Quantitative comparisons of analogue models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Schreurs, Guido
2010-05-01
Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments, models accommodated initial shortening by a forward- and a backward-verging thrust. Further shortening was taken up by in-sequence formation of forward-verging thrusts. In all experiments, boundary stresses created significant drag of structures along the sidewalls. We therefore compared the surface slope and the location, dip angle and spacing of thrusts in sections through the central part of the model. All models show very similar cross-sectional evolutions demonstrating reproducibility of first-order experimental observations. Nevertheless, there are significant along-strike variations of structures in map view highlighting the limits of interpretations of analogue model results. These variations may be related to the human factor, differences in model width and/or differences in laboratory temperature and especially humidity affecting the mechanical properties of the granular materials. GeoMod2008 Analogue Team: Susanne Buiter, Caroline Burberry, Jean-Paul Callot, Cristian Cavozzi, Mariano Cerca, Ernesto Cristallini, Alexander Cruden, Jian-Hong Chen, Leonardo Cruz, Jean-Marc Daniel, Victor H. Garcia, Caroline Gomes, Céline Grall, Cecilia Guzmán, Triyani Nur Hidayah, George Hilley, Chia-Yu Lu, Matthias Klinkmüller, Hemin Koyi, Jenny Macauley, Bertrand Maillot, Catherine Meriaux, Faramarz Nilfouroushan, Chang-Chih Pan, Daniel Pillot, Rodrigo Portillo, Matthias Rosenau, Wouter P. Schellart, Roy Schlische, Andy Take, Bruno Vendeville, Matteo Vettori, M. Vergnaud, Shih-Hsien Wang, Martha Withjack, Daniel Yagupsky, Yasuhiro Yamada
Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S
2007-03-01
A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.
McCaffrey, Daniel; Ramchand, Rajeev; Hunter, Sarah B.; Suttorp, Marika
2012-01-01
We develop a new tool for assessing the sensitivity of findings on treatment effectiveness to differential follow-up rates in the two treatment conditions being compared. The method censors the group with the higher response rate to create a synthetic respondent group that is then compared with the observed cases in the other condition to estimate a treatment effect. Censoring is done under various assumptions about the strength of the relationship between follow-up and outcomes to determine how informative differential dropout can alter inferences relative to estimates from models that assume the data are missing at random. The method provides an intuitive measure for understanding the strength of the association between outcomes and dropout that would be required to alter inferences about treatment effects. Our approach is motivated by translational research in which treatments found to be effective under experimental conditions are tested in standard treatment conditions. In such applications, follow-up rates in the experimental setting are likely to be substantially higher than in the standard setting, especially when observational data are used in the evaluation. We test the method on a case study evaluation of the effectiveness of an evidence-supported adolescent substance abuse treatment program (Motivational Enhancement Therapy/Cognitive Behavioral Therapy-5 [MET/CBT-5]) delivered by community-based treatment providers relative to its performance in a controlled research trial. In this case study, follow-up rates in the community based settings were extremely low (54%) compared to the experimental setting (95%) giving raise to concerns about non-ignorable drop-out. PMID:22956890
ERIC Educational Resources Information Center
Birk, James P., Ed.
1989-01-01
Presented is a simple laboratory set-up for teaching microprocessor-controlled data acquisition as a part of an instrumental analysis course. Discussed are the experimental set-up, experimental procedures, and technical considerations for this technique. (CW)
MAVTgsa: An R Package for Gene Set (Enrichment) Analysis
Chien, Chih-Yi; Chang, Ching-Wei; Tsai, Chen-An; ...
2014-01-01
Gene semore » t analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed, a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously. This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment analysis. (1) The one-sided OLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either up- or downregulation. (2) The two-sided MANOVA (multivariate analysis variance) detects changes both up- and downregulation for studying two or more experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes the P values and FDR (false discovery rate) q -value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization outputs to support and interpret the enrichment results. This package is available online.« less
Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian
2013-01-01
Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969
A new mechatronic set-up and technique for investigation of firearms
NASA Astrophysics Data System (ADS)
Lesenciuc, Ioan; Suciu, Cornel
2016-12-01
Since ancient times, mankind has manifested interest in the development and improvement of weapons, either for military or hunting purposes. Today, in competition with these legal practices, the number of those who commit crimes by non-compliance with the regime of weapons and ammunition has increased exponentially. This is why the technology and methods employed in the area of judicial ballistics, requires constant research and continuous learning. The present paper advances a new experimental set-up and its corresponding methodology, meant to measure the force deployed by the firing pin. The new experimental set-up and procedure consists of a mechatronic structure, based on a piezoelectric force transducer, which allows to measure, in-situ, the force produced by the firing pin when it is deployed. The obtained information can further be used to establish a correspondence between this force and the imprint left on the firing cap. This correspondence furthers the possibility of elaborating a model that would permit ballistic experts to correctly identify a smoothbore weapon.
NASA Astrophysics Data System (ADS)
Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier
2018-02-01
This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.
Velocity Measurements in Nasal Cavities by Means of Stereoscopic Piv - Preliminary Tests
NASA Astrophysics Data System (ADS)
Cozzi, Fabio; Felisati, Giovanni; Quadrio, Maurizio
2017-08-01
The prediction of detailed flow patterns in human nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics of the nasal anatomy and health problems, and ultimately led to improved surgery. The complex flow structure and the intricate geometry of the nasal cavities make achieving such goals a challenge for CFD specialists. The need for experimental data to validate and improve the numerical simulations is particularly crucial. To this aim an experimental set-up based on Stereo PIV and a silicon phantom of nasal cavities have been designed and realized at Politecnico di Milano. This work describes the main features and challenges of the set-up along with some preliminary results.
ERIC Educational Resources Information Center
Psycharis, Sarantos
2016-01-01
Computational experiment approach considers models as the fundamental instructional units of Inquiry Based Science and Mathematics Education (IBSE) and STEM Education, where the model take the place of the "classical" experimental set-up and simulation replaces the experiment. Argumentation in IBSE and STEM education is related to the…
A dynamic-based measurement of a spring constant with a smartphone light sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre
2018-05-01
An accessible smartphone-based experimental set-up for measuring a spring constant is presented. Using the smartphone ambient light sensor as the motion timer that allows for the measurement of the period of oscillations of a vertical spring-mass oscillator we found the spring constant to be 27.3 +/- 0.2 N m-1. This measurement is in a satisfactory agreement with another experimental value, 26.7 +/- 0.1 N m-1, obtained via the traditional static method.
Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases
2016-08-01
AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the
The experimental set-up of the RIB in-flight facility EXOTIC
NASA Astrophysics Data System (ADS)
Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.
2016-10-01
We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
Remote sensing from the desktop up, a students's personal stairway to space (Invited)
NASA Astrophysics Data System (ADS)
Church, W.
2013-12-01
Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a weather balloon launch to 100,000 feet.
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro
2013-01-01
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.
2017-06-01
Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.
a New Set-Up for Total Reaction Cross Section Measuring
NASA Astrophysics Data System (ADS)
Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.
2013-06-01
The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.
Al-Ahmad, Ali; Zou, Peng; Solarte, Diana Lorena Guevara; Hellwig, Elmar; Steinberg, Thorsten; Lienkamp, Karen
2014-01-01
Bacterial infection of biomaterials is a major concern in medicine, and different kinds of antimicrobial biomaterial have been developed to deal with this problem. To test the antimicrobial performance of these biomaterials, the airborne bacterial assay is used, which involves the formation of biohazardous bacterial aerosols. We here describe a new experimental set-up which allows safe handling of such pathogenic aerosols, and standardizes critical parameters of this otherwise intractable and strongly user-dependent assay. With this new method, reproducible, thorough antimicrobial data (number of colony forming units and live-dead-stain) was obtained. Poly(oxonorbornene)-based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) were used as antimicrobial test samples. The assay was able to differentiate even between subtle sample differences, such as different sample thicknesses. With this new set-up, the airborne bacterial assay was thus established as a useful, reliable, and realistic experimental method to simulate the contamination of biomaterials with bacteria, for example in an intraoperative setting.
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas
2016-04-01
In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.
Communication: Electron ionization of DNA bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less
Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra
2011-10-01
Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.
2017-03-01
An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.
ERIC Educational Resources Information Center
Elbow, Peter
2006-01-01
Inoue [Inoue, A. B. (2005). "Community-based assessment pedagogy." "Assessing Writing: An International Journal, 3", 208-238] sets up a radically experimental writing class as a kind of laboratory of assessment. He seeks to avoid the standard situation where a teacher unilaterally assesses and grades student writing, using only his or her own…
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
A simple pendulum-based measurement of g with a smartphone light sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante
2018-07-01
A quick and very accessible method for the measurement of acceleration due to gravity is presented. The experimental set-up employs a smartphone ambient light sensor as the motion timer for measuring the period of a simple pendulum. This allowed us to obtain an experimental value, 9.72 + 0.05 m s‑2, for the gravitational acceleration which is in good agreement with the local theoretical value of 9.78 m s‑2.
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
Improved inhalation technology for setting safe exposure levels for workplace chemicals
NASA Technical Reports Server (NTRS)
Stuart, Bruce O.
1993-01-01
Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.
Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system
NASA Astrophysics Data System (ADS)
Guigou-Carter, C.; Villot, M.; Guillerme, B.; Petit, C.
2006-06-01
In this paper, a simple prediction tool based on a two-dimensional model is developed for a slab track system composed of two rails with rail pads, sleepers with sleeper pads, and a concrete base slab. The track and the slab are considered as infinite beams with bending stiffness, loss factor and mass per unit length. The track system is represented by its impedance per unit length of track and the ground by its line input impedance calculated using a two-dimensional elastic half-space ground model based on the wave approach. Damping of each track component is modelled as hysteretic damping and is taken into account by using a complex stiffness. The unsprung mass of the vehicle is considered as a concentrated mass at the excitation point on the rail head. The effect of the dynamic stiffness of the sleeper pads on the vibration isolation is studied in detail, the vibration isolation provided by the track system being quantified by an insertion gain in dB per one-third octave band. The second part of this paper presents an experimental test rig used to measure the dynamic stiffness of the sleeper pads on a full width section of the track (two rails). The experimental set-up is submitted to vertical as well as horizontal static loads (via hydraulic jacks) and an electrodynamic shaker is used for dynamic excitation of the system. The determination of the dynamic stiffness of the sleeper pads is based on the approach called the "direct method". The limitations of the experimental set-up are discussed. The measurement results for one type of sleeper pad are presented.
Bridging the gap between evidence-based innovation and national health-sector reform in Ghana.
Awoonor-Williams, John Koku; Feinglass, Ellie S; Tobey, Rachel; Vaughan-Smith, Maya N; Nyonator, Frank K; Jones, Tanya C
2004-09-01
Although experimental trials often identify optimal strategies for improving community health, transferring operational innovation from well-funded research programs to resource-constrained settings often languishes. Because research initiatives are based in institutions equipped with unique resources and staff capabilities, results are often dismissed by decisionmakers as irrelevant to large-scale operations and national health policy. This article describes an initiative undertaken in Nkwanta District, Ghana, focusing on this problem. The Nkwanta District initiative is a critical link between the experimental study conducted in Navrongo, Ghana, and a national effort to scale up the innovations developed in that study. A 2002 Nkwanta district-level survey provides the basis for assessing the likelihood that the Navrongo model is replicable elsewhere in Ghana. The effect of community-based health planning and services exposure on family planning and safe-motherhood indicators supports the hypothesis that Navrongo effects are transferable to impoverished rural settings elsewhere, confirming the need for strategies to bridge the gap between Navrongo evidence-based innovation and national health-sector reform.
Grimbergen, T W; van Dijk, E; de Vries, W
1998-11-01
A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.
Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per
2017-06-01
Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.
NASA Astrophysics Data System (ADS)
Velarde, P.; Valverde, L.; Maestre, J. M.; Ocampo-Martinez, C.; Bordons, C.
2017-03-01
In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.
Equation of state for 1,2-dichloroethane based on a hybrid data set
NASA Astrophysics Data System (ADS)
Thol, Monika; Rutkai, Gábor; Köster, Andreas; Miroshnichenko, Svetlana; Wagner, Wolfgang; Vrabec, Jadran; Span, Roland
2017-06-01
A fundamental equation of state in terms of the Helmholtz energy is presented for 1,2-dichloroethane. Due to a narrow experimental database, not only laboratory measurements but also molecular simulation data are applied to the fitting procedure. The present equation of state is valid from the triple point up to 560 K for pressures of up to 100 MPa. The accuracy of the equation is assessed in detail. Furthermore, a reasonable extrapolation behaviour is verified.
NASA Astrophysics Data System (ADS)
Grzesik, W.; Niesłony, P.; Laskowski, P.
2017-12-01
In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.
A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles
Alderisio, Francesco; Lombardi, Maria; Fiore, Gianfranco; di Bernardo, Mario
2017-01-01
Existing experimental works on movement coordination in human ensembles mostly investigate situations where each subject is connected to all the others through direct visual and auditory coupling, so that unavoidable social interaction affects their coordination level. Here, we present a novel computer-based set-up to study movement coordination in human groups so as to minimize the influence of social interaction among participants and implement different visual pairings between them. In so doing, players can only take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players in the group and their own dynamics. In addition, our set-up enables the deployment of virtual computer players to investigate dyadic interaction between a human and a virtual agent, as well as group synchronization in mixed teams of human and virtual agents. We show how this novel set-up can be employed to study coordination both in dyads and in groups over different structures of interconnections, in the presence as well as in the absence of virtual agents acting as followers or leaders. Finally, in order to illustrate the capabilities of the architecture, we describe some preliminary results. The platform is available to any researcher who wishes to unfold the mechanisms underlying group synchronization in human ensembles and shed light on its socio-psychological aspects. PMID:28649217
Spoelstra, Kamiel; van Grunsven, Roy H. A.; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E.; Slaterus, Roy; Berendse, Frank; Visser, Marcel E.; Veenendaal, Elmar
2015-01-01
Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. PMID:25780241
Spoelstra, Kamiel; van Grunsven, Roy H A; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E; Slaterus, Roy; Berendse, Frank; Visser, Marcel E; Veenendaal, Elmar
2015-05-05
Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level-thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling
Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.
2013-01-01
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583
New laser power sensor using weighing method
NASA Astrophysics Data System (ADS)
Pinot, P.; Silvestri, Z.
2018-01-01
We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.
Wu, Zujian; Pang, Wei; Coghill, George M
Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.
Experimental characterization of 3-dimensional gravity-driven fingering in a porous medium
NASA Astrophysics Data System (ADS)
Dalbe, Marie-Julie; Juanes, Ruben
2017-11-01
When water infiltrates a dry porous media, a gravity-driven instability can be observed. Water will penetrate the porous media along preferential paths, called fingers. This gravity-driven unstable multiphase flow has important implications for natural phenomena such as rainwater infiltration in soil and secondary oil migration in reservoir rocks. While several experimental and numerical studies have described the instability in 2-dimensional (2D) settings, fundamental questions remain on the morphodynamics of gravity fingering in 3D. We developed a 3D experimental set-up based on planar laser-induced fluorescence of index-matched fluids that allows us to image this phenomenon dynamically. We study the impact of some crucial parameters such as rainfall rate or grain size on the finger size and velocity. In addition, experiments in stratified media reveal interesting dynamics of finger flow across material interfaces, an essential aspect towards the understanding of water infiltration in soils.
Imaging of particles with 3D full parallax mode with two-color digital off-axis holography
NASA Astrophysics Data System (ADS)
Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal
2018-05-01
This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.
NASA Astrophysics Data System (ADS)
Kaucikas, M.; Warren, M.; Michailovas, A.; Antanavicius, R.; van Thor, J. J.
2013-02-01
This paper describes the investigation of an optical parametric oscillator (OPO) set-up based on two beta barium borate (BBO) crystals, where the interplay between the crystal orientations, cut angles and air dispersion substantially influenced the OPO performance, and especially the angular spectrum of the output beam. Theory suggests that if two BBO crystals are used in this type of design, they should be of different cuts. This paper aims to provide an experimental manifestation of this fact. Furthermore, it has been shown that air dispersion produces similar effects and should be taken into account. An x-ray crystallographic indexing of the crystals was performed as an independent test of the above conclusions.
Automatic Extraction of Urban Built-Up Area Based on Object-Oriented Method and Remote Sensing Data
NASA Astrophysics Data System (ADS)
Li, L.; Zhou, H.; Wen, Q.; Chen, T.; Guan, F.; Ren, B.; Yu, H.; Wang, Z.
2018-04-01
Built-up area marks the use of city construction land in the different periods of the development, the accurate extraction is the key to the studies of the changes of urban expansion. This paper studies the technology of automatic extraction of urban built-up area based on object-oriented method and remote sensing data, and realizes the automatic extraction of the main built-up area of the city, which saves the manpower cost greatly. First, the extraction of construction land based on object-oriented method, the main technical steps include: (1) Multi-resolution segmentation; (2) Feature Construction and Selection; (3) Information Extraction of Construction Land Based on Rule Set, The characteristic parameters used in the rule set mainly include the mean of the red band (Mean R), Normalized Difference Vegetation Index (NDVI), Ratio of residential index (RRI), Blue band mean (Mean B), Through the combination of the above characteristic parameters, the construction site information can be extracted. Based on the degree of adaptability, distance and area of the object domain, the urban built-up area can be quickly and accurately defined from the construction land information without depending on other data and expert knowledge to achieve the automatic extraction of the urban built-up area. In this paper, Beijing city as an experimental area for the technical methods of the experiment, the results show that: the city built-up area to achieve automatic extraction, boundary accuracy of 2359.65 m to meet the requirements. The automatic extraction of urban built-up area has strong practicality and can be applied to the monitoring of the change of the main built-up area of city.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Simple Demonstration of the Seebeck Effect
ERIC Educational Resources Information Center
Molki, Arman
2010-01-01
In this article we propose a simple and low-cost experimental set-up through which science educators can demonstrate the Seebeck effect using a thermocouple and an instrumentation amplifier. The experiment can be set up and conducted during a 1-hour laboratory session. (Contains 3 tables and 3 figures.)
A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kiernan, Michael T.; Duke, John C., Jr.
1990-01-01
A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.
Automatized set-up procedure for transcranial magnetic stimulation protocols.
Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A
2017-06-01
Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.
Competitive code-based fast palmprint identification using a set of cover trees
NASA Astrophysics Data System (ADS)
Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan
2009-06-01
A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
NASA Astrophysics Data System (ADS)
Anderson, Kevin; Lin, Jun T.; Wong, Alexander J.
2017-11-01
Research findings of an experimental and numerical investigation of windage losses in the small annular air gap region between the stator and rotor of a high speed electric motor are presented herein. The experimental set-up is used to empirically measure the windage losses in the motor by measuring torque and rotational speed. The motor rotor spins at roughly 30,000 rpm and the rotor sets up windage losses on the order of 100 W. Axial air flow of 200 L/min is used to cool the motor, thus setting up a pseudo Taylor-Couette Poiseuille type of flow. Details of the experimental test apparatus, instrumentation and data acquisition are given. Experimental data for spin-down (both actively and passively cooled) and calibration of bearing windage losses are discussed. A Computational Fluid Dynamics (CFD) model is developed and used to predict the torque speed curve and windage losses in the motor. The CFD model is correlated with the experimental data. The CFD model is also used to predict the formation of the Taylor-Couette cells in the small gap region of the high speed motor. Results for windage losses, spin-down time constant, bearing losses, and torque of the motor versus cooling air mass flow rate and rotational speed are presented in this study. Mechanical Engineering.
Development of an experimental setup for testing the properties of γ/γ' superalloys
NASA Astrophysics Data System (ADS)
Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin
2010-07-01
Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.
Detection and localization of copy-paste forgeries in digital videos.
Singh, Raahat Devender; Aggarwal, Naveen
2017-12-01
Amidst the continual march of technology, we find ourselves relying on digital videos to proffer visual evidence in several highly sensitive areas such as journalism, politics, civil and criminal litigation, and military and intelligence operations. However, despite being an indispensable source of information with high evidentiary value, digital videos are also extremely vulnerable to conscious manipulations. Therefore, in a situation where dependence on video evidence is unavoidable, it becomes crucial to authenticate the contents of this evidence before accepting them as an accurate depiction of reality. Digital videos can suffer from several kinds of manipulations, but perhaps, one of the most consequential forgeries is copy-paste forgery, which involves insertion/removal of objects into/from video frames. Copy-paste forgeries alter the information presented by the video scene, which has a direct effect on our basic understanding of what that scene represents, and so, from a forensic standpoint, the challenge of detecting such forgeries is especially significant. In this paper, we propose a sensor pattern noise based copy-paste detection scheme, which is an improved and forensically stronger version of an existing noise-residue based technique. We also study a demosaicing artifact based image forensic scheme to estimate the extent of its viability in the domain of video forensics. Furthermore, we suggest a simplistic clustering technique for the detection of copy-paste forgeries, and determine if it possess the capabilities desired of a viable and efficacious video forensic scheme. Finally, we validate these schemes on a set of realistically tampered MJPEG, MPEG-2, MPEG-4, and H.264/AVC encoded videos in a diverse experimental set-up by varying the strength of post-production re-compressions and transcodings, bitrates, and sizes of the tampered regions. Such an experimental set-up is representative of a neutral testing platform and simulates a real-world forgery scenario where the forensic investigator has no control over any of the variable parameters of the tampering process. When tested in such an experimental set-up, the four forensic schemes achieved varying levels of detection accuracies and exhibited different scopes of applicabilities. For videos compressed using QFs in the range 70-100, the existing noise residue based technique generated average detection accuracy in the range 64.5%-82.0%, while the proposed sensor pattern noise based scheme generated average accuracy in the range 89.9%-98.7%. For the aforementioned range of QFs, average accuracy rates achieved by the suggested clustering technique and the demosaicing artifact based approach were in the range 79.1%-90.1% and 83.2%-93.3%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.
Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations
Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Fast Responding Oxygen Sensor For Respiratorial Analysis
NASA Astrophysics Data System (ADS)
Karpf, Hellfried H.; Kroneis, H. W.; Marsoner, Hermann J.; Metzler, H.; Gravenstein, N.
1990-02-01
Breath-by-breath monitoring of the partial pressure of oxygen is the main interest for the development of a fast responding optical oxygen sensor. Monitoring the P02 finds its main interest in critical care, in artificial respiration, in breath by breath determination of respiratorial coefficients and in pulmonarial examinations. The requirements arising from these and similar applications are high precision, high long term stability, and time constants in the range of less than 0.1 sec. In order to cope with these requirements, we investigated different possibilities of fast P02-measurements by means of optical sensors based on fluorescence quenching. The experimental set up is simple: a rigid transparent layer is coated with a thin layer of an hydrophobic polymer which has a high permeability for oxygen. The oxygen sensitive indicator material is embedded into this polymer. An experimental set up showed time constants of 30 milliseconds. The lifetime is in the range of several months. Testing of our test equipment by an independent working group resulted in surprisingly good correlation with data obtained by mass spectroscopy.
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
Mozumder, Md Salatul Islam; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P
2015-09-01
This study evaluates the effect of sodium (Na(+)) concentration on the growth and PHB production by Cupriavidus necator. Both biomass growth and PHB production were inhibited by Na(+): biomass growth became zero at 8.9 g/L Na(+) concentration while PHB production was completely stopped at 10.5 g/L Na(+). A mathematical model for pure culture heterotrophic PHB production was set up to describe the Na(+) inhibition effect. The parameters related to Na(+) inhibition were estimated based on shake flask experiments. The accumulated Na(+) showed non-linear inhibition effect on biomass growth but linear inhibition effect on PHB production kinetics. Fed-batch experiments revealed that a high accumulation of Na(+) due to a prolonged growth phase, using NaOH for pH control, decreased the subsequent PHB production. The model was validated based on independent experimental data sets, showing a good agreement between experimental data and simulation results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pahnke, Johan; Lundgren, Tobias; Hursti, Timo; Hirvikoski, Tatja
2014-11-01
Autism spectrum disorder is characterized by social impairments and behavioural inflexibility. In this pilot study, the feasibility and outcomes of a 6-week acceptance and commitment therapy-based skills training group were evaluated in a special school setting using a quasi-experimental design (acceptance and commitment therapy/school classes as usual). A total of 28 high-functioning students with autism spectrum disorder (aged 13-21 years) were assessed using self- and teacher-ratings at pre- and post-assessment and 2-month follow-up. All participants completed the skills training, and treatment satisfaction was high. Levels of stress, hyperactivity and emotional distress were reduced in the treatment group. The acceptance and commitment therapy group also reported increased prosocial behaviour. These changes were stable or further improved at the 2-month follow-up. Larger studies are needed to further evaluate the benefits of acceptance and commitment therapy for autism spectrum disorder. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Imada, Keita; Nakamura, Katsuhiko
This paper describes recent improvements to Synapse system for incremental learning of general context-free grammars (CFGs) and definite clause grammars (DCGs) from positive and negative sample strings. An important feature of our approach is incremental learning, which is realized by a rule generation mechanism called “bridging” based on bottom-up parsing for positive samples and the search for rule sets. The sizes of rule sets and the computation time depend on the search strategies. In addition to the global search for synthesizing minimal rule sets and serial search, another method for synthesizing semi-optimum rule sets, we incorporate beam search to the system for synthesizing semi-minimal rule sets. The paper shows several experimental results on learning CFGs and DCGs, and we analyze the sizes of rule sets and the computation time.
NASA Astrophysics Data System (ADS)
Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed
2014-04-01
We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.
NASA Astrophysics Data System (ADS)
Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco
2015-06-01
Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Application of activation methods on the Dubna experimental transmutation set-ups.
Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M
2003-02-01
High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.
Millimeter- and submillimeter-wave characterization of various fabrics.
Dunayevskiy, Ilya; Bortnik, Bartosz; Geary, Kevin; Lombardo, Russell; Jack, Michael; Fetterman, Harold
2007-08-20
Transmission measurements of 14 fabrics are presented in the millimeter-wave and submillimeter-wave electromagnetic regions from 130 GHz to 1.2 THz. Three independent sources and experimental set-ups were used to obtain accurate results over a wide spectral range. Reflectivity, a useful parameter for imaging applications, was also measured for a subset of samples in the submillimeter-wave regime along with polarization sensitivity of the transmitted beam and transmission through doubled layers. All of the measurements were performed in free space. Details of these experimental set-ups along with their respective challenges are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajauria, Sukumar, E-mail: sukumar.rajauria@hgst.com; Canchi, Sripathi V., E-mail: sripathi.canchi@hgst.com; Schreck, Erhard
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head andmore » the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.« less
Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno
2015-02-01
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.
Development of a Novel Alginate-Based Pleural Sealant
2017-09-01
and will be the subject of ongoing studies . Figure 20: Experimental set-up for endobronchial administration of sealants in the ex vivo pig lung...toxicity. In the studies to date, we have done extensive materials characterization not just of modified alginates but now a number of other biologic...pig) ex vivo lung models and have performed initial in vivo evaluations of several compounds in a non-survival surgery rat lung injury model. The
Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele
2017-01-01
Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).
Warm-up for Sprint Swimming: Race-Pace or Aerobic Stimulation? A Randomized Study.
Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A
2017-09-01
Neiva, HP, Marques, MC, Barbosa, TM, Izquierdo, M, Viana, JL, Teixeira, AM, and Marinho, DA. Warm-up for sprint swimming: race-pace or aerobic stimulation? A randomized study. J Strength Cond Res 31(9): 2423-2431, 2017-The aim of this study was to compare the effects of 2 different warm-up intensities on 100-m swimming performance in a randomized controlled trial. Thirteen competitive swimmers performed two 100-m freestyle time-trials on separate days after either control or experimental warm-up in a randomized design. The control warm-up included a typical race-pace set (4 × 25 m), whereas the experimental warm-up included an aerobic set (8 × 50 m at 98-102% of critical velocity). Cortisol, testosterone, blood lactate ([La]), oxygen uptake (V[Combining Dot Above]O2), heart rate, core (Tcore and Tcorenet) and tympanic temperatures, and rating of perceived exertion (RPE) were monitored. Stroke length (SL), stroke frequency (SF), stroke index (SI), and propelling efficiency (ηp) were assessed for each 50-m lap. We found that V[Combining Dot Above]O2, heart rate, and Tcorenet were higher after experimental warm-up (d > 0.73), but only the positive effect for Tcorenet was maintained until the trial. Performance was not different between conditions (d = 0.07). Experimental warm-up was found to slow SF (mean change ±90% CL = 2.06 ± 1.48%) and increase SL (1.65 ± 1.40%) and ηp (1.87 ± 1.33%) in the first lap. After the time-trials, this warm-up had a positive effect on Tcorenet (d = 0.69) and a negative effect on [La] (d = 0.56). Although the warm-ups had similar outcomes in the 100-m freestyle, performance was achieved through different biomechanical strategies. Stroke length and efficiency were higher in the first lap after the experimental warm-up, whereas SF was higher after control warm-up. Physiological adaptations were observed mainly through an increased Tcore after experimental warm-up. In this condition, the lower [La] after the trial suggests lower dependency on anaerobic metabolism.
Muon background studies for shallow depth Double - Chooz near detector
NASA Astrophysics Data System (ADS)
Gómez, H.
2015-08-01
Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, H.
Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine themore » muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.« less
Study of materials for space processing
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.
NASA Astrophysics Data System (ADS)
Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.
2018-01-01
It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
Recognizing human actions by learning and matching shape-motion prototype trees.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2012-03-01
A shape-motion prototype-based approach is introduced for action recognition. The approach represents an action as a sequence of prototypes for efficient and flexible action matching in long video sequences. During training, an action prototype tree is learned in a joint shape and motion space via hierarchical K-means clustering and each training sequence is represented as a labeled prototype sequence; then a look-up table of prototype-to-prototype distances is generated. During testing, based on a joint probability model of the actor location and action prototype, the actor is tracked while a frame-to-prototype correspondence is established by maximizing the joint probability, which is efficiently performed by searching the learned prototype tree; then actions are recognized using dynamic prototype sequence matching. Distance measures used for sequence matching are rapidly obtained by look-up table indexing, which is an order of magnitude faster than brute-force computation of frame-to-frame distances. Our approach enables robust action matching in challenging situations (such as moving cameras, dynamic backgrounds) and allows automatic alignment of action sequences. Experimental results demonstrate that our approach achieves recognition rates of 92.86 percent on a large gesture data set (with dynamic backgrounds), 100 percent on the Weizmann action data set, 95.77 percent on the KTH action data set, 88 percent on the UCF sports data set, and 87.27 percent on the CMU action data set.
Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search
NASA Astrophysics Data System (ADS)
Nakamura, Katsuhiko; Hoshina, Akemi
This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.
Low gravity transfer line chilldown
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Collins, Frank G.; Kawaji, Masahiro
1992-01-01
The progress to date is presented in providing predictive capabilities for the transfer line chilldown problem in low gravity environment. A low gravity experimental set up was designed and flown onboard the NASA/KC-135 airplane. Some results of this experimental effort are presented. The cooling liquid for these experiments was liquid nitrogen. The boiling phenomenon was investigated in this case using flow visualization techniques as well as recording wall temperatures. The flow field was established by injecting cold liquid in a heated tube whose temperature was set above saturation values. The tubes were vertically supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.
Light Scattering from Rough Surfaces. Appendix. Angular Correlation of Speckle Patterns. Draft
1994-06-01
For his demonstrations of the various experimental techniques, I owe thanks to Andrew Sant. Also, on behalf of all students writing (and written) up ...less controllable, radar set up . 1.1.1 Theoretical Models This section will present some of the theoretical models which exist for determining the...centre of a turntable set up to spin at :300 revolutions per minute. While the turntable is stationary, photoresist is applied to the centre of the
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate
2017-10-01
3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.
Garaizar, Pablo; Reips, Ulf-Dietrich
2015-09-01
DMDX is a software package for the experimental control and timing of stimulus display for Microsoft Windows systems. DMDX is reliable, flexible, millisecond accurate, and can be downloaded free of charge; therefore it has become very popular among experimental researchers. However, setting up a DMDX-based experiment is burdensome because of its command-based interface. Further, DMDX relies on RTF files in which parts of the stimuli, design, and procedure of an experiment are defined in a complicated (DMASTR-compatible) syntax. Other experiment software, such as E-Prime, Psychopy, and WEXTOR, became successful as a result of integrated visual authoring tools. Such an intuitive interface was lacking for DMDX. We therefore created and present here Visual DMDX (http://visualdmdx.com/), a HTML5-based web interface to set up experiments and export them to DMDX item files format in RTF. Visual DMDX offers most of the features available from the rich DMDX/DMASTR syntax, and it is a useful tool to support researchers who are new to DMDX. Both old and modern versions of DMDX syntax are supported. Further, with Visual DMDX, we go beyond DMDX by having added export to JSON (a versatile web format), easy backup, and a preview option for experiments. In two examples, one experiment each on lexical decision making and affective priming, we explain in a step-by-step fashion how to create experiments using Visual DMDX. We release Visual DMDX under an open-source license to foster collaboration in its continuous improvement.
Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an Iot Architecture.
Garcia Guzman, Javier; Prieto Gonzalez, Lisardo; Pajares Redondo, Jonatan; Sanz Sanchez, Susana; Boada, Beatriz L
2018-06-03
In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.
System integration of RF based negative ion experimental facility at IPR
NASA Astrophysics Data System (ADS)
Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.
2010-02-01
The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.
Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C
2012-06-01
Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.
2009-08-20
at low ion energies require appropriate ion sources. For example, past work using QCM sensors employed a magnetron as an ion source 32,33 . The...and for data logging. Detailed discussion of the QCM sensor is provided in Section IID. Figure 1. Schematic diagram of the experimental set-up...mass flow rate of 0.5 sccm. The PBN was biased negatively relative to ground potential. D. QCM Sensor and Temperature Control In deposition mode
Bessel beams with spatial oscillating polarization
Fu, Shiyao; Zhang, Shikun; Gao, Chunqing
2016-01-01
Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174
Real-cinematographic visualization of droplet ejection in thermal ink jets
NASA Astrophysics Data System (ADS)
Rembe, Christian; Patzer, Joachim; Hofer, Eberhard P.; Krehl, Peter
1996-03-01
Although thermal ink jet printers have gained a high market share there are still open questions left in the understanding of the processes in ink jet firing chambers. The experimental investigation of these processes is difficult due to the extremely short time durations of the different phenomena. For example, the bubble life time amounts to approximately 20 microsecond(s) . A new experimental set-up is presented to record phenomena of very short time duration like the bubble nucleation process and the beginning of droplet ejection. This set-up allows realcinematographic visualization with a local resolution of less than 1 micrometers and a time resolution of 10 ns. This also offers the possibility to investigate transient processes like the droplet ejection at high printing frequencies. The essential part of the set-up is a new high speed camera. With an exact evaluation of the digitized images the locus, velocity, and acceleration distributions of the phase interface from liquid to vapor/air can be measured. In addition the results of a numerical model with realistic geometry of the firing chamber and the nozzle have been compared with the experimental results to draw conclusions for pressure propagation in the vapor bubble.
Thermographic measurements of high-speed metal cutting
NASA Astrophysics Data System (ADS)
Mueller, Bernhard; Renz, Ulrich
2002-03-01
Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.
Fang, Cheng; Butler, David Lee
2013-05-01
In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.
eSBMTools 1.0: enhanced native structure-based modeling tools.
Lutz, Benjamin; Sinner, Claude; Heuermann, Geertje; Verma, Abhinav; Schug, Alexander
2013-11-01
Molecular dynamics simulations provide detailed insights into the structure and function of biomolecular systems. Thus, they complement experimental measurements by giving access to experimentally inaccessible regimes. Among the different molecular dynamics techniques, native structure-based models (SBMs) are based on energy landscape theory and the principle of minimal frustration. Typically used in protein and RNA folding simulations, they coarse-grain the biomolecular system and/or simplify the Hamiltonian resulting in modest computational requirements while achieving high agreement with experimental data. eSBMTools streamlines running and evaluating SBM in a comprehensive package and offers high flexibility in adding experimental- or bioinformatics-derived restraints. We present a software package that allows setting up, modifying and evaluating SBM for both RNA and proteins. The implemented workflows include predicting protein complexes based on bioinformatics-derived inter-protein contact information, a standardized setup of protein folding simulations based on the common PDB format, calculating reaction coordinates and evaluating the simulation by free-energy calculations with weighted histogram analysis method or by phi-values. The modules interface with the molecular dynamics simulation program GROMACS. The package is open source and written in architecture-independent Python2. http://sourceforge.net/projects/esbmtools/. alexander.schug@kit.edu. Supplementary data are available at Bioinformatics online.
Research on the thickness control method of workbench oil film based on theoretical model
NASA Astrophysics Data System (ADS)
Pei, Tang; Lin, Lin; Liu, Ge; Yu, Liping; Xu, Zhen; Zhao, Di
2018-06-01
To improve the thickness adjustability of the workbench oil film, we designed a software system to control the thickness of oil film based on the Siemens 840dsl CNC system and set up an experimental platform. A regulation scheme of oil film thickness based on theoretical model is proposed, the accuracy and feasibility of which is proved by experiment results. It's verified that the method mentioned above can meet the demands of workbench oil film thickness control, the experiment is simple and efficient with high control precision. Reliable theory support is supplied for the development of workbench oil film active control system as well.
DiffPy-CMI-Python libraries for Complex Modeling Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billinge, Simon; Juhas, Pavol; Farrow, Christopher
2014-02-01
Software to manipulate and describe crystal and molecular structures and set up structural refinements from multiple experimental inputs. Calculation and simulation of structure derived physical quantities. Library for creating customized refinements of atomic structures from available experimental and theoretical inputs.
Schadt, Eric E; Edwards, Stephen W; GuhaThakurta, Debraj; Holder, Dan; Ying, Lisa; Svetnik, Vladimir; Leonardson, Amy; Hart, Kyle W; Russell, Archie; Li, Guoya; Cavet, Guy; Castle, John; McDonagh, Paul; Kan, Zhengyan; Chen, Ronghua; Kasarskis, Andrew; Margarint, Mihai; Caceres, Ramon M; Johnson, Jason M; Armour, Christopher D; Garrett-Engele, Philip W; Tsinoremas, Nicholas F; Shoemaker, Daniel D
2004-01-01
Background Computational and microarray-based experimental approaches were used to generate a comprehensive transcript index for the human genome. Oligonucleotide probes designed from approximately 50,000 known and predicted transcript sequences from the human genome were used to survey transcription from a diverse set of 60 tissues and cell lines using ink-jet microarrays. Further, expression activity over at least six conditions was more generally assessed using genomic tiling arrays consisting of probes tiled through a repeat-masked version of the genomic sequence making up chromosomes 20 and 22. Results The combination of microarray data with extensive genome annotations resulted in a set of 28,456 experimentally supported transcripts. This set of high-confidence transcripts represents the first experimentally driven annotation of the human genome. In addition, the results from genomic tiling suggest that a large amount of transcription exists outside of annotated regions of the genome and serves as an example of how this activity could be measured on a genome-wide scale. Conclusions These data represent one of the most comprehensive assessments of transcriptional activity in the human genome and provide an atlas of human gene expression over a unique set of gene predictions. Before the annotation of the human genome is considered complete, however, the previously unannotated transcriptional activity throughout the genome must be fully characterized. PMID:15461792
Rimboud, M; Pocaznoi, D; Erable, B; Bergel, A
2014-08-21
Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains. Out of several thousands of studies, only a minority have used 3-electrode set-ups to ensure well-controlled electroanalysis conditions. The present article reviews these electroanalytical studies with the admitted objective of promoting this type of investigation. A first recall of basics emphasises the advantages of the 3-electrode set-up compared to microbial fuel cell devices if analytical objectives are pursued. Experimental precautions specifically relating to microbial anodes are then noted and the existing experimental set-ups and procedures are reviewed. The state-of-the-art is described through three aspects: the effect of the polarisation potential on the characteristics of microbial anodes, the electroanalytical techniques, and the electrode. We hope that the final outlook will encourage researchers working with microbial anodes to strengthen their engagement along the multiple exciting paths of electroanalysis.
Experimental evidence for inherent Lévy search behaviour in foraging animals
Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J.; Hengeveld, Geerten M.; Naguib, Marc; Nolet, Bart A.; van de Koppel, Johan
2015-01-01
Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment. PMID:25904671
Extension of applicable neutron energy of DARWIN up to 1 GeV.
Satoh, D; Sato, T; Endo, A; Matsufuji, N; Takada, M
2007-01-01
The radiation-dose monitor, DARWIN, needs a set of response functions of the liquid organic scintillator to assess a neutron dose. SCINFUL-QMD is a Monte Carlo based computer code to evaluate the response functions. In order to improve the accuracy of the code, a new light-output function based on the experimental data was developed for the production and transport of protons deuterons, tritons, (3)He nuclei and alpha particles, and incorporated into the code. The applicable energy of DARWIN was extended to 1 GeV using the response functions calculated by the modified SCINFUL-QMD code.
Computational modeling of cardiovascular response to orthostatic stress
NASA Technical Reports Server (NTRS)
Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.
2002-01-01
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel
2017-02-01
We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.
Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O
1994-10-01
Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7.
Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O
1994-01-01
Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7. PMID:7882962
de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina
2018-04-01
Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.
How to Evaluate and Synthesize Literature Data on Physical Properties.
1980-09-01
experimental set-up, refined technique for fabri - cating and installing the specimen heater so as to minimize heat leakage, technique for installing...Conductivity of Gadolinium Figure 3 shows another type of disagreement in experimental data from the literature. Here the two sets of thermal conductivity data...for gadolinium are for the same one piece of specimen measured in the same laboratory which S-" is one of the best known internationally, and published
Parametric study of the dynamic JWL-EOS for detonation products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P.A.; Hayes, B.
1990-03-01
The JWL equation of state describing the adiabatic expansion of detonation products is revisited to complete the description of the principal eigenvalue, to reset the secondary eigenvalue to produce a well-behaved adiabatic gamma profile, and to normalize the characteristic equation of state in terms of conventional parameters having a clear experimental interpretation. This is accomplished by interjecting a dynamic flow condition concerning the value of the relative specific volume when the particle velocity of the detonation products is zero. In addition, a set of generic parameters based on the statistical distribution of the primary explosives making up the available datamore » base is presented. Unlike theoretical and statistical mechanical models, the adiabatic gamma function for these materials is seen to have a positive initial slope in accord with experimental findings. 10 refs., 4 figs.« less
Ren, Shanshan; Bertels, Koen; Al-Ars, Zaid
2018-01-01
GATK HaplotypeCaller (HC) is a popular variant caller, which is widely used to identify variants in complex genomes. However, due to its high variants detection accuracy, it suffers from long execution time. In GATK HC, the pair-HMMs forward algorithm accounts for a large percentage of the total execution time. This article proposes to accelerate the pair-HMMs forward algorithm on graphics processing units (GPUs) to improve the performance of GATK HC. This article presents several GPU-based implementations of the pair-HMMs forward algorithm. It also analyzes the performance bottlenecks of the implementations on an NVIDIA Tesla K40 card with various data sets. Based on these results and the characteristics of GATK HC, we are able to identify the GPU-based implementations with the highest performance for the various analyzed data sets. Experimental results show that the GPU-based implementations of the pair-HMMs forward algorithm achieve a speedup of up to 5.47× over existing GPU-based implementations.
Highly correlated configuration interaction calculations on water with large orbital bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almora-Díaz, César X., E-mail: xalmora@fisica.unam.mx
2014-05-14
A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupledmore » cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, −76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the “experimental” value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol)« less
[Relevance of the hemovigilance regional database for the shared medical file identity server].
Doly, A; Fressy, P; Garraud, O
2008-11-01
The French Health Products Safety Agency coordinates the national initiative of computerization of blood products traceability within regional blood banks and public and private hospitals. The Auvergne-Loire Regional French Blood Service, based in Saint-Etienne, together with a number of public hospitals set up a transfusion data network named EDITAL. After four years of progressive implementation and experimentation, a software enabling standardized data exchange has built up a regional nominative database, endorsed by the Traceability Computerization National Committee in 2004. This database now provides secured web access to a regional transfusion history enabling biologists and all hospital and family practitioners to take in charge the patient follow-up. By running independently from the softwares of its partners, EDITAL database provides reference for the regional identity server.
Bragdon, Charles R; Malchau, Henrik; Yuan, Xunhua; Perinchief, Rebecca; Kärrholm, Johan; Börlin, Niclas; Estok, Daniel M; Harris, William H
2002-07-01
The purpose of this study was to develop and test a phantom model based on actual total hip replacement (THR) components to simulate the true penetration of the femoral head resulting from polyethylene wear. This model was used to study both the accuracy and the precision of radiostereometric analysis, RSA, in measuring wear. We also used this model to evaluate optimum tantalum bead configuration for this particular cup design when used in a clinical setting. A physical model of a total hip replacement (a phantom) was constructed which could simulate progressive, three-dimensional (3-D) penetration of the femoral head into the polyethylene component of a THR. Using a coordinate measuring machine (CMM) the positioning of the femoral head using the phantom was measured to be accurate to within 7 microm. The accuracy and precision of an RSA analysis system was determined from five repeat examinations of the phantom using various experimental set-ups of the phantom. The accuracy of the radiostereometric analysis, in this optimal experimental set-up studied was 33 microm for the medial direction, 22 microm for the superior direction, 86 microm for the posterior direction and 55 microm for the resultant 3-D vector length. The corresponding precision at the 95% confidence interval of the test results for repositioning the phantom five times, measured 8.4 microm for the medial direction, 5.5 microm for the superior direction, 16.0 microm for the posterior direction, and 13.5 microm for the resultant 3-D vector length. This in vitro model is proposed as a useful tool for developing a standard for the evaluation of radiostereometric and other radiographic methods used to measure in vivo wear.
NASA Astrophysics Data System (ADS)
Abdelatief, Mohamed A.; Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.
2018-03-01
The present work evaluates, experimentally and numerically, by the aid of commercial code FLUENT 6.3.26, the effects of relative locations (ΔX or ΔY), heights (hw), and span-angle (θ) of winglet-vortex-generators (WVGs) on thermal-hydraulic performance enhancement for down-stream and/or up-stream wing-shaped-tubes bundle heat exchangers for air Re ranging from 1.85 × 103 to 9.7 × 103 while water Re = 5 × 102. hw is set as 5 mm, 7.5 mm and 10 mm. For tube down-stream, θ is set as 0° (Base-line-case) and from 5° to 45° clockwise common-flow up (CFUp) and counterclockwise common-flow down (CFDn) while for tube up-stream it is set as -5°, -10° and -15° CFUp. Results show that the increase of θ counterclockwise-(CFDn) or clockwise-(CFUp) leads to increase the values of Nu number. Using WVGs with (+5 ° ≤ θ ≤ +45°) results in increasing Nu number by about from 34 to 48% comparing with that of base-line-case. The lowest values of drag coefficient ( f) for tube down-stream are obtained at +5° CFDn and -15° CFUp with respect to the base-line case. For tube up-stream, Nu number increases by increasing θ from 0° to -5° and the values of Nu number for θ varying from -5° to -15° have no significant changes. ( f) increases with hw and has negligible effect on ha. Furthermore, optimization analyses of θ and longitudinal fin (LF) are utilized, in four cases, for finding the optimum combination and maximum efficiency. The highest values of heat transfer parameters such as effectiveness (ɛ), area goodness factor (G) and efficiency index (η) and the lowest values of fluid-flow parameters like ( f) and hence the best efficiency, are achieved for -15° CFUp down-stream, ("case 3" of -15° CFUp down-stream and 6 mm LF height) and +5° CFDn down-stream. Correlations of Nu number, ( f) and (ɛ) as a function of θ and Re for the studied cases are performed.
Dufour, Barbara; Praud, Anne
2017-01-01
Understanding the factors leading each stakeholder to participate in an experimental trial is a key element for improving trial set-up and for identifying selection bias in statistical analyses. An experimental protocol, validated by the European Commission, was developed in France to assess the ability of the gamma-interferon test in terms of accuracy to replace the second intradermal skin test in cases of suspected bovine tuberculosis. Implemented between 2013 and 2015, this experimental trial was based on voluntary participation. To determine and understand the motivation or reluctance of farmers to take part in this trial, we carried out a sociological survey in France. Our study was based on semi-structured interviews with the farmers and other stakeholders involved. The analysis of findings demonstrated that shortening the lock-up period during tuberculosis suspicion, following the use of a gamma-interferon test, was an important aim and a genuine challenge for the animal health stakeholders. However, some farmers did not wish to continue the trial because it could potentially have drastic consequences for them. Moreover, misunderstandings and confusion concerning the objectives and consequences of the trial led stakeholders to reject it forcefully. Based on our results, we offer some recommendations: clear and appropriate communication tools should be prepared to explain the protocol and its aims. In addition, these types of animal health trials should be designed with the stakeholders’ interests in mind. This study provides a better understanding of farmer motivations and stakeholder influences on trial participation and outcomes. The findings can be used to help design trials so that they promote participation by farmers and by all animal health stakeholders in general. PMID:28973018
Multiclass Reduced-Set Support Vector Machines
NASA Technical Reports Server (NTRS)
Tang, Benyang; Mazzoni, Dominic
2006-01-01
There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.
Surface tension determination using liquid sample micromirror property
NASA Astrophysics Data System (ADS)
Hošek, Jan
2007-05-01
This paper presents an application of adaptive optics principle onto small sample of liquid surface tension measurement. The principle of experimental method devised by Ferguson (1924) is based on measurement of pressure difference across a liquid sample placed into small diameter capillary on condition of one flat meniscus of the liquid sample. Planarity or curvature radius of the capillary tip meniscus has to be measured and controlled, in order to fulfill this condition during measurement. Two different optical set-ups using liquid meniscus micromirror property are presented and its suitability for meniscus profile determination is compared. Meniscus radius optical measurement, data processing and control algorithm of the adaptive micromirror profile set are presented too. The presented adaptive optics system can be used for focal length control of microsystems based on liquid micromirrors or microlenses with long focal distances especially.
ERIC Educational Resources Information Center
Nimnicht, Glen; And Others
The New Nursery School (NNS) program was set up to help 3- and 4-year-old, Spanish-surnamed, environmentally deprived children. The objectives set were (1) to improve self-image, (2) to increase perceptual acuity, (3) to improve language ability, and (4) to improve problem-solving and concept-formation skills. The school is organized as an…
NASA Astrophysics Data System (ADS)
Dekterev, D.; Maslennikova, A.; Abramov, A.
2017-09-01
The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.
Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
Vázquez-Nion, Daniel; Silva, Benita; Troiano, Federica; Prieto, Beatriz
2017-01-01
Simulated environmental colonisation of granite was induced under laboratory conditions in order to develop an experimental protocol for studying bioreceptivity. The experimental set-up proved suitable for producing subaerial biofilms by inoculating granite blocks with planktonic multi-species phototrophic cultures derived from natural biofilms. The ability of four different cultures to form biofilms was monitored over a three-month growth period via colour measurements, quantification of photosynthetic pigments and EPS, and CLSM observations. One of the cultures under study, which comprised several taxa including Bryophyta, Charophyta, Chlorophyta and Cyanobacteria, was particularly suitable as an inoculum, mainly because of its microbial richness, its rapid adaptability to the substratum and its high colonisation capacity. The use of this culture as an inoculum in the proposed experimental set-up to produce subaerial biofilms under laboratory conditions will contribute to standardising the protocols involved, thus enabling more objective assessment of the bioreceptivity of granite in further experiments.
An introduction to photocatalysis through methylene blue photodegradation
NASA Astrophysics Data System (ADS)
Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Malinowski, Tuhiti; Dumas, Philippe
2016-11-01
We described a simple experimental set-up for lab work on the photocatalytic degradation of methylene blue by TiO2 nanoparticles. The photocatalysis process can be used for many applications. Treatments for diluted wastewater industries, air purifying in underground car parks, and preventing fouling on glass surfaces, are some of the potential applications of this phenomenon. The described experiment is easy to perform and the interpretation can be easily adapted to different levels of students, from high school students demonstrating their interest in sustainable development, to students obtaining a Masters in science departments who want to propose a full explanation for all phenomena of the photocatalytic process. Starting with a description of the experimental set-up, we analysed the photocatalyst nanoparticles and applied the Langmuir-Hinshelwood model to our experimental data. Finally we briefly discussed the respective energetic levels of the photocatalyst semiconductor and methylene blue.
Broadband active electrically small superconductor antennas
NASA Astrophysics Data System (ADS)
Kornev, V. K.; Kolotinskiy, N. V.; Sharafiev, A. V.; Soloviev, I. I.; Mukhanov, O. A.
2017-10-01
A new type of broadband active electrically small antenna (ESA) based on superconducting quantum arrays (SQAs) has been proposed and developed. These antennas are capable of providing both sensing and amplification of broadband electromagnetic signals with a very high spurious-free dynamic range (SFDR)—up to 100 dB (and even more)—with high sensitivity. The frequency band can range up to tens of gigahertz, depending on Josephson junction characteristic frequency, set by fabrication. In this paper we review theoretical and experimental studies of SQAs and SQA-based antenna prototypes of both transformer and transformer-less types. The ESA prototypes evaluated were fabricated using a standard Nb process with critical current density 4.5 kA cm-2. Measured device characteristics, design issues and comparative analysis of various ESA types, as well as requirements for interfaces, are reviewed and discussed.
Pore-scale and continuum simulations of solute transport micromodel benchmark experiments
Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...
2014-06-18
Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less
Active visual search in non-stationary scenes: coping with temporal variability and uncertainty
NASA Astrophysics Data System (ADS)
Ušćumlić, Marija; Blankertz, Benjamin
2016-02-01
Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and fixation duration) in an active search task. In addition, our method to improve single-trial detection performance in this adverse scenario is an important step in making brain-computer interfacing technology available for human-computer interaction applications.
Grassi, Angela; Di Camillo, Barbara; Ciccarese, Francesco; Agnusdei, Valentina; Zanovello, Paola; Amadori, Alberto; Finesso, Lorenzo; Indraccolo, Stefano; Toffolo, Gianna Maria
2016-03-12
Inference of gene regulation from expression data may help to unravel regulatory mechanisms involved in complex diseases or in the action of specific drugs. A challenging task for many researchers working in the field of systems biology is to build up an experiment with a limited budget and produce a dataset suitable to reconstruct putative regulatory modules worth of biological validation. Here, we focus on small-scale gene expression screens and we introduce a novel experimental set-up and a customized method of analysis to make inference on regulatory modules starting from genetic perturbation data, e.g. knockdown and overexpression data. To illustrate the utility of our strategy, it was applied to produce and analyze a dataset of quantitative real-time RT-PCR data, in which interferon-α (IFN-α) transcriptional response in endothelial cells is investigated by RNA silencing of two candidate IFN-α modulators, STAT1 and IFIH1. A putative regulatory module was reconstructed by our method, revealing an intriguing feed-forward loop, in which STAT1 regulates IFIH1 and they both negatively regulate IFNAR1. STAT1 regulation on IFNAR1 was object of experimental validation at the protein level. Detailed description of the experimental set-up and of the analysis procedure is reported, with the intent to be of inspiration for other scientists who want to realize similar experiments to reconstruct gene regulatory modules starting from perturbations of possible regulators. Application of our approach to the study of IFN-α transcriptional response modulators in endothelial cells has led to many interesting novel findings and new biological hypotheses worth of validation.
Video-based noncooperative iris image segmentation.
Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig
2011-02-01
In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.
NASA Astrophysics Data System (ADS)
Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa
2018-06-01
A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.
A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy
NASA Astrophysics Data System (ADS)
Zhang, Xin-Rong; Yamaguchi, Hiroshi; Fujima, Katsumi; Enomoto, Masatoshi; Sawada, Noboru
An experiment study was carried out in order to investigate feasibility of CO2-based Rankine cycle powered by solar energy. The proposed cycle is to achieve a cogeneration of heat and power, which consists of evacuated solar tube collectors, power generating turbine, heat recovery system, and feed pump. The Rankine cycle of the system utilizes solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and produce electrical power. The cycle also recovers thermal energy, which can be used for absorption refrigerator, air conditioning, hot water supply so on for a building. A set of experimental set-up was constructed to investigate the performance of the CO2-based Rankine cycle. The results show the cycle can achieve production of heat and power with reasonable thermodynamics efficiency and has a great potential of the application of the CO2-based Rankine cycle powered by solar energy. In addition, some research interests related to the present study will also be discussed in this paper.
Optimization of control gain by operator adjustment
NASA Technical Reports Server (NTRS)
Kruse, W.; Rothbauer, G.
1973-01-01
An optimal gain was established by measuring errors at 5 discrete control gain settings in an experimental set-up consisting of a 2-dimensional, first-order pursuit tracking task performed by subjects (S's). No significant experience effect on optimum gain setting was found in the first experiment. During the second experiment, in which control gain was continuously adjustable, high experienced S's tended to reach the previously determined optimum gain quite accurately and quickly. Less experienced S's tended to select a marginally optimum gain either below or above the experimentally determined optimum depending on initial control gain setting, although mean settings of both groups were equal. This quick and simple method is recommended for selecting control gains for different control systems and forcing functions.
Large strain dynamic compression for soft materials using a direct impact experiment
NASA Astrophysics Data System (ADS)
Meenken, T.; Hiermaier, S.
2006-08-01
Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.
The Caspar Creek Experimental Watershed
T. E. Lisle
1979-01-01
The Caspar Creek Experimental Watershed was set up as a traditional paired watershed to investigate the effects of logging and road construction on erosion and sedimentation. Research participants have come from the California Division of Forestry, the Pacific Southwest Forest and Range Experiment Station, the California Department of Water Resources, the California...
Getting Shocks: Teaching Secondary School Physics through History.
ERIC Educational Resources Information Center
Heering, Peter
2000-01-01
Uses several replicas of experimental set-ups that were originally used in electrostatic research in teaching electrostatics through history on secondary school level. Makes visible the change of the style of electrostatic experimentation that took place at the end of the 18th century. (Contains 25 references.) (ASK)
Meta-analysis as a tool to study crop productivity response to poultry litter application
USDA-ARS?s Scientific Manuscript database
Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...
NASA Astrophysics Data System (ADS)
Štaffenová, Daniela; Rybárik, Ján; Jakubčík, Miroslav
2017-06-01
The aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.
Calibration of a Background Oriented Schlieren (BOS) Set-up
NASA Astrophysics Data System (ADS)
Porta, David; Echeverría, Carlos; Cardoso, Hiroki; Aguayo, Alejandro; Stern, Catalina
2014-11-01
We use two materials with different known indexes of refraction to calibrate a Background Oriented Schlieren (BOS) experimental set-up, and to validate the Lorenz-Lorentz equation. BOS is used in our experiments to determine local changes of density in the shock pattern of an axisymmetric supersonic air jet. It is important to validate, in particular, the Gladstone Dale approximation (index of refraction close to one) in our experimental conditions and determine the uncertainty of our density measurements. In some cases, the index of refraction of the material is well known, but in others the density is measured and related to the displacement field. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.
Design and test of a simulation system for autonomous optic-navigated planetary landing
NASA Astrophysics Data System (ADS)
Cai, Sheng; Yin, Yanhe; Liu, Yanjun; He, Fengyun
2018-02-01
In this paper, a simulation system based on commercial projector is proposed to test the optical navigation algorithms for autonomous planetary landing in laboratorial scenarios. The design work of optics, mechanics and synchronization control are carried out. Furthermore, the whole simulation system is set up and tested. Through the calibration of the system, two main problems, synchronization between the projector and CCD and pixel-level shifting caused by the low repeatability of DMD used in the projector, are settled. The experimental result shows that the RMS errors of pitch, yaw and roll angles are 0.78', 0.48', and 2.95' compared with the theoretical calculation, which can fulfill the requirement of experimental simulation for planetary landing in laboratory.
An analytical approach to test and design upper limb prosthesis.
Veer, Karan
2015-01-01
In this work the signal acquiring technique, the analysis models and the design protocols of the prosthesis are discussed. The different methods to estimate the motion intended by the amputee from surface electromyogram (SEMG) signals based on time and frequency domain parameters are presented. The experiment proposed that the used techniques can help significantly in discriminating the amputee's motions among four independent activities using dual channel set-up. Further, based on experimental results, the design and working of an artificial arm have been covered under two constituents--the electronics design and the mechanical assembly. Finally, the developed hand prosthesis allows the amputated persons to perform daily routine activities easily.
NASA Astrophysics Data System (ADS)
Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya
2018-03-01
This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Swaminathan, S.
2016-04-01
The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.
Respiratory disease caused by synthetic fibres: a new occupational disease.
Pimentel, J C; Avila, R; Lourenço, A G
1975-01-01
Seven patients exposed to the inhalation of synthetic fibres presented with various bronchopulmonary diseases, such as asthma, extrinsic allergic alveolitis, chronic bronchitis with bronchiectasis, spontaneous pneumothorax, and chronic pneumonia. The histological features are described and an attempt has been made to set up immunological techniques for the diagnosis. A series of histochemical techniques, based on textile chemistry, are proposed for the identification of the inclusions found in bronchopulmonary lesions. The results of the experimental production of the disease in guinea-pigs by the inhalation of synthetic fibre dusts are presented. The prognosis of these cases is good in the acute or recently established cases but is poor when widespread and irreversible fibrosis has set in. The authors consider that pulmonary disease due to inhaled particles is probably set off by an individual factor, possibly immunological. Images PMID:1179318
Photothermal technique in cell microscopy studies
NASA Astrophysics Data System (ADS)
Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey
1995-01-01
Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.
Modeling of dielectric elastomer oscillators for soft biomimetic applications.
Henke, E-F M; Wilson, Katherine E; Anderson, I A
2018-06-26
Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.
Experimental Study of the Moment of Inertia of a Cone--Angular Variation and Inertia Ellipsoid
ERIC Educational Resources Information Center
Pintao, Carlos A. F.; de Souza Filho, Moacir P.; Usida, Wesley F.; Xavier, Jose A.
2007-01-01
In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque…
Primary Schooling in West Bengal
ERIC Educational Resources Information Center
Sen, Amartya
2010-01-01
With his Nobel Prize award money, Amartya Sen set up the Pratichi Trust which carries out research, advocacy and experimental projects in basic education, primary health care, and women's development in West Bengal and Bangladesh. Professor Sen himself took active interest in this work--helping set the agenda, looking at the evidence from…
The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production
NASA Astrophysics Data System (ADS)
Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven
2013-04-01
Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.
Parallel detection experiment of fluorescence confocal microscopy using DMD.
Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin
2016-05-01
Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
A community-based health education analysis of an infectous disease control program in Nigeria.
Adeyanju, O M
1987-01-01
This descriptive study utilized the strategy of primary health care in program development-especially a community-based health education intervention approach-in the control of guinea-worm in rural communities of Nigeria. Two closely related rural communities in two states served as target groups. Committee system approach, nominal group process, interview methods, audio-visual aids, and health care volunteer trainingship were the educational strategies employed in a control and experimental set up. The PRECEDE model was applied in the analysis. Results show a significant control action on guinea-worm infestation in the experimental community and a tremendous achievement in preventive health education interventions through organized community participation/involvement and ultimate self-reliance and individual responsibility. A positive increase in health knowledge and attitude examined through interview method, and observable changes in health behavior were noticed. Wells were provided, drinking water treated, while personal and community health promotion strategies were encouraged by all. The study has shown the effectiveness/efficacy of a community-based effort facilitated by a health educator.
NASA Astrophysics Data System (ADS)
Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina
We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.
A programmable point-of-care device for external CSF drainage and monitoring.
Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R
2014-01-01
This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.
The mechanics of solids in the plastically-deformable state
NASA Technical Reports Server (NTRS)
Mises, R. V.
1986-01-01
The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications.
Digital speckle correlation for nondestructive testing of corrosion
NASA Astrophysics Data System (ADS)
Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.
1999-07-01
This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.
Duct flow nonuniformities study for space shuttle main engine
NASA Technical Reports Server (NTRS)
Thoenes, J.
1985-01-01
To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.
NASA Astrophysics Data System (ADS)
Palomares, E.; Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.
2018-02-01
This paper presents a Negative Stiffness System (NSS) based on a set of two double-acting pneumatic linear actuators (PLA). The NSS is added to a system with a single degree of freedom, which consists of a sprung mass and a pneumatic spring. One end of each PLA is jointed to the sprung mass while the other end is jointed to the vibrating frame. In addition, the PLAs are symmetrically arranged so that they remain horizontal while the sprung mass is in static conditions. When the rear chamber is pressurised, the vertical component of the force applied by the PLAs will work against the pneumatic spring reducing the dynamic resonance frequency of the overall system. Experimental tests and simulations showed improvements regarding sprung mass isolation in comparison to the passive system without NSS, decreasing the resonance frequency by up to 58 % and improving the vibration attenuation for different experimental excitations.
Effect of Computer Support on Younger Women with Breast Cancer
Gustafson, David H; Hawkins, Robert; Pingree, Suzanne; McTavish, Fiona; Arora, Neeraj K; Mendenhall, John; Cella, David F; Serlin, Ronald C; Apantaku, Funmi M; Stewart, James; Salner, Andrew
2001-01-01
OBJECTIVE Assess impact of a computer-based patient support system on quality of life in younger women with breast cancer, with particular emphasis on assisting the underserved. DESIGN Randomized controlled trial conducted between 1995 and 1998. SETTING Five sites: two teaching hospitals (Madison, Wis, and Chicago, Ill), two nonteaching hospitals (Chicago), and a cancer resource center (Indianapolis, Ill). The latter three sites treat many underserved patients. PARTICIPANTS Newly diagnosed breast cancer patients (N = 246) under age 60. INTERVENTIONS Experimental group received Comprehensive Health Enhancement Support System (CHESS), a home-based computer system providing information, decision-making, and emotional support. MEASUREMENTS AND MAIN RESULTS Pretest and two post-test surveys (at two- and five-month follow-up) measured aspects of participation in care, social/information support, and quality of life. At two-month follow-up, the CHESS group was significantly more competent at seeking information, more comfortable participating in care, and had greater confidence in doctor(s). At five-month follow-up, the CHESS group had significantly better social support and also greater information competence. In addition, experimental assignment interacted with several indicators of medical underservice (race, education, and lack of insurance), such that CHESS benefits were greater for the disadvantaged than the advantaged group. CONCLUSIONS Computer-based patient support systems such as CHESS may benefit patients by providing information and social support, and increasing their participation in health care. These benefits may be largest for currently underserved populations. PMID:11520380
Measurement of the through thickness compression of a battery separator
NASA Astrophysics Data System (ADS)
Yan, Shutian; Huang, Xiaosong; Xiao, Xinran
2018-04-01
The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.
NASA Astrophysics Data System (ADS)
Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek
2012-05-01
This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.
Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.
Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S
2008-10-01
Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.
Experimental evidence for inherent Lévy search behaviour in foraging animals.
Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J; Hengeveld, Geerten M; Naguib, Marc; Nolet, Bart A; van de Koppel, Johan
2015-05-22
Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Superheated liquid carbon dioxide jets: setting up and phenomena
NASA Astrophysics Data System (ADS)
Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard
2018-01-01
We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.
NASA Astrophysics Data System (ADS)
Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.
2015-12-01
Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.
Cultures of Experimental Practice--An Approach in a Museum.
ERIC Educational Resources Information Center
Heering, Peter; Muller, Falk
2002-01-01
Describes generations and experiences of an exhibition presented in Spring 1998 at the Oldenburg Museum of Natural History and Pre-History. Discusses the thematic leitmotiv of this exhibition which was to present experiments from the history of physics as a cultural activity. Describes how reconstructions of historical experimental set-ups were…
Systematic approach to verification and validation: High explosive burn models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph; Scovel, Christina A.
2012-04-16
Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the samemore » experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.« less
A possible layout of the Spin Physics Detector with toroid magnet.
NASA Astrophysics Data System (ADS)
Nagaytsev, A. P.
2017-12-01
The Spin Physics Detector project for carrying out experiments at the 2-nd interaction point of the NICA collider is under preparation. The design of the collider allows reaching collision energy in the c.m.s. as high as √s = 26 GeV for polarized proton-proton collisions and √s = 12 GeV for polarized deuteron-deuteron collisons with a luminosity of up to 1032 cm2 s-1 (for protons) and 1031cm2s-1 for deuterons. Such a high luminosity of polarized beams interactions opens unique possibilities to investigate a variety of polarization phenomena including those related to the nucleon spin structure. A proposal for the experimental set-up based on a toroid type magnet is presented.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Natzke, Heike; Petermann, Franz
2009-01-01
In order to test its short- and middle-term impact as well as differential gender effects the universal school-based "Verhaltenstraining für Schulanfänger", a German prevention program on antisocial behavior for elementary school students, was conducted and evaluated in Luxembourg. In a quasi-experimental setting, nine first grade classes (n=88) were assigned to intervention and control groups. Three waves of data (pretest, posttest and 12-months-follow up) including teacher and student assessments were analysed. As a result intervention effects in terms of significant reductions in oppositional defiant and aggressive behavior as well as an increase in social and emotional competencies according to teachers' assessments at 12-months-follow-up could be observed. Student interviews showed positive short-term effects in terms of increased emotional knowledge and social problem solving competencies at posttest, with girls showing a stronger improvement of their emotional knowledge than boys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, I; Magallanes, L; Ludwig Maximilian University Munich
2014-06-15
Purpose: Ion beams exhibit a finite range and an inverted depth-dose profile, the Bragg peak. These favorable properties allow superior tumordose conformality, but introduce sensitivity to range uncertainties. Hence, imaging techniques play an increasingly important role to support the treatment planning and the in-vivo monitoring of the actual ion beam treatment. Methods: This work presents the experimental investigations carried out to address the feasibility of ion transmission imaging at the Heidelberg Ion Therapy center using an active raster scanning beam delivery system and a prototype range telescope set-up based on a stack of 61 parallel-plate ionization chambers (PPIC) interleaved withmore » 3 mm absorber plates of PMMA. Results: An extensive characterization of the set-up in terms of beam parameters and settings of the read-out electronics was performed and results will be presented. A data processing method to increase the range resolution (MIRR) of the PPIC stack was developed. In this approach, the position of the maximum of the Bragg curve is deduced from the ratio of measured signals in adjacent PPIC channels. MIRR evaluation is based on Bragg curves obtained from Monte Carlo simulations and validated with experimental data acquired with the PPIC stack using ion beams. MIRR was applied to the carbon ion radiography of an anthropomorphic Alderson head phantom yielding a resolution of 0.8 mm water equivalent thickness (WET) compared to the nominal value of 3.495 mm WET given by the thickness of the absorber slabs in the PPIC stack. An absolute comparison of the Alderson phantom carbon ion transmitted image with an X-ray digitally reconstructed radiography, both converted into WET, will also be shown. Conclusion: The obtained results are very promising and motivate further developments of the system towards an eventual clinical use.This work is supported by the German Research Foundation and the German Academic Exchange Service. This work is supported by the German Research Foundation (DFG) and the German Academic Exchange Service (DAAD)« less
Hopson, Laura M.; Holleran Steiker, Lori K.
2010-01-01
Although there is a strong evidence base for effective substance abuse prevention programs for youth, there is a need to facilitate the implementation and evaluation of these programs in real world settings. This study evaluates the effectiveness of adapted versions of an evidence-based prevention program, keepin’ it REAL (kiR), with alternative school students. Programs are often adapted when used in schools and other community settings for a variety of reasons. The kiR adaptations, developed during an earlier phase of this study, were created to make the curriculum more appropriate for alternative high school youth. The adaptations were evaluated using a quasi-experimental design in which questionnaires were administered at pretest, posttest, and follow-up, and focus groups were conducted at posttest. MANOVA analyses indicate significantly reduced intentions to accept alcohol and, for younger participants, reduced alcohol use. Focus group data support the need for age appropriate prevention content. The authors discuss implications for practitioners implementing prevention programs in schools. PMID:20622971
Robust and real-time rotor control with magnetic bearings
NASA Technical Reports Server (NTRS)
Sinha, A.; Wang, K. W.; Mease, K. L.
1991-01-01
This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.
Experimental study of porous media flow using hydro-gel beads and LED based PIV
NASA Astrophysics Data System (ADS)
Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.
2017-01-01
A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.
STEP--a System for Teaching Experimental Psychology using E-Prime.
MacWhinney, B; St James, J; Schunn, C; Li, P; Schneider, W
2001-05-01
Students in psychology need to learn to design and analyze their own experiments. However, software that allows students to build experiments on their own has been limited in a variety of ways. The shipping of the first full release of the E-Prime system later this year will open up a new opportunity for addressing this problem. Because E-Prime promises to become the standard for building experiments in psychology, it is now possible to construct a Web-based resource that uses E-Prime as the delivery engine for a wide variety of instructional materials. This new system, funded by the National Science Foundation, is called STEP (System for the Teaching of Experimental Psychology). The goal of the STEP Project is to provide instructional materials that will facilitate the use of E-Prime in various learning contexts. We are now compiling a large set of classic experiments implemented in E-Prime and available over the Internet from http://step.psy.cmu.edu. The Web site also distributes instructional materials for building courses in experimental psychology based on E-Prime.
NASA Astrophysics Data System (ADS)
Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.
2004-08-01
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M
2004-08-07
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.
2006-01-01
A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.
Pulsed discharges produced by high-power surface waves
NASA Astrophysics Data System (ADS)
Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.
1996-02-01
The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.
Model identification methodology for fluid-based inerters
NASA Astrophysics Data System (ADS)
Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew
2018-06-01
Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.
Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ
Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less
Pyrotechnically Operated Valves for Testing and Flight
NASA Technical Reports Server (NTRS)
Conley, Edgar G.; St.Cyr, William (Technical Monitor)
2002-01-01
Pyrovalves still warrant careful description of their operating characteristics, which is consistent with the NASA mission - to assure that both testing and flight hardware perform with the utmost reliability. So, until the development and qualification of the next generation of remotely controlled valves, in all likelihood based on shape memory alloy technology, pyrovalves will remain ubiquitous in controlling flow systems aloft and will possibly see growing use in ground-based testing facilities. In order to assist NASA in accomplishing this task, we propose a three-phase, three-year testing program. Phase I would set up an experimental facility, a 'test rig' in close cooperation with the staff located at the White Sands Test Facility in Southern New Mexico.
Underwater Sediment Sampling Research
2017-01-01
resolved through further experimentation . Underwater Sediment Sampling Research vi UNCLAS//Public | CG-926 RDC | A. Hanson, et al. Public...Chemical Oceanographer, and In situ Chemical Analysis Subject Matter Expert (SME). 2 LABORATORY TEST SET UP The experimental research and laboratory... methodology involved using a fluorescence oil sensor (Turner Designs Cyclops-7) to measure the TPH contained in the interstitial waters (i.e., pore
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Extracting the QCD ΛMS¯ parameter in Drell-Yan process using Collins-Soper-Sterman approach
NASA Astrophysics Data System (ADS)
Taghavi, R.; Mirjalili, A.
2017-03-01
In this work, we directly fit the QCD dimensional transmutation parameter, ΛMS¯, to experimental data of Drell-Yan (DY) observables. For this purpose, we first obtain the evolution of transverse momentum dependent parton distribution functions (TMDPDFs) up to the next-to-next-to-leading logarithm (NNLL) approximation based on Collins-Soper-Sterman (CSS) formalism. As is expecting the TMDPDFs are appearing at larger values of transverse momentum by increasing the energy scales and also the order of approximation. Then we calculate the cross-section related to the TMDPDFs in the DY process. As a consequence of global fitting to the five sets of experimental data at different low center-of-mass energies and one set at high center-of-mass energy, using CETQ06 parametrizations as our boundary condition, we obtain ΛMS¯ = 221 ± 7(stat) ± 54(theory) MeV corresponding to the renormalized coupling constant αs(Mz2) = 0.117 ± 0.001(stat) ± 0.004(theory) which is within the acceptable range for this quantity. The goodness of χ2/d.o.f = 1.34 shows the results for DY cross-section are in good agreement with different experimental sets, containing E288, E605 and R209 at low center-of-mass energies and D0, CDF data at high center-of-mass energy. The repeated calculations, using HERAPDFs parametrizations is yielding us numerical values for fitted parameters very close to what we obtain using CETQ06 PDFs set. This indicates that the obtained results have enough stability by variations in the boundary conditions.
Radiation reaction studies in an all-optical set-up: experimental limitations
NASA Astrophysics Data System (ADS)
Samarin, G. M.; Zepf, M.; Sarri, G.
2018-06-01
The recent development of ultra-high intensity laser facilities is finally opening up the possibility of studying high-field quantum electrodynamics in the laboratory. Arguably, one of the central phenomena in this area is that of quantum radiation reaction experienced by an ultra-relativistic electron beam as it propagates through the tight focus of a laser beam. In this paper, we discuss the major experimental challenges that are to be faced in order to extract meaningful and quantitative information from this class of experiments using existing and near-term laser facilities.
Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder
NASA Astrophysics Data System (ADS)
Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria
2015-11-01
The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.
Biogas from mesophilic digestion of cow dung using charcoal and gelatin as additives
NASA Astrophysics Data System (ADS)
Islam, Md Rashedul; Salam, Bodius; Rahman, Md Mizanur; Mamun, Abdullah Al
2017-06-01
Biogas, a source of renewable energy is produced from bacteria in the process of biodegradation of organic matter under anaerobic conditions. A research work was performed to find out the production of biogas from cow dung using charcoal and gelatin as additives. Five laboatory scale experimental set-up were constructed using 0, 0.2, 0.4, 0.6 and 0.8% gelatin with cow dung as additive to perform the research work. For all the set-up 0.5% charcoal was also added. All the set-ups were made from 1-liter capacity conical flask. The amount of water and cow dung was used respectively 382 gm. and 318 gm. in every set-up. Total solid content was maintained 8% throughout all set-ups. The digesters were operated at ambient temperature of 26°-32°C. The total gas yield without using gelatin additive was found to be 12 L/kg cow dung. The maximum gas yield was found from 0.2% gelatin additive and 23% more as compared to without gelatin gas production. The retention time varied from 28 to 79 days for the experiments.
Carpinella, Ilaria; Cattaneo, Davide; Bonora, Gianluca; Bowman, Thomas; Martina, Laura; Montesano, Angelo; Ferrarin, Maurizio
2017-04-01
To analyze the feasibility and efficacy of a novel system (Gamepad [GAMing Experience in PArkinson's Disease]) for biofeedback rehabilitation of balance and gait in Parkinson disease (PD). Randomized controlled trial. Clinical rehabilitation gym. Subjects with PD (N=42) were randomized into experimental and physiotherapy without biofeedback groups. Both groups underwent 20 sessions of training for balance and gait. The experimental group performed tailored functional tasks using Gamepad. The system, based on wearable inertial sensors, provided users with real-time visual and acoustic feedback about their movement during the exercises. The physiotherapy group underwent individually structured physiotherapy without feedback. Assessments were performed by a blinded examiner preintervention, postintervention, and at 1-month follow-up. Primary outcomes were the Berg Balance Scale (BBS) and 10-m walk test (10MWT). Secondary outcomes included instrumental stabilometric indexes and the Tele-healthcare Satisfaction Questionnaire. Gamepad was well accepted by participants. Statistically significant between-group differences in BBS scores suggested better balance performances of the experimental group compared with the physiotherapy without biofeedback group both posttraining (experimental group-physiotherapy without biofeedback group: mean, 2.3±3.4 points; P=.047) and at follow-up (experimental group-physiotherapy without biofeedback group: mean, 2.7±3.3 points; P=.018). Posttraining stabilometric indexes showed that mediolateral body sway during upright stance was significantly reduced in the experimental group compared with the physiotherapy without biofeedback group (experimental group-physiotherapy without biofeedback group: -1.6±1.5mm; P=.003). No significant between-group differences were found in the other outcomes. Gamepad-based training was feasible and superior to physiotherapy without feedback in improving BBS performance and retaining it for 1 month. After training, 10MWT data were comparable between groups. Further development of the system is warranted to allow the autonomous use of Gamepad outside clinical settings, to enhance gait improvements, and to increase transfer of training effects to real-life contexts. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A Systematic Review of Home-Based Childhood Obesity Prevention Studies
Fawole, Oluwakemi; Segal, Jodi; Wilson, Renee F.; Cheskin, Lawrence J.; Bleich, Sara N.; Wu, Yang; Lau, Brandyn; Wang, Youfa
2013-01-01
BACKGROUND AND OBJECTIVES: Childhood obesity is a global epidemic. Despite emerging research about the role of the family and home on obesity risk behaviors, the evidence base for the effectiveness of home-based interventions on obesity prevention remains uncertain. The objective was to systematically review the effectiveness of home-based interventions on weight, intermediate (eg, diet and physical activity [PA]), and clinical outcomes. METHODS: We searched Medline, Embase, PsychInfo, CINAHL, clinicaltrials.gov, and the Cochrane Library from inception through August 11, 2012. We included experimental and natural experimental studies with ≥1-year follow-up reporting weight-related outcomes and targeting children at home. Two independent reviewers screened studies and extracted data. We graded the strength of the evidence supporting interventions targeting diet, PA, or both for obesity prevention. RESULTS: We identified 6 studies; 3 tested combined interventions (diet and PA), 1 used diet intervention, 1 combined intervention with primary care and consumer health informatics components, and 1 combined intervention with school and community components. Select combined interventions had beneficial effects on fruit/vegetable intake and sedentary behaviors. However, none of the 6 studies reported a significant effect on weight outcomes. Overall, the strength of evidence is low that combined home-based interventions effectively prevent obesity. The evidence is insufficient for conclusions about home-based diet interventions or interventions implemented at home in association with other settings. CONCLUSIONS: The strength of evidence is low to support the effectiveness of home-based child obesity prevention programs. Additional research is needed to test interventions in the home setting, particularly those incorporating parenting strategies and addressing environmental influences. PMID:23753095
NASA Astrophysics Data System (ADS)
Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol
2014-09-01
Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2014-10-01
In this Letter, we propose and experimentally demonstrate a free-space based reconfigurable card-to-card optical interconnect architecture with 16-carrierless-amplitude-phase modulation. Experimental results show that up to 120 Gb/s (3×40 Gb/s) flexible interconnection can be achieved for up to 30 cm distance with a worst-case receiver sensitivity of -9.70 dBm.
UpSet: Visualization of Intersecting Sets
Lex, Alexander; Gehlenborg, Nils; Strobelt, Hendrik; Vuillemot, Romain; Pfister, Hanspeter
2016-01-01
Understanding relationships between sets is an important analysis task that has received widespread attention in the visualization community. The major challenge in this context is the combinatorial explosion of the number of set intersections if the number of sets exceeds a trivial threshold. In this paper we introduce UpSet, a novel visualization technique for the quantitative analysis of sets, their intersections, and aggregates of intersections. UpSet is focused on creating task-driven aggregates, communicating the size and properties of aggregates and intersections, and a duality between the visualization of the elements in a dataset and their set membership. UpSet visualizes set intersections in a matrix layout and introduces aggregates based on groupings and queries. The matrix layout enables the effective representation of associated data, such as the number of elements in the aggregates and intersections, as well as additional summary statistics derived from subset or element attributes. Sorting according to various measures enables a task-driven analysis of relevant intersections and aggregates. The elements represented in the sets and their associated attributes are visualized in a separate view. Queries based on containment in specific intersections, aggregates or driven by attribute filters are propagated between both views. We also introduce several advanced visual encodings and interaction methods to overcome the problems of varying scales and to address scalability. UpSet is web-based and open source. We demonstrate its general utility in multiple use cases from various domains. PMID:26356912
EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures
NASA Astrophysics Data System (ADS)
Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank
2018-03-01
The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.
Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A
2011-12-29
Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. © 2011 American Chemical Society
Design validation and performance of closed loop gas recirculation system
NASA Astrophysics Data System (ADS)
Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.
2016-11-01
A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.
Park, Min Gyeong; Ha, Yeongmi
2014-10-01
This study was conducted to develop a self-management program using goal setting for patients after a stroke. The program was based on a theory-based Goal setting and Action Planning framework (G-AP), and the effectiveness of the program was examined. A non-equivalent control group pretest-posttest design was used. The experimental group (n=30) received the self-management program using goal setting based on the G-AP over 7 weeks. The education was delivered individually with a specifically designed stroke workbook. The control group (n=30) received only patient information leaflets about stroke. There were significant differences between the two groups. Stroke knowledge, self-efficacy, and health behavior compliance were significantly higher (all p<.001), and hospital anxiety (p<.001) and depression (p<.001) were significantly lower in the experimental group compared to the control group. This self-management program using goal setting based on a G-AP was found to be useful and beneficial for patients in stroke rehabilitation settings.
Geometric Limitations Of Ultrasonic Measurements
NASA Astrophysics Data System (ADS)
von Nicolai, C.; Schilling, F.
2006-12-01
Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.
Impact of positional difference on the measurement of breast density using MRI.
Chen, Jeon-Hor; Chan, Siwa; Tang, Yi-Ting; Hon, Jia Shen; Tseng, Po-Chuan; Cheriyan, Angela T; Shah, Nikita Rakesh; Yeh, Dah-Cherng; Lee, San-Kan; Chen, Wen-Pin; McLaren, Christine E; Su, Min-Ying
2015-05-01
This study investigated the impact of arms/hands and body position on the measurement of breast density using MRI. Noncontrast-enhanced T1-weighted images were acquired from 32 healthy women. Each subject received four MR scans using different experimental settings, including a high resolution hands-up, a low resolution hands-up, a high resolution hands-down, and finally, another high resolution hands-up after repositioning. The breast segmentation was performed using a fully automatic chest template-based method. The breast volume (BV), fibroglandular tissue volume (FV), and percent density (PD) measured from the four MR scan settings were analyzed. A high correlation of BV, FV, and PD between any pair of the four MR scans was noted (r > 0.98 for all). Using the generalized estimating equation method, a statistically significant difference in mean BV among four settings was noted (left breast, score test p = 0.0056; right breast, score test p = 0.0016), adjusted for age and body mass index. Despite differences in BV, there were no statistically significant differences in the mean PDs among the four settings (p > 0.10 for left and right breasts). Using Bland-Altman plots, the smallest mean difference/bias and standard deviations for BV, FV, and PD were noted when comparing hands-up high vs low resolution when the breast positions were exactly the same. The authors' study showed that BV, FV, and PD measurements from MRI of different positions were highly correlated. BV may vary with positions but the measured PD did not differ significantly between positions. The study suggested that the percent density analyzed from MRI studies acquired using different arms/hands and body positions from multiple centers can be combined for analysis.
NASA Astrophysics Data System (ADS)
Blajer, W.; Dziewiecki, K.; Kołodziejczyk, K.; Mazur, Z.
2011-05-01
Underactuated systems are featured by fewer control inputs than the degrees-of-freedom, m < n. The determination of an input control strategy that forces such a system to complete a set of m specified motion tasks is a challenging task, and the explicit solution existence is conditioned to differential flatness of the problem. The flatness-based solution denotes that all the 2 n states and m control inputs can be algebraically expressed in terms of the m specified outputs and their time derivatives up to a certain order, which is in practice attainable only for simple systems. In this contribution the problem is posed in a more practical way as a set of index-three differential-algebraic equations, and the solution is obtained numerically. The formulation is then illustrated by a two-degree-of-freedom underactuated system composed of two rotating discs connected by a torsional spring, in which the pre-specified motion of one of the discs is actuated by the torque applied to the other disc, n = 2 and m = 1. Experimental verification of the inverse simulation control methodology is reported.
Multigeneration effects of insect growth regulators on the springtail Folsomia candida.
Campiche, Sophie; L'Ambert, Grégory; Tarradellas, Joseph; Becker-van Slooten, Kristin
2007-06-01
Multigeneration tests are very useful for the assessment of long term toxicity of pollutants such as endocrine disruptor compounds. In this study, multigeneration reproduction tests adapted from the ISO standard 11267 were conducted with the Collembola Folsomia candida. Springtails were exposed to artificial soil contaminated with four insect growth regulators (methoprene, fenoxycarb, teflubenzuron, and precocene II) according to two different experimental set-ups. In the first set-up, the parental generation (F(0)) of Collembola was exposed to a pollutant for 28 days. Juveniles from the F(1) generation were transferred to uncontaminated soil for another 28-day period to generate the F(2) generation. In the second set-up, the F(0) generation was exposed to a pollutant for 10 days before being transferred to uncontaminated soil to reproduce. After 18-28 days, juveniles from the F(1) were transferred to clean soil to generate the F(2) generation. An effect on the number of hatched juveniles of the F(2) generation was observed for methoprene after exposure of the F(0) for 28 days and hatching of F(1) in contaminated soil. For methoprene and teflubenzuron, significant effects were even observed on the F(2) generation with the second experimental set-up, when only the F(0) generation was exposed for 10 days. This shows that the impact of these substances is transgenerational, which can have important consequences for the population of these or other organisms. No effect on the F(2) generation was observed with fenoxycarb and precocene II with the 10-day exposure experiment. Our results show that the developed experimental procedures are appropriate to assess the long term effects of endocrine disrupting compounds on the reproduction of the non-target species F. candida. Another important finding is that two substances with the same predicted mode of action (i.e., the two juvenile hormone analogues fenoxycarb and methoprene) do not necessarily affect the same endpoints in F. candida.
Hansen, Werner
2016-12-01
The beginnings of modern western medicine reach to about 1800 when under the liberating influence of French Revolution observation of diseases was started to follow more scientifically justified criteria. At that time speculative doctrines prevailed, e. g. those set up natural philosopher Schelling. In this context Internist Friedrich Theodor von Frerichs at Berlin Charité University Hospital gained great merits because of his struggle for a scientifically-based experimental clinical medicine. This is demonstrated nicely in a recently found autograph document. © Georg Thieme Verlag KG Stuttgart · New York.
Full statistical mode reconstruction of a light field via a photon-number-resolved measurement
NASA Astrophysics Data System (ADS)
Burenkov, I. A.; Sharma, A. K.; Gerrits, T.; Harder, G.; Bartley, T. J.; Silberhorn, C.; Goldschmidt, E. A.; Polyakov, S. V.
2017-05-01
We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and nonclassical properties using a single measurement technique and is well suited for quantum mesoscopic state characterization. We obtain a nearly perfect reconstruction of a field comprised of up to ten modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.
Empirical scoring functions for advanced protein-ligand docking with PLANTS.
Korb, Oliver; Stützle, Thomas; Exner, Thomas E
2009-01-01
In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.
NASA Astrophysics Data System (ADS)
Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric
2015-09-01
Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.
NASA Astrophysics Data System (ADS)
Kim, Younghoon; Cai, Ling; Usher, Timothy; Jiang, Qing
2009-09-01
This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer.
An experimental study of tone excited heated jets
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.
1984-01-01
The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.
Maier, Dieter; Kalus, Wenzel; Wolff, Martin; Kalko, Susana G; Roca, Josep; Marin de Mas, Igor; Turan, Nil; Cascante, Marta; Falciani, Francesco; Hernandez, Miguel; Villà-Freixa, Jordi; Losko, Sascha
2011-03-05
To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype-phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene--disease and gene--compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
2011-01-01
Background To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development. PMID:21375767
The effect of video game "warm-up" on performance of laparoscopic surgery tasks.
Rosser, James C; Gentile, Douglas A; Hanigan, Kevin; Danner, Omar K
2012-01-01
Performing laparoscopic procedures requires special training and has been documented as a significant source of surgical errors. "Warming up" before performing a task has been shown to enhance performance. This study investigates whether surgeons benefit from "warming up" using select video games immediately before performing laparoscopic partial tasks and clinical tasks. This study included 303 surgeons (249 men and 54 women). Participants were split into a control (n=180) and an experimental group (n=123). The experimental group played 3 previously validated video games for 6 minutes before task sessions. The Cobra Rope partial task and suturing exercises were performed immediately after the warm-up sessions. Surgeons who played video games prior to the Cobra Rope drill were significantly faster on their first attempt and across all 10 trials. The experimental and control groups were significantly different in their total suturing scores (t=2.28, df=288, P<.05). The overall Top Gun score showed that the experimental group performed marginally better overall. This study demonstrates that subjects completing "warming-up" sessions with select video games prior to performing laparoscopic partial and clinical tasks (intracorporeal suturing) were faster and had fewer errors than participants not engaging in "warm-up." More study is needed to determine whether this translates into superior procedural execution in the clinical setting.
Primary proton and helium spectra around the knee observed by the Tibet air-shower experiment
NASA Astrophysics Data System (ADS)
Jing, Huang; Tibet ASγ Collaboration
A hybrid experiment was carried out to study the cosmic-ray primary composition in the 'knee' energy region. The experimental set-up consists of the Tibet-II air shower array( AS ), the emulsion chamber ( EC ) and the burst detector ( BD ) which are operated simulteneously and provides us information on the primary species. The experiment was carried out at Yangbajing (4,300 m a.s.l., 606 g/cm2) in Tibet during the period from 1996 through 1999. We have already reported the primary proton flux around the knee region based on the simulation code COSMOS. In this paper, we present the primary proton and helium spectra around the knee region. We also extensively examine the simulation codes COSMOS ad-hoc and CORSIKA with interaction models of QGSJET01, DPMJET 2.55, SIBYLL 2.1, VENUS 4.125, HDPM, and NEXUS 2. Based on these calculations, we briefly discuss on the systematic errors involved in our experimental results due to the Monte Carlo simulation.
Direct and full-scale experimental verifications towards ground-satellite quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei
2013-05-01
Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.
Performance of ZnO based piezo-generators under controlled compression
NASA Astrophysics Data System (ADS)
Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille
2017-06-01
This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.
Experimental robot gripper control for handling of soft objects
NASA Astrophysics Data System (ADS)
Friedrich, Werner E.; Ziegler, T. H.; Lim, P.
1996-10-01
The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.
Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.
Design of protonation constant measurement apparatus for carbon dioxide capturing solvents
NASA Astrophysics Data System (ADS)
Ma'mun, S.; Amelia, E.; Rahmat, V.; Alwani, D. R.; Kurniawan, D.
2016-11-01
Global warming phenomenon has led to world climate change caused by high concentrations of greenhouse gases (GHG), e.g. carbon dioxide (CO2), in the atmosphere. Carbon dioxide is produced in large amount from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical manufacturing, natural gas purification, and transportation. Carbon dioxide emissions seem to rise from year to year; some efforts to reduce the emissions are, therefore, required. Amine-based absorption could be deployed for post-combustion capture. Some parameters, e.g. mass transfer coefficients and chemical equilibrium constants, are required for a vapor-liquid equilibrium modeling. Protonation constant (pKa), as one of those parameters, could then be measured experimentally. Therefore, an experimental setup to measure pKa of CO2 capturing solvents was designed and validated by measuring the pKa of acetic acid at 30 to 70 °C by a potentiometric titration method. The set up was also used to measure the pKa of MEA at 27 °C. Based on the validation results and due to low vapor pressure of CO2 capturing solvents in general, e.g. alkanolamines, the setup could therefore be used for measuring pKa of the CO2 capturing solvents at temperatures up to 70 °C.
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
[Research on Spectral Polarization Imaging System Based on Static Modulation].
Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng
2015-04-01
The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.
Flat plate solar collector for water pre-heating using concentrated solar power (CSP)
NASA Astrophysics Data System (ADS)
Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran
2017-12-01
Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.
NASA Astrophysics Data System (ADS)
Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf
2016-12-01
In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.
Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi
2017-11-04
This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.
High-level theoretical rovibrational spectroscopy beyond fc-CCSD(T): The C3 molecule.
Schröder, Benjamin; Sebald, Peter
2016-01-28
An accurate local (near-equilibrium) potential energy surface (PES) is reported for the C3 molecule in its electronic ground state (X̃(1)Σg (+)). Special care has been taken in the convergence of the potential relative to high-order correlation effects, core-valence correlation, basis set size, and scalar relativity. Based on the aforementioned PES, several rovibrational states of all (12)C and (13)C substituted isotopologues have been investigated, and spectroscopic parameters based on term energies up to J = 30 have been calculated. Available experimental vibrational term energies are reproduced to better than 1 cm(-1) and rotational constants show relative errors of not more than 0.01%. The equilibrium bond length has been determined in a mixed experimental/theoretical approach to be 1.294 07(10) Å in excellent agreement with the ab initio composite value of 1.293 97 Å. Theoretical band intensities based on a newly developed electric dipole moment function also suggest that the infrared active (1, 1(1), 0)←(0, 0(0), 0) combination band might be observable by high-resolution spectroscopy.
NASA Astrophysics Data System (ADS)
Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.
2017-05-01
In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.
Evaluation of a School-Based Teen Obesity Prevention Minimal Intervention
ERIC Educational Resources Information Center
Abood, Doris A.; Black, David R.; Coster, Daniel C.
2008-01-01
Objective: A school-based nutrition education minimal intervention (MI) was evaluated. Design: The design was experimental, with random assignment at the school level. Setting: Seven schools were randomly assigned as experimental, and 7 as delayed-treatment. Participants: The experimental group included 551 teens, and the delayed treatment group…
Summary: Experimental validation of real-time fault-tolerant systems
NASA Technical Reports Server (NTRS)
Iyer, R. K.; Choi, G. S.
1992-01-01
Testing and validation of real-time systems is always difficult to perform since neither the error generation process nor the fault propagation problem is easy to comprehend. There is no better substitute to results based on actual measurements and experimentation. Such results are essential for developing a rational basis for evaluation and validation of real-time systems. However, with physical experimentation, controllability and observability are limited to external instrumentation that can be hooked-up to the system under test. And this process is quite a difficult, if not impossible, task for a complex system. Also, to set up such experiments for measurements, physical hardware must exist. On the other hand, a simulation approach allows flexibility that is unequaled by any other existing method for system evaluation. A simulation methodology for system evaluation was successfully developed and implemented and the environment was demonstrated using existing real-time avionic systems. The research was oriented toward evaluating the impact of permanent and transient faults in aircraft control computers. Results were obtained for the Bendix BDX 930 system and Hamilton Standard EEC131 jet engine controller. The studies showed that simulated fault injection is valuable, in the design stage, to evaluate the susceptibility of computing sytems to different types of failures.
Characterization of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Chun, H. J.; Karalekas, D.
1994-01-01
Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.
NASA Astrophysics Data System (ADS)
Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.
2016-04-01
The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.
Nutbeam, D; Smith, C; Murphy, S; Catford, J
1993-01-01
STUDY OBJECTIVE--To examine the difficulties of developing and maintaining outcome evaluation designs in long term, community based health promotion programmes. DESIGN--Semistructured interviews of health promotion managers. SETTING--Wales and two reference health regions in England. PARTICIPANTS--Nine health promotion managers in Wales and 18 in England. MEASUREMENTS AND MAIN RESULTS--Information on selected heart health promotion activity undertaken or coordinated by health authorities from 1985-90 was collected. The Heartbeat Wales coronary heart disease prevention programme was set up in 1985, and a research and evaluation strategy was established to complement the intervention. A substantial increase in the budget occurred over the period. In the reference health regions in England this initiative was noted and rapidly taken up, thus compromising their use as control areas. CONCLUSION--Information on large scale, community based health promotion programmes can disseminate quickly and interfere with classic intervention/evaluation control designs through contamination. Alternative experimental designs for assessing the effectiveness of long term intervention programmes need to be considered. These should not rely solely on the use of reference populations, but should balance the measurement of outcome with an assessment of the process of change in communities. The development and use of intervention exposure measures together with well structured and comprehensive process evaluation in both the intervention and reference areas is recommended. PMID:8326270
McPherson, Tracy L; Goplerud, Eric; Derr, Dennis; Mickenberg, Judy; Courtemanche, Sherry
2010-11-01
Substantial empirical support exists for alcohol screening, brief intervention, and referral to treatment (SBIRT) in medical, but not non-medical settings such as the workplace. Workplace settings remain underutilised for delivering evidenced-based health services. This research aims to translate medical research into behavioural health-care practice in a telephonic call centre acting as a point of entry into an Employee Assistance Program (EAP). The goal of the study is to examine the feasibility of implementing routine telephonic alcohol SBIRT in an EAP call centre and assess whether routine SBIRT results in increased identification of workers who misuse alcohol. The design was pretest-posttest, one-group, pre-experimental. An alcohol SBIRT program developed based on World Health Organization recommendations was implemented in one EAP call centre serving one large employer. Workers were offered screening using the Alcohol Use Disorder Identification Test (AUDIT) during intake, brief counselling using motivational interviewing, referral to counselling, and follow-up. At 5 months, 93% of workers contacting the EAP completed the AUDIT-C: 40% prescreened positive and 52% went on to screen at moderate or high risk for an alcohol problem. Overall identification rate (18%) approached general US population estimates. Most agreed to follow-up and three-quarters set an appointment for face-to-face counselling. Integration of routine alcohol SBIRT into EAP practice is feasible in telephonic delivery systems and increases identification and opportunity for brief motivational counselling. When SBIRT is seamlessly integrated workers are willing to answer questions about alcohol and participate in follow-up.[McPherson TL, Goplerud E, Derr D, Mickenberg J, Courtemanche S. Telephonic screening and brief intervention for alcohol misuse among workers contacting the employee assistance program: A feasibility study. © 2010 Australasian Professional Society on Alcohol and other Drugs.
Wimmer, Timea; Huffmann, Anne Mildred Sophie; Eichberger, Marlis; Schmidlin, Patrick R; Stawarczyk, Bogna
2016-06-01
To test and compare the two-body wear rate of three CAD/CAM polymer materials and the influence of specimen geometry, antagonist material and test set-up configuration. Three CAD/CAM polymeric materials were assessed: a thermoplastic polyetheretherketone (PEEK), an experimental nanohybrid composite (COMP) and a PMMA-based material (PMMA). Crown-shaped and flat specimens were prepared from each material. The specimens underwent thermo-mechanical loading (50N, 5/55°C; 600,000 chewing cycles) opposed to human enamel and stainless steel antagonists. Half of the specimens of each group were loaded with a sliding movement of 0.7mm, the remaining half without. Thereby, 24 different test set-ups were investigated (n=12). Wear of the materials and antagonists was evaluated with a match-3D procedure. The topography of all surfaces was examined with scanning electron microscopy (SEM). Data were statistically evaluated with four-/one-way ANOVA followed by Scheffé post hoc test and unpaired t-test (p<0.05). All PEEK specimens showed significantly less material loss than COMP and PMMA specimens when loaded laterally. Within the axial loaded groups this was only true for the flat specimens tested with enamel antagonists. Crown specimens of these groups exhibited lower loss values than flat ones. Lateral force application led mostly to significantly higher material loss than the axial load application. On the antagonist side, no impact of CAD/CAM polymer material, antagonist material, force application and specimen geometry was found. Wear of PEEK was lower than that of the resin-based materials when lateral forces were applied, but showed comparable antagonist wear rates at the same time. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A practical model for pressure probe system response estimation (with review of existing models)
NASA Astrophysics Data System (ADS)
Hall, B. F.; Povey, T.
2018-04-01
The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.
NASA Astrophysics Data System (ADS)
de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Floriant; Gerard, Marie-Françoise; Le Borgne, Tanguy
2017-04-01
Thermal transport in fractured media depends on the hydrological properties of fractures and thermal characteristics of rock. Tracer tests using heat as tracer can thus be a good alternative to characterize fractured media for shallow geothermal needs. This study investigates the possibility of implementing a new thermal tracer test set up, the single well thermal tracer test, to characterize hydraulic and thermal transport properties of fractured crystalline rock. The experimental setup is based on injecting hot water in a fracture isolated by a double straddle packer in the borehole while pumping and monitoring the temperature in a fracture crossing the same borehole at greater elevation. One difficulty comes from the fact that injection and withdrawal are achieved in the same borehole involving thermal losses along the injection tube that may disturb the heat recovery signal. To be able to well localize the heat influx, we implemented a Fiber-Optic Distributed Temperature Sensing (FO-DTS) which allows the temperature monitoring with high spatial and temporal resolution (29 centimeters and 30 seconds respectively). Several tests, at different pumping and injection rates, were performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). We show through signal processing how the thermal breakthrough may be extracted thanks to Fiber-Optic distributed temperature measurements. In particular, we demonstrate how detailed distributed temperature measurements were useful to identify different inflows and to estimate how much heat was transported and stored within the fractures network. Thermal breakthrough curves of single well thermal tracer tests were then interpreted with a simple analytical model to characterize hydraulic and thermal characteristics of the fractured media. We finally discuss the advantages of these tests compared to cross-borehole thermal tracer tests.
Olevsky, Eugene A.; Aleksandrova, Elena V.; Ilyina, Alexandra M.; Dudina, Dina V.; Novoselov, Alexander N.; Pelve, Kirill Y.; Grigoryev, Eugene G.
2013-01-01
This paper reviews research articles published in the former USSR and post-soviet countries on the consolidation of powder materials using electric current that passes through the powder sample and/or a conductive die-punch set-up. Having been published in Russian, many of the reviewed papers are not included in the mainstream electronic databases of the scientific articles and thus are not known to the scientific community. The present review is aimed at filling this information gap. In the paper, the electric current-assisted sintering techniques based on high- and low-voltage approaches are presented. The main results of the theoretical modeling of the processes of electromagnetic field-assisted consolidation of powder materials are discussed. Sintering experiments and related equipment are described and the major experimental results are analyzed. Sintering conditions required to achieve the desired properties of the sintered materials are provided for selected material systems. Tooling materials used in the electric current-assisted consolidation set-ups are also described. PMID:28788337
An easy-to-build remote laboratory with data transfer using the Internet School Experimental System
NASA Astrophysics Data System (ADS)
Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava
2008-07-01
The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.
A microprocessor-based automation test system for the experiment of the multi-stage compressor
NASA Astrophysics Data System (ADS)
Zhang, Huisheng; Lin, Chongping
1991-08-01
An automation test system that is controlled by the microprocessor and used in the multistage compressor experiment is described. Based on the analysis of the compressor experiment performances, a complete hardware system structure is set up. It is composed of a IBM PC/XT computer, a large scale sampled data system, the moving machine with three directions, the scanners, the digital instrumentation and some output devices. A program structure of real-time software system is described. The testing results show that this test system can take the measure of many parameter magnitudes in the blade row places and on a boundary layer in different states. The automatic extent and the accuracy of experiment is increased and the experimental cost is reduced.
Transverse beam stability measurement and analysis for the SNS accumulator ring
Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; ...
2015-07-01
In a Field-programmable gate array (FPGA) based transverse feedback damper system we implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in a frequency range from 1 MHz to 300 MHz. The transverse damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurement provides the stability diagram for the production beam at SNS. Our paper describes the feedback damper system and its set-up as the BTF diagnostic tool. Experimental BTF results are presented and beam stability analysis is performedmore » based on the BTF measurements for the SNS accumulator ring.« less
Optical Multiple Access Network (OMAN) for advanced processing satellite applications
NASA Technical Reports Server (NTRS)
Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.
1991-01-01
An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.
Five years of research on the Fernow Experimental Forest
Sidney Weitzman
1953-01-01
In 1948 the U. S. Forest Service's Northeastern Forest Experiment Station set up a research center in West Virginia to study forestry problems in the Appalachian Mountain region. It was named the Mountain State Research Center.
NASA Astrophysics Data System (ADS)
Nguyen, T. V. B.; Chantler, C. T.; Lowe, J. A.; Grant, I. P.
2014-06-01
This work presents new ab initio relativistic calculations using the multiconfiguration Dirac-Hartree-Fock method of some O I and O III transition lines detected in B-type and Wolf-Rayet stars. Our results are the first able to be presented in both the length and velocity gauges, with excellent gauge convergence. Compared to previous experimental and theoretical uncertainties of up to 50 per cent, our accuracies appear to be in the range of 0.33-5.60 per cent, with gauge convergence up to 0.6 per cent. Similar impressive convergence of the calculated energies is also shown. Two sets of theoretical computations are compared with earlier tabulated measurements. Excellent agreement is obtained with one set of transitions but an interesting and consistent discrepancy exists between the current work and the prior literature, deserving of future experimental studies.
UpSetR: an R package for the visualization of intersecting sets and their properties.
Conway, Jake R; Lex, Alexander; Gehlenborg, Nils
2017-09-15
Venn and Euler diagrams are a popular yet inadequate solution for quantitative visualization of set intersections. A scalable alternative to Venn and Euler diagrams for visualizing intersecting sets and their properties is needed. We developed UpSetR, an open source R package that employs a scalable matrix-based visualization to show intersections of sets, their size, and other properties. UpSetR is available at https://github.com/hms-dbmi/UpSetR/ and released under the MIT License. A Shiny app is available at https://gehlenborglab.shinyapps.io/upsetr/ . nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Configuration and Sizing of a Test Fixture for Panels Under Combined Loads
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.
2006-01-01
Future air and space structures are expected to utilize composite panels that are subjected to combined mechanical loads, such as bi-axial compression/tension, shear and pressure. Therefore, the ability to accurately predict the buckling and strength failures of such panels is important. While computational analysis can provide tremendous insight into panel response, experimental results are necessary to verify predicted performances of these panels to judge the accuracy of computational methods. However, application of combined loads is an extremely difficult task due to the complex test fixtures and set-up required. Presented herein is a comparison of several test set-ups capable of testing panels under combined loads. Configurations compared include a D-box, a segmented cylinder and a single panel set-up. The study primarily focuses on the preliminary sizing of a single panel test configuration capable of testing flat panels under combined in-plane mechanical loads. This single panel set-up appears to be best suited to the testing of both strength critical and buckling critical panels. Required actuator loads and strokes are provided for various square, flat panels.
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
A polychromatic adaption of the Beer-Lambert model for spectral decomposition
NASA Astrophysics Data System (ADS)
Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.
2017-03-01
We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.
Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigeti, David Edward; Williams, Brian J.; Parsons, D. Kent
2016-10-18
Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances domore » not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.« less
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
A practical approach for the scale-up of roller compaction process.
Shi, Weixian; Sprockel, Omar L
2016-09-01
An alternative approach for the scale-up of ribbon formation during roller compaction was investigated, which required only one batch at the commercial scale to set the operational conditions. The scale-up of ribbon formation was based on a probability method. It was sufficient in describing the mechanism of ribbon formation at both scales. In this method, a statistical relationship between roller compaction parameters and ribbon attributes (thickness and density) was first defined with DoE using a pilot Alexanderwerk WP120 roller compactor. While the milling speed was included in the design, it has no practical effect on granule properties within the study range despite its statistical significance. The statistical relationship was then adapted to a commercial Alexanderwerk WP200 roller compactor with one experimental run. The experimental run served as a calibration of the statistical model parameters. The proposed transfer method was then confirmed by conducting a mapping study on the Alexanderwerk WP200 using a factorial DoE, which showed a match between the predictions and the verification experiments. The study demonstrates the applicability of the roller compaction transfer method using the statistical model from the development scale calibrated with one experiment point at the commercial scale. Copyright © 2016 Elsevier B.V. All rights reserved.
Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?
Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth
2006-08-01
Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.
Marker Configuration Model-Based Roentgen Fluoroscopic Analysis.
Garling, Eric H; Kaptein, Bart L; Geleijns, Koos; Nelissen, Rob G H H; Valstar, Edward R
2005-04-01
It remains unknown if and how the polyethylene bearing in mobile bearing knees moves during dynamic activities with respect to the tibial base plate. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis (MCM-based RFA) uses a marker configuration model of inserted tantalum markers in order to accurately estimate the pose of an implant or bone using single plane Roentgen images or fluoroscopic images. The goal of this study is to assess the accuracy of (MCM-Based RFA) in a standard fluoroscopic set-up using phantom experiments and to determine the error propagation with computer simulations. The experimental set-up of the phantom study was calibrated using a calibration box equipped with 600 tantalum markers, which corrected for image distortion and determined the focus position. In the computer simulation study the influence of image distortion, MC-model accuracy, focus position, the relative distance between MC-models and MC-model configuration on the accuracy of MCM-Based RFA were assessed. The phantom study established that the in-plane accuracy of MCM-Based RFA is 0.1 mm and the out-of-plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees. A ninth-order polynomial model was used to correct for image distortion. Marker-Based RFA was estimated to have, in a worst case scenario, an in vivo translational accuracy of 0.14 mm (x-axis), 0.17 mm (y-axis), 1.9 mm (z-axis), respectively, and a rotational accuracy of 0.3 degrees. When using fluoroscopy to study kinematics, image distortion and the accuracy of models are important factors, which influence the accuracy of the measurements. MCM-Based RFA has the potential to be an accurate, clinically useful tool for studying kinematics after total joint replacement using standard equipment.
Brandenburg, Jan Gerit; Grimme, Stefan
2014-01-01
We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.
A Component-Based Vocabulary-Extensible Sign Language Gesture Recognition Framework.
Wei, Shengjing; Chen, Xiang; Yang, Xidong; Cao, Shuai; Zhang, Xu
2016-04-19
Sign language recognition (SLR) can provide a helpful tool for the communication between the deaf and the external world. This paper proposed a component-based vocabulary extensible SLR framework using data from surface electromyographic (sEMG) sensors, accelerometers (ACC), and gyroscopes (GYRO). In this framework, a sign word was considered to be a combination of five common sign components, including hand shape, axis, orientation, rotation, and trajectory, and sign classification was implemented based on the recognition of five components. Especially, the proposed SLR framework consisted of two major parts. The first part was to obtain the component-based form of sign gestures and establish the code table of target sign gesture set using data from a reference subject. In the second part, which was designed for new users, component classifiers were trained using a training set suggested by the reference subject and the classification of unknown gestures was performed with a code matching method. Five subjects participated in this study and recognition experiments under different size of training sets were implemented on a target gesture set consisting of 110 frequently-used Chinese Sign Language (CSL) sign words. The experimental results demonstrated that the proposed framework can realize large-scale gesture set recognition with a small-scale training set. With the smallest training sets (containing about one-third gestures of the target gesture set) suggested by two reference subjects, (82.6 ± 13.2)% and (79.7 ± 13.4)% average recognition accuracy were obtained for 110 words respectively, and the average recognition accuracy climbed up to (88 ± 13.7)% and (86.3 ± 13.7)% when the training set included 50~60 gestures (about half of the target gesture set). The proposed framework can significantly reduce the user's training burden in large-scale gesture recognition, which will facilitate the implementation of a practical SLR system.
Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
Gapsys, Vytautas; de Groot, Bert L
2017-12-12
Nucleotide-sequence-dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have long been sought. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g., machine learning algorithms or knowledge-based statistical potentials. Molecular-dynamics-based free energy calculations offer a robust, system-independent, first-principles-based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein-DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html .
Fabrication et caracterisation d'hybrides optiques tout-fibre
NASA Astrophysics Data System (ADS)
Madore, Wendy Julie
In this thesis, we present the fabrication and characterization of optical hybrids made of all fibre 3 × 3 and 4 × 4 couplers. The three-fibre components are made with a triangular cross section, while the four-fibre components are made with a square cross section. All of these couplers have to exhibit equipartition of output amplitudes and specific relative phases of the output signals to be referred to as optical hybrids. These two types of couplers are first modelled to determine the appropriate set of experimental parameters to make hybrids out of them. The prototypes are made in standard telecommunication fibres and then characterized to quantify the performances in transmission and in phase. The objectives of this work is first to model the behaviour and physical properties of 3×3 and 4 × 4 couplers to make sure they can meet the requirements of optical hybrids with an appropriate set of fabrication parameters. The next step is to make prototypes of these 3×3 and 4 × 4 couplers and test their behaviour to check how they fulfill the requirements of optical hybrids. The experimental set-up selected is based on the fusion-tapering technique to make optical fibre components. The heat source is a micro-torch fuelled with a gas mix including propane and oxygen. This type of set-up gives the required freedom to adjust experimental parameters to suit both 3×3 and 4×4 couplers. The versatility of the set-up is also an advantage towards a repeatable and stable process to fuse and taper the different structures. The fabricated triangular-shape couplers have a total transmission of 85 % (-0,7 dB), the crossing is typically located around 1 550 nm with a transmission of around 33 % (-4 dB) per branch. In addition, the relative phases between the output signals are 120±9°. The fabricated square-shape couplers have a total transmission of 89 % (-0,5 dB) with a crossing around 1 550 nm and a transmission around 25 % (-6 dB) per branch. The relative phases between the output signals are 90±3°. As standard telecommunications fibres are used to make the couplers, the prototypes are compatible with all standard fibered set-ups and benches. The properties of optical hybrids are very interesting in coherent detection, where an unambiguous phase measurement is desired. For instance, some standard telecommunication systems use phase-shift keying (PSK), which means information is encoded in the phase of the electromagnetic wave. An all-optical decoding of signal is possible using optical hybrids. Another application is in biomedical imaging with techniques such as optical coherence tomography (OCT), or to a more general extend, profilometry systems. In state-of-the-art techniques, a conventional interferometer combined with Fourier analysis only gives absolute value of the phase. Therefore, the achievable imaging depth in the sample is decreased by a factor 2. Using optical hybrids would simply allow that unambiguous phase measurement, giving the sign and value of the phase at the same time.
A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging
NASA Astrophysics Data System (ADS)
Bravin, A.; Mocella, V.; Coan, P.; Astolfo, A.; Ferrero, C.
2007-04-01
An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual ‘weak object’ approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.
Analyzing high energy physics data using database computing: Preliminary report
NASA Technical Reports Server (NTRS)
Baden, Andrew; Day, Chris; Grossman, Robert; Lifka, Dave; Lusk, Ewing; May, Edward; Price, Larry
1991-01-01
A proof of concept system is described for analyzing high energy physics (HEP) data using data base computing. The system is designed to scale up to the size required for HEP experiments at the Superconducting SuperCollider (SSC) lab. These experiments will require collecting and analyzing approximately 10 to 100 million 'events' per year during proton colliding beam collisions. Each 'event' consists of a set of vectors with a total length of approx. one megabyte. This represents an increase of approx. 2 to 3 orders of magnitude in the amount of data accumulated by present HEP experiments. The system is called the HEPDBC System (High Energy Physics Database Computing System). At present, the Mark 0 HEPDBC System is completed, and can produce analysis of HEP experimental data approx. an order of magnitude faster than current production software on data sets of approx. 1 GB. The Mark 1 HEPDBC System is currently undergoing testing and is designed to analyze data sets 10 to 100 times larger.
Filter materials for metal removal from mine drainage--a review.
Westholm, Lena Johansson; Repo, Eveliina; Sillanpää, Mika
2014-01-01
A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.
The urban boundary-layer field campaign in marseille (ubl/clu-escompte): set-up and first results
NASA Astrophysics Data System (ADS)
Mestayer, P.G.; Durand, P.; Augustin, P.; Bastin, S.; Bonnefond, J.-M.; Benech, B.; Campistron, B.; Coppalle, A.; Delbarre, H.; Dousset, B.; Drobinski, P.; Druilhet, A.; Frejafon, E.; Grimmond, C.S.B.; Groleau, D.; Irvine, M.; Kergomard, C.; Kermadi, S.; Lagouarde, J.-P.; Lemonsu, A.; Lohou, F.; Long, N.; Masson, V.; Moppert, C.; Noilhan, J.; Offerle, B.; Oke, T.R.; Pigeon, G.; Puygrenier, V.; Roberts, S.; Rosant, J.-M.; Sanid, F.; Salmond, J.; Talbaut, M.; Voogt, J.
The UBL/CLU (urban boundary layer/couche limite urbaine) observation and modelling campaign is a side-project of the regional photochemistry campaign ESCOMPTE. UBL/CLU focuses on the dynamics and thermodynamics of the urban boundary layer of Marseille, on the Mediterranean coast of France. The objective of UBL/CLU is to document the four-dimensional structure of the urban boundary layer and its relation to the heat and moisture exchanges between the urban canopy and the atmosphere during periods of low wind conditions, from June 4 to July 16, 2001. The project took advantage of the comprehensive observational set-up of the ESCOMPTE campaign over the Berre-Marseille area, especially the ground-based remote sensing, airborne measurements, and the intensive documentation of the regional meteorology. Additional instrumentation was installed as part of UBL/CLU. Analysis objectives focus on (i) validation of several energy balance computational schemes such as LUMPS, TEB and SM2-U, (ii) ground truth and urban canopy signatures suitable for the estimation of urban albedos and aerodynamic surface temperatures from satellite data, (iii) high resolution mapping of urban land cover, land-use and aerodynamic parameters used in UBL models, and (iv) testing the ability of high resolution atmospheric models to simulate the structure of the UBL during land and sea breezes, and the related transport and diffusion of pollutants over different districts of the city. This paper presents initial results from such analyses and details of the overall experimental set-up.
Bentrup, Ursula
2010-12-01
Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.
UpSetR: an R package for the visualization of intersecting sets and their properties
Conway, Jake R.; Lex, Alexander; Gehlenborg, Nils
2017-01-01
Abstract Motivation: Venn and Euler diagrams are a popular yet inadequate solution for quantitative visualization of set intersections. A scalable alternative to Venn and Euler diagrams for visualizing intersecting sets and their properties is needed. Results: We developed UpSetR, an open source R package that employs a scalable matrix-based visualization to show intersections of sets, their size, and other properties. Availability and implementation: UpSetR is available at https://github.com/hms-dbmi/UpSetR/ and released under the MIT License. A Shiny app is available at https://gehlenborglab.shinyapps.io/upsetr/. Contact: nils@hms.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28645171
Yugandhar, K; Gromiha, M Michael
2014-09-01
Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.
Using modeling and rehearsal to teach fire safety to children with autism.
Garcia, David; Dukes, Charles; Brady, Michael P; Scott, Jack; Wilson, Cynthia L
2016-09-01
We evaluated the efficacy of an instructional procedure to teach young children with autism to evacuate settings and notify an adult during a fire alarm. A multiple baseline design across children showed that an intervention that included modeling, rehearsal, and praise was effective in teaching fire safety skills. Safety skills generalized to novel settings and maintained during a 5-week follow-up in both training and generalization settings. © 2016 Society for the Experimental Analysis of Behavior.
CO 2 laser cutting of MDF . 1. Determination of process parameter settings
NASA Astrophysics Data System (ADS)
Lum, K. C. P.; Ng, S. L.; Black, I.
2000-02-01
This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO 2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.
Experimental data for the slug two-phase flow characteristics in horizontal pipeline.
Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H
2018-02-01
The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.
NASA Astrophysics Data System (ADS)
Dionisi, D.; Iannarelli, A. M.; Scoccione, A.; Liberti, G. L.; Cacciani, M.; Argentini, S.; Baldini, L.; Barnaba, F.; Campanelli, M.; Casasanta, G.; Diémoz, H.; Di Liberto, L.; Gobbi, G. P.; Petenko, I.; Siani, A. M.; Von Bismarck, J.; Casadio, S.
2018-04-01
A joint instrumental Super Site, combining observation in urban ("Sapienza" University) and semi-rural (ESA-ESRIN and CNR-ISAC) environment, for atmospheric studies and satellites Cal/Val activities, has been set-up in the Rome area (Italy). Ground based active and passive remote sensing instruments located in both sites are operating in synergy, offering information for a wide range of atmospheric parameters. In this work, a comparison of aerosol and water vapor measurements derived by the Rayleigh-Mie-Raman (RMR) lidars, operating simultaneously in both experimental sites, is presented.
Experimental nonlocality-based network diagnostics of multipartite entangled states.
Ciampini, Mario A; Vigliar, Caterina; Cimini, Valeria; Paesani, Stefano; Sciarrino, Fabio; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Mataloni, Paolo; Paternostro, Mauro; Barbieri, Marco
2017-12-07
We introduce a novel diagnostic scheme for multipartite networks of entangled particles, aimed at assessing the quality of the gates used for the engineering of their state. Using the information gathered from a set of suitably chosen multiparticle Bell tests, we identify conditions bounding the quality of the entangled bonds among the elements of a register. We illustrate the effectiveness of our proposal by characterizing a quantum resource engineered combining two-photon hyperentanglement and photonic-chip technology. Our approach opens up future studies on medium-sized networks due to the intrinsically modular nature of cluster states, and paves the way to section-by-section analysis of larger photonics resources.
New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM
NASA Astrophysics Data System (ADS)
Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.
2016-01-01
Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.
NASA Astrophysics Data System (ADS)
Tanaka, Mitsuru; Kataoka, Masatoshi; Koizumi, Hisao
As the market changes more rapidly and new products continue to get more complex and multifunctional, product development collaboration with competent partners and leading users is getting more important to come up with new products that are successful in the market in a timely manner. ECM (engineering chain management) and SCM (supply chain management) are supply-side approaches toward this collaboration. In this paper, we propose a demand-side approach toward product development collaboration with users based on the information gathered through user support interactions. The approach and methodology proposed here was applied to a real data set, and its effectiveness was verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Bogdan, E.; Zicker, J.
The electromagnetic fields in the immediate vicinity of the Experimental Test Accelerator (ETA) at the Lawrence Livermore Laboratory have been characterized. Various EM sensors that cover the frequency band from the very low frequencies up into the GHz region have been used. The report describes in detail the probes, the test set-up and the data processing techniques.
Time-dependent sorption of two novel fungicides in soils within a regulatory framework.
Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy
2016-12-01
Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun
2013-01-01
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.
Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming
2014-11-10
The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less
The Bonn Electron Stretcher Accelerator ELSA: Past and future
NASA Astrophysics Data System (ADS)
Hillert, W.
2006-05-01
In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.
ERIC Educational Resources Information Center
Blackburn, Bonnie
1984-01-01
Describes a saltwater aquarium design that uses hermit crabs, sea anemones, sea snails, and plants to create an experimental marine environment. Procedures for setting up the tank, techniques for controlling salinity and introducing animals to the environment, and student activities are discussed. (BC)
Finckenor, M; Byrd-Bredbenner, C
2000-03-01
To develop and evaluate the long-term effectiveness of an intervention program, based on preaction-stage-oriented change processes of the Transtheoretical Model of Behavior Change, that could be delivered in a group setting to help participants lower dietary fat intake. An enhanced version of the nonequivalent control group experimental design was used. Entire sections of an undergraduate introductory nutrition science course were assigned to an experimental, pretest/posttest control, or posttest-only control group. Daily fat intake and stage of change of the experimental and pretest/posttest control groups were determined at the pretest and posttest and 1-year later at a follow-up test. Every 1 to 2 weeks during the study, stage of change of the experimental group was assessed. Daily fat intake of the experimental group was assessed at study midpoint. Daily fat intake and stage of change of the posttest-only control group was determined at the posttest. Pretest results were used to place participants of the experimental and pretest/posttest control groups in either the preaction stage (i.e., precontemplation, contemplation, or preparation) or the action/maintenance stage. The sample consisted of 38, 30, and 42 undergraduate students who were assigned to the experimental, pretest/posttest control, and posttest-only control groups, respectively. The experimental group participated in a group-based, dietary fat intake intervention that included a series of 11 lessons taught over a 14-week period. Each lesson was based on 1 or 2 of the preaction-stage-oriented change processes of the Transtheoretical Model. Data were evaluated to determine the effects of the intervention program on long-term dietary fat reduction and stage of change progression. Analysis of variance, repeated-measures analysis of variance, and paired t tests. For pretest and posttest dietary fat intake scores, stage and time were significant, and there was a significant time-by-stage interaction. Time was significant for pretest and posttest stage scores. Subjects in the preaction-stage experimental group significantly increased their mean stage of change and reduced their fat intake between the pretest and posttest; these changes persisted for 1 year. Pretest/posttest control group participants who began in a preaction stage also significantly increased their mean stage and reduced fat intake by the posttest, but these changes did not endure until the follow-up test. This intervention program produced an enduring, significant reduction in mean dietary fat consumption and a significant progression in mean stage of change of subjects in the experimental group who were in the preaction stage. It may be appropriate to design group interventions to use preaction stage processes rather than the more traditionally used action and maintenance stages change processes.
Venettacci, Simone
2017-01-01
In this paper, the heat transfer performances of aluminum metal foams, placed on horizontal plane surface, was evaluated in forced convection conditions. Three different types of contacts between the sample and the heated base plate have been investigated: simple contact, brazed contact and grease paste contact. First, in order to perform the study, an ad hoc experimental set-up was built. Second, the value of thermal contact resistance was estimated. The results show that both the use of a conductive paste and the brazing contact, realized by means of a copper electro-deposition, allows a great reduction of the global thermal resistance, increasing de facto the global heat transfer coefficient of almost 80%, compared to the simple contact case. Finally, it was shown that, while the contribution of thermal resistance is negligible for the cases of brazed and grease paste contact, it is significantly high for the case of simple contact. PMID:28783052
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2016-01-01
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part
NASA Technical Reports Server (NTRS)
Sadhal, S. S.; Trinh, Eugene H.
1997-01-01
The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.
Progress on LMJ targets for ignition
NASA Astrophysics Data System (ADS)
Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.
2009-12-01
Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.
Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang
2014-12-01
For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained. Copyright © 2014. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm
Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Experimental Spin Testing of Integrally Damped Composite Plates
NASA Technical Reports Server (NTRS)
Kosmatka, John
1998-01-01
The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.
Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier
2014-01-01
The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730
A Novel Scale Up Model for Prediction of Pharmaceutical Film Coating Process Parameters.
Suzuki, Yasuhiro; Suzuki, Tatsuya; Minami, Hidemi; Terada, Katsuhide
2016-01-01
In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga
2018-06-01
This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.
Research on monocentric model of urbanization by agent-based simulation
NASA Astrophysics Data System (ADS)
Xue, Ling; Yang, Kaizhong
2008-10-01
Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.
9. VIEW SOUTHSOUTHEAST STERN OF JFK, SCAFFOLDING SET UP FOR ...
9. VIEW SOUTH-SOUTHEAST STERN OF JFK, SCAFFOLDING SET UP FOR REMOUNTING OF PROPELLERS. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 5, League Island, Philadelphia, Philadelphia County, PA
Successful generation of structural information for fragment-based drug discovery.
Öster, Linda; Tapani, Sofia; Xue, Yafeng; Käck, Helena
2015-09-01
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Data management integration for biomedical core facilities
NASA Astrophysics Data System (ADS)
Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David
2007-03-01
We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.
Multi-objective design of fuzzy logic controller in supply chain
NASA Astrophysics Data System (ADS)
Ghane, Mahdi; Tarokh, Mohammad Jafar
2012-08-01
Unlike commonly used methods, in this paper, we have introduced a new approach for designing fuzzy controllers. In this approach, we have simultaneously optimized both objective functions of a supply chain over a two-dimensional space. Then, we have obtained a spectrum of optimized points, each of which represents a set of optimal parameters which can be chosen by the manager according to the importance of objective functions. Our used supply chain model is a member of inventory and order-based production control system family, a generalization of the periodic review which is termed `Order-Up-To policy.' An auto rule maker, based on non-dominated sorting genetic algorithm-II, has been applied to the experimental initial fuzzy rules. According to performance measurement, our results indicate the efficiency of the proposed approach.
Mobile Context Provider for Social Networking
NASA Astrophysics Data System (ADS)
Santos, André C.; Cardoso, João M. P.; Ferreira, Diogo R.; Diniz, Pedro C.
The ability to infer user context based on a mobile device together with a set of external sensors opens up the way to new context-aware services and applications. In this paper, we describe a mobile context provider that makes use of sensors available in a smartphone as well as sensors externally connected via bluetooth. We describe the system architecture from sensor data acquisition to feature extraction, context inference and the publication of context information to well-known social networking services such as Twitter and Hi5. In the current prototype, context inference is based on decision trees, but the middleware allows the integration of other inference engines. Experimental results suggest that the proposed solution is a promising approach to provide user context to both local and network-level services.
Application of neural based estimation algorithm for gait phases of above knee prosthesis.
Tileylioğlu, E; Yilmaz, A
2015-01-01
In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.
Liao, Li-Ling; Lai, I-Ju; Chang, Li-Chun; Lee, Chia-Kuei
2016-08-01
Unhealthy food advertising is an important contributor to childhood obesity. The purpose of this pilot study was to evaluate the impact of a food advertising literacy program that incorporated components of health-promoting media literacy education on fifth-grade children. Participants were 140 fifth-graders (10 and 11 years old) from one school who were randomly divided into three groups. Experimental Group A received a food advertising literacy program, experimental Group B received a comparable knowledge-based nutrition education program and the control group did not receive any nutrition education. Repeated measures analysis of variance and multivariate analysis of covariance were used to test mean changes between pretest, posttest and follow-up on participants' nutritional knowledge, food advertising literacy and food purchasing behavior. Results showed that, as compared with Group B and the control groups, Group A showed higher nutritional knowledge, food advertising literacy and food purchasing behavior at post-intervention, but had no significant improvements in nutritional knowledge and food purchasing behavior at the 1-month follow-up. Although some improvements were observed, future studies should consider a long-term, settings-based approach that is closely connected with children's daily lives, as this might be helpful to solidify children's skills in recognizing, evaluating and understanding unhealthy food advertising. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tight-binding calculation of the magnetic moment of CrAs under pressure
NASA Astrophysics Data System (ADS)
Autieri, Carmine; Cuono, Giuseppe; Forte, Filomena; Noce, Canio
2018-03-01
We analyze the evolution of the local magnetic moment of the newly discovered pressure-induced superconductor CrAs, as a function of the applied pressure. Our theoretical method is based on a combination of the tight-binding approximation and the Löwdin down-folding procedure, which enables us to derive a low-energy effective Hamiltonian projected onto the Cr-subsector. We set up our calculations by considering several sets of ab initio derived hopping parameters, corresponding to different volumes of the unit cell, and use them to obtain the simulated pressure-dependence of the Cr magnetic moment, which is evaluated within a mean-field treatment of the Coulomb repulsion between the electrons at the Cr sites. Our calculations show good agreement with available experimental data, both for the normal phase measured 1.7 µB for Cr magnetic moment, and concerning the observed reduction of its amplitude for values that exceed the characteristic critical pressure.
Rotation, scale, and translation invariant pattern recognition using feature extraction
NASA Astrophysics Data System (ADS)
Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.
1997-03-01
A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratorymore » (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.« less
Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G
2018-03-01
Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavičić, Mladen
2017-06-01
Quantum contextuality turns out to be a necessary resource for universal quantum computation and important in the field of quantum information processing. It is therefore of interest both for theoretical considerations and for experimental implementation to find new types and instances of contextual sets and develop methods of their optimal generation. We present an arbitrarily exhaustive hypergraph-based generation of the most explored contextual sets [Kochen-Specker (KS) ones] in 4, 6, 8, 16, and 32 dimensions. We consider and analyze 12 KS classes and obtain numerous properties of theirs, which we then compare with the results previously obtained in the literature. We generate several thousand additional types and instances of KS sets, including all KS sets in three of the classes and the upper part of a fourth set. We make use of the McKay-Megill-Pavičić (MMP) hypergraph language, algorithms, and programs to generate KS sets strictly following their definition from the Kochen-Specker theorem. This approach proves to be particularly advantageous over the parity-proof-based ones (which prevail in the literature) since it turns out that only a very few KS sets have a parity proof (in six KS classes <0.01% and in one of them 0%). MMP hypergraph formalism enables a translation of an exponentially complex task of solving systems of nonlinear equations, describing KS vector orthogonalities, into a statistically linearly complex task of evaluating vertex states of hypergraph edges, thus exponentially speeding up the generation of KS sets and enabling us to generate billions of novel instances of them. The MMP hypergraph notation also enables us to graphically represent KS sets and to visually discern their features.
Opening School-Based Health Centers in a Rural Setting: Effects on Emergency Department Use
ERIC Educational Resources Information Center
Schwartz, Katherine E.; Monie, Daphne; Scribani, Melissa B.; Krupa, Nicole L.; Jenkins, Paul; Leinhart, August; Kjolhede, Chris L.
2016-01-01
Background: Previous studies of urban school-based health centers (SBHCs) have shown that SBHCs decrease emergency department (ED) utilization. This study seeks to evaluate the effect of SBHCs on ED utilization in a rural setting. Methods: This retrospective, controlled, quasi-experimental study used an ED patient data set from the Bassett…
Rheology as a tool for evaluation of melt processability of innovative dosage forms.
Aho, Johanna; Boetker, Johan P; Baldursdottir, Stefania; Rantanen, Jukka
2015-10-30
Future manufacturing of pharmaceuticals will involve innovative use of polymeric excipients. Hot melt extrusion (HME) is an already established manufacturing technique and several products based on HME are on the market. Additionally, processing based on, e.g., HME or three dimensional (3D) printing, will have an increasingly important role when designing products for flexible dosing, since dosage forms based on compacting of a given powder mixture do not enable manufacturing of optimal pharmaceutical products for personalized treatments. The melt processability of polymers and API-polymer mixtures is highly dependent on the rheological properties of these systems, and rheological measurements should be considered as a more central part of the material characterization tool box when selecting suitable candidates for melt processing by, e.g., HME or 3D printing. The polymer processing industry offers established platforms, methods, and models for rheological characterization, and they can often be readily applied in the field of pharmaceutical manufacturing. Thoroughly measured and calculated rheological parameters together with thermal and mechanical material data are needed for the process simulations which are also becoming increasingly important. The authors aim to give an overview to the basics of rheology and summarize examples of the studies where rheology has been utilized in setting up or evaluating extrusion processes. Furthermore, examples of different experimental set-ups available for rheological measurements are presented, discussing each of their typical application area, advantages and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental aspects of the thermochemical conversion of solar energy - Decarbonation of CaCO3
NASA Astrophysics Data System (ADS)
Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P.
1980-01-01
The feasibility of thermochemical conversion of concentrated solar energy is investigated. Consideration is given to heterogeneous systems in the range 500-1500 C. A reaction volume is on a laboratory scale about 30 cu cm. An experimental set-up selected is a fluid bed and a rotary kiln. An endothermal reaction, namely, decarbonation of CaCO3, is selected as a possible application for solar power plants.
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1979-01-01
The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.
Lazoura, Olga; Zacharoulis, Dimitris; Kanavou, Theodora; Rountas, Christos; Katsimboulas, Michael; Tzovaras, George; Habib, Nagy
2011-01-01
To develop a new rabbit model of arterial stenosis using endovascular radiofrequency (RF) energy. Ten rabbits were used for multiple endovascular RF applications to the aorta and left common carotid artery through the Habib™ VesCoag™ catheter. Angiography and color Doppler ultrasound were used to assess vessel patency immediately following the procedure and six weeks later. One rabbit was sacrificed following the procedure for histopathologic analysis of the vessel wall. Two rabbits died of aortic and carotid rupture, respectively, immediately after the procedure. The remaining seven rabbits were sacrificed after six-week follow-up for histopathological analysis. Optimal RF generator settings to induce significant arterial stenosis (>50%) without complications were standardized at 24-26 watts (W) for 1.5 min for the aorta and 6 W for 1 min for the common carotid artery. The six-week follow-up showed permanent results in all surviving rabbits. Histopathology revealed intima and medial smooth muscle layer necrosis. We have developed a novel rabbit model of arterial stenosis using endovascular RF energy. Our model is fast, safe, inexpensive, and reproducible. It would be useful for experimental investigations and new therapeutic devices.
Active Flow Control: Instrumentation Automation and Experimental Technique
NASA Technical Reports Server (NTRS)
Gimbert, N. Wes
1995-01-01
In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.
A new ab initio potential energy surface for the NH-He complex
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Kłos, J.; Lique, F.
2018-02-01
We present a new three-dimensional potential energy surface (PES) for the NH(X3Σ-)-He van der Waals system, which explicitly takes into account the NH vibrational motion. The NH-He PES was obtained using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. Using this new PES, we have studied the spectroscopy of the NH-He complex and we have determined a new rotational constant that agrees well with the available experimental data. Collisional excitation of NH(X3Σ-) by He was also studied at the close-coupling level. Calculations of the collisional excitation cross sections of the fine-structure levels of NH by He were performed for energies up to 3500 cm-1, which yield, after thermal average, rate coefficients up to 350 K. The calculated rate coefficients are compared with available experimental measurements at room temperature, and a reasonably good agreement is found between experimental and theoretical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesell, C. D.
1980-01-01
In 1980 200 acres of eucalyptus trees were planted for a research and development biomass energy plantation bringing the total area under cultivation to 300 acres. Of this total acreage, 90 acres or 30% was planted in experimental plots. The remaining 70% of the cultivated area was closely monitored to determine the economic cost/benefit ratio of large scale biomass energy production. In the large scale plantings, standard field practices were set up for all phases of production: nursery, clearing, planting, weed control and fertilization. These practices were constantly evaluated for potential improvements in efficiency and reduced cost. Promising experimental treatmentsmore » were implemented on a large scale to test their effectiveness under field production conditions. In the experimental areas all scheduled data collection in 1980 has been completed and most measurements have been keypunched and analyzed. Soil samples and leaf samples have been analyzed for nutrient concentrations. Crop logging procedures have been set up to monitor tree growth through plant tissue analysis. An intensive computer search on biomass, nursery practices, harvesting equipment and herbicide applications has been completed through the services of the US Forest Service.« less
Model-based metabolism design: constraints for kinetic and stoichiometric models
Stalidzans, Egils; Seiman, Andrus; Peebo, Karl; Komasilovs, Vitalijs; Pentjuss, Agris
2018-01-01
The implementation of model-based designs in metabolic engineering and synthetic biology may fail. One of the reasons for this failure is that only a part of the real-world complexity is included in models. Still, some knowledge can be simplified and taken into account in the form of optimization constraints to improve the feasibility of model-based designs of metabolic pathways in organisms. Some constraints (mass balance, energy balance, and steady-state assumption) serve as a basis for many modelling approaches. There are others (total enzyme activity constraint and homeostatic constraint) proposed decades ago, but which are frequently ignored in design development. Several new approaches of cellular analysis have made possible the application of constraints like cell size, surface, and resource balance. Constraints for kinetic and stoichiometric models are grouped according to their applicability preconditions in (1) general constraints, (2) organism-level constraints, and (3) experiment-level constraints. General constraints are universal and are applicable for any system. Organism-level constraints are applicable for biological systems and usually are organism-specific, but these constraints can be applied without information about experimental conditions. To apply experimental-level constraints, peculiarities of the organism and the experimental set-up have to be taken into account to calculate the values of constraints. The limitations of applicability of particular constraints for kinetic and stoichiometric models are addressed. PMID:29472367
Adaptive algorithm of magnetic heading detection
NASA Astrophysics Data System (ADS)
Liu, Gong-Xu; Shi, Ling-Feng
2017-11-01
Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.
Computational screening of organic materials towards improved photovoltaic properties
NASA Astrophysics Data System (ADS)
Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario
2015-03-01
The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Survey of the supporting research and technology for the thermal protection of the Galileo Probe
NASA Technical Reports Server (NTRS)
Howe, J. T.; Pitts, W. C.; Lundell, J. H.
1981-01-01
The Galileo Probe, which is scheduled to be launched in 1985 and to enter the hydrogen-helium atmosphere of Jupiter up to 1,475 days later, presents thermal protection problems that are far more difficult than those experienced in previous planetary entry missions. The high entry speed of the Probe will cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermochemical ablation rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive survey of the experimental work and computational research that provide technological support for the Probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and first-principle computations of flow fields and heat-shield material response; base heating; turbulence modelling; new computational techniques; experimental heating and materials studies; code validation efforts; and a set of 'consensus' first-principle flow-field solutions through the entry maneuver, with predictions of the corresponding thermal protection requirements.
The efficiency of the heat pump water heater, during DHW tapping cycle
NASA Astrophysics Data System (ADS)
Gużda, Arkadiusz; Szmolke, Norbert
2017-10-01
This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.
A course in tools and procedures for Physics I
NASA Astrophysics Data System (ADS)
Allie, Saalih; Buffler, Andy
1998-07-01
A one-semester course covering the tools, skills, and procedures that are required to engage meaningfully with first-year university physics is described. The course forms part of the Science Foundation Programme at the University of Cape Town which was set up to provide access to a science degree for students who have been educationally disadvantaged, part of the legacy of racial discrimination in South Africa. The course comprises three basic elements: a theoretical component, a laboratory-based experimental component, and a communication skills component. The theory component consists of the various mathematical techniques used in a calculus-based Physics I course, grouped into cognate areas so that each technique is presented immediately in the full range of contexts that will be encountered later on. Part of the theory component involves written explanations of the mathematical formalism. The focus of the communication skills component is on report writing which follows as a natural consequence of the laboratory tasks which have been restructured as problems necessitating an experimental investigation. The implementation of cooperative tutorial groups, which forms an integral part of the learning environment, is also discussed.
Analysis of aerobic granular sludge formation based on grey system theory.
Zhang, Cuiya; Zhang, Hanmin
2013-04-01
Based on grey entropy analysis, the relational grade of operational parameters with aerobic granular sludge's granulation indicators was studied. The former consisted of settling time (ST), aeration time (AT), superficial gas velocity (SGV), height/diameter (H/D) ratio and organic loading rates (OLR), the latter included sludge volume index (SVI) and set-up time. The calculated result showed that for SVI and set-up time, the influence orders and the corresponding grey entropy relational grades (GERG) were: SGV (0.9935) > AT (0.9921) > OLR (0.9894) > ST (0.9876) > H/D (0.9857) and SGV (0.9928) > H/D (0.9914) > AT (0.9909) > OLR (0.9897) > ST (0.9878). The chosen parameters were all key impact factors as each GERG was larger than 0.98. SGV played an important role in improving SVI transformation and facilitating the set-up process. The influence of ST on SVI and set-up time was relatively low due to its dual functions. SVI transformation and rapid set-up demanded different optimal H/D ratio scopes (10-20 and 16-20). Meanwhile, different functions could be obtained through adjusting certain factors' scope.
NASA Astrophysics Data System (ADS)
Verma, R.; Shivaprakash, N. C.; Kasthurirengan, S.; Behera, U.
2017-12-01
Cryosorption pump is a capture vacuum pump which retains gas molecules by chemical or physical interaction on their internal surfaces when cooled to cryogenic temperatures. Cryosorption pumps are the only solution in nuclear fusion systems to achieve high vacuum in the environment of hydrogen and helium. An important aspect of this development is the proper adhesion of the activated carbons on the metallic panels using a high thermal conductivity and high bonding strength adhesive. Typical adhesives used are epoxy based. The thermal conductivity of the adhesive can be improved by using fine aluminium powder as the filler in the base epoxy matrix. However, the thermal conductivity data of such epoxy-aluminium composites is not available in literature. Hence, we have measured the thermal conductivities of the above epoxy-aluminium composites (with varied volume fraction of aluminium in epoxy) in the temperature range from 4.5 K to 300 K using a G-M cryocooler based thermal conductivity experimental set-up. The experimental results are discussed in this paper which will be useful towards the development of cryosoprtion pumps with high pumping speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
A dedicated search is presented for new phenomena in inclusive 8- and 10-jet final states with low missing transverse momentum, with and without identification of jets originating from b quarks. The analysis is based on data from proton–proton collisions corresponding to an integrated luminosity of 19.7fb –1 collected with the CMS detector at the LHC at √s = 8TeV. The dominant multijet background expectations are obtained from low jet multiplicity control samples. Data agree well with the standard model background predictions, and limits are set in several benchmark models. Colorons (axigluons) with masses between 0.6 and 0.75 (up to 1.15)more » TeV are excluded at 95% confidence level. Similar exclusion limits for gluinos in R-parity violating supersymmetric scenarios are from 0.6 up to 1.1 TeV. Finally, these results comprise the first experimental probe of the coloron and axigluon models in multijet final states.« less
Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian
2015-02-04
With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.
Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV
NASA Astrophysics Data System (ADS)
Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu
2015-08-01
A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)
García-Escalera, Julia; Valiente, Rosa M; Chorot, Paloma; Ehrenreich-May, Jill; Kennedy, Sarah M; Sandín, Bonifacio
2017-08-21
Anxiety and depression are common, impairing conditions that evidence high comorbidity rates in adolescence. The Unified Protocol for Transdiagnostic Treatment of Emotional Disorders in Adolescents (UP-A) is one of the few existing resources aimed at applying transdiagnostic treatment principles to target core dysfunctions associated with both anxiety and depression within a single protocol. To our knowledge, this is the first study examining the efficacy of the UP-A adapted as a universal preventive intervention program. The primary aim of this study is to examine whether the Spanish version of the UP-A is more effective than a waitlist (WL) control group in reducing and preventing symptoms of anxiety and depression when employed as a universal, classroom-based preventive intervention. The secondary aim is to investigate changes in a broad range of secondary outcome measures, including negative and positive affect, anxiety sensitivity, emotional avoidance, top problems ratings, school grades, depression and anxiety-related interference, self-esteem, life satisfaction, quality of life, conduct problems, hyperactivity/inattention symptoms, peer problems, prosocial behavior, school adjustment, and discipline problems. Other aims are to assess a range of possible predictors of intervention effects and to examine the feasibility and the acceptability of implementing UP-A in a prevention group format and in a school setting. A cluster, randomized, WL, controlled trial design with classroom as the unit of randomization was used in this study. Five classes including a total of 152 adolescents were randomized to the experimental or WL control groups. Participants in the experimental group received 9 55-minute sessions delivered by advanced doctoral and masters students in clinical psychology. The WL control group will receive the intervention once the 3-month follow-up assessment is completed. We have recruited participants to the cluster randomized controlled trial (RCT) and have conducted the intervention with the experimental group. We expect the WL control group to complete the intervention in July 2017. Data analysis will take place during the second semester of 2017. We expect the experimental group to outperform the WL control group at post-intervention and 3-month follow-up. We also expect the WL control group to show improvements in primary and secondary outcome measures after receiving the intervention. Results will have implications for researchers, families, and education providers. Clinicaltrials.gov NCT03123991; https://clinicaltrials.gov/ct2/show/NCT03123991 (Archived by WebCite at http://www.webcitation.org/6qp7GIzcR). ©Julia García-Escalera, Rosa M Valiente, Paloma Chorot, Jill Ehrenreich-May, Sarah M Kennedy, Bonifacio Sandín. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 21.08.2017.
García-Escalera, Julia; Valiente, Rosa M; Ehrenreich-May, Jill; Kennedy, Sarah M; Sandín, Bonifacio
2017-01-01
Background Anxiety and depression are common, impairing conditions that evidence high comorbidity rates in adolescence. The Unified Protocol for Transdiagnostic Treatment of Emotional Disorders in Adolescents (UP-A) is one of the few existing resources aimed at applying transdiagnostic treatment principles to target core dysfunctions associated with both anxiety and depression within a single protocol. To our knowledge, this is the first study examining the efficacy of the UP-A adapted as a universal preventive intervention program. Objective The primary aim of this study is to examine whether the Spanish version of the UP-A is more effective than a waitlist (WL) control group in reducing and preventing symptoms of anxiety and depression when employed as a universal, classroom-based preventive intervention. The secondary aim is to investigate changes in a broad range of secondary outcome measures, including negative and positive affect, anxiety sensitivity, emotional avoidance, top problems ratings, school grades, depression and anxiety-related interference, self-esteem, life satisfaction, quality of life, conduct problems, hyperactivity/inattention symptoms, peer problems, prosocial behavior, school adjustment, and discipline problems. Other aims are to assess a range of possible predictors of intervention effects and to examine the feasibility and the acceptability of implementing UP-A in a prevention group format and in a school setting. Methods A cluster, randomized, WL, controlled trial design with classroom as the unit of randomization was used in this study. Five classes including a total of 152 adolescents were randomized to the experimental or WL control groups. Participants in the experimental group received 9 55-minute sessions delivered by advanced doctoral and masters students in clinical psychology. The WL control group will receive the intervention once the 3-month follow-up assessment is completed. Results We have recruited participants to the cluster randomized controlled trial (RCT) and have conducted the intervention with the experimental group. We expect the WL control group to complete the intervention in July 2017. Data analysis will take place during the second semester of 2017. Conclusions We expect the experimental group to outperform the WL control group at post-intervention and 3-month follow-up. We also expect the WL control group to show improvements in primary and secondary outcome measures after receiving the intervention. Results will have implications for researchers, families, and education providers. Trial Registration Clinicaltrials.gov NCT03123991; https://clinicaltrials.gov/ct2/show/NCT03123991 (Archived by WebCite at http://www.webcitation.org/6qp7GIzcR) PMID:28827212
Semiotic Processes in Chat-Based Problem-Solving Situations
ERIC Educational Resources Information Center
Schreiber, Christof
2013-01-01
This article seeks to illustrate the analysis of episodes of chat sessions based on Charles Sanders Peirce's triadic sign relation. The episodes are from a project called "Math-Chat", which is based on the use of mathematical inscriptions in an experimental setting. What is characteristic of this chat setting is that pupils are required to…
Preclinical electrogastrography in experimental pigs
Květina, Jaroslav; Varayil, Jithinraj Edakkanambeth; Ali, Shahzad Marghoob; Kuneš, Martin; Bureš, Jan; Tachecí, Ilja; Rejchrt, Stanislav; Kopáčová, Marcela
2010-01-01
Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology. PMID:21217873
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1980-01-01
Presents two experimental set-ups. The first demonstrates the law of Malus using a pair of Polaroid polarizers and a monochromatic light source with an interference filter. The second describes a modification of Hilton's apparatus to demonstrate the effects of the magnetic hysteresis on an overhead projector. (CS)
The Power of Aircraft Engines at Altitude
NASA Technical Reports Server (NTRS)
Ragazzi, Paolo
1939-01-01
The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.
Co-culture systems and technologies: taking synthetic biology to the next level
Goers, Lisa; Freemont, Paul; Polizzi, Karen M.
2014-01-01
Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell–cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. PMID:24829281
MD Simulations of P-Type ATPases in a Lipid Bilayer System.
Autzen, Henriette Elisabeth; Musgaard, Maria
2016-01-01
Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD simulations have proved valuable in generating and confirming hypotheses relating to the structure and function of P-type ATPases. In the following, we describe a detailed practical procedure on how to set up and run a MD simulation of a P-type ATPase embedded in a lipid bilayer using software free of use for academics. We emphasize general considerations and problems typically encountered when setting up simulations. While full coverage of all possible procedures is beyond the scope of this chapter, we have chosen to illustrate the MD procedure with the Nanoscale Molecular Dynamics (NAMD) and the Visual Molecular Dynamics (VMD) software suites.
NASA Astrophysics Data System (ADS)
Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu
2016-05-01
Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.
Multiprocessor speed-up, Amdahl's Law, and the Activity Set Model of parallel program behavior
NASA Technical Reports Server (NTRS)
Gelenbe, Erol
1988-01-01
An important issue in the effective use of parallel processing is the estimation of the speed-up one may expect as a function of the number of processors used. Amdahl's Law has traditionally provided a guideline to this issue, although it appears excessively pessimistic in the light of recent experimental results. In this note, Amdahl's Law is amended by giving a greater importance to the capacity of a program to make effective use of parallel processing, but also recognizing the fact that imbalance of the workload of each processor is bound to occur. An activity set model of parallel program behavior is then introduced along with the corresponding parallelism index of a program, leading to upper and lower bounds to the speed-up.
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Pini, Roberto; De Siena, Gaetano; Massi, Daniela; Pavone, Francesco S.; Alfieri, Domenico; Cannarozzo, Giovanni
2010-02-01
The blue light (~400 nm) emitted by high power Light Emitting Diodes (LED) is selectively absorbed by the haemoglobin content of blood and then converted into heat. This is the basic concept in setting up a compact, low-cost, and easy-to-handle photohaemostasis device for the treatment of superficial skin abrasions. Its main application is in reducing bleeding from superficial capillary vessels during laser induced aesthetic treatments, such as skin resurfacing, thus reducing the treatment time and improving aesthetic results (reduction of scar formation). In this work we firstly present the preliminary modeling study: a Finite Element Model (FEM) of the LED induced photothermal process was set up, in order to estimate the optimal wavelength and treatment time, by studying the temperature dynamics in the tissue. Then, a compact, handheld illumination device has been designed: commercially available high power LEDs emitting in the blue region were mounted in a suitable and ergonomic case. The prototype was tested in the treatment of dorsal excoriations in rats. Thermal effects were monitored by an infrared thermocamera, experimentally evidencing the modest and confined heating effects and confirming the modeling predictions. Objective observations and histopathological analysis performed in a follow-up study showed no adverse reactions and no thermal damage in the treated areas and surrounding tissues. The device was then used in human patients, in order to stop bleeding during Erbium laser skin resurfacing procedure. By inducing LED-based photocoagulation, the overall treatment time was shortened and scar formation was reduced, thus enhancing esthetic effect of the laser procedure.
NASA Astrophysics Data System (ADS)
Nesterova, Natalia; Makarieva, Olga; Lebedeva, Lyudmila
2017-04-01
Quantitative and qualitative experimentalists' data helps to advance both understanding of the runoff generation and modelling strategies. There is significant lack of such information for the dynamic and vulnerable cold regions. The aim of the study is to make use of historically collected experimental hydrological data for modelling poorly-gauged river basins on larger scales near the southern margin of the permafrost zone in Eastern Siberia. Experimental study site "Mogot" includes the Nelka river (30.8 km2) and its three tributaries with watersheds area from 2 to 5.8 km2. It is located in the upper elevated (500 - 1500 m a.s.l.) part of the Amur River basin. Mean annual temperature and precipitation are -7.5°C and 555 mm respectively. Top of the mountains with weak vegetation has well drained soil that prevents any water accumulation. Larch forest on the northern slopes has thick organic layer. It causes shallow active layer and relatively small subsurface water storage. Soil in the southern slopes has thinner organic layer and thaws up to 1.6 m depth. Flood plains are the wettest landscape with highest water storage capacity. Measured monthly evaporation varies from 9 to 100 mm through the year. Experimental data shows importance of air temperature and precipitation changes with the elevation. Their gradient was taken into account for hydrological simulations. Model parameterization was developed according to available quantitative and qualitative data in the Mogot station. The process-based hydrological Hydrograph model was used in the study. It explicitly describes hydrological processes in different permafrost environments. Flexibility of the Hydrograph model allows take advantage from the experimental data for model set-up. The model uses basic meteorological data as input. The level of model complexity is suitable for a remote, sparsely gauged region such as Southern Siberia as it allows for a priori assessment of the model parameters. Model simulation of river runoff, snow depth, soil temperature and moisture in the Mogot study site are satisfactory. Model parameterization developed on the Mogot watersheds was employed to simulate runoff generation in the four river basins with area from 150 to 4060 km2 in the surrounded region. We conclude that data about internal catchment processes is extremely helpful for the increasing model realism. Hard and soft experimental knowledge in the form of model parameters and settings could be transferred to larger river basins in the region. The study is supported by Russian Foundation for Basic Research (project 15-35-21146).
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do
2017-01-01
Numerous chemical data sets have become available for quantitative structure–activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting. PMID:28691113
Data driven model generation based on computational intelligence
NASA Astrophysics Data System (ADS)
Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus
2010-05-01
The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
NASA Astrophysics Data System (ADS)
Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.
2017-06-01
The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.
Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea
2018-01-31
This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmanna, Sigurd; Institut fuer Kernphysik, Goethe-Universitaet Frankfurt, Max von Laue-Strasse 1, 60438 Frankfurt am Main
2010-06-01
The nuclear shell model predicts that the next doubly magic shell-closure beyond {sup 208}Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements'(SHEs). Experimental methods are described, which allowed for the identification of elements produced on a cross-section level of about 1 pb. Reactions used at SHIP are based on targets of lead and uranium. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decaymore » properties as well as reaction cross-sections are compared with results obtained at other laboratories and with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques, as for instance the precise mass measurement of the produced nuclei using ion traps. At increased sensitivity, detailed exploration of the region of spherical SHEs will start, after first steps on the island of SHEs were made in recent years.« less
Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko
2014-01-01
X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169
Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis
2017-09-01
Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.
ERIC Educational Resources Information Center
Kaplan, David
2010-01-01
In recent years, attention in the education community has focused on the need for evidenced-based research, particularly educational policies and interventions that rest on "scientifically based research". The emphasis on scientifically based research in education has led to a corresponding increase in studies designed to provide strong warrants…
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg
2018-02-01
We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
Expressive body movement responses to music are coherent, consistent, and low dimensional.
Amelynck, Denis; Maes, Pieter-Jan; Martens, Jean Pierre; Leman, Marc
2014-12-01
Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.
Kappen, Peter; Tröger, Larc; Materlik, Gerhard; Reckleben, Christian; Hansen, Karsten; Grunwaldt, Jan-Dierk; Clausen, Bjerne S
2002-07-01
A silicon drift detector (SDD) was used for ex situ and time-resolved in situ fluorescence X-ray absorption fine structure (XAFS) on low-concentrated catalyst samples. For a single-element and a seven-element SDD the energy resolution and the peak-to-background ratio were verified at high count rates, sufficient for fluorescence XAFS. An experimental set-up including the seven-element SDD without any cooling and an in situ cell with gas supply and on-line gas analysis was developed. With this set-up the reduction and oxidation of a zeolite supported catalyst containing 0.3 wt% platinum was followed by fluorescence near-edge scans with a time resolution of 10 min each. From ex situ experiments on low-concentrated platinum- and gold-based catalysts fluorescence XAFS scans could be obtained with sufficient statistical quality for a quantitative analysis. Structural information on the gold and platinum particles could be extracted by both the Fourier transforms and the near-edge region of the XAFS spectra. Moreover, it was found that with the seven-element SDD concentrations of the element of interest as low as 100 ppm can be examined by fluorescence XAFS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, N.; /SLAC; Taniguchi, S.
Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeVmore » and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.« less
2009-05-07
energies down to 60 eV, obtained with a QCM deposition sensor [5-7, 9-11]. In Section II we discuss the experimental apparatus and procedures used for...logging. Detailed discussion of the QCM sensor is provided in Section IIF. Figure 1. Left: Schematic diagram of experimental set-up. Right...above assumptions (this equation applies for both differential and total yields). F. QCM Sensor and Measurement Proceedure We use a Sigma
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.
García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit
2018-04-25
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments
García-Olalla, Oscar; Saikia, Surajit
2018-01-01
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590
The landscape of W± and Z bosons produced in pp collisions up to LHC energies
NASA Astrophysics Data System (ADS)
Basso, Eduardo; Bourrely, Claude; Pasechnik, Roman; Soffer, Jacques
2017-10-01
We consider a selection of recent experimental results on electroweak W± , Z gauge boson production in pp collisions at BNL RHIC and CERN LHC energies in comparison to prediction of perturbative QCD calculations based on different sets of NLO parton distribution functions including the statistical PDF model known from fits to the DIS data. We show that the current statistical PDF parametrization (fitted to the DIS data only) underestimates the LHC data on W± , Z gauge boson production cross sections at the NLO by about 20%. This suggests that there is a need to refit the parameters of the statistical PDF including the latest LHC data.
Dependence of the Contact Resistance on the Design of Stranded Conductors
Zeroukhi, Youcef; Napieralska-Juszczak, Ewa; Vega, Guillaume; Komeza, Krzysztof; Morganti, Fabrice; Wiak, Slawomir
2014-01-01
During the manufacturing process multi-strand conductors are subject to compressive force and rotation moments. The current distribution in the multi-strand conductors is not uniform and is controlled by the transverse resistivity. This is mainly determined by the contact resistance at the strand crossovers and inter-strand contact resistance. The surface layer properties, and in particular the crystalline structure and degree of oxidation, are key parameters in determining the transverse resistivity. The experimental set-ups made it possible to find the dependence of contact resistivity as a function of continuous working stresses and cable design. A study based on measurements and numerical simulation is made to identify the contact resistivity functions. PMID:25196112
Larocque, Hugo; Lu, Ping; Bao, Xiaoyi
2016-04-01
Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542 rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Norinder, U; Högberg, T
1992-04-01
The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.
Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.
2016-12-01
The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
2017-01-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411
A new test procedure to evaluate the performance of substations for collective heating systems
NASA Astrophysics Data System (ADS)
Baetens, Robin; Verhaert, Ivan
2017-11-01
The overall heat demand of a single dwelling, existing out of space heating and domestic hot water production, decreases due to higher insulation rates. Because of this, investing in efficient and renewable heat generation becomes less interesting. Therefore, to incorporate renewables or residual heat on a larger scale, district heating or collective heating systems grow in importance. Within this set-up, the substation is responsible for the interaction between local demand for comfort and overall energy performance of the collective heating system. Many different configurations of substations exist, which influence both local comfort and central system performance. Next to that, also hybrids exist with additional local energy input. To evaluate performance of such substations, a new experimental-based test procedure is developed in order to evaluate these different aspects, characterized by the two roles a substation has, namely as heat generator and as heat consumer. The advantage of this approach is that an objective comparison between individual and central systems regarding performance on delivering local comfort can be executed experimentally. The lab set-up consists out of three different subsystems, namely the central system, the domestic hot water consumption and the local space heating. The central system can work with different temperature regimes and control strategies, as these aspects have proven to have the largest influence on actual performance. The domestic hot water system is able to generate similar tap profiles according to eco-design regulation for domestic hot water generation. The space heating system is able to demand a modular heat load.
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Jäger, Benjamin; Bich, Eckard
2017-06-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.
Glass transition temperatures of liquid prepolymers obtained by thermal penetrometry
NASA Technical Reports Server (NTRS)
Potts, J. E., Jr.; Ashcraft, A. C.
1973-01-01
Thermal penetrometry is experimental technique for detecting temperature at which frozen prepolymer becomes soft enough to be pierced by weighted penetrometer needle; temperature at which this occurs is called penetration temperature. Apparatus used to obtain penetration temperatures can be set up largely from standard parts.
Designing the detection system for the CORUS project
NASA Astrophysics Data System (ADS)
Kalogirou, A.
2013-05-01
CORUS (Cosmic Rays in UK Schools) will be a network of muon detectors based in schools across the UK. Networks similar to CORUS already exist in other countries, such as the Netherlands and USA. The main aim of the project is to teach high schools students about cosmic rays and experimental physics as well as to motivate them to pursue studies in science. A set of muon detectors will be used for this purpose and the objective of this study is to complete the design of the detectors, construct them and test their capabilities and limitations. The most important component of the muon detector is the electronic card used to collect, analyse and output data. A DAQ card used by QuarkNet, a network of detectors in the USA, has been used in the design of the CORUS detectors. Some readily available photomultiplier tubes have also been used, along with an interface board which connects them to the DAQ board. In this study, I tested whether these two components work well together by conducting a series of experiments, intended to be performed by the students, with the nal detector set-up. The end result is that although a number of improvements is needed before the detectors serve their purpose, this particular set-up does not impose any limitations to the experiments that it is intended to be used for.
Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling
Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar
2013-01-01
Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947
The prediction of airborne and structure-borne noise potential for a tire
NASA Astrophysics Data System (ADS)
Sakamoto, Nicholas Y.
Tire/pavement interaction noise is a major component of both exterior pass-by noise and vehicle interior noise. The current testing methods for ranking tires from loud to quiet require expensive equipment, multiple tires, and/or long experimental set-up and run times. If a laboratory based off-vehicle test could be used to identify the airborne and structure-borne potential of a tire from its dynamic characteristics, a relative ranking of a large group of tires could be performed at relatively modest expense. This would provide a smaller sample set of tires for follow-up testing and thus save expense for automobile OEMs. The focus of this research was identifying key noise features from a tire/pavement experiment. These results were compared against a stationary tire test in which the natural response of the tire to a forced input was measured. Since speed was identified as having some effect on the noise, an input function was also developed to allow the tires to be ranked at an appropriate speed. A relative noise model was used on a second sample set of tires to verify if the ranking could be used against interior vehicle measurements. While overall level analysis of the specified spectrum had mixed success, important noise generating features were identified, and the methods used could be improved to develop a standard off-vehicle test to predict a tire's noise potential.
Compact gasoline fuel processor for passenger vehicle APU
NASA Astrophysics Data System (ADS)
Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen
Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those component volumes. Therefore, the packaging utilizes rectangular catalyst bricks and integrates flow ducts into the heat exchangers. A concept is presented with a 25 l fuel processor volume including thermal isolation for a 3 kW el auxiliary power unit. The overall size of the system, i.e. including stack, air supply and auxiliaries can be estimated to 44 l.
Physical Test Prototypes Based on Microcontroller
NASA Astrophysics Data System (ADS)
Paramitha, S. T.
2017-03-01
The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
QCL spectroscopy combined with the least squares method for substance analysis
NASA Astrophysics Data System (ADS)
Samsonov, D. A.; Tabalina, A. S.; Fufurin, I. L.
2017-11-01
The article briefly describes distinctive features of quantum cascade lasers (QCL). It also describes an experimental set-up for acquiring mid-infrared absorption spectra using QCL. The paper demonstrates experimental results in the form of normed spectra. We tested the application of the least squares method for spectrum analysis. We used this method for substance identification and extraction of concentration data. We compare the results with more common methods of absorption spectroscopy. Eventually, we prove the feasibility of using this simple method for quantitative and qualitative analysis of experimental data acquired with QCL.
Heo, Moonseong; Litwin, Alain H; Blackstock, Oni; Kim, Namhee; Arnsten, Julia H
2017-02-01
We derived sample size formulae for detecting main effects in group-based randomized clinical trials with different levels of data hierarchy between experimental and control arms. Such designs are necessary when experimental interventions need to be administered to groups of subjects whereas control conditions need to be administered to individual subjects. This type of trial, often referred to as a partially nested or partially clustered design, has been implemented for management of chronic diseases such as diabetes and is beginning to emerge more commonly in wider clinical settings. Depending on the research setting, the level of hierarchy of data structure for the experimental arm can be three or two, whereas that for the control arm is two or one. Such different levels of data hierarchy assume correlation structures of outcomes that are different between arms, regardless of whether research settings require two or three level data structure for the experimental arm. Therefore, the different correlations should be taken into account for statistical modeling and for sample size determinations. To this end, we considered mixed-effects linear models with different correlation structures between experimental and control arms to theoretically derive and empirically validate the sample size formulae with simulation studies.
The Role of Scaffolding in CSCL in General and in Specific Environments
ERIC Educational Resources Information Center
Verdú, N.; Sanuy, J.
2014-01-01
This paper aims to analyse if virtual forums set up in an environment specifically designed to improve collaborative learning can effectively influence students' discourse quality and learning when compared with those forums set up in a general environment. Following a coding schema based upon the set of scaffolds offered in the Knowledge…
A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury.
Popp, Werner L; Brogioli, Michael; Leuenberger, Kaspar; Albisser, Urs; Frotzler, Angela; Curt, Armin; Gassert, Roger; Starkey, Michelle L
2016-03-01
Physical activity in wheelchair-bound individuals can be assessed by monitoring their mobility as this is one of the most intense upper extremity activities they perform. Current accelerometer-based approaches for describing wheelchair mobility do not distinguish between self- and attendant-propulsion and hence may overestimate total physical activity. The aim of this study was to develop and validate an inertial measurement unit based algorithm to monitor wheel kinematics and the type of wheelchair propulsion (self- or attendant-) within a "real-world" situation. Different sensor set-ups were investigated, ranging from a high precision set-up including four sensor modules with a relatively short measurement duration of 24 h, to a less precise set-up with only one module attached at the wheel exceeding one week of measurement because the gyroscope of the sensor was turned off. The "high-precision" algorithm distinguished self- and attendant-propulsion with accuracy greater than 93% whilst the long-term measurement set-up showed an accuracy of 82%. The estimation accuracy of kinematic parameters was greater than 97% for both set-ups. The possibility of having different sensor set-ups allows the use of the inertial measurement units as high precision tools for researchers as well as unobtrusive and simple tools for manual wheelchair users. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Diffusion modulation of DNA by toehold exchange
NASA Astrophysics Data System (ADS)
Rodjanapanyakul, Thanapop; Takabatake, Fumi; Abe, Keita; Kawamata, Ibuki; Nomura, Shinichiro M.; Murata, Satoshi
2018-05-01
We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.
Hydroelectric power plant on a paper strip.
Das, Sankha Shuvra; Kar, Shantimoy; Anwar, Tarique; Saha, Partha; Chakraborty, Suman
2018-05-03
We exploit the combinatorial advantage of electrokinetics and tortuosity of a cellulose-based paper network on laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance for 12 days) 'paper-and-pencil'-based device for energy harvesting applications. We successfully achieve harvesting of a maximum output power of ∼640 pW in a single channel, while the same is significantly improved (by ∼100 times) with the use of a multichannel microfluidic array (maximum of up to 20 channels). Furthermore, we also provide theoretical insights into the observed phenomenon and show that the experimentally predicted trends agree well with our theoretical calculations. Thus, we envisage that such ultra-low cost devices may turn out to be extremely useful in energizing analytical microdevices in resource limited settings, for instance, in extreme point of care diagnostic applications.
Customer Churn Prediction for Broadband Internet Services
NASA Astrophysics Data System (ADS)
Huang, B. Q.; Kechadi, M.-T.; Buckley, B.
Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.
New experimental sites for borehole geophysics, hydrodynamics and long-term monitoringITORING
NASA Astrophysics Data System (ADS)
Pezard, P.; Aliance/Saltrans Team
2003-04-01
In order to provide platforms for the development of new downhole geophysical and hydrodynamic sensors, 4 sites are being developped with a series of nearby 100 m deep boreholes located with a few meters to 100 meters, at the most. The objective is to set-up a cluster of extremely well characterized in-situ laboratories at scales where experiments cannot be conducted in traditionnal labs. At least one borehole is continuously cored at each of the sites, and the core is fully characterized in petrological, petrophysical and geochemical terms. An emphasis is placed on fundamental and environmental applications such as hydrogeology, waste storage or the study of seismogenic faults, whether for characterization purposes or the development of long-term monitoring sensors and methods. These sites are developped with the support of CNRS, the University of Montpellier and the ALIANCE program financed by the European Commission. The 4 sites span different lithologies with granite at Ploemeur (Brittany, France), Miocene carbonates from a reefal platform in south Mallorca (Baleares, Spain), Valanginian marly limestone at Lavalette, near Montpellier (Languedoc, France), and unconsolidated sands in a coastal setting also near Montpellier. In the context of ALIANCE, the goal is to improve the investigation, characterisation and monitoring of coastal aquifers for vulnerability assessment. For this, a set of geophysical approaches for the quantitative evaluation of brine intrusion will be developped. This includes the design of 5 new geophysical and hydrodynamical logging/testing sensors. Two end-member sites in terms of hydrogeological behavior will be set up for long-term experimentation, the testing of the new tools, and the validation of site-specific experimental and modelling protocols from µm- to 100 m-scale. Active in-situ testing from short and longer-term injections with variable salinity fluids will simulate overdrafting or saline water intrusion.
How-to-Do-It: Further Improvements to the Steucek & Hill Assay of Photosynthesis.
ERIC Educational Resources Information Center
Juliao, Fernando; Butcher, Henry C., IV
1989-01-01
Several modifications that improve upon the assay of photosynthesis are suggested. Described are the apparatus, materials, light intensity and photosynthesis measurements, and results. A table of the average light intensity values versus the screen number and a sketch of the experimental set-up is included. (RT)
EDUCATION, CHILDREN AND COMFORT.
ERIC Educational Resources Information Center
Iowa Univ., Iowa City.
TWO SIMILAR CLASSROOMS WERE SET UP IN THE LENNOX LIVING LABORATORY, DES MOINES, IOWA, ONE FOR EXPERIMENTAL GROUPS AND ONE FOR CONTROL GROUPS. TEMPERATURE, AIR CIRCULATION AND HUMIDITY CAN BE CONTROLLED AND MEASURED IN BOTH ROOMS. THE ROOMS ARE OF SIMILAR SIZE, LAYOUT AND CONSTRUCTION, THE THERMAL ENVIRONMENT BEING THE ONLY VARIABLE. THE FOLLOWING…
Raindrop and flow interactions for interrill erosion with wind-driven rain
USDA-ARS?s Scientific Manuscript database
Wind-driven rain (WDR) experiments were conducted to evaluate interrill component of the Water Erosion Prediction Project (WEPP) model with two-dimensional experimental set-up in wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7, 15...
Safety review package for University of Central Florida flat-plate heat pipe experiment
NASA Technical Reports Server (NTRS)
Chow, Louis C.
1998-01-01
A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.
How-to-Do-It: A Simple Demonstration of Fermentation.
ERIC Educational Resources Information Center
Yurkiewicz, William J.; And Others
1989-01-01
Described is a simple demonstration of fermentation. The materials needed, the basic experimental set-up, and various projects are outlined. Included are a diagram of an apparatus for measuring carbon dioxide production and a table showing typical results of the effect of pH on fermentation. (RT)
Research on Cleaning Up in San Diego.
ERIC Educational Resources Information Center
Middleman, Stanley
1983-01-01
Discusses the evolution of a set of research programs (dealing with the removal of liquid contaminants from surfaces) used to introduce graduate students to methods of design, evaluation, and modification within the context of a larger research program. Stresses the simultaneity and interaction of theoretical and experimental studies. (JM)
NASA Astrophysics Data System (ADS)
Aminuddin, K. M.; Saggaff, Anis; Tahir, Mahmood Md
2017-11-01
Beam-to-column connections setting up as isolated joint of cold-formed steel sections were tested up to failure. This experiment was conducted to observe the behaviour of connection in term of strength, stiffness and ductility. The type of connection used was rectangular gusset plate which stiffen the beam-to-column connection. The behaviour of the proposed connection was expressed with Moment-Rotation curves plotted from the experiment test results. The capacity of connections on this research were done in two ways: theoretical calculation by adopting Eurocode 3 BS EN 1993-1-8:2005 and experimental test results. The theoretical calculation of the moment capacit y of the proposed connection has found (Mj) to be 10.78 kNm with joint stiffness (Sj) amount to 458.53 kNm/rad. The experimental test results has recorded that the Moment capacity (Mj) of 15.68 kNm with joint stiffness (Sj) of 1948.06 kNm/rad. The moment ratio of theoretical to experimental amount to 0.69. The joint stiffness ratio of theoretical to experimental amount to 0.24.
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.
GeneTopics - interpretation of gene sets via literature-driven topic models
2013-01-01
Background Annotation of a set of genes is often accomplished through comparison to a library of labelled gene sets such as biological processes or canonical pathways. However, this approach might fail if the employed libraries are not up to date with the latest research, don't capture relevant biological themes or are curated at a different level of granularity than is required to appropriately analyze the input gene set. At the same time, the vast biomedical literature offers an unstructured repository of the latest research findings that can be tapped to provide thematic sub-groupings for any input gene set. Methods Our proposed method relies on a gene-specific text corpus and extracts commonalities between documents in an unsupervised manner using a topic model approach. We automatically determine the number of topics summarizing the corpus and calculate a gene relevancy score for each topic allowing us to eliminate non-specific topics. As a result we obtain a set of literature topics in which each topic is associated with a subset of the input genes providing directly interpretable keywords and corresponding documents for literature research. Results We validate our method based on labelled gene sets from the KEGG metabolic pathway collection and the genetic association database (GAD) and show that the approach is able to detect topics consistent with the labelled annotation. Furthermore, we discuss the results on three different types of experimentally derived gene sets, (1) differentially expressed genes from a cardiac hypertrophy experiment in mice, (2) altered transcript abundance in human pancreatic beta cells, and (3) genes implicated by GWA studies to be associated with metabolite levels in a healthy population. In all three cases, we are able to replicate findings from the original papers in a quick and semi-automated manner. Conclusions Our approach provides a novel way of automatically generating meaningful annotations for gene sets that are directly tied to relevant articles in the literature. Extending a general topic model method, the approach introduced here establishes a workflow for the interpretation of gene sets generated from diverse experimental scenarios that can complement the classical approach of comparison to reference gene sets. PMID:24564875
Effects of Experiential-Based Videos in Multi-Disciplinary Learning
ERIC Educational Resources Information Center
Jabbar, Khalid Bin Abdul; Ong, Alex; Choy, Jeanette; Lim, Lisa
2013-01-01
This study examined the use of authentic experiential-based videos in self-explanation activities on 32 polytechnic students' learning and motivation, using a mixed method quasi-experimental design. The control group analysed a set of six pre-recorded videos of a subject performing the standing broad jump (SBJ). The experimental group captured…
Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics
NASA Astrophysics Data System (ADS)
Aurnou, J.
2005-12-01
The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.
Gopinath, T; Veglia, Gianluigi
2018-01-01
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
A mobile phone based alarm system for supervising vital parameters in free moving rats.
Kellermann, Kristine; Kreuzer, Matthias; Omerovich, Adem; Hoetzinger, Franziska; Kochs, Eberhard F; Jungwirth, Bettina
2012-02-23
Study protocols involving experimental animals often require the monitoring of different parameters not only in anesthetized, but also in free moving animals. Most animal research involves small rodents, in which continuously monitoring parameters such as temperature and heart rate is very stressful for the awake animals or simply not possible. Aim of the underlying study was to monitor heart rate, temperature and activity and to assess inflammation in the heart, lungs, liver and kidney in the early postoperative phase after experimental cardiopulmonary bypass involving 45 min of deep hypothermic circulatory arrest in rats. Besides continuous monitoring of heart rate, temperature and behavioural activity, the main focus was on avoiding uncontrolled death of an animal in the early postoperative phase in order to harvest relevant organs before autolysis would render them unsuitable for the assessment of inflammation. We therefore set up a telemetry-based system (Data Science International, DSI™) that continuously monitored the rat's temperature, heart rate and activity in their cages. The data collection using telemetry was combined with an analysis software (Microsoft excel™), a webmail application (GMX) and a text message-service. Whenever an animal's heart rate dropped below the pre-defined threshold of 150 beats per minute (bpm), a notification in the form of a text message was automatically sent to the experimenter's mobile phone. With a positive predictive value of 93.1% and a negative predictive value of 90.5%, the designed surveillance and alarm system proved a reliable and inexpensive tool to avoid uncontrolled death in order to minimize suffering and harvest relevant organs before autolysis would set in. This combination of a telemetry-based system and software tools provided us with a reliable notification system of imminent death. The system's high positive predictive value helped to avoid uncontrolled death and facilitated timely organ harvesting. Additionally we were able to markedly reduce the drop out rate of experimental animals, and therefore the total number of animals used in our study. This system can be easily adapted to different study designs and prove a helpful tool to relieve stress and more importantly help to reduce animal numbers.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Kamens, Richard M.
Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.
Experimental study of isolas in nonlinear systems featuring modal interactions
Noël, Jean-Philippe; Virgin, Lawrence N.; Kerschen, Gaëtan
2018-01-01
The objective of the present paper is to provide experimental evidence of isolated resonances in the frequency response of nonlinear mechanical systems. More specifically, this work explores the presence of isolas, which are periodic solutions detached from the main frequency response, in the case of a nonlinear set-up consisting of two masses sliding on a horizontal guide. A careful experimental investigation of isolas is carried out using responses to swept-sine and stepped-sine excitations. The experimental findings are validated with advanced numerical simulations combining nonlinear modal analysis and bifurcation monitoring. In particular, the interactions between two nonlinear normal modes are shown to be responsible for the creation of the isolas. PMID:29584758
Experimental Studies of Joint Flexibility for PUMA 560 Robot.
1987-03-01
the robot and plant equipment be set up prior to the programming. With the advent of higher level programming languages such as VAL II and the ...SCHOOL I Monterey, California THESIS EC" ft EXPERIMENTAL STUDIES OF JOINT FLEXIBILITY FOR PUNA 560 ROBOT by Dennis K. Gonyier March 1987 Thesis Advisor ...9ABSTRACT (ContInUe on revene ff neccual) and odent’ f by block num~ber) This paper investigates flexibility of the PUMA 560 industrial robot arm. The
Experimental investigation of granular dynamics close to the jamming transition
NASA Astrophysics Data System (ADS)
Caballero, G.; Kolb, E.; Lindner, A.; Lanuza, J.; Clément, E.
2005-06-01
We present different experiments on dense granular assemblies with the aim of clarifying the notion of 'jamming transition' for these assemblies of non-Brownian particles. The experimental set-ups differ in the way in which external perturbations are applied in order to unjam the systems. The first experiment monitors the response to a locally applied deformation of a model packing at rest. The two other experiments study local and collective dynamics in a granular assembly weakly excited by vibration.
Identification of internal flow dynamics in two experimental catchments
Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.
1997-01-01
Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.
Zero-bias 40Gbit/s germanium waveguide photodetector on silicon.
Vivien, Laurent; Polzer, Andreas; Marris-Morini, Delphine; Osmond, Johann; Hartmann, Jean Michel; Crozat, Paul; Cassan, Eric; Kopp, Christophe; Zimmermann, Horst; Fédéli, Jean Marc
2012-01-16
We report on lateral pin germanium photodetectors selectively grown at the end of silicon waveguides. A very high optical bandwidth, estimated up to 120GHz, was evidenced in 10 µm long Ge photodetectors using three kinds of experimental set-ups. In addition, a responsivity of 0.8 A/W at 1550 nm was measured. An open eye diagrams at 40Gb/s were demonstrated under zero-bias at a wavelength of 1.55 µm.
NASA Astrophysics Data System (ADS)
Delay, Jacques; Vinsot, Agnès; Krieguer, Jean-Marie; Rebours, Hervé; Armand, Gilles
In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to study the feasibility of reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The Laboratory consists of two shafts, an experimental drift at 445 m depth and a set of technical and experimental drifts at the main level at 490 m depth. The main objective of the research is to characterize the confining properties of the argillaceous rock through in situ hydrogeological tests, chemical measurements and diffusion experiments. In order to achieve this goal, a fundamental understanding of the geoscientific properties and processes that govern geological isolation in clay-rich rocks has been acquired. This understanding includes both the host rocks at the laboratory site and the regional geological context. After establishing the geological conditions, the underground research programme had to demonstrate that the construction and operation of a geological disposal will not introduce pathways for waste migration. Thus, the construction of the laboratory itself serves a research purpose through the monitoring of excavation effects and the optimization of construction technology. These studies are primarily geomechanical in nature, though chemical and hydrogeological coupling also have important roles. In order to achieve the scientific objectives of this project in the underground drifts, a specific methodology has been applied for carrying out the experimental programme conducted concurrently with the construction of the shafts and drifts. This methodology includes technological as well as organizational aspects and a systematic use of feedback from other laboratories abroad and every scientific zone of the URL already installed. This methodology was first applied to set up a multi-purpose experimental area at 445 m depth. Then the setting up of the experimental programme at the level 490 m was improved from the knowledge acquired during installation of the drift at 445 m. The several steps of the underground scientific programme are illustrated by presenting three experiments carried out in the underground drifts. The first experiment was carried out from the drift at 445 m depth, from end of 2004 to mid 2005. This experiment aimed at setting up an array of about 16 boreholes to monitor the geomechanical changes during and after construction of the shaft between 445 and 490 m. The second experiment was set up in the drift at 445 m depth, and also at the main level at 490 m depth. It consisted in determining the composition of the interstitial water by circulating gas in one borehole and water of a known composition in the other. The evolution of the composition of both water and gases enabled us to test the thermodynamic model of the water/rock interactions. The third example is related to the testing of a concept of interruption of the EDZ through a cross-cut slot technology. The concept, which was tested successfully at Mont Terri (Switzerland), has been transposed and adapted to the URL site conditions. The results will be used for developing a concept for drift sealing.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
Selection of experimental modal data sets for damage detection via model update
NASA Technical Reports Server (NTRS)
Doebling, S. W.; Hemez, F. M.; Barlow, M. S.; Peterson, L. D.; Farhat, C.
1993-01-01
When using a finite element model update algorithm for detecting damage in structures, it is important that the experimental modal data sets used in the update be selected in a coherent manner. In the case of a structure with extremely localized modal behavior, it is necessary to use both low and high frequency modes, but many of the modes in between may be excluded. In this paper, we examine two different mode selection strategies based on modal strain energy, and compare their success to the choice of an equal number of modes based merely on lowest frequency. Additionally, some parameters are introduced to enable a quantitative assessment of the success of our damage detection algorithm when using the various set selection criteria.
Wang, Jianji; Zheng, Nanning
2013-09-01
Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.
Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.
Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan
2016-09-08
The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.
Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali A.
1985-01-01
Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.
Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions
NASA Astrophysics Data System (ADS)
Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan
2016-09-01
The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.
Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.
Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U
2006-12-01
This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation
NASA Astrophysics Data System (ADS)
Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.
2018-03-01
Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.
Ultrasonic technique for monitoring of liquid density variations
NASA Astrophysics Data System (ADS)
Kazys, R.; Rekuviene, R.; Sliteris, R.; Mazeika, L.; Zukauskas, E.
2015-01-01
A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.
Generation of twin beams using four-wave mixing: theory and experiments
NASA Astrophysics Data System (ADS)
Glorieux, Quentin; Dubessy, Romain; Guibal, Samuel; Guidoni, Luca; Likforman, Jean Pierre; Coudreau, Thomas; Arimondo, Ennio
2010-03-01
Recently, four-wave mixing has drawn a large interest as a simple and efficient source of non classical light [1]. Using a strong pump (400 mW) propagating in a heated rubidium cell, it is possible to generate quantum correlated beams. The set-up has the advantage of both simplicity (no resonant cavity) and efficiency (we measure up to 9.5 dB of noise reduction below the standard quantum limit). However, up to now, no microscopic model was proposed for this phenomenon. Here we present for the first time such a model [2] based on the Heisenberg-Langevin input-output formalism [3] and we verify that the classical gain and the quantum correlations are in very good agreement with our experimental datas. A new regime of correlation generation in absence of gain is also proposed. [4pt] [1] C.F. McCormick et al., Opt. Lett (2007) vol. 32 p. 178[0pt] [2] Q. Glorieux et al., in preparation (2010)[0pt] [3] P. Kolchin, Phys. Rev. A (2007) vol. 75 p. 33814
Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau
2008-08-01
This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.
A new region-edge based level set model with applications to image segmentation
NASA Astrophysics Data System (ADS)
Zhi, Xuhao; Shen, Hong-Bin
2018-04-01
Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.
Nanotechnology in Li-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukaibo, Hitomi
2010-06-04
This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standardmore » experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.« less
Milani, Atefeh; Nikmanesh, Zahra; Farnam, Ali
2013-12-01
In the present era, delinquency in children and adolescents is undoubtedly a difficult and upsetting issue attracting the attention of many experts such as psychologists, sociologists, and criminologists. These experts often try to answer why a number of children and adolescents engage in various crimes such as aggressive and anti-social crimes. They also try to find out how these crimes can be prevented. The present study investigates the effectiveness of mindfulness-based cognitive therapy training (MBCT) in reducing aggression in a juvenile correction and rehabilitation center of Zahedan province during years 1991 to 1992. This experimental study included an experimental and a control group with a pretest, posttest, and follow-up approach. The Buss and Perry aggression questionnaire (1992) was used for data collection. The sample group included 22 (10 experimental and 12 control groups) adolescent males in a juvenile correction and rehabilitation center of Zahedan province who were selected through a census method. Using a matching method based on the pre-test scores of the aggression questionnaire, they were then divided into two equivalent categories and were randomly assigned to the two groups. Mindfulness-based cognitive training took the group training in 8 sessions administered on experimental group. The follow-up test was conducted two weeks after the end of the posttest sessions. The results were analyzed using ANCOVA. The results of ANCOVA showed that mindfulness-based cognitive training could significantly reduce aggression during posttest and follow-up test phases in the experimental group, compared to the control group (P < 0.01). Moreover, the results indicated the effectiveness of this method in significantly reducing anger, physical aggression, and hostility during posttest and follow-up test phases (P < 0.05). However, no significant reduction was observed in the verbal aggression subscale. According to the results of the present study, mindfulness-based cognitive training seems to be effective for reducing aggressive behaviors.
Characterization of assembled MEMS
NASA Astrophysics Data System (ADS)
Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George
2004-12-01
Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.
Characterization of assembled MEMS
NASA Astrophysics Data System (ADS)
Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George
2005-01-01
Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.
Ciao, Anna C; Latner, Janet D; Brown, Krista E; Ebneter, Daria S; Becker, Carolyn B
2015-09-01
This pilot study investigated the feasibility, acceptability, and effectiveness of a peer-led dissonance-based eating disorders (ED) prevention/risk factor reduction program with high school girls. Ninth grade girls (n = 50) received the peer-led program within the school curriculum. A quasi-experimental design was used to assess changes in ED risk factors preintervention and postintervention compared with waitlist control. Participants were followed through 3-month follow-up. Peer-leader adherence to an intervention manual tailored for this age group was high. The intervention was rated as highly acceptable, with a large proportion of participants reporting that they enjoyed the program and learned and applied new information. Intervention participants exhibited significantly greater pre-post reductions in a majority of risk-factor outcomes compared to waitlist controls. When groups were combined to assess program effects over time there were significant pre-post reductions in a majority of outcomes that were sustained through 3-month follow-up. This pilot study provides tentative support for the effectiveness of using peer leaders to implement an empirically supported ED risk factor reduction program in a high school setting. Additional research is needed to replicate results in larger, better-controlled trials with longer follow-up. © 2015 Wiley Periodicals, Inc.
Hugoniot equation of state of rock materials under shock compression
Braithwaite, C. H.; Zhao, J.
2017-01-01
Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506
NASA Astrophysics Data System (ADS)
Smith, F. T.; Bowles, R. I.
1992-10-01
The two stages I, II are studied by using recent nonlinear theory and then compared with the experiments of Nishioka et al. (1979) on the transition of plane Poiseuille flow. The first stage I starts at low amplitude from warped input, which is deformed through weakly nonlinear interaction into a blow-up in amplitude and phase accompanied by spanwise focusing into streets. This leads into the strongly nonlinear stage II. It holds for a broad range of interactive boundary layers and related flows, to all of which the nonlinear break-up criterion applies. The experimental comparisons on I, II for channel flow overall show encouraging quantitative agreement, supporting recent comparisons (in the boundary-layer setting) of the description of stage I in Stewart & Smith (1992) with the experiments of Klebanoff & Tidstrom (1959) and of the break-up criterion of Smith (1988a) with the computations of Peridier et al. (1991 a, b).
NASA Astrophysics Data System (ADS)
Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem
2017-04-01
Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger-)causes vegetation dynamics in most regions globally. More specifically, water availability is the most dominant vegetation driver, being the dominant vegetation driver in 54% of the vegetated surface. Furthermore, our results show that precipitation and soil moisture have prolonged impacts on vegetation in semiarid regions, with up to 10% of additional explained variance on the vegetation dynamics occurring three months later. Finally, hydro-climatic extremes seem to have a remarkable impact on vegetation, since they also explain up to 10% of additional variance of vegetation in certain regions despite their infrequent occurrence. References [1] Papagiannopoulou, C., Miralles, D. G., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, in review, 2016.
X-ray micro-tomography for investigations of brain tissues on cellular level
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert
2016-10-01
X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based phase contrast data.
Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data
NASA Astrophysics Data System (ADS)
Reinscheid, F.; Reinscheid, U. M.
2016-02-01
Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.
Experimental demonstration of deep frequency modulation interferometry.
Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán
2016-01-25
Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.
de Beer, Stephanie B A; van Bergen, Laura A H; Keijzer, Karlijn; Rea, Vanina; Venkataraman, Harini; Guerra, Celia Fonseca; Bickelhaupt, F Matthias; Vermeulen, Nico P E; Commandeur, Jan N M; Geerke, Daan P
2012-02-01
Recently, it was found that mutations in the binding cavity of drug-metabolizing Cytochrome P450 BM3 mutants can result in major changes in regioselectivity in testosterone (TES) hydroxylation. In the current work, we report the intrinsic reactivity of TES' C-H bonds and our attempts to rationalize experimentally observed changes in TES hydroxylation using a protein structure-based in silico approach, by setting up and employing a combined Molecular Dynamics (MD) and ligand docking approach to account for the flexibility and plasticity of BM3 mutants. Using this approach, about 100,000 TES binding poses were obtained per mutant. The predicted regioselectivity in TES hydroxylation by the mutants was found to be in disagreement with experiment. As revealed in a detailed structural analysis of the obtained docking poses, this disagreement is due to limitations in correctly scoring hydrogen-bonding and steric interactions with specific active-site residues, which could explain the experimentally observed trends in regioselectivity in TES hydroxylation.
NASA Astrophysics Data System (ADS)
Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.
2017-05-01
An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.
Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants
NASA Astrophysics Data System (ADS)
Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.
2015-05-01
Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.
Investigation of the dielectric recovery in synthetic air in a high voltage circuit breaker
NASA Astrophysics Data System (ADS)
Seeger, M.; Naidis, G.; Steffens, A.; Nordborg, H.; Claessens, M.
2005-06-01
The dielectric recovery of an axially blown arc in an experimental set-up based on a conventional HV circuit breaker was investigated both experimentally and theoretically. As a quenching gas, synthetic air was used. The investigated time range was from 10 µs to 10 ms after current zero (CZ). A fast rise in the dielectric strength during the first 100 µs, followed by a plateau and further rise later was observed. The dependences on the breaking current and pressure were determined. The measured dielectric recovery during the first 100 µs after CZ could be reproduced with good accuracy by computational fluid dynamics simulations. From that it could be deduced that the temperature decay in the axis does not depend sensitively on the pressure. The dielectric recovery during the first 100 µs scales therefore mainly with the filling pressure. The plateau in the breakdown characteristic is due to a hot vapour layer from the still evaporating PTFE nozzle surface.
Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine.
Yu, Zhang; Yang, Xiaomei
2013-01-01
By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency.
NASA Astrophysics Data System (ADS)
Alam, Imtiaz; Waqar, Asad; Aamir, Muhammad; Hassan, Shahzad; Shah, Syed Asim Ali
2018-03-01
Anomalous waves propagation is severely affected due to almost always present variations in refractivity under various environmental conditions at different time, location and frequency. These conditions, representing different state of the atmosphere including e.g. foggy, rainy and cloudy etc., not only degrade the quality of the signal but sometimes completely eradicate the communication link. Such severe impact on propagation cannot be ignored by the designers of communication systems. The aim of this research is to present correlation between experimental and modelled link losses for variations in refractivity values recommended by International Telecommunication Union-Recommendations (ITU-R) as well as that of standard profiles. To do so, a communication setup of 50 km over the Sea operating experimentally over a period of a year at 240 MHz is analyzed for different refractivity profiles and their impact on propagation. A median value is taken for every set of 6000 values taken from the recorded data set of more than 48 million experimental link losses. This reduces the huge data set of the experimental link losses to 8000 values only. This reduced data set of experimental and modelled link losses were correlated and investigated for different evaporation duct heights throughout the year. For the considered link, the ITU-R refractivity profile was found to perform better than the standard refractivity profile. However, the new findings as observed in this research, which may be helpful for the recommendations authorities, is the existing of evaporation duct up to 10 m height.
Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan.
Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk
2013-12-17
The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller's famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller's experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O'Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102-104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.
Xiong, Yongliang
2015-05-06
In this article, solubility measurements of lead carbonate, PbCO 3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO 3 up to I = 1.2 mol•kg –1 and in the mixtures of NaHCO 3 and Na 2CO 3 up to I = 5.2 mol•kg –1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K sp) for cerussite, PbCO 3(cr) = Pb 2+ + CO 3 2- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO 3(aq), Pb(CO 3) 2more » 2-, and Pb(CO 3)Cl – with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less
Bozzini, Carlos E; Lezón, Christian E; Norese, María F; Conti, María I; Martínez, María P; Olivera, María I; Alippi, Rosa M
2005-01-01
The depression of body growth rate and the reduction of body mass for chronological age and gender in growing experimental animals exposed to hypobaric air (simulated high altitude = SHA) have been associated with hypophagia because of reduced appetite. Catch-up growth during protein recovery after a short period of protein restriction only occurs if food intake becomes super-normal, which should not be possible under hypoxic conditions if the set-point for appetite is adjusted by the level of SHA. The present investigation was designed to test the hypothesis that growth retardation during exposure to SHA is due to an alteration of the neural mechanism for setting body mass size rather than a primary alteration of the central set-point for appetite. One group of female rats aged 35 d were exposed to SHA (5460m) in a SHA chamber for 27 d (HX rats). Other group was maintained under local barometric pressure conditions (NX rats). One half of both NX and HX rats were fed a protein-free diet for the initial 9 d of the experimental period. From this time on, they were fed a diet containing 20% protein, as were the remaining rats of both groups during the entire experimental period. The growth rates of both mass and length of the body were significantly depressed in well-nourished rats exposed to SHA during the entire observation period when compared to normoxic ones. At its end, body mass and body length were 24% and 21% less in HX than in NX rats. Growth rates were negatively affected by protein restriction in both NX and HX rats. During protein recovery, they reached supernormal values in response to supernormal levels of energy intake that allowed a complete catch-up of both body mass and length. The finding that energy intake during the period of protein rehabilitation in HX rats previously stunted by protein restriction was markedly higher than in HX control ones at equal levels of hypoxia demonstrates that the degree of hypoxia does not determine directly the degree of appetite and energy intake. Furthermore, the finding that catch-up growth in the stunted HX rats returns the animal only to the stunted size appropriate for the hypoxic animal supports the hypothesis that hypoxia lowers the set-point for body mass size, which is reached by inhibition of appetite. Confirmation of the hypothesis was done by assessment of the set-point of body mass by the behavioral method of the weight threshold to hoard food. It was lowered by 17.0% in HX rats.
NASA Astrophysics Data System (ADS)
Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano
2015-04-01
The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.
Effects of process variation in short cycle stretch forming in beverage can production
NASA Astrophysics Data System (ADS)
Schneider, Matthias; Liewald, Mathias
2016-10-01
Short Cycle Stretch Forming (SCS) is an innovative stretch forming technology developed at the Institute for Metal Forming Technology (IFU) at the University of Stuttgart. The SCS technology combines plane pre-stretching and deep drawing operations within the same stroke of press ram. Material is yielding from the inner to the outer part of the sheet. The sheet thickness is reduced and denting resistance and yield stress are increased due to hardening effects. SCS-Technology is enhanced due to rotational-symmetrical bodies by applying this technology to a cupping process in tinplate can production. A process simulation for SCS-Cupping processes was conducted. Based on these results a tool was manufactured and commissioned. Experimental results showed that material yields from the middle of the blank to the outer area of the cup wall. Due to the volume of material, the initial diameter can be reduced and material costs can be saved. In this paper different process settings and their effect on the amount of material, which yielded from the middle of the blank to its outside, are observed in a number of experimental series. A blank holder is added to the process in order to avoid wrinkling. The influence of this additional blank holder is therefore investigated in a first experimental set-up by varying blank holder force. In a further investigation the effects of two materials with different thicknesses is observed. Finally, an experimental series is conducted to observe the effect of blank diameter on the SCS-Cupping process. The results of this paper show that SCS-Cupping offers a promising potential for material savings and outline main effects for this technology.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M
2016-01-01
A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental variables current density and remediation time did not significantly influence the degradation of the organic pollutants. Despite current density not influencing the remediation, there is potential for degrading organic pollutants during electrodialytic removal of heavy metals, as long as a stirred set-up is applied. Depending on remediation objectives, further optimisation may be needed in order to develop efficient remediation strategies.
Gingins, Simon; Marcadier, Fanny; Wismer, Sharon; Krattinger, Océane; Quattrini, Fausto; Bshary, Redouan; Binning, Sandra A
2018-01-01
Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter "cleaners"). Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right) in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.
Water Utility Lime Sludge Reuse – An Environmental Sorbent for Power Utilities
Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up ...
Liapidevskiĭ, V K
2001-01-01
The variations in the fine structure of distributions of the results of alpha-radioactivity measurements are explained by changes in the velocity of Earth's movement relative to some selected frame of reference.
Microwave soil moisture measurements and analysis
NASA Technical Reports Server (NTRS)
Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (Principal Investigator)
1980-01-01
An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.
...And Gladly Teach: A Ford Foundation Report on the Urban Mathematics Collaboratives.
ERIC Educational Resources Information Center
Ford Foundation, New York, NY.
In February, 1985, the Ford Foundation launched an experimental program to strengthen mathematics education in inner-city high schools. Five grants helped establish urban mathematics collaboratives (UMC) in Cleveland, Minneapolis-St. Paul, Los Angeles, Philadelphia, and San Francisco. Later, additional UMCs were set up in Durham, Memphis, New…
Proton-proton bremsstrahlung towards the elastic limit
NASA Astrophysics Data System (ADS)
Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.
2005-05-01
In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.
Co-culture systems and technologies: taking synthetic biology to the next level.
Goers, Lisa; Freemont, Paul; Polizzi, Karen M
2014-07-06
Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata
2017-04-01
An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildberger, Joachim Ernst, E-mail: wildberg@rad.rwth-aachen.de; Haage, Patrick; Bovelander, Jan
2005-04-15
Purpose. To evaluate the size and quantity of downstream emboli after thrombectomy using the Arrow-Trerotola Percutaneous Thrombolytic Device (PTD) with or without temporary filtration for extensive iliofemoral and iliocaval thrombi in an in vitro flow model. Methods. Iliocaval thrombi were simulated by clotted bovine blood in a flow model (semilucent silicone tubings, diameter 12-16 mm). Five experimental set-ups were performed 10 times each; thrombus particles and distribution were measured in the effluent. First, after retrograde insertion, mechanical thrombectomy was performed using the PTD alone. Then a modified self-expanding tulip-shaped temporary vena cava stent filter was inserted additionally at the beginningmore » of each declotting procedure and removed immediately after the intervention without any manipulation within or at the filter itself. In a third step, the filter was filled with thrombus only. Here, two experiments were performed: Careful closure within the flow circuit without any additional fragmentation procedure and running the PTD within the filter lumen, respectively. In the final set-up, mechanical thrombectomy was performed within the thrombus-filled tubing as well as in the filter lumen. The latter was closed at the end of the procedure and both devices were removed from the flow circuit. Results. Running the PTD in the flow circuit without filter protection led to a fragmentation of 67.9% ({+-}7.14%) of the clot into particles {<=}500 {mu}m; restoration of flow was established in all cases. Additional placement of the filter safely allowed maceration of 82.9% ({+-}5.59%) of the thrombus. Controlled closure of the thrombus-filled filter within the flow circuit without additional mechanical treatment broke up 75.2% ({+-}10.49%), while additional mechanical thrombectomy by running the PTD within the occluded filter led to dissolution of 90.4% ({+-}3.99%) of the initial clot. In the final set-up, an overall fragmentation rate of 99.6% ({+-}0.44%) was achieved. Conclusions. The combined use of the Arrow-Trerotola PTD and a temporary vena cava stent filter proved to be effective for even large clot removal in this experimental set-up.« less
Error Model and Compensation of Bell-Shaped Vibratory Gyro
Su, Zhong; Liu, Ning; Li, Qing
2015-01-01
A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593
Zhao, Zhongming; Guo, An-Yuan; van den Oord, Edwin J C G; Aliev, Fazil; Jia, Peilin; Edenberg, Howard J; Riley, Brien P; Dick, Danielle M; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Michael S; Schuckit, Marc A; Agrawal, Arpana; Kramer, John; Nurnberger, John I; Kendler, Kenneth S; Webb, Bradley T; Miles, Michael F
2012-01-01
A variety of species and experimental designs have been used to study genetic influences on alcohol dependence, ethanol response, and related traits. Integration of these heterogeneous data can be used to produce a ranked target gene list for additional investigation. In this study, we performed a unique multi-species evidence-based data integration using three microarray experiments in mice or humans that generated an initial alcohol dependence (AD) related genes list, human linkage and association results, and gene sets implicated in C. elegans and Drosophila. We then used permutation and false discovery rate (FDR) analyses on the genome-wide association studies (GWAS) dataset from the Collaborative Study on the Genetics of Alcoholism (COGA) to evaluate the ranking results and weighting matrices. We found one weighting score matrix could increase FDR based q-values for a list of 47 genes with a score greater than 2. Our follow up functional enrichment tests revealed these genes were primarily involved in brain responses to ethanol and neural adaptations occurring with alcoholism. These results, along with our experimental validation of specific genes in mice, C. elegans and Drosophila, suggest that a cross-species evidence-based approach is useful to identify candidate genes contributing to alcoholism.
NASA Astrophysics Data System (ADS)
Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin
2016-12-01
This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.
Huysmans, Maaike A; Eijckelhof, Belinda H W; Garza, Jennifer L Bruno; Coenen, Pieter; Blatter, Birgitte M; Johnson, Peter W; van Dieën, Jaap H; van der Beek, Allard J; Dennerlein, Jack T
2017-12-15
Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predicting variables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker's anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2 and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). The full models had R2 values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Norm-Optimal ILC Applied to a High-Speed Rack Feeder
NASA Astrophysics Data System (ADS)
Schindele, Dominik; Aschemann, Harald; Ritzke, Jöran
2010-09-01
Rack feeders as automated conveying systems for high bay rackings are of high practical importance. To shorten the transport times by using trajectories with increased kinematic values accompanying control measures for a reduction of the excited structural vibrations are necessary. In this contribution, the model-based design of a norm-optimal iterative learning control structure is presented. The rack feeder is modelled as an elastic multibody system. For the mathematical description of the bending deflections a Ritz ansatz is introduced. The tracking control design is performed separately for both axes using decentralised state space representations. Both the achievable performance and the resulting tracking accuracy of the proposed control concept are shown by measurement results from the experimental set-up.
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.
2007-01-01
We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.
New method of control of tooth whitening
NASA Astrophysics Data System (ADS)
Angelov, I.; Mantareva, V.; Gisbrecht, A.; Valkanov, S.; Uzunov, Tz.
2010-10-01
New methods of control of tooth bleaching stages through simultaneous measurements of a reflected light and a fluorescence signal are proposed. It is shown that the bleaching process leads to significant changes in the intensity of a scattered signal and also in the shape and intensity of the fluorescence spectra. Experimental data illustrate that the bleaching process causes essential changes in the teeth discoloration in short time as 8-10 min from the beginning of the application procedure. The continuation of the treatment is not necessary moreover the probability of the enamel destroy increases considerably. The proposed optical back control of tooth surface is a base for development of a practical set up to control the duration of the bleaching procedure.
Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid
2011-01-01
The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon, in aqueous solution are used respectively. An experimental system was set up to measure the thermal resistance of the DMHP with both nanofluids and deionized [DI] water as the working medium. The measured results show that the thermal resistance of DMHP varies with the charge volume and the type of working medium. At the same charge volume, a significant reduction in thermal resistance of DMHP can be found if nanofluid is used instead of DI water. PMID:22082052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maio, D., E-mail: dario.dimaio@bristol.ac.uk; Copertaro, E.
2013-12-15
A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of themore » conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure.« less
Trials and tribulations: how we established a major incident database.
Hardy, S E J; Fattah, S
2017-01-25
We describe the process of setting up a database of major incident reports and its potential future application. A template for reporting on major incidents was developed using a consensus-based process involving a team of experts in the field. A website was set up as a platform from which to launch the template and as a database of submitted reports. This paper describes the processes involved in setting up a major incident reporting database. It describes how specific difficulties have been overcome and anticipates challenges for the future. We have successfully set up a major incident database, the main purpose of which is to have a repository of standardised major incident reports that can be analysed and compared in order to learn from them.
NASA Astrophysics Data System (ADS)
Petit, Cyril; Védrenne, Nicolas; Velluet, Marie Therese; Michau, Vincent; Artaud, Geraldine; Samain, Etienne; Toyoshima, Morio
2016-11-01
In order to address the high throughput requested for both downlink and uplink satellite to ground laser links, adaptive optics (AO) has become a key technology. While maturing, application of this technology for satellite to ground telecommunication, however, faces difficulties, such as higher bandwidth and optimal operation for a wide variety of atmospheric conditions (daytime and nighttime) with potentially low elevations that might severely affect wavefront sensing because of scintillation. To address these specificities, an accurate understanding of the origin of the perturbations is required, as well as operational validation of AO on real laser links. We report here on a low Earth orbiting (LEO) microsatellite to ground downlink with AO correction. We discuss propagation channel characterization based on Shack-Hartmann wavefront sensor (WFS) measurements. Fine modeling of the propagation channel is proposed based on multi-Gaussian model of turbulence profile. This model is then used to estimate the AO performance and validate the experimental results. While AO performance is limited by the experimental set-up, it proves to comply with expected performance and further interesting information on propagation channel is extracted. These results shall help dimensioning and operating AO systems for LEO to ground downlinks.
On the transmission of terahertz radiation through silicon-based structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persano, Anna, E-mail: anna.persano@le.imm.cnr.it; Francioso, Luca; Cola, Adriano
2014-07-28
We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO{sub 2} nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75–1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, findingmore » a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO{sub 2} nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range.« less
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Somsri, Pattraporn; Satheannoppakao, Warapone; Tipayamongkholgul, Mathuros; Vatanasomboon, Paranee; Kasemsup, Rachada
2016-03-01
To examine and compare the effectiveness of a cosmetic content-based nutrition education (CCBNEd) program and a health content-based nutrition education (HCBNEd) program on the promotion of fruit and vegetable (F&V) consumption. Quasi-experimental. Three secondary schools in Nonthaburi, Thailand. Three classes of students were randomly assigned to 3 study groups: experimental group 1 (n = 41) participated in the CCBNEd program, experimental group 2 (n = 35) experienced the HCBNEd program, and a comparison group (n = 37) did not participate in a program. All groups received F&V information. Data were collected between July and September, 2013. Knowledge about F&V, attitude toward F&V consumption, and the amount and variety of F&V consumed were measured at baseline, posttest, and follow-up. Nonparametric statistics were used to compare the programs' effectiveness. After the test, experimental group 1 had significantly increased knowledge scores, attitude scores, and the amount and variety of F&V consumed compared with those at baseline (P < .001). These positive changes were maintained until follow-up. In experimental group 2, knowledge and attitude scores increased (P < .001) at posttest and then decreased at follow-up whereas the comparison group positively changed only in knowledge. The CCBNEd program was most effective at increasing F&V consumption. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Lertsatitthanakorn, C
2007-05-01
The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.
Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S
2011-02-01
Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.
Analysis and simulation of industrial distillation processes using a graphical system design model
NASA Astrophysics Data System (ADS)
Boca, Maria Loredana; Dobra, Remus; Dragos, Pasculescu; Ahmad, Mohammad Ayaz
2016-12-01
The separation column used for experimentations one model can be configured in two ways: one - two columns of different diameters placed one within the other extension, and second way, one column with set diameter [1], [2]. The column separates the carbon isotopes based on the cryogenic distillation of pure carbon monoxide, which is fed at a constant flow rate as a gas through the feeding system [1],[2]. Based on numerical control systems used in virtual instrumentation was done some simulations of the distillation process in order to obtain of the isotope 13C at high concentrations. The experimental installation for cryogenic separation can be configured from the point of view of the separation column in two ways: Cascade - two columns of different diameters and placed one in the extension of the other column, and second one column with a set diameter. It is proposed that this installation is controlled to achieve data using a data acquisition tool and professional software that will process information from the isotopic column based on a logical dedicated algorithm. Classical isotopic column will be controlled automatically, and information about the main parameters will be monitored and properly display using one program. Take in consideration the very-low operating temperature, an efficient thermal isolation vacuum jacket is necessary. Since the "elementary separation ratio" [2] is very close to unity in order to raise the (13C) isotope concentration up to a desired level, a permanent counter current of the liquid-gaseous phases of the carbon monoxide is created by the main elements of the equipment: the boiler in the bottom-side of the column and the condenser in the top-side.
NASA Astrophysics Data System (ADS)
Gualdesi, Lavinio
2017-04-01
Mooring lines in the Ocean might be seen as a pretty simple seamanlike activity. Connecting valuable scientific instrumentation to it transforms this simple activity into a sophisticated engineering support which needs to be accurately designed, developed, deployed, monitored and hopefully recovered with its precious load of scientific data. This work is an historical travel along the efforts carried out by scientists all over the world to successfully predict mooring line behaviour through both mathematical simulation and experimental verifications. It is at first glance unexpected how many factors one must observe to get closer and closer to a real ocean situation. Most models have dual applications for mooring lines and towed bodies lines equations. Numerous references are provided starting from the oldest one due to Isaac Newton. In his "Philosophiae Naturalis Principia Matematica" (1687) the English scientist, while discussing about the law of motion for bodies in resistant medium, is envisaging a hyperbolic fitting to the phenomenon including asymptotic behaviour in non-resistant media. A non-exhaustive set of mathematical simulations of the mooring lines trajectory prediction is listed hereunder to document how the subject has been under scientific focus over almost a century. Pode (1951) Prior personal computers diffusion a tabular form of calculus of cable geometry was used by generations of engineers keeping in mind the following limitations and approximations: tangential drag coefficients were assumed to be negligible. A steady current flow was assumed as in the towed configuration. Cchabra (1982) Finite Element Method that assumes an arbitrary deflection angle for the top first section and calculates equilibrium equations down to the sea floor iterating up to a compliant solution. Gualdesi (1987) ANAMOOR. A Fortran Program based on iterative methods above including experimental data from intensive mooring campaign. Database of experimental drag coefficients obtained in wind tunnel for the instrumentation verified in ocean mooring. Dangov (1987) A set of Fortran routines, due to a Canadian scientist, to analyse discrepancies between model and experimental data due to strumming effect on mooring line. Acoustic Doppler Current Profiler's data were adopted for the first time as an input for the model. Skop and O' Hara (1968) Static analysis of a three dimensional multi-leg model Knutson (1987) A model developed at David taylor Model basin based on towed models. Henry Berteaux (1990) SFMOOR Iterative FEM analysis fully fitted with mooring components data base developed by a WHOI scientist. Henry Berteaux (1990) SSMOOR Same model applied to sub-surface moorings. Gobats and Grosenbaugh (1998) Fully developed Method based on Strip Theory developed by WHOI scientists. Experimental validation results are not known.
NASA Astrophysics Data System (ADS)
Wang, Qingquan; Yu, Yingjie; Mou, Kebing
2016-10-01
This paper presents a method of absolutely calibrating the fabrication error of the CGH in the cylindrical interferometry system for the measurement of cylindricity error. First, a simulated experimental system is set up in ZEMAX. On one hand, the simulated experimental system has demonstrated the feasibility of the method we proposed. On the other hand, by changing the different positions of the mirror in the simulated experimental system, a misalignment aberration map, consisting of the different interferograms in different positions, is acquired. And it can be acted as a reference for the experimental adjustment in real system. Second, the mathematical polynomial, which describes the relationship between the misalignment aberrations and the possible misalignment errors, is discussed.
Anticipation - the underlying science of sport. Report on research in progress
NASA Astrophysics Data System (ADS)
Nadin, Mihai
2015-05-01
Professional sport practitioners intuitively acknowledge anticipation. Sports researchers sometimes discuss it. Still, there is little data-based evidence to characterize the role anticipation plays in human performance. Even less documented is the distinction between reaction and anticipation. This text presents the real-time quantification environment developed as an AnticipationScope™. Based on a very large data harvest from this experimental set-up, hypotheses regarding the role of anticipation in sport are advanced. The conclusion is that while preparation and reaction play an important role in sports performance, in the final analysis anticipation distinguishes the professional from other sport practitioners. Work in progress is presented with the aim of engaging the community of researchers in the design of alternative methods for quantifying anticipation and for processing the data. Generalization from sport to human performance is one of the intended outcomes of this research.
SDI-based business processes: A territorial analysis web information system in Spain
NASA Astrophysics Data System (ADS)
Béjar, Rubén; Latre, Miguel Á.; Lopez-Pellicer, Francisco J.; Nogueras-Iso, Javier; Zarazaga-Soria, F. J.; Muro-Medrano, Pedro R.
2012-09-01
Spatial Data Infrastructures (SDIs) provide access to geospatial data and operations through interoperable Web services. These data and operations can be chained to set up specialized geospatial business processes, and these processes can give support to different applications. End users can benefit from these applications, while experts can integrate the Web services in their own business processes and developments. This paper presents an SDI-based territorial analysis Web information system for Spain, which gives access to land cover, topography and elevation data, as well as to a number of interoperable geospatial operations by means of a Web Processing Service (WPS). Several examples illustrate how different territorial analysis business processes are supported. The system has been established by the Spanish National SDI (Infraestructura de Datos Espaciales de España, IDEE) both as an experimental platform for geoscientists and geoinformation system developers, and as a mechanism to contribute to the Spanish citizens knowledge about their territory.
A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing
You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly
2013-01-01
A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127
Extracting latent brain states--Towards true labels in cognitive neuroscience experiments.
Porbadnigk, Anne K; Görnitz, Nico; Sannelli, Claudia; Binder, Alexander; Braun, Mikio; Kloft, Marius; Müller, Klaus-Robert
2015-10-15
Neuroscientific data is typically analyzed based on the behavioral response of the participant. However, the errors made may or may not be in line with the neural processing. In particular in experiments with time pressure or studies where the threshold of perception is measured, the error distribution deviates from uniformity due to the structure in the underlying experimental set-up. When we base our analysis on the behavioral labels as usually done, then we ignore this problem of systematic and structured (non-uniform) label noise and are likely to arrive at wrong conclusions in our data analysis. This paper contributes a remedy to this important scenario: we present a novel approach for a) measuring label noise and b) removing structured label noise. We demonstrate its usefulness for EEG data analysis using a standard d2 test for visual attention (N=20 participants). Copyright © 2015 Elsevier Inc. All rights reserved.
Full-field 3D shape measurement of specular object having discontinuous surfaces
NASA Astrophysics Data System (ADS)
Zhang, Zonghua; Huang, Shujun; Gao, Nan; Gao, Feng; Jiang, Xiangqian
2017-06-01
This paper presents a novel Phase Measuring Deflectometry (PMD) method to measure specular objects having discontinuous surfaces. A mathematical model is established to directly relate the absolute phase and depth, instead of the phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a precise translating stage, a projector, a diffuser and a camera. The stage locates the projector and the diffuser together to a known position during measurement. By using the model-based and machine vision methods, system calibration is accomplished to provide the required parameters and conditions. The verification tests are given to evaluate the effectiveness of the developed system. 3D (Three-Dimensional) shapes of a concave mirror and a monolithic multi-mirror array having multiple specular surfaces have been measured. Experimental results show that the proposed method can obtain 3D shape of specular objects having discontinuous surfaces effectively
Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.
Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V
2010-10-01
The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.
Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states
Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy
2016-01-01
The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135
NASA Astrophysics Data System (ADS)
Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias
2015-07-01
Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.
Van Geit, Werner; Gevaert, Michael; Chindemi, Giuseppe; Rössert, Christian; Courcol, Jean-Denis; Muller, Eilif B; Schürmann, Felix; Segev, Idan; Markram, Henry
2016-01-01
At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases.
A set-up for a biased electrode experiment in ADITYA Tokamak
NASA Astrophysics Data System (ADS)
Dhyani, Pravesh; Ghosh, Joydeep; Sathyanarayana, K.; Praveenlal, V. E.; Gautam, Pramila; Shah, Minsha; Tanna, R. L.; Kumar, Pintu; Chavda, C.; Patel, N. C.; Panchal, V.; Gupta, C. N.; Jadeja, K. A.; Bhatt, S. B.; Kumar, S.; Raju, D.; Atrey, P. K.; Joisa, S.; Chattopadhyay, P. K.; Saxena, Y. C.
2014-10-01
An experimental set-up to investigate the effect of a biased electrode introduced in the edge region on ADITYA tokamak discharges is presented. A specially designed double-bellow mechanical assembly is fabricated for controlling the electrode location as well as its exposed length inside the plasma. The cylindrical molybdenum electrode is powered by a capacitor-bank based pulsed power supply (PPS) using a semiconductor controlled rectifier (SCR) as a switch with forced commutation. A Langmuir probe array for radial profile measurements of plasma potential and density is fabricated and installed. Standard results of improvement of global confinement have been obtained using a biased electrode. In addition to that, in this paper we show for the first time that the same biasing system can be used to avoid disruptions through stabilisation of magnetohydrodynamic (MHD) modes. Real time disruption control experiments have also been carried out by triggering the bias-voltage on the electrode automatically when the Mirnov probe signal exceeds a preset threshold value using a uniquely designed electronic comparator circuit. Most of the results related to the improved confinement and disruption mitigation are obtained in case of the electrode tip being kept at ~3 cm inside the last closed flux surface (LCFS) with an exposed length of ~20 mm in typical discharges of ADITYA tokamak.
Experimental EPR-steering using Bell-local states
NASA Astrophysics Data System (ADS)
Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J.
2010-11-01
The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.
NASA Astrophysics Data System (ADS)
Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny
2012-09-01
Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine
Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer
NASA Astrophysics Data System (ADS)
Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan
2018-01-01
Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.
Slavov, Svetoslav H; Stoyanova-Slavova, Iva; Mattes, William; Beger, Richard D; Brüschweiler, Beat J
2018-07-01
A grid-based, alignment-independent 3D-SDAR (three-dimensional spectral data-activity relationship) approach based on simulated 13 C and 15 N NMR chemical shifts augmented with through-space interatomic distances was used to model the mutagenicity of 554 primary and 419 secondary aromatic amines. A robust modeling strategy supported by extensive validation including randomized training/hold-out test set pairs, validation sets, "blind" external test sets as well as experimental validation was applied to avoid over-parameterization and build Organization for Economic Cooperation and Development (OECD 2004) compliant models. Based on an experimental validation set of 23 chemicals tested in a two-strain Salmonella typhimurium Ames assay, 3D-SDAR was able to achieve performance comparable to 5-strain (Ames) predictions by Lhasa Limited's Derek and Sarah Nexus for the same set. Furthermore, mapping of the most frequently occurring bins on the primary and secondary aromatic amine structures allowed the identification of molecular features that were associated either positively or negatively with mutagenicity. Prominent structural features found to enhance the mutagenic potential included: nitrobenzene moieties, conjugated π-systems, nitrothiophene groups, and aromatic hydroxylamine moieties. 3D-SDAR was also able to capture "true" negative contributions that are particularly difficult to detect through alternative methods. These include sulphonamide, acetamide, and other functional groups, which not only lack contributions to the overall mutagenic potential, but are known to actively lower it, if present in the chemical structures of what otherwise would be potential mutagens.
ERIC Educational Resources Information Center
Halupa, Colleen M.; Caldwell, Benjamin W.
2015-01-01
This quasi-experimental research study evaluated two intact undergraduate engineering statics classes at a private university in Texas. Students in the control group received traditional lecture, readings and homework assignments. Those in the experimental group also were given access to a complete set of online video lectures and videos…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Wang, Yang; Zekveld, Adriana A; Wendt, Dorothea; Lunner, Thomas; Naylor, Graham; Kramer, Sophia E
2018-01-01
Pupil light reflex (PLR) has been widely used as a method for evaluating parasympathetic activity. The first aim of the present study is to develop a PLR measurement using a computer screen set-up and compare its results with the PLR generated by a more conventional setup using light-emitting diode (LED). The parasympathetic nervous system, which is known to control the 'rest and digest' response of the human body, is considered to be associated with daily life fatigue. However, only few studies have attempted to test the relationship between self-reported daily fatigue and physiological measurement of the parasympathetic nervous system. Therefore, the second aim of this study was to investigate the relationship between daily-life fatigue, assessed using the Need for Recovery scale, and parasympathetic activity, as indicated by the PLR parameters. A pilot study was conducted first to develop a PLR measurement set-up using a computer screen. PLRs evoked by light stimuli with different characteristics were recorded to confirm the influence of light intensity, flash duration, and color on the PLRs evoked by the system. In the subsequent experimental study, we recorded the PLR of 25 adult participants to light flashes generated by the screen set-up as well as by a conventional LED set-up. PLR parameters relating to parasympathetic and sympathetic activity were calculated from the pupil responses. We tested the split-half reliability across two consecutive blocks of trials, and the relationships between the parameters of PLRs evoked by the two set-ups. Participants rated their need for recovery prior to the PLR recordings. PLR parameters acquired in the screen and LED set-ups showed good reliability for amplitude related parameters. The PLRs evoked by both set-ups were consistent, but showed systematic differences in absolute values of all parameters. Additionally, higher need for recovery was associated with faster and larger constriction of the PLR. This study assessed the PLR generated by a computer screen and the PLR generated by a LED. The good reliability within set-ups and the consistency between the PLRs evoked by the set-ups indicate that both systems provides a valid way to evoke the PLR. A higher need for recovery was associated with faster and larger constricting PLRs, suggesting increased levels of parasympathetic nervous system activity in people experiencing higher levels of need for recovery on a daily basis.
ERIC Educational Resources Information Center
Lanier, Paul; Kohl, Patrica L.; Benz, Joan; Swinger, Dawn; Moussette, Pam; Drake, Brett
2011-01-01
Objectives: The purpose of this study was to evaluate Parent-Child Interaction Therapy (PCIT) deployed in a community setting comparing in-home with the standard office-based intervention. Child behavior, parent stress, parent functioning, and attrition were examined. Methods: Using a quasi-experimental design, standardized measures at three time…
Determination of the equilibrium constant of C60 fullerene binding with drug molecules.
Mosunov, Andrei A; Pashkova, Irina S; Sidorova, Maria; Pronozin, Artem; Lantushenko, Anastasia O; Prylutskyy, Yuriy I; Parkinson, John A; Evstigneev, Maxim P
2017-03-01
We report a new analytical method that allows the determination of the magnitude of the equilibrium constant of complexation, K h , of small molecules to C 60 fullerene in aqueous solution. The developed method is based on the up-scaled model of C 60 fullerene-ligand complexation and contains the full set of equations needed to fit titration datasets arising from different experimental methods (UV-Vis spectroscopy, 1 H NMR spectroscopy, diffusion ordered NMR spectroscopy, DLS). The up-scaled model takes into consideration the specificity of C 60 fullerene aggregation in aqueous solution and allows the highly dispersed nature of C 60 fullerene cluster distribution to be accounted for. It also takes into consideration the complexity of fullerene-ligand dynamic equilibrium in solution, formed by various types of self- and hetero-complexes. These features make the suggested method superior to standard Langmuir-type analysis, the approach used to date for obtaining quantitative information on ligand binding with different nanoparticles.
High pressure melting curve of platinum up to 35 GPa
NASA Astrophysics Data System (ADS)
Patel, Nishant N.; Sunder, Meenakshi
2018-04-01
Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.
Ackermann, Mark R.
2006-01-01
The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional. PMID:17033699
A push-pull system to reduce house entry of malaria mosquitoes
2014-01-01
Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451
Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC.
Mishra, Rupesh K; Catanante, Gaëlle; Hayat, Akhtar; Marty, Jean-Louis
2016-01-01
Cocoa is an important ingredient for the chocolate industry and for many food products. However, it is prone to contamination by ochratoxin A (OTA), which is highly toxic and potentially carcinogenic to humans. In this work, four different extraction methods were tested and compared based on their recoveries. The best protocol was established which involves an organic solvent-free extraction method for the detection of OTA in cocoa beans using 1% sodium hydrogen carbonate (NaHCO3) in water within 30 min. The extraction method is rapid (as compared with existing methods), simple, reliable and practical to perform without complex experimental set-ups. The cocoa samples were freshly extracted and cleaned-up using immunoaffinity column (IAC) for HPLC analysis using a fluorescence detector. Under the optimised condition, the limit of detection (LOD) and limit of quantification (LOQ) for OTA were 0.62 and 1.25 ng ml(-1) respectively in standard solutions. The method could successfully quantify OTA in naturally contaminated samples. Moreover, good recoveries of OTA were obtained up to 86.5% in artificially spiked cocoa samples, with a maximum relative standard deviation (RSD) of 2.7%. The proposed extraction method could determine OTA at the level 1.5 µg kg(-)(1), which surpassed the standards set by the European Union for cocoa (2 µg kg(-1)). In addition, an efficiency comparison of IAC and molecular imprinted polymer (MIP) column was also performed and evaluated.
Multi-scale hydrometeorological observation and modelling for flash flood understanding
NASA Astrophysics Data System (ADS)
Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.
2014-09-01
This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.
Multi-scale hydrometeorological observation and modelling for flash-flood understanding
NASA Astrophysics Data System (ADS)
Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.
2014-02-01
This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.
Funding women's health work -- no easy answers.
Ikeda, J
1998-01-01
This article discusses a community's solution to improving women's health in Guatemala. Indigenous women from the highland community of Cajola formed the Asociacion Pro-Bienestar de la Mujer Mam (APBMM). The APBMM identified a need for women health promoters and good, low-cost medicines. The Instituto de Educacion Integral para la Salud y el Desarrollo (IDEI) helped train 16 women as health communicators or promoters in 1996. The health communicators learned about setting up community medicine distribution. The mayor bypassed APBMM's efforts to set up medicine distribution and set up a community pharmacy himself. Someone else opened a private pharmacy. The 200-member group was frustrated and redirected their energies to making natural herbal medicines, such as eucalyptus rub. The group set up a community medicine chest in the IDEI medical clinic and sold modern medicine, homemade vapor rubs, and syrups. The group was joined by midwives and other volunteers and began educating mothers about treatment of diarrhea and respiratory diseases. The Drogueria Estatal, which distributes medicines nationally to nongovernmental groups, agreed to sell high quality, low cost medicine to the medicine chest, which was renamed Venta Social de Medicamentos (VSM). The health communicators are working on three potential income generation projects: VSM, the production and sale of traditional medicines and educational materials, and an experimental greenhouse to grow medicinal plants and research other crops that can be grown in the highlands.
Unified Research on Network-Based Hard/Soft Information Fusion
2016-02-02
types). There are a number of search tree run parameters which must be set depending on the experimental setting. A pilot study was run to identify...Unlimited Final Report: Unified Research on Network-Based Hard/Soft Information Fusion The views, opinions and/or findings contained in this report...Final Report: Unified Research on Network-Based Hard/Soft Information Fusion Report Title The University at Buffalo (UB) Center for Multisource
Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, I W; Bastea, S; Fried, L E
2010-03-10
We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.
1971-01-01
An experimental portable system used to control surgically induced infections is described. The system consists of a portable clean room comprised of a laminar flow filter system consistent with Federal standards; a helmet-shoulder pad assembly; a communication system; a helmet ventilation system; a transparent walled enclosure; and surgical gowns. Guidelines for the set up and operation of such equipment are given along with corrective steps to use in case of system malfunctions. Cleaning procedures, maintenance requirements, and disassembly and transfer particulars are included.
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
Organizational Analysis of Energy Manpower Requirements in the United States Navy
2013-06-01
ix LIST OF FIGURES Figure 1. A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010...Figure 1. A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010) 9 In an effort to capture...electronic and information warfare systems ) (h ) Network Engineering (including wireless networks, sensor networks, high speed data networking, and
A Cost Comparison Between Active and Naval Reserve Force FFG 7 Class Ships
1993-06-01
so in our hypothetical depreciation schedule 1/30th of the depreciable cost would be expensed each year. Under GAAP , the historical cost of the asset...and Support Costs (VAMOSC) data base provided by the* aval Center For Cost Analysis. The thesis also sets up theoretical depreciation schedules for...VAMOSC) data base provided by the Naval Center for Cost Analysis. The thesis also sets up theoretical depreciation schedules for selected ships to
Adaptive zero-tree structure for curved wavelet image coding
NASA Astrophysics Data System (ADS)
Zhang, Liang; Wang, Demin; Vincent, André
2006-02-01
We investigate the issue of efficient data organization and representation of the curved wavelet coefficients [curved wavelet transform (WT)]. We present an adaptive zero-tree structure that exploits the cross-subband similarity of the curved wavelet transform. In the embedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT), the parent-child relationship is defined in such a way that a parent has four children, restricted to a square of 2×2 pixels, the parent-child relationship in the adaptive zero-tree structure varies according to the curves along which the curved WT is performed. Five child patterns were determined based on different combinations of curve orientation. A new image coder was then developed based on this adaptive zero-tree structure and the set-partitioning technique. Experimental results using synthetic and natural images showed the effectiveness of the proposed adaptive zero-tree structure for encoding of the curved wavelet coefficients. The coding gain of the proposed coder can be up to 1.2 dB in terms of peak SNR (PSNR) compared to the SPIHT coder. Subjective evaluation shows that the proposed coder preserves lines and edges better than the SPIHT coder.
Constitutive modeling of superalloy single crystals with verification testing
NASA Technical Reports Server (NTRS)
Jordan, Eric; Walker, Kevin P.
1985-01-01
The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.
An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines
NASA Technical Reports Server (NTRS)
Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng
2014-01-01
We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.
Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes.
Paul, Sinu; Arlehamn, Cecilia S Lindestam; Schulten, Veronique; Westernberg, Luise; Sidney, John; Peters, Bjoern; Sette, Alessandro
2017-06-21
The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher's exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew's correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.
Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.
2016-01-01
The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660
NASA Astrophysics Data System (ADS)
Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.
2018-02-01
X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis
NASA Astrophysics Data System (ADS)
Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus
2011-05-01
The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.
Development of a digital hearing aid to meet the Brazilian Government's Ordinance 587 (APAC).
Penteado, Silvio Pires; Bento, Ricardo Ferreira
2010-01-01
The treatment of sensorineural hearing loss is based on hearing aids, also known as individual sound amplification devices. The hearing aids purchased by the Brazilian Government, aiming at fulfilling public policies, are based on dedicated components, which bring about benefits, but also render them expensive and may impair repair services after manufacture's warranty expires. to design digital behind-the-ear hearing aids built from standardized components coming from the very supply chain of these manufacturers. experimental. to identify the supply chain of these manufacturers, request samples and set up hearing aids in the laboratory. The developed hearing aids did not show lesser electroacoustic characteristics when compared to those acquired by the Government, also being tested by the same reference international technical standard. It is possible to develop digital behind-the-ear hearing aids based on off-the-shelf components from hearing aid manufacturers' supply chain. Their advantages include low operational costs - for acquisition (with clear advantages for the Government) and service (advantage for the patient).
Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A
1989-01-01
We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819
Politis, Stavros N; Rekkas, Dimitrios M
2017-04-01
A novel hot melt direct pelletization method was developed, characterized and optimized, using statistical thinking and experimental design tools. Mixtures of carnauba wax (CW) and HPMC K100M were spheronized using melted gelucire 50-13 as a binding material (BM). Experimentation was performed sequentially; a fractional factorial design was set up initially to screen the factors affecting the process, namely spray rate, quantity of BM, rotor speed, type of rotor disk, lubricant-glidant presence, additional spheronization time, powder feeding rate and quantity. From the eight factors assessed, three were further studied during process optimization (spray rate, quantity of BM and powder feeding rate), at different ratios of the solid mixture of CW and HPMC K100M. The study demonstrated that the novel hot melt process is fast, efficient, reproducible and predictable. Therefore, it can be adopted in a lean and agile manufacturing setting for the production of flexible pellet dosage forms with various release rates easily customized between immediate and modified delivery.
Tritium well depth, tritium well time and sponge mechanism for reducing tritium retention
NASA Astrophysics Data System (ADS)
Deng, B. Q.; Li, Z. X.; Li, C. Y.; Feng, K. M.
2011-07-01
New simulation results are predicted in a fusion reactor operation process. They are somewhat similar to, but quite different from, the xenon poisoning effects resulting from fission-produced iodine during the restart-up process of a fission reactor. We obtained completely new results of tritium well depth and tritium well time in magnetic confinement fusion energy research area. This study is carried out to investigate the following: what will be the least amount of tritium storage required to start up a fusion reactor and how long the fusion reactor needs to be operated for achieving the tritium break-even during the initial start-up phase due to the finite tritium-breeding time, which is dependent on the tritium breeder, specific structure of the breeding zone, layout of the coolant flow pipes, tritium recovery scheme and applied extraction process, the tritium retention of plasma facing component (PFC) and other reactor components, unrecoverable tritium fraction in the breeder, leakage to the inertial gas container and the natural radioactive decay time constant. We describe these new issues and answer these problems by setting up and solving a set of equations, which are described by a dynamic subsystem model of tritium inventory evolution in a fusion experimental breeder (FEB). Reasonable results are obtained using our simulation model. It is found that the tritium well depth is about 0.319 kg and the tritium well time is approximately 235 full power operation days for the reference case of the designed FEB configuration, and it is also found that after one-year operation the tritium storage reaches 0.767 kg, which is more than the least amount of tritium storage required to start up another FEB-like fusion reactor. The results show that the tritium retention in the PFC is equivalent to 11.9% of tritium well depth that is fairly consistent with the result of 10-20% deduced from the integrated particle balance of European tokamaks. Based on our experimental and theoretical studies, some new mechanisms are proposed for reducing the tritium retention in PFC and structure materials of tritium-breeding blanket. In this paper, a qualitative analysis of the 'sponge effect' is carried out. The 'sponge effect' may help us to reduce tritium retention by ~20% in the PFC.
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Intensive group selection silviculture in central hardwoods
Leon S. Minckler
1989-01-01
In 1947 conferences of Forest Service research people from Federal, Regional, and Research Center units met in Southern Illinois to set up in 1948 a whole rotation study on the Kaskaskia Experimental Forest involving 38 commercial compartments. The chief objectives were to evaluate the success, ability for sustained silviculture, and the costs and returns for a full...
ERIC Educational Resources Information Center
Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris
2016-01-01
The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…
A Study of Race and Class Heterogeneity Among Preschool Children.
ERIC Educational Resources Information Center
Vietze, Peter M.; Sigel, Irving E.
An experimental preschool was set up to study the effect of mixing children differing in SES and race on racial awareness and interaction. It was hypothesized that racial self-selection could be explained in terms of SES level and that interracial contact when different SES children were included would serve to counteract racial stereotypes and…
Experimental Determination of Unknown Masses and Their Positions in a Mechanical Black Box
ERIC Educational Resources Information Center
Chakrabarti, Bhupati; Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura
2013-01-01
An experiment with a mechanical black box containing unknown masses is presented. The experiment involves the determination of these masses and their locations by performing some nondestructive tests. The set-ups are inexpensive and easy to fabricate. They are very useful to gain an understanding of some well-known principles of mechanics.
Comparative Study of Antimalarial and Other Drugs on G6PD Deficient Red Cells.
the WR compounds previously studied. The suggested use of xylitol as a protective agent against hemolytic drugs (Wang et al) had raised considerable...expectation. Unfortunately, xylitol at the dosages of 20 and 30 g./day was unable, in our experimental set up (transfusion of 51 Cr tagged G6PD