynamic efficiency of the cryocooler are calculated based on experimental data.
Paolo Benettin; Scott W. Bailey; John L. Campbell; Mark B. Green; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter
2015-01-01
We combine experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is here applied to...
Chimluang, Janya; Thanasilp, Sureeporn; Akkayagorn, Lanchasak; Upasen, Ratchaneekorn; Pudtong, Noppamat; Tantitrakul, Wilailuck
2017-12-01
To evaluate the effect of an intervention based on basic Buddhist principles on the spiritual well-being of patients with terminal cancer. This quasi-experimental research study had pre- and post-test control groups. The experimental group received conventional care and an intervention based on basic Buddhist principles for three consecutive days, including seven activities based on precept activities, concentration activities and wisdom activities. The control group received conventional care alone. Forty-eight patients participated in this study: 23 in the experimental group and 25 in the control group. Their mean age was 53 (standard deviation 10) years. The spiritual well-being of participants in the experimental group was significantly higher than that of participants in the control group at the second post-test (P < 0.05). An intervention based on basic Buddhist principles improved the spiritual well-being of patients with terminal cancer. This result supports the beneficial effects of implementing this type of intervention for patients with terminal cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploiting Defect Clustering to Screen Bare Die for Infant Mortality Failure: An Experimental Study
NASA Technical Reports Server (NTRS)
Lakin, David R., II; Singh, Adit D.
1999-01-01
We present the first experimental results to establish that a binning strategy based on defect clustering can be used to screen bare die for early life failures. The data for this study comes from the SEMATECH test methods experiment.
Non-contact angle measurement based on parallel multiplex laser feedback interferometry
NASA Astrophysics Data System (ADS)
Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian
2014-11-01
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy
NASA Astrophysics Data System (ADS)
Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.
2018-06-01
The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.
Optical Activity of Benzil Crystal
NASA Astrophysics Data System (ADS)
Říha, Jan; Vyšín, Ivo
2003-09-01
Optical activity of benzil as an example of optically active matter in the crystalline state only, not in solution, is studied for the wavelengths ranging from 0.320 m to 0.585 m. Previously measured experimental data are approximated by the theoretical set of formulas, which were derived by the use of the three coupled oscillators model. The earlier published formula consisting of six terms differed from the experimental data particularly in the wavelength region (0.380-0.510) m. This formula is replaced by the twelve-term formula which was computed by our specially worked computer program for the interpretation of the experimental data of optical activity based on the Marquardt-Levenberg method of the sum of least squares minimization. The possibility of molecular contribution to the resulting optical activity of benzil is mentioned. The use of Kramers-Kronig transforms for the determination of the circular dichroism curve based on the optical rotatory dispersion result is shown. The theoretically computed circular dichroism is compared with the available experimental data.
Experimental study of geotextile as plinth beam in a pile group-supported modeled building frame
NASA Astrophysics Data System (ADS)
Ravi Kumar Reddy, C.; Gunneswara Rao, T. D.
2017-12-01
This paper presents the experimental results of static vertical load tests on a model building frame with geotextile as plinth beam supported by pile groups embedded in cohesionless soil (sand). The experimental results have been compared with those obtained from the nonlinear FEA and conventional method of analysis. The results revealed that the conventional method of analysis gives a shear force of about 53%, bending moment at the top of the column about 17% and at the base of the column about 50-98% higher than that by the nonlinear FEA for the frame with geotextile as plinth beam.
Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George
2005-01-01
This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.
Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B
2017-12-19
Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.
NASA Astrophysics Data System (ADS)
Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.
2015-11-01
The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
NASA Astrophysics Data System (ADS)
Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.
2014-09-01
For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.
Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji
2008-11-01
We investigated the viscosity and mechanical properties of experimental light-curing soft lining materials based on six commercially available urethane (meth)acrylate oligomers. The viscosities of the six oligomers were 1.9, 20.6, 26.8, 144.0, 185.3, and 8803.4 Pa*s at 25 degrees C. Two monomers (ethyl- and butyl-methacrylate) were added at 20 wt% to these oligomers to decrease the viscosity, resulting in viscosity reductions of 0.2 to 13.6 Pa*s for the six oligomers. The mechanical properties (compressive modulus, Shore A hardness, and tensile strength) were measured after two times light-polymerization for 3 min. The addition of the monomers to the oligomers only slightly changed the mechanical properties, in contrast to the large viscosity changes. Based on these results, it appears that the addition of ethyl- or butyl-methacrylate monomers is useful for decreasing the viscosity of experimental light-curing soft lining materials without changing their mechanical properties.
Experimental Validation of the Transverse Shear Behavior of a Nomex Core for Sandwich Panels
NASA Astrophysics Data System (ADS)
Farooqi, M. I.; Nasir, M. A.; Ali, H. M.; Ali, Y.
2017-05-01
This work deals with determination of the transverse shear moduli of a Nomex® honeycomb core of sandwich panels. Their out-of-plane shear characteristics depend on the transverse shear moduli of the honeycomb core. These moduli were determined experimentally, numerically, and analytically. Numerical simulations were performed by using a unit cell model and three analytical approaches. Analytical calculations showed that two of the approaches provided reasonable predictions for the transverse shear modulus as compared with experimental results. However, the approach based upon the classical lamination theory showed large deviations from experimental data. Numerical simulations also showed a trend similar to that resulting from the analytical models.
Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.
Kopka, Ryszard
2017-12-22
In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.
Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang
2013-03-25
We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.
On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections
NASA Astrophysics Data System (ADS)
Lenzen, Armin; Vollmering, Max
2018-05-01
In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.
NASA Astrophysics Data System (ADS)
Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi
2015-04-01
Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs.Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs. Electronic supplementary information (ESI) available: All experimental details, Part S1-3, Fig. S1-6 and Table S1. See DOI: 10.1039/c4nr07620f
Gene Function Hypotheses for the Campylobacter jejuni Glycome Generated by a Logic-Based Approach
Sternberg, Michael J.E.; Tamaddoni-Nezhad, Alireza; Lesk, Victor I.; Kay, Emily; Hitchen, Paul G.; Cootes, Adrian; van Alphen, Lieke B.; Lamoureux, Marc P.; Jarrell, Harold C.; Rawlings, Christopher J.; Soo, Evelyn C.; Szymanski, Christine M.; Dell, Anne; Wren, Brendan W.; Muggleton, Stephen H.
2013-01-01
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning—the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. PMID:23103756
Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.
Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H
2013-01-09
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan
NASA Astrophysics Data System (ADS)
Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.
2013-12-01
In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.
An electrical resistivity-based method for investigation of subsurface structure
NASA Astrophysics Data System (ADS)
Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.
2017-12-01
Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.
NASA Astrophysics Data System (ADS)
Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud
2018-03-01
In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.
NASA Astrophysics Data System (ADS)
Allman, Derek; Reiter, Austin; Bell, Muyinatu
2018-02-01
We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.
The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can bemore » divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.« less
Experimental design and quantitative analysis of microbial community multiomics.
Mallick, Himel; Ma, Siyuan; Franzosa, Eric A; Vatanen, Tommi; Morgan, Xochitl C; Huttenhower, Curtis
2017-11-30
Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.
Going ballistic: Graphene hot electron transistors
NASA Astrophysics Data System (ADS)
Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.
2015-12-01
This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.
NASA Technical Reports Server (NTRS)
LOVE EUGENE S
1957-01-01
An analysis has been made of available experimental data to show the effects of most of the variables that are more predominant in determining base pressure at supersonic speeds. The analysis covers base pressures for two-dimensional airfoils and for bodies of revolution with and without stabilizing fins and is restricted to turbulent boundary layers. The present status of available experimental information is summarized as are the existing methods for predicting base pressure. A simple semiempirical method is presented for estimating base pressure. For two-dimensional bases, this method stems from an analogy established between the base-pressure phenomena and the peak pressure rise associated with the separation of the boundary layer. An analysis made for axially symmetric flow indicates that the base pressure for bodies of revolution is subject to the same analogy. Based upon the methods presented, estimations are made of such effects as Mach number, angle of attack, boattailing, fineness ratio, and fins. These estimations give fair predictions of experimental results. (author)
NASA Astrophysics Data System (ADS)
Berge, Bruno; Broutin, Jérôme; Gaton, Hilario; Malet, Géraldine; Simon, Eric; Thieblemont, Florent
2013-03-01
This paper presents experimental results on several liquid lenses based on Electrowetting which are commercially available. It will be shown that larger aperture lenses are basically of the same optical quality than smaller lenses, sometimes reaching the diffraction limit, then opening new kind of applications areas for variable lenses in laser science. Regarding response time, actual performances of liquids lenses based on Electrowetting are presented and compared to a model simulating the internal fluid reorganization, seen as the main source of delay between electrical actuation and optical evolution of the lens. This simplified analytical model is supporting experimental results in various situations (focus and tilt variations), in static and dynamic regimes.
MLIBlast: A program to empirically predict hypervelocity impact damage to the Space Station
NASA Technical Reports Server (NTRS)
Rule, William K.
1991-01-01
MLIBlast is described, which consists of a number of DOC PC based MIcrosoft BASIC program modules written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft. The Spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and a pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impact on spacecraft. One module of MLIBlast facilitates creation of the data base of experimental results that is used by the damage prediction modules of the code. The user has a choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall.
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
Laser-ion accelerators: State-of-the-art and scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borghesi, M.; Kar, S.; Margarone, D.
2013-07-26
A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projectedmore » scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.« less
Ion beam-based studies for tribological phenomena
NASA Astrophysics Data System (ADS)
Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.
1996-06-01
Custom-designed experiments based on the Thin Layer Activation technique (TLA) were completed, providing information on the wear level of some engine components with additional data on transfer and adhesion of material between metallic friction couples using the RBS method. RBS experimental results concerning material transfer for a steel-brass friction couple are presented and discussed in the paper. Also, the types and concentrations of the wear products in used lubricant oils were determined by in-air PIXE. A sequential lubricant filtering-based procedure for determining the dimension distribution of the resulting radioactive wear particles by low level γ-spectrometry is presented. Experimental XRF spectra showing the non-homogeneous distribution of the retained waste particles on the filtering paper are shown.
Design of nucleic acid sequences for DNA computing based on a thermodynamic approach
Tanaka, Fumiaki; Kameda, Atsushi; Yamamoto, Masahito; Ohuchi, Azuma
2005-01-01
We have developed an algorithm for designing multiple sequences of nucleic acids that have a uniform melting temperature between the sequence and its complement and that do not hybridize non-specifically with each other based on the minimum free energy (ΔGmin). Sequences that satisfy these constraints can be utilized in computations, various engineering applications such as microarrays, and nano-fabrications. Our algorithm is a random generate-and-test algorithm: it generates a candidate sequence randomly and tests whether the sequence satisfies the constraints. The novelty of our algorithm is that the filtering method uses a greedy search to calculate ΔGmin. This effectively excludes inappropriate sequences before ΔGmin is calculated, thereby reducing computation time drastically when compared with an algorithm without the filtering. Experimental results in silico showed the superiority of the greedy search over the traditional approach based on the hamming distance. In addition, experimental results in vitro demonstrated that the experimental free energy (ΔGexp) of 126 sequences correlated well with ΔGmin (|R| = 0.90) than with the hamming distance (|R| = 0.80). These results validate the rationality of a thermodynamic approach. We implemented our algorithm in a graphic user interface-based program written in Java. PMID:15701762
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
Ding, Yongxia; Zhang, Peili
2018-06-12
Problem-based learning (PBL) is an effective and highly efficient teaching approach that is extensively applied in education systems across a variety of countries. This study aimed to investigate the effectiveness of web-based PBL teaching pedagogies in large classes. The cluster sampling method was used to separate two college-level nursing student classes (graduating class of 2013) into two groups. The experimental group (n = 162) was taught using a web-based PBL teaching approach, while the control group (n = 166) was taught using conventional teaching methods. We subsequently assessed the satisfaction of the experimental group in relation to the web-based PBL teaching mode. This assessment was performed following comparison of teaching activity outcomes pertaining to exams and self-learning capacity between the two groups. When compared with the control group, the examination scores and self-learning capabilities were significantly higher in the experimental group (P < 0.01) compared with the control group. In addition, 92.6% of students in the experimental group expressed satisfaction with the new web-based PBL teaching approach. In a large class-size teaching environment, the web-based PBL teaching approach appears to be more optimal than traditional teaching methods. These results demonstrate the effectiveness of web-based teaching technologies in problem-based learning. Copyright © 2018. Published by Elsevier Ltd.
Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan
2016-01-01
Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects — both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties. PMID:27168093
Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan
2016-05-02
Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects - both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties.
Protection of autonomous microgrids using agent-based distributed communication
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
2016-04-06
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
Research of detection depth for graphene-based optical sensor
NASA Astrophysics Data System (ADS)
Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong
2018-03-01
Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.
Protection of autonomous microgrids using agent-based distributed communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
Experimental Evaluation of Family Curriculum Materials for High School Students.
ERIC Educational Resources Information Center
Angrist, Shirley S.; And Others
This paper describes two new family life curriculum development projects at Carnegie-Mellon University and presents the results of an evaluation of two mini-courses using a modified Solomon four-group experimental design. Based on historical, sociological, anthropological, and psychological research, the first unit presents family life in Japan…
Modelling Australian Red Brick and Bluestone Walls in VAPO
2013-01-01
conservative value for the compressive strength of stone masonry was chosen based on experimental results of Rao et al. [4] and Vasconcelos and Lourenco [5...characteristics of stone masonry,” Materials and Structures, vol. 30, pp. 233-237, 1997. 5. G. Vasconcelos and P. B. Lourenco, “Experimental
Rewetting of monogroove heat pipe in Space Station radiators
NASA Technical Reports Server (NTRS)
Chan, S. H.
1993-01-01
The annual status report for the experimental work in progress regarding the rewetting of a monogroove heat pipe in a microgravity environment is presented. This report is divided into two sections. The first details improvements in the experimental apparatus, and the second reports the ground based and theoretical results.
Optical aberrations measurement with a low cost optometric instrument
NASA Astrophysics Data System (ADS)
Furlan, Walter D.; Muñoz-Escrivá, L.; Pons, A.; Martínez-Corral, M.
2002-08-01
A simple experimental method for measuring optical aberrations of a single lens is proposed. The technique is based on the use of an optometric instrument employed for the assessment of the refractive state of the eye: the retinoscope. Experimental results for spherical aberration and astigmatism are obtained.
Examining students' views about validity of experiments: From introductory to Ph.D. students
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.
2018-06-01
We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.
Experimental studies on twin PTCs driven by dual piston head linear compressor
NASA Astrophysics Data System (ADS)
Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.
2017-02-01
An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.
NASA Astrophysics Data System (ADS)
Röhrig, C.; Scheffer, T.; Diebels, S.
2017-09-01
Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Hur, Jiyoung; Christhilf, David M.; Coulson, David A.
2011-01-01
A summary of computational and experimental aeroelastic and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple ASE wind-tunnel tests of the S4T have been performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The computational results to be presented include linear aeroelastic and ASE analyses, nonlinear aeroelastic analyses using an aeroelastic CFD code, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). Experimental results from two closed-loop wind-tunnel tests performed at NASA Langley's Transonic Dynamics Tunnel (TDT) will be presented as well.
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2016-07-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
Zou, Wenli; Liu, Wenjian
2009-03-01
The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.
On the measurement of magnetic viscosity
NASA Astrophysics Data System (ADS)
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour
2008-01-01
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.
Karataş, Zeynep; Gökçakan, Dan Zafer
2009-01-01
This study aimed to examine the effect of group-based psychodrama therapy on the level aggression in adolescents. The study included 23 students from Nezihe Yalvac Anatolian Vocational High School of Hotel Management and Tourism that had high aggression scores. Eleven of the participants (6 female, 5 male) constituted the experimental group and 12 (6 male, 6 female) were in the control group. The 34-item Aggression Scale was used to measure level of aggression. We utilized mixed pattern design including experiment-control, pre-test and post test and follow up. The experimental group participated in group-based psychodrama therapy once a week for 90 minutes, for 14 weeks in total. The Aggression Scale was administered to the experimental and control groups before and after treatment; it was additionally administered to the experimental group 16 weeks after treatment. Data were analyzed using ANCOVA and dependent samples t tests. Our analysis shows that group-based psychodrama had an effect on the experimental group in terms of total aggression, anger, hostility, and indirect aggression scores (F=65.109, F=20.175, F=18.593, F=40.987, respectively, P<.001). There was no effect of the group-based treatment on verbal or physical aggression scores. Follow-up indicated that the effect of the therapy was still measureable 16 weeks after the cessation of the therapy. Results of the present study indicate that group-based psychodrama therapy decreased the level of aggression in the experimental group. Current findings are discussed with reference to the literature. Recommendations for further research and for psychiatric counselors are provided.
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Speckle-learning-based object recognition through scattering media.
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-12-28
We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.
Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong
2016-03-05
This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m² and 16.39 kW/m² for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m². The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation.
Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong
2016-01-01
This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m2 and 16.39 kW/m2 for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m2. The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation. PMID:28773295
Chu, Kelly S; Eng, Janice J; Dawson, Andrew S; Harris, Jocelyn E.; Ozkaplan, Atila; Gylfadóttir, Sif
2011-01-01
Objective To evaluate the effect of an 8-week water-based exercise program (experimental group) over an upper extremity function program (control group) to increase cardiovascular fitness within a community setting for individuals with stroke. Design Single-blind randomized controlled trial Setting Public community centre Participants 12 community-dwelling individuals who have had a stroke with mild to moderate motor deficits; volunteer sample Intervention Experimental and control groups participated in group exercise programs undertaken in one hour sessions, three times per week for 8 weeks. The experimental group undertook chest deep water exercises at targeted heart rates. The control group performed arm and hand exercises while sitting. Main Outcome Measures The primary outcome measure was cardiovascular fitness (VO2max). Secondary measures were maximal workload, muscle strength, gait speed, and the Berg Balance Score. Results The experimental group attained significant improvements over the control group in cardiovascular fitness, maximal workload, gait speed, and paretic lower extremity muscle strength. The relatively short program (8 weeks) of water-based exercise resulted in a large improvement (22%) in cardiovascular fitness in a small group of individuals with stroke with relatively high function. Conclusions A water-based exercise program can be undertaken in the community as a group program and may be an effective means to promote fitness in individuals with stroke. PMID:15179638
Using Virtual Reality in the Inference-Based Treatment of Compulsive Hoarding
St-Pierre-Delorme, Marie-Eve; O’Connor, Kieron
2016-01-01
The present study evaluated the efficacy of adding a virtual reality (VR) component to the treatment of compulsive hoarding (CH), following inference-based therapy (IBT). Participants were randomly assigned to either an experimental or a control condition. Seven participants received the experimental and seven received the control condition. Five sessions of 1 h were administered weekly. A significant difference indicated that the level of clutter in the bedroom tended to diminish more in the experimental group as compared to the control group F(2,24) = 2.28, p = 0.10. In addition, the results demonstrated that both groups were immersed and present in the environment. The results on posttreatment measures of CH (Saving Inventory revised, Saving Cognition Inventory and Clutter Image Rating scale) demonstrate the efficacy of IBT in terms of symptom reduction. Overall, these results suggest that the creation of a virtual environment may be effective in the treatment of CH by helping the compulsive hoarders take action over their clutter. PMID:27486574
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
NASA Technical Reports Server (NTRS)
Oliver, W. R.
1980-01-01
The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.
Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I
2013-01-01
To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.
NASA Astrophysics Data System (ADS)
Ravi Babu, S.; Sambasiva Rao, G.
2018-04-01
The main objective of this study is to investigate the stability and dielectric breakdown strength of alumina-transformer oil nanofluids as stability issue is the major concern when it is used for practical applications. UV-Vis spectrophotometer and Oil tester were used to measure absorbance and breakdown voltage of nanofluids respectively. As per the experimental results, correlations were developed using regression analysis. Experimental results were compared with the predicted values of BDVE and absorbance and presented. The maximum errors obtained by comparing the experimental and predicted results for BDVE and absorbance are -2.913% and 4.89% respectively. It is also observed that there is a decrement in both BDVE and absorbance for nanofluids of aged 1 day compared to fresh ones. This decrement is due to the sedimentation of nanoparticles.
Computer-based visual communication in aphasia.
Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S
1989-01-01
The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.
NASA Astrophysics Data System (ADS)
Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo
2002-07-01
Most general chemistry courses and textbooks emphasize experimental details and lack a history and philosophy of science perspective. The objective of this study is to facilitate freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. It is hypothesized that classroom discussions based on arguments/counterarguments of the heuristic principles, on which these scientists based their atomic models, can facilitate students' conceptual understanding. This study is based on 160 freshman students enrolled in six sections of General Chemistry I (three sections formed part of the experimental group). All three models (Thomson, Rutherford, and Bohr) were presented to the experimental and control group students in the traditional manner, as found in most textbooks. After this, the three sections of the experimental group participated in the discussion of six items with alternative responses. Students were first asked to select a response and then participate in classroom discussions leading to arguments in favor or against the selected response and finally select a new response. Three weeks after having discussed the six items, both the experimental and control groups presented a monthly exam (based on the three models) and after another 3 weeks a semester exam. Results obtained show that given the opportunity to argue and discuss, students' understanding can go beyond the simple regurgitation of experimental details. Performance of the experimental group showed contradictions, resistances, and progressive conceptual change with considerable and consistent improvement in the last item. It is concluded that if we want our students to understand scientific progress and practice, then it is important that we include the experimental details not as a rhetoric of conclusions (Schwab, 1962, The teaching of science as enquiry, Cambridge, MA, Harward University Press; Schwab, 1974, Conflicting conceptions of curriculum, Berkeley, CA, McCutchan) but as heuristic principles (Lakatos, 1970, Criticism and the growth of knowledge, Cambridge, UK, Cambridge University Press, pp. 91-195), which were based on arguments, controversies, and interpretations of the scientists.
Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion
NASA Technical Reports Server (NTRS)
Hamed, Awate; Tabakoff, Widen; Swar, Rohan; Shin, Dongyun; Woggon, Nthanial; Miller, Robert
2013-01-01
A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single stage turbine. In the experimental investigation, tests of particle surface interactions were performed in specially designed tunnels to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity and temperature. In the computational simulations, an Euler-Lagrangian two stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDF) were developed to represent experimentally-based correlations for particle surface interaction models which were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics after each surface impact. The experimentally based erosion UDF model was used to predict the TBC erosion rates on the turbine blade surfaces based on the computed statistical data of the particles impact locations, velocities and angles relative to the blade surface. Computational results are presented for the predicted TBC blade erosion in a single stage commercial APU turbine, for a NASA designed automotive turbine, and for the NASA turbine scaled for modern rotorcraft operating conditions. The erosion patterns in the turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5 percent of the stator blade span representing the flow cooling the combustor liner.
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
NASA Astrophysics Data System (ADS)
Aswan, D. M.; Lufri, L.; Sumarmin, R.
2018-04-01
This research intends to determine the effect of Problem Based Learning models on students' critical thinking skills and competences. This study was a quasi-experimental research. The population of the study was the students of class VIII SMPN 1 Subdistrict Gunuang Omeh. Random sample selection is done by randomizing the class. Sample class that was chosen VIII3 as an experimental class given that treatment study based on problems and class VIII1 as control class that treatment usually given study. Instrument that used to consist of critical thinking test, cognitive tests, observation sheet of affective and psychomotor. Independent t-test and Mann Whitney U test was used for the analysis. Results showed that there was significant difference (sig <0.05) between control and experimental group. The conclusion of this study was Problem Based Learning models affected the students’ critical thinking skills and competences.
Prediction of turning stability using receptance coupling
NASA Astrophysics Data System (ADS)
Jasiewicz, Marcin; Powałka, Bartosz
2018-01-01
This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.
Lu, Xin; Soto, Marcelo A; Thévenaz, Luc
2017-07-10
A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.
Diffusion of Polymers through Periodic Networks of Lipid-Based Nanochannels.
Ghanbari, Reza; Assenza, Salvatore; Saha, Abhijit; Mezzenga, Raffaele
2017-04-11
We present an experimental investigation of the diffusion of unfolded polymers in the triply-periodic water-channel network of inverse bicontinuous cubic phases. Depending on the chain size, our results indicate the presence of two different dynamical regimes corresponding to Zimm and Rouse diffusion. We support our findings by scaling arguments based on a combination of blob and effective-medium theories and suggest the presence of a third regime where dynamics is driven by reptation. Our experimental results also show an increasing behavior of the partition coefficient as a function of the polymer molecular weight, indicative of a reduction in the conformational degrees of freedom induced by the confinement.
Experimental preparation and verification of quantum money
NASA Astrophysics Data System (ADS)
Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei
2018-03-01
A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.
2011-12-01
determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was...INTENTIONALLY LEFT BLANK v ABSTRACT This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical...for ethane/air flames at various pressures reproduced from [6]....................8 Figure 4. Experimentally determined laminar flame speed as a
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
Adaptive identification of vessel's added moments of inertia with program motion
NASA Astrophysics Data System (ADS)
Alyshev, A. S.; Melnikov, V. G.
2018-05-01
In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.
n-Gram-Based Indexing for Korean Text Retrieval.
ERIC Educational Resources Information Center
Lee, Joon Ho; Cho, Hyun Yang; Park, Hyouk Ro
1999-01-01
Discusses indexing methods in Korean text retrieval and proposes a new indexing method based on n-grams which can handle compound nouns effectively without dictionaries and complex linguistic knowledge. Experimental results show that n-gram-based indexing is considerably faster than morpheme-based indexing, and also provides better retrieval…
Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha
2008-09-01
Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.
Carvalho, Fabíola G; Negrini, Thais De Cássia; Sacramento, Luis Victor S; Hebling, Josimeri; Spolidorio, Denise M P; Duque, Cristiane
2011-01-01
The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes--cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.
Dynamic simulation of a reverse Brayton refrigerator
NASA Astrophysics Data System (ADS)
Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.
2014-01-01
A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.
Detection of Single Molecules Illuminated by a Light-Emitting Diode
Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian
2011-01-01
Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
Combinatorial and high-throughput screening of materials libraries: review of state of the art.
Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert
2011-11-14
Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.
A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure
NASA Astrophysics Data System (ADS)
Lu, Heng; Wang, Xu; Zhang, Songling; Wang, Fang; Liu, Yufang
2018-05-01
An optical fiber sensor based on the single-mode/no-core/single-mode (SNS) core-offset technology along with a Faraday rotator mirror structure has been proposed and experimentally demonstrated. A transverse optical field distribution of self-imaging has been simulated and experimental parameters have been selected under theoretical guidance. Results of the experiments demonstrate that the temperature sensitivity of the sensor is 0.0551 nm/°C for temperatures between 25 and 80 °C, and the correlation coefficient is 0.99582. The concentration sensitivity of the device for sucrose and glucose solutions was found to be as high as 12.5416 and 6.02248 nm/(g/ml), respectively. Curves demonstrating a linear fit between wavelength shift and solution concentration for three different heavy metal solutions have also been derived on the basis of experimental results. The proposed fiber-optic sensor design provides valuable guidance for the measurement of concentration and temperature.
NASA Astrophysics Data System (ADS)
Pellegrino, C.; Modena, C.
2008-05-01
This paper deals with the shear strengthening of Reinforced Concrete (RC) flexural members with externally bonded Fiber-Reinforced Polymers (FRPs). The interaction between an external FRP and an internal transverse steel reinforcement is not considered in actual code recommendations, but it strongly influences the efficiency of the shear strengthening rehabilitation technique and, as a consequence, the computation of interacting contributions to the nominal shear strength of beams. This circumstance is also discussed on the basis of the results of an experimental investigation of rectangular RC beams strengthened in shear with "U-jacketed" carbon FRP sheets. Based on experimental results of the present and other investigations, a new analytical model for describing the shear capacity of RC beams strengthened according to the most common schemes (side-bonded and "U-jacketed"), taking into account the interaction between steel and FRP shear strength contributions, is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattsson, Ann E.
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less
The history of gold therapy for tuberculosis.
Benedek, Thomas G
2004-01-01
This is a historical study of the popularization of a medical therapy contrary to pertinent experimental findings. Presumably this circumstance reflects the desperation about tuberculosis: highly prevalent, highly fatal, and lacking any etiologically directed therapy. Gold compounds were introduced, based initially on the reputation of Robert Koch, who had found gold cyanide effective against M. tuberculosis in cultures, but not in experimentally infected animals. Treatment of pulmonary tuberculosis with these compounds was popularized, particularly by Danish physicians, in the mid-1920s, despite consistently negative experimental results, based on Paul Ehrlich's theories of antimicrobial drug effects. Difficulties in the design of interpretable clinical studies were soon recognized but also generally ignored, thus permitting data to be interpreted as favorable to antituberculous gold therapy. Eventually toxicity was considered to outweigh the alleged therapeutic benefit of all gold compounds. This resulted in their discard shortly before the introduction of streptomycin therapy.
Examining the Relationships Between Education, Social Networks and Democratic Support With ABM
NASA Technical Reports Server (NTRS)
Drucker, Nick; Campbell, Kenyth
2011-01-01
This paper introduces an agent-based model that explores the relationships between education, social networks, and support for democratic ideals. This study examines two factors thai affect democratic support, education, and social networks. Current theory concerning these two variables suggests that positive relationships exist between education and democratic support and between social networks and the spread of ideas. The model contains multiple variables of democratic support, two of which are evaluated through experimentation. The model allows individual entities within the system to make "decisions" about their democratic support independent of one another. The agent based approach also allows entities to utilize their social networks to spread ideas. Current theory supports experimentation results. In addion , these results show the model is capable of reproducing real world outcomes. This paper addresses the model creation process and the experimentation procedure, as well as future research avenues and potential shortcomings of the model
NASA Technical Reports Server (NTRS)
Storey, Jedediah Morse
2016-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.
Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an Iot Architecture.
Garcia Guzman, Javier; Prieto Gonzalez, Lisardo; Pajares Redondo, Jonatan; Sanz Sanchez, Susana; Boada, Beatriz L
2018-06-03
In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.
NASA Astrophysics Data System (ADS)
Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.
2017-09-01
Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.
Prediction of Time Response of Electrowetting
NASA Astrophysics Data System (ADS)
Lee, Seung Jun; Hong, Jiwoo; Kang, Kwan Hyoung
2009-11-01
It is very important to predict the time response of electrowetting-based devices, such as liquid lenses, reflective displays, and optical switches. We investigated the time response of electrowetting, based on an analytical and a numerical method, to find out characteristic scales and a scaling law for the switching time. For this, spreading process of a sessile droplet was analyzed based on the domain perturbation method. First, we considered the case of weakly viscous fluids. The analytical result for the spreading process was compared with experimental results, which showed very good agreement in overall time response. It was shown that the overall dynamics is governed by P2 shape mode. We derived characteristic scales combining the droplet volume, density, and surface tension. The overall dynamic process was scaled quite well by the scales. A scaling law was derived from the analytical solution and was verified experimentally. We also suggest a scaling law for highly viscous liquids, based on results of numerical analysis for the electrowetting-actuated spreading process.
Hypervelocity impact simulations of Whipple shields
NASA Technical Reports Server (NTRS)
Segletes, Steven B.; Zukas, Jonas A.
1992-01-01
The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.
Modeling of Sustainable Base Production by Microbial Electrolysis Cell.
Blatter, Maxime; Sugnaux, Marc; Comninellis, Christos; Nealson, Kenneth; Fischer, Fabian
2016-07-07
A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na2 SO4 /K2 SO4 anolyte showed that model prediction matched experimental results. Using Shewanella oneidensis MR-1, a strong base (pH≈13) was generated using applied voltages between 0.3 and 1.1 V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of circulating fluised beds for post-combustion carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Shadle, L.; Miller, D.
2011-01-01
A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.
NASA Technical Reports Server (NTRS)
Jammu, V. B.; Danai, K.; Lewicki, D. G.
1998-01-01
This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.
Liu, Tianhui; Fu, Bina; Zhang, Dong H
2017-04-28
The dissociative chemisorption of HCl on the Au(111) surface has recently been an interesting and important subject, regarding the discrepancy between the theoretical dissociation probabilities and the experimental sticking probabilities. We here constructed an accurate full-dimensional (six-dimensional (6D)) potential energy surface (PES) based on the density functional theory (DFT) with the revised Perdew-Burke-Ernzerhof (RPBE) functional, and performed 6D quantum mechanical (QM) calculations for HCl dissociating on a rigid Au(111) surface. The effects of vibrational excitations, rotational orientations, and site-averaging approximation on the present RPBE PES are investigated. Due to the much higher barrier height obtained on the RPBE PES than on the PW91 PES, the agreement between the present theoretical and experimental results is greatly improved. In particular, at the very low kinetic energy, the QM-RPBE dissociation probability agrees well with the experimental data. However, the computed QM-RPBE reaction probabilities are still markedly different from the experimental values at most of the energy regions. In addition, the QM-RPBE results achieve good agreement with the recent ab initio molecular dynamics calculations based on the RPBE functional at high kinetic energies.
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System
NASA Astrophysics Data System (ADS)
Singh, Bhim; Arya, Sabha Raj
2014-01-01
This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.
NASA Astrophysics Data System (ADS)
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
NASA Astrophysics Data System (ADS)
Çam, Aylin; Geban, Ömer
2011-02-01
The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes of an urban high school instructed with same teacher. Each teaching method was randomly assigned to one class. The experimental group received case-based learning and the control group received traditional instruction. At the experimental group, life cases were presented with small group format; at the control group, lecturing and discussion was carried out. The results showed that there was a significant difference between the experimental and control group with respect to their epistemological beliefs and attitudes toward chemistry as a school subject in favor of case-based learning method group. Thus, case base learning is helpful for development of students' epistemological beliefs and attitudes toward chemistry.
Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges
NASA Astrophysics Data System (ADS)
Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.
2016-12-01
The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.
Learning English with an Invisible Teacher: An Experimental Video Approach.
ERIC Educational Resources Information Center
Eisenstein, Miriam; And Others
1987-01-01
Reports on an experimental teaching approach, based on an innovative video series, used in an English-as-a-second-language (ESL) class for beginning learners. The tapes, which focused on students as they learned (with the viewers learning along with them), showed generally favorable results for ESL students. (Author/CB)
Experimental Study of Sudden Solidification of Supercooled Water
ERIC Educational Resources Information Center
Bochnícek, Zdenek
2014-01-01
The two independent methods of measurement of the mass of ice created at sudden solidification of supercooled water are described. One is based on the calorimetric measurement of heat that is necessary for melting the ice and the second interprets the volume change that accompanies the water freezing. Experimental results are compared with the…
Applications of Small Area Estimation to Generalization with Subclassification by Propensity Scores
ERIC Educational Resources Information Center
Chan, Wendy
2018-01-01
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
ERIC Educational Resources Information Center
Simons, Lori; Giorgio, Tina; Houston, Hank; Jacobucci, Ray
2007-01-01
A secondary analysis of a quasi-experimental study was conducted to evaluate differences in students 'perceptions of empirically supported treatments (ESTS) randomized to experimental (n= 10) and attention-control (n= 10) manual-based therapy interventions. The results indicated that attitudinal changes took place for both groups. The results…
Understanding Leadership: An Experimental-Experiential Model
ERIC Educational Resources Information Center
Hole, George T.
2014-01-01
Books about leadership are dangerous to readers who fantasize about being leaders or apply leadership ideas as if they were proven formulas. As an antidote, I offer an experimental framework in which any leadership-management model can be tested to gain experiential understanding of the model. As a result one can gain reality-based insights about…
A self-mixing based ring-type fiber-optic acoustic sensor
NASA Astrophysics Data System (ADS)
Wang, Lutang; Wu, Chunxu; Fang, Nian
2014-07-01
A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.
NASA Astrophysics Data System (ADS)
Hoffmann, Robert; Liebich, Robert
2018-01-01
This paper states a unique classification to understand the source of the subharmonic vibrations of gas foil bearing (GFB) systems, which will experimentally and numerically tested. The classification is based on two cases, where an isolated system is assumed: Case 1 considers a poorly balance rotor, which results in increased displacement during operation and interacts with the nonlinear progressive structure. It is comparable to a Duffing-Oscillator. In contrast, for case 2 a well/perfectly balanced rotor is assumed. Hence, the only source of nonlinear subharmonic whirling results from the fluid film self-excitation. Experimental tests with different unbalance levels and GFB modifications confirm these assumptions. Furthermore, simulations are able to predict the self-excitations and synchronous and subharmonic resonances of the experimental test. The numerical model is based on a linearised eigenvalue problem. The GFB system uses linearised stiffness and damping parameters by applying a perturbation method on the Reynolds Equation. The nonlinear bump structure is simplified by a link-spring model. It includes Coulomb friction effects inside the elastic corrugated structure and captures the interaction between single bumps.
Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement
Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger
2000-02-03
Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.
Photonic crystal enhanced silicon cell based thermophotovoltaic systems
Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...
2015-01-30
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less
Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation
NASA Astrophysics Data System (ADS)
Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A. Maia
2017-07-01
We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant numerical improvements allow us to extend the range of accessible parameters into the experimental regime. We compare our numerically exact results with those obtained within the proximity force approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so far. Special attention is paid to the difference between the Drude model and the dissipationless plasma model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy between the experimental data and the PFA result based on the Drude model. However, it turns out that for the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403 (2007), 10.1103/PhysRevLett.98.050403]. The corresponding corrections based on the Drude model are significantly smaller but still in violation of the experimental bound for small distances between plane and sphere.
Metamaterial Absorber Based Multifunctional Sensor Application
NASA Astrophysics Data System (ADS)
Ozer, Z.; Mamedov, A. M.; Ozbay, E.
2017-02-01
In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.
Preliminary Analysis of the BASALA-H Experimental Programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaise, Patrick; Fougeras, Philippe; Philibert, Herve
2002-07-01
This paper is focused on the preliminary analysis of results obtained on the first cores of the first phase of the BASALA (Boiling water reactor Advanced core physics Study Aimed at mox fuel Lattice) programme, aimed at studying the neutronic parameters in ABWR core in hot conditions, currently under investigation in the French EOLE critical facility, within the framework of a cooperation between NUPEC, CEA and Cogema. The first 'on-line' analysis of the results has been made, using a new preliminary design and safety scheme based on the French APOLLO-2 code in its 2.4 qualified version and associated CEA-93 V4more » (JEF-2.2) Library, that will enable the Experimental Physics Division (SPEx) to perform future core designs. It describes the scheme adopted and the results obtained in various cases, going to the critical size determination to the reactivity worth of the perturbed configurations (voided, over-moderated, and poisoned with Gd{sub 2}O{sub 3}-UO{sub 2} pins). A preliminary study on the experimental results on the MISTRAL-4 is resumed, and the comparison of APOLLO-2 versus MCNP-4C calculations on these cores is made. The results obtained show very good agreements between the two codes, and versus the experiment. This work opens the way to the future full analysis of the experimental results of the qualifying teams with completely validated schemes, based on the new 2.5 version of the APOLLO-2 code. (authors)« less
Focus of attention in an activity-based scheduler
NASA Technical Reports Server (NTRS)
Sadeh, Norman; Fox, Mark S.
1989-01-01
Earlier research in job shop scheduling has demonstrated the advantages of opportunistically combining order-based and resource-based scheduling techniques. An even more flexible approach is investigated where each activity is considered a decision point by itself. Heuristics to opportunistically select the next decision point on which to focus attention (i.e., variable ordering heuristics) and the next decision to be tried at this point (i.e., value ordering heuristics) are described that probabilistically account for both activity precedence and resource requirement interactions. Preliminary experimental results indicate that the variable ordering heuristic greatly increases search efficiency. While least constraining value ordering heuristics have been advocated in the literature, the experimental results suggest that other value ordering heuristics combined with our variable-ordering heuristic can produce much better schedules without significantly increasing search.
Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel
NASA Astrophysics Data System (ADS)
Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.
2015-03-01
Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.
NASA Astrophysics Data System (ADS)
Miki, Nobuhiko; Atarashi, Hiroyuki; Higuchi, Kenichi; Sawahashi, Mamoru; Nakagawa, Masao
This paper presents experimental evaluations of the effect of time diversity obtained by hybrid automatic repeat request (HARQ) with soft combining in space and path diversity schemes on orthogonal frequency division multiplexing (OFDM)-based packet radio access in a downlink broadband multipath fading channel. The effect of HARQ is analyzed through laboratory experiments employing fading simulators and field experiments conducted in downtown Yokosuka near Tokyo. After confirming the validity of experimental results based on numerical analysis of the time diversity gain in HARQ, we show by the experimental results that, for a fixed modulation and channel coding scheme (MCS), time diversity obtained by HARQ is effective in reducing the required received signal-to-interference plus noise power ratio (SINR) according to an increase in the number of transmissions, K, up to 10, even when the diversity effects are obtained through two-branch antenna diversity reception and path diversity using a number of multipaths greater than 12 observed in a real fading channel. Meanwhile, in combined use with the adaptive modulation and channel coding (AMC) scheme associated with space and path diversity, we clarify that the gain obtained by time diversity is almost saturated at the maximum number of transmissions in HARQ, K' = 4 in Chase combining and K' = 2 in Incremental redundancy, since the improvement in the residual packet error rate (PER) obtained through time diversity becomes small owing to the low PER in the initial packet transmission arising from appropriately selecting the optimum MCS in AMC. However, the experimental results elucidate that the time diversity in HARQ with soft combining associated with antenna diversity reception is effective in improving the throughput even in a broadband multipath channel with sufficient path diversity.
Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi
NASA Astrophysics Data System (ADS)
Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina
2016-07-01
An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.
NASA Astrophysics Data System (ADS)
Jaber, Khalid Mohammad; Alia, Osama Moh'd.; Shuaib, Mohammed Mahmod
2018-03-01
Finding the optimal parameters that can reproduce experimental data (such as the velocity-density relation and the specific flow rate) is a very important component of the validation and calibration of microscopic crowd dynamic models. Heavy computational demand during parameter search is a known limitation that exists in a previously developed model known as the Harmony Search-Based Social Force Model (HS-SFM). In this paper, a parallel-based mechanism is proposed to reduce the computational time and memory resource utilisation required to find these parameters. More specifically, two MATLAB-based multicore techniques (parfor and create independent jobs) using shared memory are developed by taking advantage of the multithreading capabilities of parallel computing, resulting in a new framework called the Parallel Harmony Search-Based Social Force Model (P-HS-SFM). The experimental results show that the parfor-based P-HS-SFM achieved a better computational time of about 26 h, an efficiency improvement of ? 54% and a speedup factor of 2.196 times in comparison with the HS-SFM sequential processor. The performance of the P-HS-SFM using the create independent jobs approach is also comparable to parfor with a computational time of 26.8 h, an efficiency improvement of about 30% and a speedup of 2.137 times.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
NASA Astrophysics Data System (ADS)
Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats
2012-01-01
Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
NASA Astrophysics Data System (ADS)
Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.
2015-12-01
Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Yuwei; Gao, Bingkun; Jiang, Chunlei
2018-03-01
A semiconductor laser employed with two-external-cavity feedback structure for laser self-mixing interference (SMI) phenomenon is investigated and analyzed. The SMI model with two directions based on F-P cavity is deduced, and numerical simulation and experimental verification were conducted. Experimental results show that the SMI with the structure of two-external-cavity feedback under weak light feedback is similar to the sum of two SMIs.
Effect of processing parameters on FDM process
NASA Astrophysics Data System (ADS)
Chari, V. Srinivasa; Venkatesh, P. R.; Krupashankar, Dinesh, Veena
2018-04-01
This paper focused on the process parameters on fused deposition modeling (FDM). Infill, resolution, temperature are the process variables considered for experimental studies. Compression strength, Hardness test microstructure are the outcome parameters, this experimental study done based on the taguchi's L9 orthogonal array is used. Taguchi array used to build the 9 different models and also to get the effective output results on the under taken parameters. The material used for this experimental study is Polylactic Acid (PLA).
Fatigue failure of materials under broad band random vibrations
NASA Technical Reports Server (NTRS)
Huang, T. C.; Lanz, R. W.
1971-01-01
The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Reiners, S. J.
1975-01-01
A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.
Experimental and theoretical characterization of an AC electroosmotic micromixer.
Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo
2010-01-01
We have reported on a novel microfluidic mixer based on AC electroosmosis. To elucidate the mixer characteristics, we performed detailed measurements of mixing under various experimental conditions including applied voltage, frequency and solution viscosity. The results are discussed through comparison with results obtained from a theoretical model of AC electroosmosis. As predicted from the theoretical model, we found that a larger voltage (approximately 20 V(p-p)) led to more rapid mixing, while the dependence of the mixing on frequency (1-5 kHz) was insignificant under the present experimental conditions. Furthermore, the dependence of the mixing on viscosity was successfully explained by the theoretical model, and the applicability of the mixer in viscous solution (2.83 mPa s) was confirmed experimentally. By using these results, it is possible to estimate the mixing performance under given conditions. These estimations can provide guidelines for using the mixer in microfluidic chemical analysis.
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effectiveness of Mindfulness-Based Group Therapy Compared to the Usual Opioid Dependence Treatment
Imani, Saeed; Atef Vahid, Mohammad Kazem; Gharraee, Banafsheh; Noroozi, Alireza; Habibi, Mojtaba; Bowen, Sarah
2015-01-01
Objective: This study investigated the effectiveness of mindfulness-based group therapy (MBGT) compared to the usual opioid dependence treatment (TAU).Thirty outpatients meeting the DSM-IV-TR criteria for opioid dependence from Iranian National Center for Addiction Studies (INCAS) were randomly assigned into experimental (Mindfulness-Based Group Therapy) and control groups (the Usual Treatment).The experimental group undertook eight weeks of intervention, but the control group received the usual treatment according to the INCAS program. Methods: The Five Factor Mindfulness Questionnaire (FFMQ) and the Addiction Sevier Index (ASI) were administered at pre-treatment and post-treatment assessment periods. Thirteen patients from the experimental group and 15 from the control group completed post-test assessments. Results: The results of MANCOVA revealed an increase in mean scores in observing, describing, acting with awareness, non-judging, non-reacting, and decrease in mean scores of alcohol and opium in MBGT patient group. Conclusion: The effectiveness of MBGT, compared to the usual treatment, was discussed in this paper as a selective protocol in the health care setting for substance use disorders. PMID:26877751
Metallurgical characterization of experimental Ag-based soldering alloys
Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros
2014-01-01
Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945
Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.
1985-01-01
The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.
NASA Astrophysics Data System (ADS)
Yenni, Rita; Hernani, Widodo, Ari
2017-05-01
The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.
Communication: Electron ionization of DNA bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less
Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux
NASA Astrophysics Data System (ADS)
Li, Fengshan; Zhang, Yanling; Guo, Zhancheng
2017-09-01
This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.
Investigation of effective strategies for developing creative science thinking
NASA Astrophysics Data System (ADS)
Yang, Kuay-Keng; Lee, Ling; Hong, Zuway-R.; Lin, Huann-shyang
2016-09-01
The purpose of this study was to explore the effectiveness of the creative inquiry-based science teaching on students' creative science thinking and science inquiry performance. A quasi-experimental design consisting one experimental group (N = 20) and one comparison group (N = 24) with pretest and post-test was conducted. The framework of the intervention focused on potential strategies such as promoting divergent and convergent thinking and providing an open, inquiry-based learning environment that are recommended by the literature. Results revealed that the experimental group students outperformed their counterparts in the comparison group on the performances of science inquiry and convergent thinking. Additional qualitative data analyses from classroom observations and case teacher interviews identified supportive teaching strategies (e.g. facilitating associative thinking, sharing impressive ideas, encouraging evidence-based conclusions, and reviewing and commenting on group presentations) for developing students' creative science thinking.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
NASA Astrophysics Data System (ADS)
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
Identifying online user reputation of user-object bipartite networks
NASA Astrophysics Data System (ADS)
Liu, Xiao-Lu; Liu, Jian-Guo; Yang, Kai; Guo, Qiang; Han, Jing-Ti
2017-02-01
Identifying online user reputation based on the rating information of the user-object bipartite networks is important for understanding online user collective behaviors. Based on the Bayesian analysis, we present a parameter-free algorithm for ranking online user reputation, where the user reputation is calculated based on the probability that their ratings are consistent with the main part of all user opinions. The experimental results show that the AUC values of the presented algorithm could reach 0.8929 and 0.8483 for the MovieLens and Netflix data sets, respectively, which is better than the results generated by the CR and IARR methods. Furthermore, the experimental results for different user groups indicate that the presented algorithm outperforms the iterative ranking methods in both ranking accuracy and computation complexity. Moreover, the results for the synthetic networks show that the computation complexity of the presented algorithm is a linear function of the network size, which suggests that the presented algorithm is very effective and efficient for the large scale dynamic online systems.
NASA Astrophysics Data System (ADS)
Jianu, A.; Fetzer, R.; Weisenburger, A.; Doyle, S.; Bruns, M.; Heinzel, A.; Hosemann, P.; Mueller, G.
2016-03-01
The paper gives experimental results concerning the morphology, composition, structure and thickness of the oxide scales grown on Fe-Cr-Al-based bulk alloys during exposure to oxygen-containing molten lead. The results are discussed and compared with former results obtained on Al-containing surface layers, modified by melting with intense pulsed electron beam and exposed to similar conditions. The present and previous results provide the alumina stability domain and also the criterion of the Al/Cr ratio for the formation of a highly protective alumina layer on the surface of Fe-Cr-Al-based alloys and on modified surface layers exposed to molten lead with 10-6 wt.% oxygen at 400-600 °C. The protective oxide scales, grown on alumina-forming Fe-Cr-Al alloys under the given experimental conditions, were transient aluminas, namely, kappa-Al2O3 and theta-Al2O3.
Zhu, Yu; Zhang, Zhihong; Ling, Yun; Wan, Hongwei
2017-04-01
Breastfeeding knowledge, attitude, subjective norm, and perceived control are significant determinants of breastfeeding, according to the theory of planned behavior (TPB). However, evidence concerning the effectiveness of the TPB-based intervention in breastfeeding promotion is sparse. Meanwhile, the changes of these determinants with time have not been examined in previous studies. To investigate the effectiveness of the TPB-based intervention program in improving exclusive breastfeeding, and the interaction of time and intervention on these determinants of breastfeeding. 285 primiparous mothers were included, with 157 mothers in the experimental group and 128 mothers in the control group. The experimental group received the TPB-based intervention program delivered during 6 weeks postpartum, while both the experimental and control groups received the standard obstetric care. Scores of breastfeeding knowledge, attitude and breastfeeding control increased with time from baseline to 6 weeks postpartum, while breastfeeding subjective norm decreased at 6 weeks both in the experimental and the control groups. Besides, scores of the four determinants were significantly higher in the experimental group than these in the control group at 3days and 6 weeks, except for breastfeeding control at 6 weeks, which resulted in the higher exclusive breastfeeding rates at 3days and 6 weeks in the experimental group than the control group. The TPB-based intervention was effective in promoting exclusive breastfeeding during 6 weeks postpartum. Future interventions are recommended to adjust intervention strategies with time, and give more focus on providing continued breastfeeding support after discharge. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
On collisional disruption - Experimental results and scaling laws
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.
1990-01-01
Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.
Numerical-experimental investigation of resonance characteristics of a sounding board
NASA Astrophysics Data System (ADS)
Shlychkov, S. V.
2007-05-01
The paper presents results of numerical and experimental investigations into the vibrations of thin-walled structures, considering such their features as the complexity of geometry, the laminated structure of walls, the anisotropy of materials, the presence of stiffeners, and the initial stresses. The object of the study is the sounding board of an acoustic guitar, the main structural material of which is a three-layer birch veneer. Based on the finite-element method, a corresponding calculation model is created, and the steady-state regimes of forced vibrations of the sounding board are investigated. A good correspondence between calculation results and experimental data is found to exist.
NASA Astrophysics Data System (ADS)
Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji
In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.
CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions
NASA Astrophysics Data System (ADS)
Peng, B. T.; Zhang, C.; Zhu, J. X.; Qi, X. B.
2010-03-01
A computational fluid dynamics (CFD) model based on Eulerian-Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas-solids flow in CFB risers more accurately. Simulation results were compared with the experimental data, and good agreement between the numerical results and experimental data was observed under different operating conditions, which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.
Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations
NASA Astrophysics Data System (ADS)
Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.
2018-04-01
Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.
Lim, Eunjung; Mbowe, Omar; Lee, Angela S. W.; Davis, James
2016-01-01
Background Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. Objective To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. Methods A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Results Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. Discussion The results across studies were inconsistent, justifying the need for further research. PMID:27128692
NASA Astrophysics Data System (ADS)
Shan, Hangying; Xiao, Jun; Chu, Qiyi
2018-05-01
The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.
Bonino, Angela Yarnell; Leibold, Lori J
2017-01-23
Collecting reliable behavioral data from toddlers and preschoolers is challenging. As a result, there are significant gaps in our understanding of human auditory development for these age groups. This paper describes an observer-based procedure for measuring hearing sensitivity with a two-interval, two-alternative forced-choice paradigm. Young children are trained to perform a play-based, motor response (e.g., putting a block in a bucket) whenever they hear a target signal. An experimenter observes the child's behavior and makes a judgment about whether the signal was presented during the first or second observation interval; the experimenter is blinded to the true signal interval, so this judgment is based solely on the child's behavior. These procedures were used to test 2 to 4 year-olds (n = 33) with no known hearing problems. The signal was a 1,000 Hz warble tone presented in quiet, and the signal level was adjusted to estimate a threshold corresponding to 71%-correct detection. A valid threshold was obtained for 82% of children. These results indicate that the two-interval procedure is both feasible and reliable for use with toddlers and preschoolers. The two-interval, observer-based procedure described in this paper is a powerful tool for evaluating hearing in young children because it guards against response bias on the part of the experimenter.
Yuan, Qingjun; Gao, Junning; Wu, Dongliang; Zhang, Shihua; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-01-01
Motivation: Identifying drug–target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug–target interactions of new candidate drugs or targets. Methods: Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning. Results: The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs. Availability: http://datamining-iip.fudan.edu.cn/service/DrugE-Rank Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307615
Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E
2010-07-01
The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or stiffnesses. HMI may thus constitute a promising technique in tumor detection (>3 mm in diameter) and mapping based on its distinct stiffness.
Granular material flow in two-dimensional hoppers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennen, C.; Pearce, J.C.
To aid in improving the transport of granular media for industrial purposes, the California Institute of Technology presents a comparison of experimental data with analytical results for the flow of dry granular media (such as coal) through a two-dimensional or wedge-shaped hopper. The analytical solution, which is based on the constitutive postulates (suggested by A.W. Jenike and R.T. Shield) of intergrain Coulomb friction and isotropy, produces results that are in good agreement with the experimental measurements.
Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer
NASA Technical Reports Server (NTRS)
Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.
1985-01-01
The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.
Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egami, R.; Bowen, J.; Coulombe, W.
1995-07-01
An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less
Wave velocity characteristic for Kenaf natural fibre under impact damage
NASA Astrophysics Data System (ADS)
Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd
2017-01-01
This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Lindsay
This milestone presents a demonstration of the High-to-Low (Hi2Lo) process in the VVI focus area. Validation and additional calculations with the commercial computational fluid dynamics code, STAR-CCM+, were performed using a 5x5 fuel assembly with non-mixing geometry and spacer grids. This geometry was based on the benchmark experiment provided by Westinghouse. Results from the simulations were compared to existing experimental data and to the subchannel thermal-hydraulics code COBRA-TF (CTF). An uncertainty quantification (UQ) process was developed for the STAR-CCM+ model and results of the STAR UQ were communicated to CTF. Results from STAR-CCM+ simulations were used as experimental design pointsmore » in CTF to calibrate the mixing parameter β and compared to results obtained using experimental data points. This demonstrated that CTF’s β parameter can be calibrated to match existing experimental data more closely. The Hi2Lo process for the STAR-CCM+/CTF code coupling was documented in this milestone and closely linked L3:VVI.H2LP15.01 milestone report.« less
Small-target leak detection for a closed vessel via infrared image sequences
NASA Astrophysics Data System (ADS)
Zhao, Ling; Yang, Hongjiu
2017-03-01
This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.
Assessment of semi-active friction dampers
NASA Astrophysics Data System (ADS)
dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir
2017-09-01
The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.
Zhu, Guanhua; Liu, Wei; Bao, Chenglong; Tong, Dudu; Ji, Hui; Shen, Zuowei; Yang, Daiwen; Lu, Lanyuan
2018-05-01
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Yang, Zhengbao; Zu, Jean
2018-01-01
This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.
NASA Astrophysics Data System (ADS)
Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao
2017-05-01
The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju
2017-08-21
Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.
Negative refraction angular characterization in one-dimensional photonic crystals.
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-04-06
Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-01-01
Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332
NASA Astrophysics Data System (ADS)
Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi
2016-01-01
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.
An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Williams, John D.
1991-01-01
Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.
Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Lin, Chunjing; Xu, Sichuan; Li, Zhao; Li, Bin; Chang, Guofeng; Liu, Jinling
2015-10-01
Excellent design of a thermal management system requires good understanding of the thermal behaviors of power batteries. In this study, the electrochemical and heat performances of a prismatic 40 Ah C/LiFePO4 battery are investigated with a focus on the influence of temperature on cell capacity in a mixed charge-discharge cycle. In addition, the heat generation and energy efficiency of a battery are determined during charge and discharge at different current rates. The experimental results indicate that in certain temperature ranges, both the charging and discharging capacities increase significantly as the temperature increases. In addition, the energy efficiency reaches more than 95% when the battery runs at a current rate of 0.33 C-2 C and temperature of 25-45 °C. A thermal mathematical model based on experimentally obtained internal resistances and entropy coefficients is developed. Using this model, the increase in the battery temperature is simulated based on specific heat values that are measured experimentally and calculated theoretically. The results from the simulation indicate that the temperature increase agrees well with the experimental values, the measured specific heat provides better results than the calculated specific heat and the heat generated decreases as the temperature increases.
Zhang, Zhongheng; Ni, Hongying; Xu, Xiao
2014-08-01
Propensity score (PS) analysis has been increasingly used in critical care medicine; however, its validation has not been systematically investigated. The present study aimed to compare effect sizes in PS-based observational studies vs. randomized controlled trials (RCTs) (or meta-analysis of RCTs). Critical care observational studies using PS were systematically searched in PubMed from inception to April 2013. Identified PS-based studies were matched to one or more RCTs in terms of population, intervention, comparison, and outcome. The effect sizes of experimental treatments were compared for PS-based studies vs. RCTs (or meta-analysis of RCTs) with sign test. Furthermore, ratio of odds ratio (ROR) was calculated from the interaction term of treatment × study type in a logistic regression model. A ROR < 1 indicates greater benefit for experimental treatment in RCTs compared with PS-based studies. RORs of each comparison were pooled by using meta-analytic approach with random-effects model. A total of 20 PS-based studies were identified and matched to RCTs. Twelve of the 20 comparisons showed greater beneficial effect for experimental treatment in RCTs than that in PS-based studies (sign test P = 0.503). The difference was statistically significant in four comparisons. ROR can be calculated from 13 comparisons, of which four showed significantly greater beneficial effect for experimental treatment in RCTs. The pooled ROR was 0.71 (95% CI: 0.63, 0.79; P = 0.002), suggesting that RCTs (or meta-analysis of RCTs) were more likely to report beneficial effect for the experimental treatment than PS-based studies. The result remained unchanged in sensitivity analysis and meta-regression. In critical care literature, PS-based observational study is likely to report less beneficial effect of experimental treatment compared with RCTs (or meta-analysis of RCTs). Copyright © 2014 Elsevier Inc. All rights reserved.
Grazing systems research: Focusing on the managers-introduction
USDA-ARS?s Scientific Manuscript database
Translating experimental results into management guidelines or as bases for specific decisions presents a substantial challenge for scientists, advisors and land managers. While inductive reasoning can be a valuable tool in developing general guidelines, particular wholly science-based relationships...
First principles molecular dynamics of molten NaCl
NASA Astrophysics Data System (ADS)
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
NASA Astrophysics Data System (ADS)
Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.
2018-01-01
The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation
NASA Astrophysics Data System (ADS)
Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi
2018-01-01
We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.
First principle investigation of structural and optical properties of cubic titanium dioxide
NASA Astrophysics Data System (ADS)
Dash, Debashish; Chaudhury, Saurabh; Tripathy, Susanta K.
2018-05-01
This paper presents an analysis of structural and optical properties of cubic titanium dioxide (TiO2) using Orthogonalzed Linear Combinations of Atomic Orbitals (OLCAO) basis set under the framework of Density Functional Theory (DFT). The structural property, specially the lattice constant `a' and the optical properties such as refractive index, extinction coefficient, and reflectivity are investigated and discussed in the energy range of 0-16 eV. Further, the results have compared with previous theoretical as well as with experimental results. It was found that DFT based simulation results are approximation to experimental results.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
ERIC Educational Resources Information Center
Findley, Bret R.; Mylon, Steven E.
2008-01-01
We introduce a computer exercise that bridges spectroscopy and thermodynamics using statistical mechanics and the experimental data taken from the commonly used laboratory exercise involving the rotational-vibrational spectrum of HCl. Based on the results from the analysis of their HCl spectrum, students calculate bulk thermodynamic properties…
ERIC Educational Resources Information Center
Heene, Els; De Raedt, Rudi; Buysse, Ann; Van Oost, Paulette
2007-01-01
The present study was designed to test the influence of negative mood on the self-report of individual and relational correlates of depression and marital distress. The authors applied a combined experimental mood induction procedure, based on music, autobiographical recall, and environmental manipulation. Results showed that the mood manipulation…
2011-01-01
Background Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. Results The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. Conclusions The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance. PMID:21599963
Bell's theorem and the problem of decidability between the views of Einstein and Bohr.
Hess, K; Philipp, W
2001-12-04
Einstein, Podolsky, and Rosen (EPR) have designed a gedanken experiment that suggested a theory that was more complete than quantum mechanics. The EPR design was later realized in various forms, with experimental results close to the quantum mechanical prediction. The experimental results by themselves have no bearing on the EPR claim that quantum mechanics must be incomplete nor on the existence of hidden parameters. However, the well known inequalities of Bell are based on the assumption that local hidden parameters exist and, when combined with conflicting experimental results, do appear to prove that local hidden parameters cannot exist. This fact leaves only instantaneous actions at a distance (called "spooky" by Einstein) to explain the experiments. The Bell inequalities are based on a mathematical model of the EPR experiments. They have no experimental confirmation, because they contradict the results of all EPR experiments. In addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions; for instance, he assumes that the hidden parameters are governed by a single probability measure independent of the analyzer settings. We argue that the mathematical model of Bell excludes a large set of local hidden variables and a large variety of probability densities. Our set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does permit derivation of the quantum result and is consistent with all known experiments.
An Experimental Study on the Iso-Content-Based Angle Similarity Measure.
ERIC Educational Resources Information Center
Zhang, Jin; Rasmussen, Edie M.
2002-01-01
Retrieval performance of the iso-content-based angle similarity measure within the angle, distance, conjunction, disjunction, and ellipse retrieval models is compared with retrieval performance of the distance similarity measure and the angle similarity measure. Results show the iso-content-based angle similarity measure achieves satisfactory…
Snitkin, Evan S; Dudley, Aimée M; Janse, Daniel M; Wong, Kaisheen; Church, George M; Segrè, Daniel
2008-01-01
Background Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. Results In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. Conclusions Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources. PMID:18808699
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
NASA Astrophysics Data System (ADS)
Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa
2017-05-01
In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.
Rabani-Bavojdan, Marjan; Rabani-Bavojdan, Mozhgan; Rajabizadeh, Ghodratollah; Kaviani, Nahid; Bahramnejad, Ali; Ghaffari, Zohreh; Shafiei-Bafti, Mehdi
2017-07-01
The aim of this study was to investigate the effectiveness of the harm reduction group therapy based on Bandura's self-efficacy theory on risky behaviors of sex workers in Kerman, Iran. A quasi-experimental two-group design (a random selection with pre-test and post-test) was used. A risky behaviors questionnaire was used to collect. The sample was selected among sex workers referring to drop-in centers in Kerman. Subjects were allocated to two groups and were randomly classified into two experimental and control groups. The sample group consisted of 56 subjects. The experimental design was carried out during 12 sessions, and the post-test was performed one month and two weeks after the completion of the sessions. The results were analyzed statistically. By reducing harm based on Bandura's self-efficacy theory, the risky behaviors of the experimental group, including injection behavior, sexual behavior, violence, and damage to the skin, were significantly reduced in the pre-test compared to the post-test (P < 0.010). The harm reduction group therapy based on Bandura's self-efficacy theory can reduce the risky behaviors of sex workers.
Data base for the prediction of inlet external drag
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.
1980-01-01
Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.
Biophysics of cadherin adhesion.
Leckband, Deborah; Sivasankar, Sanjeevi
2012-01-01
Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.
Achieving optimal SERS through enhanced experimental design
Fisk, Heidi; Westley, Chloe; Turner, Nicholas J.
2016-01-01
One of the current limitations surrounding surface‐enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal‐based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd. PMID:27587905
Modelling of Batch Lactic Acid Fermentation in the Presence of Anionic Clay
Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa
2014-01-01
Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318
Achieving optimal SERS through enhanced experimental design.
Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston
2016-01-01
One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.
Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A
1989-01-01
We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis
2015-11-01
Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.
Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study
NASA Astrophysics Data System (ADS)
Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.
2017-03-01
The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N
2013-01-14
Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi
2000-06-01
The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.
Water age and stream solute dynamics at the Hubbard Brook Experimental Forest (US)
NASA Astrophysics Data System (ADS)
Botter, Gianluca; Benettin, Paolo; McGuire, Kevin; Rinaldo, Andrea
2016-04-01
The contribution discusses experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (New Hampshire, USA) to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is used to model both conservative and weathering-derived solutes. Based on the available information about the hydrology of the site, an integrated transport model was developed and used to estimate the relevant hydrochemical fluxes. The model was designed to reproduce the deuterium content of streamflow and allowed for the estimate of catchment water storage and dynamic travel time distributions (TTDs). Within this framework, dissolved silicon and sodium concentration in streamflow were simulated by implementing first-order chemical kinetics based explicitly on dynamic TTD, thus upscaling local geochemical processes to catchment scale. Our results highlight the key role of water stored within the subsoil glacial material in both the short-term and long-term solute circulation at Hubbard Brook. The analysis of the results provided by the calibrated model allowed a robust estimate of the emerging concentration-discharge relationship, streamflow age distributions (including the fraction of event water) and storage size, and their evolution in time due to hydrologic variability.
eSBMTools 1.0: enhanced native structure-based modeling tools.
Lutz, Benjamin; Sinner, Claude; Heuermann, Geertje; Verma, Abhinav; Schug, Alexander
2013-11-01
Molecular dynamics simulations provide detailed insights into the structure and function of biomolecular systems. Thus, they complement experimental measurements by giving access to experimentally inaccessible regimes. Among the different molecular dynamics techniques, native structure-based models (SBMs) are based on energy landscape theory and the principle of minimal frustration. Typically used in protein and RNA folding simulations, they coarse-grain the biomolecular system and/or simplify the Hamiltonian resulting in modest computational requirements while achieving high agreement with experimental data. eSBMTools streamlines running and evaluating SBM in a comprehensive package and offers high flexibility in adding experimental- or bioinformatics-derived restraints. We present a software package that allows setting up, modifying and evaluating SBM for both RNA and proteins. The implemented workflows include predicting protein complexes based on bioinformatics-derived inter-protein contact information, a standardized setup of protein folding simulations based on the common PDB format, calculating reaction coordinates and evaluating the simulation by free-energy calculations with weighted histogram analysis method or by phi-values. The modules interface with the molecular dynamics simulation program GROMACS. The package is open source and written in architecture-independent Python2. http://sourceforge.net/projects/esbmtools/. alexander.schug@kit.edu. Supplementary data are available at Bioinformatics online.
Identification of Anisotropic Criteria for Stratified Soil Based on Triaxial Tests Results
NASA Astrophysics Data System (ADS)
Tankiewicz, Matylda; Kawa, Marek
2017-09-01
The paper presents the identification methodology of anisotropic criteria based on triaxial test results. The considered material is varved clay - a sedimentary soil occurring in central Poland which is characterized by the so-called "layered microstructure". The strength examination outcomes were identified by standard triaxial tests. The results include the estimated peak strength obtained for a wide range of orientations and confining pressures. Two models were chosen as potentially adequate for the description of the tested material, namely Pariseau and its conjunction with the Jaeger weakness plane. Material constants were obtained by fitting the model to the experimental results. The identification procedure is based on the least squares method. The optimal values of parameters are searched for between specified bounds by sequentially decreasing the distance between points and reducing the length of the searched range. For both considered models the optimal parameters have been obtained. The comparison of theoretical and experimental results as well as the assessment of the suitability of selected criteria for the specified range of confining pressures are presented.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Design of virtual simulation experiment based on key events
NASA Astrophysics Data System (ADS)
Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu
2018-06-01
Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
NASA Astrophysics Data System (ADS)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
2011-01-01
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.
Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil
NASA Astrophysics Data System (ADS)
Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.
2017-12-01
The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo
2017-12-01
Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.
Experimental confirmation of a PDE-based approach to design of feedback controls
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.
1995-01-01
Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.
Hinkle, Joshua C; Weisburd, David; Famega, Christine; Ready, Justin
2013-01-01
Hot spots policing is one of the most influential police innovations, with a strong body of experimental research showing it to be effective in reducing crime and disorder. However, most studies have been conducted in major cities, and we thus know little about whether it is effective in smaller cities, which account for a majority of police agencies. The lack of experimental studies in smaller cities is likely in part due to challenges designing statistically powerful tests in such contexts. The current article explores the challenges of statistical power and "noise" resulting from low base rates of crime in smaller cities and provides suggestions for future evaluations to overcome these limitations. Data from a randomized experimental evaluation of broken windows policing in hot spots are used to illustrate the challenges that low base rates present for evaluating hot spots policing programs in smaller cities. Analyses show low base rates make it difficult to detect treatment effects. Very large effect sizes would be required to reach sufficient power, and random fluctuations around low base rates make detecting treatment effects difficult, irrespective of power, by masking differences between treatment and control groups. Low base rates present strong challenges to researchers attempting to evaluate hot spots policing in smaller cities. As such, base rates must be taken directly into account when designing experimental evaluations. The article offers suggestions for researchers attempting to expand the examination of hot spots policing and other microplace-based interventions to smaller jurisdictions.
Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.
2011-01-01
Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-01-01
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-10-22
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.
NASA Astrophysics Data System (ADS)
Shcherbakov, V. P.; Sycheva, N. K.; Gribov, S. K.
2017-09-01
The results of the Thellier-Coe experiments on paleointensity determination on the samples which contain chemical remanent magnetization (CRM) created by thermal annealing of titanomagnetites are reported. The results of the experiments are compared with the theoretical notions. For this purpose, Monte Carlo simulation of the process of CRM acquisition in the system of single-domain interacting particles was carried out; the paleointensity determination method based on the Thellier-Coe procedure was modeled; and the degree of paleointensity underestimation was quantitatively estimated based on the experimental data and on the numerical results. Both the experimental investigations and computer modeling suggest the following main conclusion: all the Arai-Nagata diagrams for CRM in the high-temperature area (in some cases up to the Curie temperature T c) contain a relatively long quasi-linear interval on which it is possible to estimate the slope coefficient k and, therefore, the paleointensity. Hence, if chemical magnetization (or remagnetization) took place in the course of the magnetomineralogical transformations of titanomagnetite- bearing igneous rocks during long-lasting cooling or during repeated heatings, it can lead to incorrect results in determining the intensity of the geomagnetic field in the geological past.
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
A support vector machine based control application to the experimental three-tank system.
Iplikci, Serdar
2010-07-01
This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Guocai
This study systematically explores the mechanical behavior, damage tolerance and durability of fiber metal laminates, a promising candidate materials system for next generation aerospace structures. The experimental results indicated that GLARE laminates exhibited a bilinear deformation behavior under static in-plane loading. Both an analytical constitutive model based on a modified classical lamination theory which incorporates the elasto-plastic behavior of aluminum alloy and a numerical simulation based on finite element modeling are used to predict the nonlinear stress-strain response and deformation behavior of GLARE laminates. The blunt notched strength of GLARE laminates increased with decreasing specimen width and decreasing hole diameter. The notched strength of GLARE laminates was evaluated based on a modified point stress criterion. A computer simulation based on finite element method was performed to study stress concentration and distribution around the notch and verify the analytical and experimental results of notched strength. Good agreement is obtained between the model predictions and experimental results. Experimental results also indicate that GLARE laminates exhibited superior impact properties to those of monolithic 2024-T3 aluminum alloy at low velocity impact loading. The GLARE 5-2/1 laminate with 0°/90°/90°/0° fiber configuration exhibits a better impact resistance than the GLARE 4-3/2 laminate with 0°/90°/0° fiber orientation. The characteristic impact energies, the damage area, and the permanent deflection of laminates are used to evaluate the impact damage resistance. The post-impact residual tensile strength under various damage states ranging from the plastic dent, barely visible impact damage (BVID), clearly visible impact damage (CVID) up to the complete perforation was also measured and compared. The post-impact fatigue behavior under various stress levels and impact damage states was extensively explored. The damage initiation and progression, failure modes and crack propagation under different loading conditions were investigated and identified with microscopy, SEM, X-ray radiography, and by chemically removing outer aluminum layers.
Experimental study on a magnetofluid sealing liquid for propeller shaft
NASA Astrophysics Data System (ADS)
Zhao, Chang-Fa; Sun, Rong-Hua; Zheng, Jin-Xing
2003-06-01
The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe3O4 was successfully yielded, and an oil-base as a working carrier and dispersing agent was determined. The preparation process of the magnetic fluid and prescription of the oil-base magnetic fluid were discussed. The simulation experimental rig of magnetic fluid sealing for propeller shaft was designed. The sealing ability experiment was conducted and results were analyzed. The pressure of sealing is up to 2 MPa.
Graphene-based perfect optical absorbers harnessing guided mode resonances.
Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A
2015-08-10
We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
High-temperature fiber-optic Fabry-Perot interferometric sensors.
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
High-temperature fiber-optic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
Polarization-insensitive techniques for optical signal processing
NASA Astrophysics Data System (ADS)
Salem, Reza
2006-12-01
This thesis investigates polarization-insensitive methods for optical signal processing. Two signal processing techniques are studied: clock recovery based on two-photon absorption in silicon and demultiplexing based on cross-phase modulation in highly nonlinear fiber. The clock recovery system is tested at an 80 Gb/s data rate for both back-to-back and transmission experiments. The demultiplexer is tested at a 160 Gb/s data rate in a back-to-back experiment. We experimentally demonstrate methods for eliminating polarization dependence in both systems. Our experimental results are confirmed by theoretical and numerical analysis.
Fan Flutter Computations Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.
2009-01-01
An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
Experimental determination of the effective strong coupling constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandre Deur; Volker Burkert; Jian-Ping Chen
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Evaluation of a Proposed Modified F/FB-111 Crew Seat and Restraint System.
1981-11-01
each target’s path in the X-Z plane throughout the impact. (See sample plots.) Computing velocities and accelerations was a simple matter in the...until this work unit is retired. The experimental results will eventually be recorded within a permanent data bank at AFAMRL. The sample data plots were... experimental results will eventually be recorded within a permanent data bank at AFAMRL. The sample data plots were selected based on the subject who had the
Balloon-like singlemode-tapered multimode-singlemode fiber structure for refractive index sensing
NASA Astrophysics Data System (ADS)
Yang, Biyao; Niu, Yanxiong; Yang, Bowen; Dai, Lingling; Hu, Yanhui; Yin, Yiheng; Ding, Ming
2017-10-01
A novel high sensitivity refractive index sensor based on balloon-like singlemode-tapered multimode-singlemode (STMS) fiber structure has been proposed and experimentally demonstrated. Combining the tapering and bending endows the proposed sensor with large evanescent field, resulting in high sensitivity. Experimental results show that the proposed sensor has an average sensitivity of 1104.75 nm/RIU (RI Unit) in the range of 1.33-1.41 and a maximum sensitivity of 3374.50 nm/RIU at RI of 1.41.
Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F
2011-05-20
Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.
Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion
Chaudhari, Mangesh I.; Nair, Jijeesh R.; Pratt, Lawrence R.; ...
2016-10-21
Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li + to PC from water, based on electronicmore » structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li +/PF 6 - transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.« less
Jaciw, Andrew P
2016-06-01
Various studies have examined bias in impact estimates from comparison group studies (CGSs) of job training programs, and in education, where results are benchmarked against experimental results. Such within-study comparison (WSC) approaches investigate levels of bias in CGS-based impact estimates, as well as the success of various design and analytic strategies for reducing bias. This article reviews past literature and summarizes conditions under which CGSs replicate experimental benchmark results. It extends the framework to, and develops the methodology for, situations where results from CGSs are generalized to untreated inference populations. Past research is summarized; methods are developed to examine bias in program impact estimates based on cross-site comparisons in a multisite trial that are evaluated against site-specific experimental benchmarks. Students in Grades K-3 in 79 schools in Tennessee; students in Grades 4-8 in 82 schools in Alabama. Grades K-3 Stanford Achievement Test (SAT) in reading and math scores; Grades 4-8 SAT10 reading scores. Past studies show that bias in CGS-based estimates can be limited through strong design, with local matching, and appropriate analysis involving pretest covariates and variables that represent selection processes. Extension of the methodology to investigate accuracy of generalized estimates from CGSs shows bias from confounders and effect moderators. CGS results, when extrapolated to untreated inference populations, may be biased due to variation in outcomes and impact. Accounting for effects of confounders or moderators may reduce bias. © The Author(s) 2016.
A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Experimental study on steam condensation with non-condensable gas in horizontal microchannels
NASA Astrophysics Data System (ADS)
Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai
2013-07-01
This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.
Saas, Philippe; Daguindau, Etienne; Perruche, Sylvain
2016-06-01
The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473. © 2016 AlphaMed Press.
A strain-mediated corrosion model for bioabsorbable metallic stents.
Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C
2017-06-01
This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
CNT based actuators: experimental and theoretical investigation of the in-plain strain generation.
Riemenschneider, Johannes; Temmen, Hubert; Monner, Hans Peter
2007-10-01
Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved-due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. Immersing the nanotubes in an electrolyte increases the capacity of the system by allowing electro-chemical double layers to be built around the CNT. For the experimental investigation of the strain generation, carbon nanotube sheets are manufactured by vacuum filtration. The in-plain strain response is being examined, when applying a voltage to the system. This paper presents experimental investigations of the systems response in dependence of varying system parameters like capacity and resistance. Dependencies of the actuator system were formulated from these experimental results. A guideline of how to improve a CNT based actuator is derived from these dependencies.
Experimental setups for FEL-based four-wave mixing experiments at FERMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian
2016-01-01
The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less
Experimental setups for FEL-based four-wave mixing experiments at FERMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian
The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less
Kim, Sunghee; Shin, Gisoo
2016-02-01
Since previous studies on simulation-based education have been focused on fundamental nursing skills for nursing students in South Korea, there is little research available that focuses on clinical nurses in simulation-based training. Further, there is a paucity of research literature related to the integration of the nursing process into simulation training particularly in the emergency nursing care of high-risk maternal and neonatal patients. The purpose of this study was to identify the effects of nursing process-based simulation on knowledge, attitudes, and skills for maternal and child emergency nursing care in clinical nurses in South Korea. Data were collected from 49 nurses, 25 in the experimental group and 24 in the control group, from August 13 to 14, 2013. This study was an equivalent control group pre- and post-test experimental design to compare the differences in knowledge, attitudes, and skills for maternal and child emergency nursing care between the experimental group and the control group. The experimental group was trained by the nursing process-based simulation training program, while the control group received traditional methods of training for maternal and child emergency nursing care. The experimental group was more likely to improve knowledge, attitudes, and skills required for clinical judgment about maternal and child emergency nursing care than the control group. Among five stages of nursing process in simulation, the experimental group was more likely to improve clinical skills required for nursing diagnosis and nursing evaluation than the control group. These results will provide valuable information on developing nursing process-based simulation training to improve clinical competency in nurses. Further research should be conducted to verify the effectiveness of nursing process-based simulation with more diverse nurse groups on more diverse subjects in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
NASA Technical Reports Server (NTRS)
Oglebay, J. C.
1977-01-01
A thermal analytic model for a 30-cm engineering model mercury-ion thruster was developed and calibrated using the experimental test results of tests of a pre-engineering model 30-cm thruster. A series of tests, performed later, simulated a wide range of thermal environments on an operating 30-cm engineering model thruster, which was instrumented to measure the temperature distribution within it. The modified analytic model is described and analytic and experimental results compared for various operating conditions. Based on the comparisons, it is concluded that the analytic model can be used as a preliminary design tool to predict thruster steady-state temperature distributions for stage and mission studies and to define the thermal interface bewteen the thruster and other elements of a spacecraft.
Efficient experimental design for uncertainty reduction in gene regulatory networks
2015-01-01
Background An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. Results The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Conclusions Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/. PMID:26423515
NASA Astrophysics Data System (ADS)
Wang, Chao; Xiao, Jun; Luo, Xiaobing
2016-10-01
The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.
Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aguanno, G.; Mattiucci, N.; C. M. Bowden Facility, Building 7804, RDECOM, Redstone Arsenal, Alabama 35898
2010-01-15
We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play anmore » essential role.« less
Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes
Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua
2015-01-01
Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175
NASA Technical Reports Server (NTRS)
Sforza, Mario; Buonomo, Sergio
1993-01-01
During the period 1983-1992 the European Space Agency (ESA) carried out several experimental campaigns to investigate the propagation impairments of the Land Mobile Satellite (LMS) communication channel. A substantial amount of data covering quite a large range of elevation angles, environments, and frequencies was obtained. Results from the data analyses are currently used for system planning and design applications within the framework of the future ESA LMS projects. This comprehensive experimental data base is presently utilized also for channel modeling purposes and preliminary results are given. Cumulative Distribution Functions (PDF) and Duration of Fades (DoF) statistics at different elevation angles and environments were also included.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
The experimental results of AMTEC and a study of its terrestrial applications in IEE of China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Q.; Tong, J.; Kan, Y.
1997-12-31
The R and D activities in the field of AMTEC research at The Institute of Electrical Engineering, Chinese Academy of Sciences are introduced. The outline of experimental facility with a single tube cell is described. The experimental results so far are reported followed by an analysis of electrical characteristic, in particular, an evaluation of characteristic of BASE/porous electrode interface with the effective sheet resistivity and the electrode efficiency. The approaches for improving device performance are discussed. The terrestrial applications of AMTEC in China are considered as an alternative of conventional diesel-generators. The possibility of AMTEC power supply for some separatemore » sites is predicted.« less
15O(alpha,gamma)19Ne breakout reaction and impact on X-ray bursts.
Tan, W P; Fisker, J L; Görres, J; Couder, M; Wiescher, M
2007-06-15
The breakout reaction 15O(alpha,gamma)19Ne, which regulates the flow between the hot CNO cycle and the rp process, is critical for the explanation of the burst amplitude and periodicity of x-ray bursters. We report on the first successful measurement of the critical alpha-decay branching ratios of relevant states in 19Ne populated via 19F(3He,t)19Ne. Based on the experimental results and our previous lifetime measurements of these states, we derive the first experimental rate of 15O(alpha,gamma)19Ne. The impact of our experimental results on the burst pattern and periodicity for a range of accretion rates is analyzed.
SAW based micro- and acousto-fluidics in biomedicine
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Protein association starts with random collisions of individual proteins. Multiple collisions and rotational diffusion brings the molecules to a state of orientation. Majority of the protein associations are influenced by electrostatic interactions. To introduce: electrostatic rate enhancement, Brownian dynamics and transient complex theory has been traditionally used. Due to the recent advances in interdisciplinary sciences, an array of molecular assembly methods is being studied. Protein nanostructural assembly and macromolecular crowding are derived from the subsets of biochemistry to study protein-protein interactions and protein self-assembly. This paper tries to investigate the issue of enhancing the protein self-association rate, and bridging the gap between the simulations and experimental results. The methods proposed here include: electrostatic rate enhancement, macromolecular crowing, nanostructural protein assembly, microfluidics based approaches and magnetic force based approaches. Despite the suggestions of several methods, microfluidic and magnetic force based approaches seem to serve the need of protein assembly in a wider scale. Congruence of these approaches may also yield better results. Even though, these methods prove to be conceptually strong, to prevent the disagreement of theory and practice, a wide range of experiments is required. This proposal intends to study theoretical and experimental methods to successfully implement the aforementioned assembly strategies, and conclude with an extensive analysis of experimental data to address practical feasibility.
Securing Real-Time Sessions in an IMS-Based Architecture
NASA Astrophysics Data System (ADS)
Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco
The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.
Liu, Peng; Johansson, Viktor; Trilaksana, Herri; Rosdahl, Jan; Andersson, Gunther G; Kloo, Lars
2017-06-14
The organization of dye molecules in the dye layer adsorbed on the semiconductor substrate in dye-sensitized solar cells has been studied using a combination of theoretical methods and experimental techniques. The model system is based on the simple D-π-A dye L0, which has been chemically modified by substituting the acceptor group CN with Br (L0Br) to offer better X-ray contrast. Experimental EXAFS data based on the Br K-edge backscattering show no obvious difference between dye-sensitized titania powder and titania film samples, thus allowing model systems to be based on powder slurries. Ab initio molecular dynamic (aiMD) calculations have been performed to extract less biased information from the experimental EXASF data. Using the aiMD calculation as input, the EXAFS structural models can be generated a priori that match the experimental data. Our study shows that the L0Br dye adsorbs in the trans-L0Br configuration and that adsorption involves both a proximity to other L0Br dye molecules and the titanium atoms in the TiO 2 substrate. These results indicate direct coordination of the dye molecules to the TiO 2 surface in contrast to previous results on metal-organic dyes. The molecular coverage of L0Br on mesoporous TiO 2 was also estimated using NICIS spectroscopy. The NICISS results emphasized that the L0Br dye on nanoporous titania mainly forms monolayers with a small contribution of multilayer coverage.
Lim, Eunjung; Mbowe, Omar; Lee, Angela S W; Davis, James
2016-01-01
Assessment of the health effects of low-level exposure to hydrogen sulfide (H2S) on humans through experiments, industrial, and community studies has shown inconsistent results. To critically appraise available studies investigating the effect of H2S on the central nervous system (CNS) and on respiratory function. A search was conducted in 16 databases for articles published between January 1980 and July 2014. Two researchers independently evaluated potentially relevant papers based on a set of inclusion/exclusion criteria. Twenty-seven articles met the inclusion criteria: 6 experimental, 12 industry-based studies, and 10 community-based studies (one article included both experimental and industry-based studies). The results of the systematic review varied by study setting and quality. Several community-based studies reported associations between day-to-day variations in H2S levels and health outcomes among patients with chronic respiratory conditions. However, evidence from the largest and better-designed community-based studies did not support that chronic, ambient H2S exposure has health effects on the CNS or respiratory function. Results from industry-based studies varied, reflecting the diversity of settings and the broad range of H2S exposures. Most studies did not have individual measurements of H2S exposure. The results across studies were inconsistent, justifying the need for further research.
Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video
NASA Astrophysics Data System (ADS)
Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas
2018-06-01
In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.
NASA Astrophysics Data System (ADS)
Byun, Jong Min; Park, Chun Woong; Do Kim, Young
2018-06-01
In this study, we investigated the state of Y2O3, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced Ti2O3 that formed different reaction products depending on the state of Y2O3 into the Fe-based ODS alloys. In addition, the reaction products of Ti2O3, Y, and Y2O3 powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that YTiO3 and Y2Ti2O7 were formed when Ti2O3 reacted with Y; in contrast, only Y2Ti2O7 was detected during the reaction between Ti2O3 and Y2O3. In the alloy of Fe-Cr-Y2O3 with Ti2O3, YTiO3 (formed by the reaction of Ti2O3 with Y) was detected after the MA and heat treatment processes were complete, even though Y2O3 was present in the system. Using these results, it was proved that Y2O3 decomposed into monoatomic Y and O during the MA process.
NASA Astrophysics Data System (ADS)
Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai
2018-01-01
We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.
NASA Astrophysics Data System (ADS)
Rozhaeva, K.
2018-01-01
The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.
Space shuttle booster multi-engine base flow analysis
NASA Technical Reports Server (NTRS)
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
Hu, Jing; Zhang, Xiaolong; Liu, Xiaoming; Tang, Jinshan
2015-06-01
Discovering hot regions in protein-protein interaction is important for drug and protein design, while experimental identification of hot regions is a time-consuming and labor-intensive effort; thus, the development of predictive models can be very helpful. In hot region prediction research, some models are based on structure information, and others are based on a protein interaction network. However, the prediction accuracy of these methods can still be improved. In this paper, a new method is proposed for hot region prediction, which combines density-based incremental clustering with feature-based classification. The method uses density-based incremental clustering to obtain rough hot regions, and uses feature-based classification to remove the non-hot spot residues from the rough hot regions. Experimental results show that the proposed method significantly improves the prediction performance of hot regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A low-cost FMCW radar for footprint detection from a mobile platform
NASA Astrophysics Data System (ADS)
Boutte, David; Taylor, Paul; Hunt, Allan
2015-05-01
Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.
ERIC Educational Resources Information Center
Pandya, Samta P.
2018-01-01
Based on a one-year longitudinal experimental study with 3,782 kindergarten school children across 15 countries, this article examines the association between prayer and happiness. Results show that the post-test scores on the faces scale were higher for the participant group who had taken the prayer lessons vis-à-vis the comparison group.…
ERIC Educational Resources Information Center
Turnšek, Nada
2013-01-01
The present study is based on a quasi-experimental research design and presents the results of an evaluation of Antidiscrimination and Diversity Training that took place at the Faculty of Education in Ljubljana, rooted in the anti-bias approach to educating diversity and equality issues (Murray & Urban, 2012). The experimental group included…
Involving Parents in Paired Reading with Preschoolers: Results from a Randomized Controlled Trial
ERIC Educational Resources Information Center
Lam, Shui-fong; Chow-Yeung, Kamfung; Wong, Bernard P. H.; Lau, Kwok Kiu; Tse, Shuk In
2013-01-01
A paired reading program was implemented for 195 Hong Kong preschoolers (mean age = 4.7 years) and their parents from families with a wide range of family income. The preschoolers were randomly assigned to experimental or waitlist control groups. The parents in the experimental group received 12 sessions of school-based training on paired reading…
PBL-GIS in Secondary Geography Education: Does It Result in Higher-Order Learning Outcomes?
ERIC Educational Resources Information Center
Liu, Yan; Bui, Elisabeth N.; Chang, Chew-Hung; Lossman, Hans G.
2010-01-01
This article presents research on evaluating problem-based learning using GIS technology in a Singapore secondary school. A quasi-experimental research design was carried to test the PBL pedagogy (PBL-GIS) with an experimental group of students and compare their learning outcomes with a control group who were exposed to PBL but not GIS. The…
An energy-dependent electron backscattering coefficient
NASA Astrophysics Data System (ADS)
Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.
1987-05-01
An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han
2013-01-01
In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.
Early stage breast cancer detection by means of time-domain ultra-wide band sensing
NASA Astrophysics Data System (ADS)
Zanoon, T. F.; Abdullah, M. Z.
2011-11-01
The interest in the use of ultra-wide band (UWB) impulses for medical imaging, particularly early stage breast cancer detection, is driven by safety advantage, super resolution capability, significant dielectric contrast between tumours and their surrounding tissues, patient convenience and low operating costs. However, inversion algorithms leading to recovery of the dielectric profile are complex in their nature, and vulnerable to noisy experimental conditions and environment. In this paper, we present a simplified yet robust gradient-based iterative image reconstruction technique to solve the nonlinear inverse scattering problem. The calculation is based on the Polak-Ribière's approach while the Broyden's formula is used to update the gradient in an iterative scheme. To validate this approach, both numerical and experimental results are presented. Animal derived biological targets in the form of chicken skin, beef and salted butter are used to construct an experimental breast phantom, while vegetable oil is used as a background media. UWB transceivers in the form of biconical antennas contour the breast forming a full view scanning geometry at a frequency range of 0-5 GHz. Results indicate the feasibility of experimental detection of millimetre scaled targets.
NASA Astrophysics Data System (ADS)
Zielnica, J.; Ziółkowski, A.; Cempel, C.
2003-03-01
Design and theoretical and experimental investigation of vibroisolation pads with non-linear static and dynamic responses is the objective of the paper. The analytical investigations are based on non-linear finite element analysis where the load-deflection response is traced against the shape and material properties of the analysed model of the vibroisolation pad. A new model of vibroisolation pad of antisymmetrical type was designed and analysed by the finite element method based on the second-order theory (large displacements and strains) with the assumption of material's non-linearities (Mooney-Rivlin model). Stability loss phenomenon was used in the design of the vibroisolators, and it was proved that it would be possible to design a model of vibroisolator in the form of a continuous pad with non-linear static and dynamic response, typical to vibroisolation purposes. The materials used for the vibroisolator are those of rubber, elastomers, and similar ones. The results of theoretical investigations were examined experimentally. A series of models made of soft rubber were designed for the test purposes. The experimental investigations of the vibroisolation models, under static and dynamic loads, confirmed the results of the FEM analysis.
Opening the Implicit Leadership Theories’ Black Box: An Experimental Approach with Conjoint Analysis
Tavares, Gustavo M.; Sobral, Filipe; Goldszmidt, Rafael; Araújo, Felipe
2018-01-01
Although research on implicit leadership theories (ILTs) has concentrated on determining which attributes define a leadership prototype, little attention has been paid to testing the relative importance of each of these attributes for individuals’ leadership perceptions. Building on socio-cognitive theories of impression processes, we experimentally explore the formation of leadership perceptions based on the recognition of six key attributes in a series of three experimental studies comprising 566 US-based participants recruited online via Amazon Mechanical Turk. Our results show that while certain attributes play an important role in the leader categorization process, others are less relevant. We also demonstrate that some attributes’ importance is contingent on the presence of other attributes and on the leadership schema type activated in respondents’ minds. Consistent with the Leadership Categorization Theory, our findings support the premise that individuals cognitively hold a superordinate leadership prototype, which imposes constraints on their more basic level prototypes. We discuss the implications of these results for leadership theory and practice. PMID:29467706
Tavares, Gustavo M; Sobral, Filipe; Goldszmidt, Rafael; Araújo, Felipe
2018-01-01
Although research on implicit leadership theories (ILTs) has concentrated on determining which attributes define a leadership prototype, little attention has been paid to testing the relative importance of each of these attributes for individuals' leadership perceptions. Building on socio-cognitive theories of impression processes, we experimentally explore the formation of leadership perceptions based on the recognition of six key attributes in a series of three experimental studies comprising 566 US-based participants recruited online via Amazon Mechanical Turk. Our results show that while certain attributes play an important role in the leader categorization process, others are less relevant. We also demonstrate that some attributes' importance is contingent on the presence of other attributes and on the leadership schema type activated in respondents' minds. Consistent with the Leadership Categorization Theory, our findings support the premise that individuals cognitively hold a superordinate leadership prototype, which imposes constraints on their more basic level prototypes. We discuss the implications of these results for leadership theory and practice.
Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.
2017-04-01
Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.
NASA Astrophysics Data System (ADS)
Susilawati; Ardhyani, S.; Masturi; Wijayanto; Khoiri, N.
2017-04-01
This work aims to determine the effect of Project Based Learning containing Multi Life-Skills on collaborative and technology skills of senior high school (SMA) students, especially on thestatic fluid subject. The research design was aquasi-experiment using Posttest-Only Control Design. This work was conducted in SMA Negeri 1 Bae Kudus, with the population is all students of class X, while the sample is students of class X MIA 2 as an experimental class and X MIA 3 as a control class. The data were obtained by observation, test, and documentation. The results showed this model significantly affects the collaborative and technology skills of students of SMA 1 Bae Kudus, where the average result of collaborative and technology skills for the experimental class is higher than that of the control class. This is also supported by the remark of the post-test experimental class is higher than that of the control class.
Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4
NASA Astrophysics Data System (ADS)
Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Brcic, Marino
2015-02-01
The paper presents and analyzes the experimental results of the effect of elevated temperatures on the engineering properties of steel 42CrMo4. Experimental data relating to the mechanical properties of the material, the creep resistance as well as Charpy impact energy. Temperature dependence of the mentioned properties is also shown. Some of creep curves were simulated using rheological models and an analytical equation. Finally, an assessment of fracture toughness was made that was based on experimentally determined Charpy impact energy. Based on the obtained results it is visible that the tensile strength (617 MPa) and yield strength (415 MPa) have the highest value at the room temperature while at the temperature of 700 °C (973 K) these values significantly decrease. This steel can be considered resistant to creep at 400 °C (673 K), but at higher temperatures this steel can be subjected to low levels of stress in a shorter time.
Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G
2018-03-01
Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca
2018-02-01
Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.
A study of microstructural characteristics and differential thermal analysis of Ni-based superalloys
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Lal, R. B.; Oyekenu, Samuel A.; Parr, Richard; Gentz, Stephen
1989-01-01
The objective of this work is to correlate the mechanical properties of the Ni-based superalloy MAR M246(Hf) used in the Space Shuttle Main Engine with its structural characteristics by systematic study of optical photomicrographs and differential thermal analysis. The authors developed a method of predicting the liquidus and solidus temperature of various nickel based superalloys (MAR-M247, Waspaloy, Udimet-41, polycrystalline and single crystals of CMSX-2 and CMSX-3) and comparing the predictions with the experimental differential thermal analysis (DTA) curves using Perkin-Elmer DTA 1700. The method of predicting these temperatures is based on the additive effect of the components dissolved in nickel. The results were compared with the experimental values.
Self-organized ferromagnetic nanowires in MgO-based magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Seike, Masayoshi; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi
2013-08-01
The focus of this study is to examine the distribution of defects and defect-induced properties in MgO-based magnetic tunnel junctions (MTJs). To this end, first-principles calculations were performed to estimate the electronic structures and total energies of MgO with various defects by using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. From connections drawn between the calculated results and previously reported experimental data, we propose that self-organized ferromagnetic nanowires of magnesium vacancies can be formed in MgO-based MTJs. This self-organization may provide the foundation for a comprehensive understanding of the conductivity, tunnel barriers and quantum oscillations of MgO-based MTJs. Further experimental verification is needed before firm conclusions can be drawn.
Enhancing a Computer-Based Testing Environment with Optimum Item Response Time
ERIC Educational Resources Information Center
Delen, Erhan
2015-01-01
As technology has become more advanced and accessible in instructional settings, there has been an upward trend in computer-based testing in the last decades. The present experimental study examines students' behaviors during computer-based testing in two different conditions and explores how these conditions affect the test results. Results…
One-electron oxidation of individual DNA bases and DNA base stacks.
Close, David M
2010-02-04
In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.
Gierthmühlen, Janne; Enax-Krumova, Elena K; Attal, Nadine; Bouhassira, Didier; Cruccu, Giorgio; Finnerup, Nanna B; Haanpää, Maija; Hansson, Per; Jensen, Troels S; Freynhagen, Rainer; Kennedy, Jeffrey D; Mainka, Tina; Rice, Andrew S C; Segerdahl, Märta; Sindrup, Søren H; Serra, Jordi; Tölle, Thomas; Treede, Rolf-Detlef; Baron, Ralf; Maier, Christoph
2015-11-01
Clinical and human experimental pain studies often include so-called "healthy" controls in investigations of sensory abnormalities, using quantitative sensory testing (QST) as an outcome measure. However, the criteria for what is considered "healthy" vary among the different studies and between study centers and investigators, partly explaining the high variability of the results. Therefore, several aspects should be considered during inclusion of healthy volunteers in QST-based trials to have homogenous groups of healthy controls with less variability between human experimental studies, so that results are less likely to be false negative or false positive because of subject-related factors. The EUROPAIN and NEUROPAIN consortia aimed to define factors influencing the variability in selection of healthy subjects in QST-based studies before the start of both projects and to give recommendations how to minimize it based on the current literature and expertise of the participants. The present suggestions for inclusion criteria of healthy volunteers into QST-based trials describe a 2-level approach including standardized questionnaires enabling the collection of relevant information on sociodemographic data, medical history, current health status, coping strategies in dealing with pain, and the motivation of the volunteer to participate in the study. These suggestions are believed to help researchers interpret their results in comparison with others and improve the quality of clinical studies including healthy volunteers as controls or in human experimental pain studies. They aim to reduce any confounding factors. Furthermore, the acquired information will allow post hoc analyses of variance for different potential influencing factors.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei
2016-07-25
We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.
Research on image complexity evaluation method based on color information
NASA Astrophysics Data System (ADS)
Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo
2017-11-01
In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.
Accurate green water loads calculation using naval hydro pack
NASA Astrophysics Data System (ADS)
Jasak, H.; Gatin, I.; Vukčević, V.
2017-12-01
An extensive verification and validation of Finite Volume based CFD software Naval Hydro based on foam-extend is presented in this paper for green water loads. Two-phase numerical model with advanced methods for treating the free surface is employed. Pressure loads on horizontal deck of Floating Production Storage and Offloading vessel (FPSO) model are compared to experimental results from [1] for three incident regular waves. Pressure peaks and integrals of pressure in time are measured on ten different locations on deck for each case. Pressure peaks and integrals are evaluated as average values among the measured incident wave periods, where periodic uncertainty is assessed for both numerical and experimental results. Spatial and temporal discretization refinement study is performed providing numerical discretization uncertainties.
Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
Research on flow stress model and dynamic recrystallization model of X12CrMoWVNbN10-1-1 steel
NASA Astrophysics Data System (ADS)
Sui, Da-shan; Wang, Wei; Fu, Bo; Cui, Zhen-shan
2013-05-01
Plastic deformation behavior of X12CrMoWVNbN10-1-1 ferrite heat-resistant steel was studied systematically at high temperature. The stress-strain curves were measured at the temperature of 950°C-1250°C and strain rate of 0.0005s-1-0.1s-1 by Gleeble thermo-mechanical simulator. The flow stress model and dynamic recrystallization model were established based on Laasraoui two-stage model. The activation energy was calculated and the parameters were determined accordingly based on the experimental results and Sellars creep equation. The verification was performed to prove the models and it indicated the calculated results were identical to the experimental data.
Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós
2014-01-01
Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813
Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
Gapsys, Vytautas; de Groot, Bert L
2017-12-12
Nucleotide-sequence-dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have long been sought. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g., machine learning algorithms or knowledge-based statistical potentials. Molecular-dynamics-based free energy calculations offer a robust, system-independent, first-principles-based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein-DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html .
NASA Astrophysics Data System (ADS)
Lumentut, M. F.; Howard, I. M.
2013-03-01
Power harvesters that extract energy from vibrating systems via piezoelectric transduction show strong potential for powering smart wireless sensor devices in applications of health condition monitoring of rotating machinery and structures. This paper presents an analytical method for modelling an electromechanical piezoelectric bimorph beam with tip mass under two input base transverse and longitudinal excitations. The Euler-Bernoulli beam equations were used to model the piezoelectric bimorph beam. The polarity-electric field of the piezoelectric element is excited by the strain field caused by base input excitation, resulting in electrical charge. The governing electromechanical dynamic equations were derived analytically using the weak form of the Hamiltonian principle to obtain the constitutive equations. Three constitutive electromechanical dynamic equations based on independent coefficients of virtual displacement vectors were formulated and then further modelled using the normalised Ritz eigenfunction series. The electromechanical formulations include both the series and parallel connections of the piezoelectric bimorph. The multi-mode frequency response functions (FRFs) under varying electrical load resistance were formulated using Laplace transformation for the multi-input mechanical vibrations to provide the multi-output dynamic displacement, velocity, voltage, current and power. The experimental and theoretical validations reduced for the single mode system were shown to provide reasonable predictions. The model results from polar base excitation for off-axis input motions were validated with experimental results showing the change to the electrical power frequency response amplitude as a function of excitation angle, with relevance for practical implementation.
Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat
2017-07-01
In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.
[Fractal research of neurite growth in immunofluorescent images].
Tang, Min; Wang, Huinan
2008-12-01
Fractal dimension has been widely used in medical images processing and analysis. The neurite growth of cultured dorsal root ganglion (DRG) was detected by fluorescent immunocytochemistry treated with nerve regeneration factor (0.1, 0.5, 2.0 mg/L). A novel method based on triangular prism surface area (TPSA) was introduced and adopted to calculate the fractal dimension of the two-dimensional immunofluorescent images. Experimental results demonstrate that this method is easy to understand and convenient to operate, and the quantititve results are concordant with the observational findings under microscope. This method can be guidelines for analyzing and deciding experimental results.
Zhang, Hang; Xu, Qingyan
2017-10-27
Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.
Zhang, Hang; Xu, Qingyan
2017-01-01
Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw), the spiral pitch (hb) and the spiral diameter (hs), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure. PMID:29077067
Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand
2014-07-28
Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.
Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan
2014-01-21
Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.
Experimental investigation of ice slurry flow pressure drop in horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per
2009-01-15
Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less
CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya
The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less
Experimental investigation of the combustion products in an aluminised solid propellant
NASA Astrophysics Data System (ADS)
Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei
2017-04-01
Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning
2008-01-01
active learning framework for SVM-based and boosting-based rank learning. Our approach suggests sampling based on maximizing the estimated loss differential over unlabeled data. Experimental results on two benchmark corpora show that the proposed model substantially reduces the labeling effort, and achieves superior performance rapidly with as much as 30% relative improvement over the margin-based sampling
Design guide for predicting nonlinear random response (including snap-through) of buckled plates
NASA Technical Reports Server (NTRS)
Ng, Chung Fai
1989-01-01
This design guide describes a method for predicting the random response of flat and curved plates which is based on theoretical analyses and experimental results. The plate curvature can be due to postbuckling, in-plane mechanical or thermal stresses. Based on a single mode formula, root mean square values of the strain response to broadband excitation are evaluated for different static buckled configurations using the equivalent linearization technique. The effects on the overall strain response due to instability motion of snap-through are included. Panel parameters include clamped and simply-supported boundaries, aspect ratio, thickness and length. Analytical results are compared with experimental results from tests with 12 in. x 15 in. aluminum plates under thermal loading in a progressive wave facility. Comparisons are also made with results from tests with a 2 in. x 15 in. x 0.032 in. aluminum beam under base mechanical excitation. The comparisons help to assess the accuracy of the theory and the conditions under which deviations from the theory due to effects of imperfection and higher modes are significant.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu
2010-12-01
The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.
NASA Astrophysics Data System (ADS)
Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier
2018-02-01
This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.
TAP score: torsion angle propensity normalization applied to local protein structure evaluation
Tosatto, Silvio CE; Battistutta, Roberto
2007-01-01
Background Experimentally determined protein structures may contain errors and require validation. Conformational criteria based on the Ramachandran plot are mainly used to distinguish between distorted and adequately refined models. While the readily available criteria are sufficient to detect totally wrong structures, establishing the more subtle differences between plausible structures remains more challenging. Results A new criterion, called TAP score, measuring local sequence to structure fitness based on torsion angle propensities normalized against the global minimum and maximum is introduced. It is shown to be more accurate than previous methods at estimating the validity of a protein model in terms of commonly used experimental quality parameters on two test sets representing the full PDB database and a subset of obsolete PDB structures. Highly selective TAP thresholds are derived to recognize over 90% of the top experimental structures in the absence of experimental information. Both a web server and an executable version of the TAP score are available at . Conclusion A novel procedure for energy normalization (TAP) has significantly improved the possibility to recognize the best experimental structures. It will allow the user to more reliably isolate problematic structures in the context of automated experimental structure determination. PMID:17504537
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Experimental testing of spray dryer for control of incineration emissions.
Wey, M Y; Wu, H Y; Tseng, H H; Chen, J C
2003-05-01
The research investigated the absorption/adsorption efficiency of sulfur dioxide (SO2), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) with different Ca-based sorbents in a spray dryer during incineration process. For further improving the adsorption capacity of Ca-based sorbents, different spraying pressure and additives were carried out in this study. Experimental results showed that CaO could be used as an alternative sorbent in the spray dryer at an optimal initial particle size distribution of spraying droplet. In the spray dryer, Ca-based sorbents provided a lot of sites for heavy metals and PAHs condensing and calcium and alkalinity to react with metals to form merged species. As a result, heavy metals and PAHs could be removed from the flue gas simultaneously by condensation and adsorption. The additions of additives NaHCO3, SiO2, and KMnO4 were also found to be effective in improving the removal efficiency of these air pollutants.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Jaeger, Stefanie; Kastner, Oliver; Eggeler, Gunther; Hackl, Klaus
2015-07-01
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.
NASA Astrophysics Data System (ADS)
Peng, Chong; Wang, Lun; Liao, T. Warren
2015-10-01
Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.
The role of visualization in learning from computer-based images
NASA Astrophysics Data System (ADS)
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-05-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.
Jiang, Kuosheng; Xu, Guanghua; Liang, Lin; Tao, Tangfei; Gu, Fengshou
2014-07-29
In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test.
Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. F.; Tang, Z. A.
2011-04-15
A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less
Portelli, Lucas A; Falldorf, Karsten; Thuróczy, György; Cuppen, Jan
2018-04-01
Experiments on cell cultures exposed to extremely low frequency (ELF, 3-300 Hz) magnetic fields are often subject to multiple sources of uncertainty associated with specific electric and magnetic field exposure conditions. Here we systemically quantify these uncertainties based on exposure conditions described in a group of bioelectromagnetic experimental reports for a representative sampling of the existing literature. The resulting uncertainties, stemming from insufficient, ambiguous, or erroneous description, design, implementation, or validation of the experimental methods and systems, were often substantial enough to potentially make any successful reproduction of the original experimental conditions difficult or impossible. Without making any assumption about the true biological relevance of ELF electric and magnetic fields, these findings suggest another contributing factor which may add to the overall variability and irreproducibility traditionally associated with experimental results of in vitro exposures to low-level ELF magnetic fields. Bioelectromagnetics. 39:231-243, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Variable camber wing based on pneumatic artificial muscles
NASA Astrophysics Data System (ADS)
Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong
2009-07-01
As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.
Marginalized Women in West Iran
Malmir, Shabnam; Barati, Majid; Khani Jeihooni, Ali; Bashirian, Saeed; Hazavehei, Seyed Mohammad Mehdi
2018-03-27
Objective: This study aimed to determine the effectiveness of an educational intervention to prevent cervical cancer among marginalized Iranianwomen based on the Protection Motivation Theory (PMT) as a theoretical framework. Methods: This quasi-experimental study was carried out on 143 women of Kermanshah City in western Iran during 2017. Participants were recruited through cluster and simple random sampling and randomly divided into experimental (n=72) and control groups (n=71). All completed a self-administered questionnaire including PMT constructs and demographic variables. An intervention over six sessions was then applied to the experimental group. Reassessment was conducted three months after the intervention, with data was analyzed with SPSS-16 using chi-square, McNemar, paired T- and independent T-tests. Results: The mean scores for the constructs of PMT, and cervical cancer screening behavior showed no significant differences between the two groups before the intervention (P>0.05). The educational manipulation had significant effects on the experimental groups’ average response for perceived vulnerability, perceived severity, perceived reward, self-efficacy, response efficacy, response cost and protection motivation (all p < 0.001). Also, the prevalence of regular Pap smear testing and referral to health centers were significantly increased after 3 months in the experimental (P=0.048), but notthe control group (P>0.05). Conclusions: The results show that applying an educational intervention based on PMT might help prevent cervical cancer and improve regular Pap smear testing. Creative Commons Attribution License
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
NASA Astrophysics Data System (ADS)
Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.
2014-01-01
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Xiong, L. Y.; Peng, N.
2014-01-29
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less
Evolutionary-based approaches for determining the deviatoric stress of calcareous sands
NASA Astrophysics Data System (ADS)
Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh
2013-01-01
Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.
The relevance of a rules-based maize marketing policy: an experimental case study of Zambia.
Abbink, Klaus; Jayne, Thomas S; Moller, Lars C
2011-01-01
Strategic interaction between public and private actors is increasingly recognised as an important determinant of agricultural market performance in Africa and elsewhere. Trust and consultation tends to positively affect private activity while uncertainty of government behaviour impedes it. This paper reports on a laboratory experiment based on a stylised model of the Zambian maize market. The experiment facilitates a comparison between discretionary interventionism and a rules-based policy in which the government pre-commits itself to a future course of action. A simple precommitment rule can, in theory, overcome the prevailing strategic dilemma by encouraging private sector participation. Although this result is also borne out in the economic experiment, the improvement in private sector activity is surprisingly small and not statistically significant due to irrationally cautious choices by experimental governments. Encouragingly, a rules-based policy promotes a much more stable market outcome thereby substantially reducing the risk of severe food shortages. These results underscore the importance of predictable and transparent rules for the state's involvement in agricultural markets.
Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin
1993-01-01
The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.
Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi
2016-01-15
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Jun; Dang, Haizheng
2017-03-01
The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.
Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes
NASA Astrophysics Data System (ADS)
Achmad, Maulana; Suhandi, Andi
2017-05-01
The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.
2018-01-01
Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.
Data acquisition and processing history for the Explorer 33 (AIMP-D) satellite
NASA Technical Reports Server (NTRS)
Karras, T. J.
1972-01-01
The quality control monitoring system, using accounting and quality control data bases, made it possible to perform an in-depth analysis. Results show that the percentage of useable data files for experimenter analysis was 97.7%; only 0.4% of the data sequences supplied to the experimenter exhibited missing data. The 50 percentile probability delay values (referenced to station record data) indicate that the analog tapes arrived within 11 days, the data were digitized within 4.2 weeks, and the experimenter tapes were delivered in 8.95 weeks or less.
A new method for generating a hollow Gaussian beam
NASA Astrophysics Data System (ADS)
Wei, Cun; Lu, Xingyuan; Wu, Gaofeng; Wang, Fei; Cai, Yangjian
2014-04-01
Hollow Gaussian beam (HGB) was introduced 10 years ago (Cai et al. in Opt Lett 28:1084, 2003). In this paper, we introduce a new method for generating a HGB through transforming a Laguerre-Gaussian beam with radial index 0 and azimuthal index l into a HGB with mode n = l/2. Furthermore, we report experimental generation of a HGB based on the proposed method, and we carry out experimental study of the focusing properties of the generated HGB. Our experimental results agree well with the theoretical predictions.
Submerged plant’s ability to present photosynthesis based on oxygen production
NASA Astrophysics Data System (ADS)
Supriatno, B.; Ulfa, K.
2018-05-01
This study aims to provide information about alternative experimental photosynthesis for experimental teaching practices in school in the coastal region. The research method was conducted experimentally by taking examples of Submerged plant in littoral area of Leuweng Sancang beach, Garut. Plant samples were given the same light intensity treatment, then the oxygen productivity was studied as an indicator of photosynthesis rate. The results showed that there were different photosynthetic rates in different types of submerged plants. Algae as submerged plants generally photosynthesize at high light intensity. However, there are also plants with photosynthesis in low light. The comparison between sea grass (Thallasia sp) with sea weed (Ulva sp) shows the difference in oxygen productivity. Submerged plants based on their ability to produce measurable oxygen can be utilized for experiments on photosynthesis learning.
Experimental evaluation of tailored chordwise deformable box beam and correlation with theory
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Zischka, Peter J.; Chang, Stephen; Fentress, Michael L.; Ambur, Damodar R.
1993-01-01
This paper describes an experimental methodology based upon the use of a flexible sling support and load application system that has been created and utilized to evaluate a box beam which incorporates an elastic tailoring technology. The design technique used here for elastically tailoring the composite box beam structure is to produce exaggerated chordwise camber deformation of substantial magnitude to be of practical use in the new composite aircraft wings. The traditional methods such as a four-point bend test to apply constant bending moment with rigid fixtures inhibits the designed chordwise deformation from occurring and, hence, the need for the new test method. The experimental results for global camber and spanwise bending compliances correlate well with theoretical predictions based on a beam-like model.
Design of integration-ready metasurface-based infrared absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán
2015-07-28
We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.